
Multi-Writer Consistency Conditions for Shared Memory Registers∗

Texas A&M University Department of Computer Science and Engineering Technical Report 2010-1-1

Cheng Shao Jennifer L. Welch Evelyn Pierce Hyunyoung Lee

Abstract

Regularity is a shared memory consistency condition that has received considerable attention. Lamport’s original
definition of regularity assumed a single-writer model, however, and is not well defined when the shared register
may have multiple writers. In this paper, we consider four possible definitions of multi-writer regularity. The
definitions are motivated by variations on a quorum-based algorithm schema for implementing them. We study the
relationships between these definitions and a number of other well-known consistency conditions, and give a partial
order describing the relative strengths of these consistency conditions. Finally, we provide a practical context for our
results by studying the correctness of two well-known algorithms for mutual exclusion under each of our proposed
consistency conditions.

1 Introduction

1.1 Overview

Distributed computer systems are ubiquitous today, ranging from multiprocessors to local area networks to wide-
area networks such as the Internet. Shared memory — the exchange of information between processes by the
reading and writing of shared variables — is an important mechanism for interprocess communications in distributed
systems. Aconsistency conditionin a shared memory system is a set of constraints on values returned by data
accesses when those accesses may be interleaved or overlapping. A shared memory system with a strong consistency
condition may be easy to design application protocols for, but may require a high-cost implementation. Conversely,
a shared memory system with a weak consistency condition maybe easy to implement, but difficult for the user to
program or reason about. Finding a consistency condition that can be implemented efficiently and that is nonetheless
strong enough to solve practical problems is one of the aims of shared memory research.

Perhaps the most desirable consistency condition for shared memory variables isatomicity(Lamport [17]), also
known aslinearizability (Herlihy and Wing [13]), in which read and write operations behave as though they were
executed sequentially, i.e., with no interleaving or overlap, in a sequence that is consistent with the relative order
of non-overlapping operations. In many cases, however, this semantics is difficult to implement, particularly in
distributed systems where variables are replicated and where the number of processes with access to the variable
is not known in advance. For some systems, the related but weaker condition ofregularity (Lamport [17]) may be

∗This work was done while the authors were at Texas A&M University. This work was supported in part by NSF grant 0098305; NSFgrant
0500265; Texas Higher Education Coordinating Board grantsARP-00512-0091-2001, ARP-00512-0007-2006, and NHARP 000512-0130-
2007; and Texas Engineering Experiment Station funds. A preliminary version of this paper appeared in the 2003 International Symposium
on Distributed Computing [29].

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Texas A&M Repository

https://core.ac.uk/display/231875299?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Texas A&M University Department of Computer Science and Engineering Technical Report 2010-1-1

easier to implement while retaining some usefulness. For this reason, it has received considerable attention in its
own right, notably in connection withquorum-based shared memory(Attiya et al. [4], Malkhi and Reiter [21], Lee
and Welch [18], Lynch and Shvartsman [20]).

Informally speaking, regularity requires that every read operation return either the value written by the latest
preceding write (in real time) or that of some write that overlaps the read. This description is sufficiently clear
for the single-writer model1, in which the order of the writes performed on a given register in any execution is
well-defined; in fact, it was for this model that Lamport gavehis definition of regularity [17]. In a multi-writer
model, however, multiple processes may perform overlapping write operations to the same register so that the “latest
preceding write” for a given read may have no obvious definition.

A common way to circumvent this problem is to rely on a plausible generalization of the informal definition
above, e.g., the following, which appears in Malkhi and Reiter [21]:

• A read operation that is concurrent with no write operationsreturns a value written by the last preceding write
operation in some serialization of all preceding write operations, and

• A read operation that is concurrent with one or more write operations returns either the value written by the
last preceding write operation in some serialization of allpreceding write operations, or any of the values
being written in the concurrent write operations.

Such a definition, however, leaves a good deal of room for interpretation. What is meant by “some serialization” in
this context? Is there a single serialization of the writes for which the above is true for all read operations, or does it
suffice for there to be some (possibly different) such serialization foreachoperation? Or should all read operations
of the sameprocessperceive writes as occurring in the same order? Such ambiguities can be avoided with a precise
definition of multi-writer regularity, but to our knowledgenone has yet been proposed.

1.2 Contributions

In this paper, we extend the notion of regularity to a multi-writer model. Specifically, we propose four possible
definitions of regularity in the presence of multiple writers. We then present a quorum-based algorithm to implement
each of these definitions and prove the algorithms correct. The first condition is implemented with a basic algorithm,
while the other three conditions are obtained by adding three different mechanisms to the basic algorithm. Our
algorithms are designed for asynchronous message-passingsystems in which no messages are lost. For simplicity
of presentation, we assume that no processes are faulty; in the conclusion we discuss how to accommodate crash
failures of processes.

The definitions form a lattice with respect to their strength, and the implementations have varying costs with
respect to number of messages, size of messages, time delay,and local memory requirements. Taken together, the
definitions point out the ambiguity of the informal notion ofmulti-writer regularity and the algorithms suggest that
different costs may be associated with different choices for disambiguating.

A consistency condition is said to be local if the consistency condition is satisfied on a per-variable basis. Locality
is a desirable property of consistency conditions: as mentioned in Herlihy and Wing [13], locality enhances mod-
ularity and concurrency. We show that all our proposed definitions satisfy locality. We also study the relationships
between our definitions of multi-writer regularity and several existing consistency conditions.

Finally, we provide a practical context for our results by studying the behavior of two well-known algorithms for
mutual exclusion when the variables satisfy our proposed consistency conditions. The algorithms we examine are
Peterson’s algorithm for two processes [23] and Dijkstra’salgorithm (as presented by Raynal [25]). We find that

1In thesingle-writermodel, only one process can write to each shared variable (and the writes are sequential); other processes can only
read from it.

2

Texas A&M University Department of Computer Science and Engineering Technical Report 2010-1-1

Peterson’s algorithm remains correct under all the new conditions. Dijkstra’s algorithm satisfies only some of the
constraints of the mutual exclusion problem under the new conditions.

1.3 Related Work

There is copious literature on consistency conditions for shared memory, both implementations and applications
(e.g., Lamport [16], Lipton and Sandberg [19], Goodman [12], Herlihy and Wing [13], Ahamad et al. [1, 2], Ray-
nal and Schiper [26], and Garg and Raynal [11]). Our work builds on the notion of regularity as introduced by
Lamport [17].

Friedman et al. [10] and Steinke and Nutt [30] identify building blocks and use various combinations of such
building blocks to explore potential consistency conditions. The difference between our work and theirs is that in
theirs the building blocks are identified at the definition level while in our work, the building blocks are identified at
the implementation level. We use a similar framework and system model to those introduced by Raynal and Schiper
[27]; the major difference is that the partial order used by Raynal and Schiper is a combination of per-process order
and the “reads-from” relation, while we use the real-time order in which operations occur.

The locality property of consistency conditions was first proposed and studied by Herlihy and Wing [13]. Viten-
berg and Friedman [31] studied the locality of a set of conditions and developed some general criteria for when a
condition is local and when it is not.

Our algorithms are based on quorums. The use of quorum systems in distributed computing for replicating data
has a long history. The most relevant papers to our work are those by Malkhi and Reiter [21], Bazzi [7], and Malkhi
et al. [22]. Our generic algorithm schema is a generalization of these algorithms, although without provisions for
tolerance to Byzantine failures of servers.

We follow the example of Attiya and Friedman [5], Ahamad et al. [1], and Higham and Kawash [14] in using
the mutual exclusion problem as an application for our consistency conditions. Attiya and Friedman [5] revised
Peterson’s 2-process algorithm [23] to solve the mutual exclusion problem under their hybrid consistency model.
Ahamad et al. [1] examined the correctness of Peterson’s algorithm and Lamport’s bakery algorithm [15] under
the PCG consistency model, showing that Peterson’s algorithm solves the mutual exclusion problem under PCG,
while Lamport’s algorithm fails to do so. Higham and Kawash [14] investigated other mutual exclusion algorithms,
including Dekker’s and Dijkstra’s, none of which guarantees mutual exclusion under PCG.

1.4 Roadmap of Paper

The rest of the paper is organized as follows. Section 2 consists of the definitions we will use to discuss shared
memory consistency conditions, as well as a description of our system model, and an overview of quorum-based
shared memory algorithms. In Section 3 we describe our generic quorum-based algorithm and the different building
block mechanisms for implementing a shared read/write variable. Section 4 presents our proposed definitions of
multi-writer regularity and their implementations. In Section 5 we discuss the locality property of our proposed
definitions and compares their relative strengths. In Section 6 we study the correctness of two mutual exclusion
algorithms — Peterson’s algorithm for two processes and Dijkstra’s algorithm — when their shared variables satisfy
our proposed definitions. Section 7 concludes this paper anddiscusses future work.

2 Preliminaries

2.1 Shared Read/Write Registers and Consistency Conditions

A sharedread/write registersupports concurrent execution of read and write operationsperformed by some set,
PA, of n application processes,p0, p1, . . . , pn−1. Each operation has aninvocationand aresponse. For a read

3

Texas A&M University Department of Computer Science and Engineering Technical Report 2010-1-1

operation, the invocation is denotedreadi (wherei is the index of the application process performing the operation),
and the response has the formreturni(v), wherev, the value read from the register, is drawn from a predetermined
set of possible values that the register can take on. For a write operation, the invocation has the formwritei(v),
wherev is the value to be written to the register, and the response isdenotedacki, indicating that the write operation
has completed.

If the operations on a register occur sequentially, withoutany overlap, so that each invocation is immediately
followed by amatchingresponse (i.e., eachreadi is followed by areturni and eachwritei is followed by anacki),
then we would expect each read to return the value of the latest preceding write. This behavior is captured in the
next definition; note that it is only relevant to sequences inwhich operations do not overlap.

Definition 1 A total order of operations on a shared register islegal if each read returns the value of the latest
preceding write; if there is no preceding write, then the read returns the initial value of the register.

When operations do overlap, because of concurrent execution by multiple processes, invocations and responses
are interleaved. We assume, however, that each process has at most one operation pending at a time. To capture such
“well-formedness” constraints, we define the notion of a schedule next. Ifσ is a sequence of operation invocations
and responses, we denote byσ|i the subsequence ofσ containing all the invocations and responses performed by
processpi.

Definition 2 A sequenceσ of invocations and responses is ascheduleif, for each i,0 ≤ i < n, the following hold:

• σ|i consists of alternating invocations and matching responses, beginning with an invocation; and

• if the number of steps taken bypi is finite, then the last step bypi is a response, i.e., every invocation has a
matching response.

Note that this definition of a schedule allows arbitrary asynchrony of process steps, i.e., no constraints are placed
on the relative speed with which operations complete or on the time between operation invocations. However, for
convenience of analysis, we follow the example of Lamport [17] and Chandra and Toueg [9] in employing the useful
abstraction of an imaginary global clock. All our references to “real time” in the sequel are with respect to this
imaginary clock, which is not available to the processes themselves. This is equivalent to the global-time model
introduced by Ben-David [8] and Anger [3].

A consistency conditionis specified by a particular set of schedules. Thus the relative strength of two consis-
tency conditions can be compared by considering the sets of schedules defining the two conditions; in particular,
consistency conditionC1 is strongerthan consistency conditionC2 if C1 ⊂ C2.

By the definition of a schedule, each invocation has a matching response, namely the response by the same process
that follows it most closely; an invocation and its matchingresponse form an operation. Given a scheduleσ, we
denote byops(σ) the set of all operations whose invocations and responses appear inσ.2 We usewrites(σ) and
reads(σ) to denote the set of all writes and the set of all reads appearing inops(σ).

We define a partial order onops(σ), denoted<σ, asop1 <σ op2 if and only if the response ofop1 occurs in
σ before the invocation ofop2. We frequently are concerned with a partial order on a subsetS of ops(σ) where
the ordering relation is inherited fromσ; we denote such a partial order by(S,<σ). A total order on a subset of
ops(σ) that respects the partial order<σ is said to be alinearizationof the partial order; i.e., ifop1 <σ op2, then
op1 precedesop2 in the total order. We call such a total orderσ-consistent.

We now use our framework to state Lamport’s original definition of (single-writer) regularity, which we call
SWReg. A schedule issingle-writerif only one process invokes write operations.

2Assume for convenience that each operation inσ has a unique id, for instance, thej-th operation invoked by processpi; this mechanism
allows us to distinguish between two reads (or two writes) ofthe same value by the same process that occur at different points in the schedule.

4

Texas A&M University Department of Computer Science and Engineering Technical Report 2010-1-1

Definition 3 A single-writer scheduleσ satisfiesSWRegif, for every readr in ops(σ), there exists a legal lineariza-
tion of (writes(σ) ∪ {r}, <σ). A shared register satisfies SWReg if all schedules on it satisfy SWReg.

The next definition identifies writes that could possibly influence a read, namely those that start before the read
ends.

Definition 4 A writew in ops(σ) is relevantto a readr in ops(σ) if r 6<σ w; rel-writes(σ, r) is the set of all writes
in ops(σ) that are relevant tor.

We next formalize the notion of a read reading from a write3. To model a read returning the initial value of the
register, we posit the existence inops(σ) of a special write,winit, which writes the initial value of the register and
satisfieswinit <σ op for every otherop in ops(σ).

Definition 5 Given a scheduleσ, consider a functionρ from reads(σ) to writes(σ). ρ is a reads-fromfunction if
for each readr, the value returned byr is the same as the value written byρ(r), ρ(r) is relevant tor, and there is
no writew in writes(σ) such thatρ(r) <σ w <σ r.

If w = ρ(r), we say thatr reads fromw with respect toρ; whenρ is understood from context, we simply say that
r reads fromρ(r). A readr can only read from a writew if either w overlapsr, or w precedesr and no other write
is strictly betweenw andr. The reads-from function is not necessarily unique for a schedule, and in fact might not
exist.

2.2 System Model

We assume a system consisting of a collectionP of processes that communicate with each other through message-
passing. Eachprocessis modeled as a (possibly infinite) state machine, with an initial state and a transition function.
The state machine represents the code for the register simulation that is running at the process. Aconfiguration
of the system is a vector of local states, one per process. Aninitial configuration contains an initial state for each
process.

There are two kinds ofeventsthat can occur in the system, input and output events. Each event occurs at a single
process. The input events are the receipt of a message and theinvocation of a shared register operation. The output
events are the sending of a message and the response of a shared register operation. Each input event triggers its
corresponding process to take a step: the transition function is applied to the current state of the process and the
particular event, and produces a new state of the process anda set of output events. The output events consist of a
set of messages sent by the process and at most one shared-register operation response to occur at the process.

An event listis a sequence of events, all taking place at the same process,that begins with an input, followed by
any number of message sends, and ends with at most one operation response.

An executionis a sequence4 d0ℓ1d1ℓ2d2 . . . of alternating configurationsdk and event listsℓk, starting with an
initial configurationd0, that satisfies the following conditions.

• Consider anydk−1ℓkdk in the sequence, whereℓk takes place at processqi. Then applyingqi’s transition
function toqi’s state indk−1 and the first event inℓk produces the remaining events inℓk andqi’s state indk.
All other components ofdk are the same as indk−1. That is, the process states and events occurring in the
sequence are consistent with the processes’ transition functions.

3This definition is similar to that ofwrites-into orderfrom Ahamad et al. [2]
4Event lists occurring simultaneously at different processes appear in the execution in arbitrary order. Since each event list is concerned

only with local computation at a single process, the common assumption that local processing time is negligible compared to message delays
allows us to model concurrent events as a sequence without loss of generality.

5

Texas A&M University Department of Computer Science and Engineering Technical Report 2010-1-1

• Every message sent is received exactly once and subsequent to its send; only messages sent are received. That
is, the communication is reliable.

• If event list ℓk occurring at processqi begins with an operation invocation, then the most recent preceding
invocation or response atqi (if any) is a response. That is, the component that is generating the invocations
waits for one operation to finish before invoking the next one.

We can now state our main correctness condition for simulating a register with a particular consistency condition.

Definition 6 The systemimplements a read/write register with consistency condition C if, for every execution of the
system, the projection onto the set of invocations and responses of the register is a schedule that is in (i.e., satisfies)
C.

2.3 Quorum Systems

Although having processes communicate through shared variables is generally viewed as desirable from a soft-
ware development perspective, most distributed systems donot directly provide such functionality. However, the
illusion of shared variables can be provided through a shared variable simulation layer that runs in a message-passing
communication environment. This software layer simulatesshared registers on top of the message-passing layer.

The algorithms in this paper for simulating a shared register use the notion of a quorum system, which is a
technique for handling replicated data. Some processes in the system play the role of “servers”, which maintain
replicas, while others play the role of “clients”, which handle invocations of operations on the replicated data. There
is one client process corresponding to each application process inPA. Let PS be the set of server processes andPC

be the set of client processes. (It is possible for a single physical node to host both a client and a server process.)
A quorum systemQ (overPS) is a collection of subsets ofPS , each of which is called aquorum, satisfying the

property that for every two distinct quorumsQ andQ′, Q ∩ Q′ 6= ∅.

3 Algorithm Schema

3.1 Generic Algorithm

A generic algorithm that uses quorums to implement a shared read/write register with initial valuev0 is given in
Figure 1. Upon receiving a read or write invocation on the shared register, a client process chooses a quorum using
some quorum selection strategy and then queries each memberof this quorum about its current “view” of the shared
register, which consists of the value of the register and thetimestamp associated with the value. After gathering all
the responses, the process decides which timestamp among the responses is the latest, using functionMaxTS().
The operations then continue as follows:

• write: The process increments the timestamp returned byMaxTS(), using the functionIncTS(), sends an
UPDATE message with the new value and the incremented timestamp to every member of some quorum, and
waits to receive aDONE message from each quorum member.

• read: The process calls the functionGetV alue(), which uses the timestamp returned byMaxTS() to decide
which value will be returned. The reading process then callsa functionWriteBack(), which optionally
updates a quorum of servers regarding the value that the process plans to return.

The server responds to queries by sending the value and timestamp information that it has stored, and responds to
anUPDATE message by setting its stored information to that in the message if the timestamp in the message is larger
than the stored timestamp.

6

Texas A&M University Department of Computer Science and Engineering Technical Report 2010-1-1

Code for client processci ∈ PC :

writei(v):
1 for some quorumQ ∈ Q, send〈QUERY〉 to eachsj ∈ Q

2 wait to receive〈VIEW, u, t〉 from eachsj ∈ Q

3 V := set of(u, t) pairs received in Line 2
4 ts := MaxTS(V)
5 ts := IncTS(ts)
6 val := v

7 for some quorumQ′ ∈ Q, send〈UPDATE, val, ts〉 to eachsj ∈ Q′

8 wait to receive〈DONE〉 from eachsj ∈ Q′

9 acki()

readi():
1 for some quorumQ ∈ Q, send〈QUERY〉 to eachsj ∈ Q

2 wait to receive〈VIEW, u, t〉 from eachsj ∈ Q

3 V := set of(u, t) pairs received in Line 2
4 t := MaxTS(V)
5 v := GetValue(V, t)
6 WriteBack()
7 returni(v)

Code for server processsj ∈ PS :

local variables: /* values persist over time */
val /* local copy of shared register, initiallyv0 */
ts /* local copy of timestamp, initially smallest timestamp value */

Whensj receives〈QUERY〉 from ci:
1 send〈VIEW, val, ts〉 to ci

Whensj receives〈UPDATE, v, t〉 from ci:
1 if (ts < t) then
2 val := v

3 ts := t

4 endif
5 send〈DONE〉 to ci

Figure 1. A generic quorum-based algorithm to implement a sh ared read/write register

By plugging in different implementations for the functionsMaxTS(), IncTS(), GetV alue(), andWriteBack(),
we obtain registers satisfying different consistency conditions. This algorithm is a generalization of several existing
quorum-based protocols. For example, the appropriate instantiations of the functions yield the algorithms by Malkhi
and Reiter [21], Bazzi [7], and Malkhi et al. [22].

The following lemma states a key property of the generic algorithm which follows directly from the code.

Lemma 1 AssumeIncTS() always returns a timestamp larger than its argument. Then the sequence of timestamp
values taken on by the replica on any server is nondecreasingduring any execution of the generic algorithm.

We denote byts(op) the timestamp of operationop. For a write operation, this is the timestamp appearing in Line
7 of thewritei procedure. For a read operation, this is the timestamp associated with the value returned in Line 7 of
thereadi procedure.

3.2 Building Blocks in the Generic Algorithm

We identify three building blocks that we use to create specific instantiations from the generic algorithm. Different
combinations of the building blocks give us different algorithms, which in turn yield shared registers with different

7

Texas A&M University Department of Computer Science and Engineering Technical Report 2010-1-1

consistency conditions. The three building blocks are:

Code modifications for client processci ∈ PC without ID building block:

timestamp type is integer

MaxTS(V):
1 T := {t : (v, t) ∈ V for somev}
2 returnmax(T) /* max operates on integers */

IncTS(ts):
1 returnts + 1

Code modifications for client processci ∈ PC with ID building block:

timestamp type is ordered pair of integers

MaxTS(V):
1 T := {t : (v, t) ∈ V for somev}
2 returnmax(T) /* max operates lexicographically on ordered pairs of integers */

IncTS((t, id)):
1 return(t + 1, i)

Figure 2. Code with and without ID building block

Code modifications for client processci ∈ PC without WB building block:

WriteBack():
1 return /* do nothing */

Code modifications for client processci ∈ PC with WB building block:

WriteBack():
1 for some quorumQ′ ∈ Q, send〈UPDATE, val, ts〉 to eachsj ∈ Q′

2 wait to receive〈DONE〉 from eachsj ∈ Q′

3 return

Figure 3. Code with and without WB building block

• Building block ID: Including unique id in timestamp. (See Figure 2 for pseudocode.) If this building block
is not used, then timestamps are natural numbers,MaxTS() returns the largest integer in its argument, and
IncTS() increments its argument by one. Note that timestamps are notnecessarily unique.

If this building block is used, then timestamps are ordered pairs of natural numbers, the first component
being a counter and the second component being a process id.MaxTS() returns the largest timestamp in
lexicographic order among its arguments, andIncTS() increments the first component of its argument by one
and replaces the second component with the id of the executing process. The cost of using this building block
is an additionalO(log n) bits to store a timestamp.

• Building block WB: Write-back phase in the read procedure. (See Figure 3 for pseudocode.) When this
building block is not used, the read procedure does nothing in Line 6.

8

Texas A&M University Department of Computer Science and Engineering Technical Report 2010-1-1

Code modifications for client processci ∈ PC without LC building block:

GetValue(V, t):
1 S := set of all elements ofV with timestampt
2 choose any element(v, t) ∈ S

3 returnv

Code modifications for client processci ∈ PC with LC building block:

local variables: /* local cache: values persist over time */
val /* local copy of shared register, initiallyv0 */
ts /* local copy of timestamp, initially smallest timestamp value */

GetValue(V, t):
1 if t ≤ ts then /* either compares ints or compares pairs of ints lexicographically */
2 returnval

3 else
4 S := set of all elements ofV with timestampt
5 choose any element(v, t) ∈ S

6 val := v /* record return value in local cache */
7 ts := t /* record associated timestamp in local cache */
8 returnv

9 endif

Figure 4. Code with and without LC building block

When this building block is used, after choosing the return value, the reader sends the value to be returned and
its associated timestamp in anUPDATE message to all the servers in some quorum. After aDONE message is
received from these servers, the read returns. The cost of using this building block is an extraO(c) messages,
wherec is the size of the biggest quorum in the system. Furthermore,the time for a read is increased by a
round-trip message delay.

• Building block LC: Local cache at clients. (See Figure 4 for pseudocode.) If this building block is notused,
thenGetV alue(V, t) returns any element contained inV whose associated timestamp ist (there might be
more than one such element if the ID building block is not used).

If this building block is used, then each client keeps a copy of the most recently written or read value and its
associated timestamp. This information persists even whenno operation is currently underway at the client.
Specifically, the local variablesval andts at each client are declared as persistent. The write procedure updates
them with the value to be written and the timestamp calculated for that value; the parameter toIncTS() is the
cached timestampts. For the read procedure, inGetV alue(V, t), if t, the largest timestamp obtained from
querying a quorum, does not exceed the cached timestampts, then the cached value is returned. Otherwise,
any element inV with timestampt is chosen to be returned and the cached value and timestamp are updated
to be this value andt respectively. The cost of using this building block is that clients now have to keep this
information for each shared register and thus it introducesspace and robustness issues.

3.3 Lattice of Algorithms and Conditions

A summary of our results is shown in Figure 5. The lattice shows all the algorithms instantiated from the generic
algorithm by applying different combinations of the building blocks. Above each algorithm (rectangle) in the lattice
is the name of the consistency condition that the corresponding algorithm implements. The arrows go from a weaker
condition to a stronger condition. In the next section, we will walk up the lattice to present the algorithms and their

9

Texas A&M University Department of Computer Science and Engineering Technical Report 2010-1-1

associated consistency conditions. For now we only focus onthe case of a single register. In Section 5, we discuss
extensions to multiple registers.

MWRegRF /\ MWRegNI

ID, WB, LC

ID, WB ID, LC WB, LC

ID WB LC

None

MWRegWeak

MWRegWO MWRegRF MWRegNI

Atomicity

Atomicity

MWRegWO /\ MWRegNI

Figure 5. Lattice of algorithms and consistency conditions

4 Multi-Writer Consistency Conditions: Specifications andImplementations

4.1 MWRegWeak: No Building Blocks

We first consider the generic algorithm when none of the threebuilding blocks is used, denoted AlgNone. We
specify a condition that we call MWRegWeak and show that AlgNone implements this condition.

Definition 7 (MWRegWeak) A scheduleσ satisfies MWRegWeakif, for every read operationr in ops(σ), there
exists a legal linearization of(writes(σ) ∪ {r}, <σ). A shared register satisfies MWRegWeak if all schedules on it
satisfy MWRegWeak.

A schedule satisfies MWRegWeak if each readr returns the value of some writew that either overlaps or precedes
r, as long as no other write falls completely betweenw andr. Different reads are allowed to behave as though the
set of writes occurred in different orders, as long as all such orderings are consistent with the partial order of the
writes in the schedule.

Figure 6 shows a schedule that satisfies MWRegWeak. (In our figures,W (x, v) denotes a write operation that
writes valuev to registerx, andR(x, v) denotes a read operation on registerx that returns valuev. Time increases
from left to right. We use similar schedules to illustrate other proposed definitions; the schedules differ only in the
return values of some of the read operations.) A possible linearization for each read is given below.

R1: W (x, 2), W (x, 1), R1(x, 1), W (x, 4), W (x, 3)
R2: W (x, 1), W (x, 2), R2(x, 2), W (x, 3), W (x, 4)
R3: W (x, 1), W (x, 2), R3(x, 2), W (x, 4), W (x, 3)
R4: W (x, 1), W (x, 2), W (x, 4), R4(x, 4), W (x, 3)
R5: W (x, 1), W (x, 2), R5(x, 2), W (x, 3), W (x, 4)
R6: W (x, 1), W (x, 2), W (x, 3), W (x, 4), R6(x, 4)

10

Texas A&M University Department of Computer Science and Engineering Technical Report 2010-1-1

P0

P1

P2

P3
R 2(x,2)

R 1(x,1)

R 4(x,4) R 5(x,2)

R 6(x,4)

R 3(x,2)

W(x,4)

W(x,3)

W(x,1)

W(x,2)

Figure 6. Schedule that satisfies MWRegWeak

The following lemma states that thetimestamp order(numerical order by timestamp) of certain operations extends
the partial order<σ.

Lemma 2 Consider any execution of AlgNone and letσ be its schedule.

(a) For every read operationr and every write operationw in ops(σ), if w <σ r, thents(w) ≤ ts(r).

(b) For every pair of write operationsw1 andw2 in ops(σ), if w1 <σ w2, thents(w1) < ts(w2).

Proof. (a) Suppose writew ends before readr begins inσ. Let s be a server process that is in the intersection of
the quorum thatw uses for its update (Lines 7-8) and the quorum thatr uses for its query (Lines 1-2). According
to Lemma 1, the sequence of timestamp values taken on ats is non-decreasing. Sincew finishes beforer starts,
s returns tor a timestamp that is at leastts(w). Sincer chooses the value associated with the largest timestamp
returned from its query,r’s timestamp is no less thanw’s.

(b) Using a similar argument to that in (a), we can show that some server processs returns tow2 a timestamp that
is at least as large asts(w1). Sincets(w2) is larger than the largest timestamp obtained in the query,w2’s timestamp
is larger thanw1’s.

We next define a functionρ from reads to writes and then show that it is a reads-from function. Given a schedule
σ of Alg None, for each readr in reads(σ), choose a write inwrites(σ) to beρ(r) as follows. Let(v, t) be the
element ofV chosen in the execution of GetValue(V, t) as containing the value to be returned. The reason(v, t) is in
V is that the client executingr previously received aVIEW message from some serversj containing(v, t). If t = 0
(the initial timestamp), then letρ = winit. Otherwise, since every executed write calculates a positive timestamp and
since servers are not faulty and communication is reliable,sj sent thisVIEW message because it had earlier received
an UPDATE message containing(v, t) from some client on behalf of a writew. Let ρ(r) = w in this case; if there
are multiple choices forρ(r), choose one arbitrarily. The functionρ is not necessarily unique, but it does not need
to be. In the analysis of AlgNone, references to “reads from” are with respect to this specific reads-from function.
Note thatts(r) = ts(ρ(r)).

Lemma 3 For every scheduleσ of Alg None, the functionρ just defined is a reads-from function.

Proof. We show thatρ satisfies the three properties of a reads-from function. (1)By construction, the value returned
by r is the value written byρ(r) = w. (2) If ρ(r) = winit, thenρ(r) is relevant tor becausewinit <σ r. If
ρ(r) 6= winit, thenρ(r) is relevant tor since messages are not received before they are sent. (3) Suppose in
contradiction there is some other writew′ ∈ writes(σ) such thatw <σ w′ <σ r. By Lemma 2(b),ts(w) < ts(w′),
and by Lemma 2(a),ts(w′) ≤ ts(r), contradicting the fact that by construction,ts(w) = ts(r).

11

Texas A&M University Department of Computer Science and Engineering Technical Report 2010-1-1

Theorem 4 Algorithm AlgNone implements MWRegWeak.

Proof. Consider any execution of AlgNone, letσ be its schedule andρ be its reads-from function. For each read
operationr in ops(σ), we construct a total orderLr onwrites(σ) ∪ {r} as follows. Letρ(r) = w∗ andts(r) = t∗.
Order the writes inrel-writes(σ, r) in any total order consistent with their timestamps subjectto the condition thatw∗

is the latest among all writes with timestampt∗. Order the writes not inrel-writes(σ, r) in any total order consistent
with their timestamps. Order every write inrel-writes(σ, r) before every write not inrel-writes(σ, r). Finally, order
r immediately afterρ(r). Lr is legal by construction.

We now show thatLr is σ-consistent. Consider any writew such thatw <σ r. If ts(w) ≤ t∗, thenw is ordered
beforer in Lr by construction. By Lemma 2(a), it is not possible forts(w) to be greater thant∗.

Consider any writew such thatr <σ w. Sincew is not inrel-writes(σ, r), w appears afterr in Lr.
Consider two writesw1 andw2 with w1 <σ w2. If both are inrel-writes(σ, r) or both are not inrel-writes(σ, r),

then they are ordered consistently inLr by Lemma 2(b) and construction. Ifw1 is in rel-writes(σ, r) andw2 is not
in rel-writes(σ, r), then they are ordered consistently inLr by construction. Sincew1 <σ w2, it is not possible for
w2 to be inrel-writes(σ, r) andw1 not to be.

4.2 MWRegWO: Building Block ID

MWRegWeak is a weak consistency condition in that the read operations do not have a common view on the order
of preceding write operations even for the read operations performed by the same process. For instance, in Figure 6,
p2’s first read,R1, indicates that the write of 1 should follow the write of 2, but p2’s next read,R3, indicates the
opposite. By using the ID building block to break ties between timestamps, we can obtain a stronger condition,
called MWRegWO. (WO is for “write order”.) This condition requires the linearization of two reads to agree on the
ordering of all writes that are relevant for both the reads. For writes that are relevant to only one or none of them,
the total orders are allowed to differ.

P0

P1

P2

P3
R 2(x,2)

R 1(x,2)

R 4(x,4) R 5(x,2)

R 6(x,4)

R 3(x,2)

W(x,4)

W(x,3)

W(x,1)

W(x,2)

Figure 7. Schedule that satisfies MWRegWO

Definition 8 (MWRegWO) A scheduleσ satisfies MWRegWOif for each readr in ops(σ), there is a legal lin-
earizationLr of (writes(σ) ∪ {r}, <σ), satisfying the following condition. For all readsr1 andr2 in ops(σ), for
all writesw1 andw2 in rel-writes(σ, r1) ∩ rel-writes(σ, r2), it holds thatw1 <Lr1

w2 if and only ifw1 <Lr2
w2. A

shared register satisfies MWRegWO if all schedules on it satisfy MWRegWO.

The schedule in Figure 6 does not satisfy MWRegWO, sinceR1’s linearization must haveW (x, 1) afterW (x, 2),
butR2’s linearization must haveW (x, 2) afterW (x, 1). However, the schedule in Figure 7 does satisfy MWRegWO;
a linearization for each read is given below. The order ofW (x, 3) andW (x, 4) in R4’s total order differs from that
in R6’s total order (and it must do so); this difference is allowable sinceW (x, 3) is not a relevant write forR4.

12

Texas A&M University Department of Computer Science and Engineering Technical Report 2010-1-1

R1 : W (x, 1), W (x, 2), R1(x, 2), W (x, 3), W (x, 4)
R2 : W (x, 1), W (x, 2), R2(x, 2), W (x, 3), W (x, 4)
R3 : W (x, 1), W (x, 2), R3(x, 2), W (x, 3), W (x, 4)
R4 : W (x, 1), W (x, 2), W (x, 4), R4(x, 4), W (x, 3)
R5 : W (x, 1), W (x, 2), R5(x, 2), W (x, 3), W (x, 4)
R6 : W (x, 1), W (x, 2), W (x, 3), W (x, 4), R6(x, 4)

We now show that by using the ID building block, as in the algorithm of Malkhi and Reiter [21], the resulting
register satisfies MWRegWO. We call this algorithm AlgID. Since we use the timestamp of AlgNone as the first
element of the timestamp in AlgID, Lemma 2 still holds. We define the functionρ for Alg ID as we did in Sec-
tion 4.1 for Alg None. Lemma 3 still holds and thusρ is a reads-from function for AlgID. The use of the process
id in the second element of the timestamp as a tiebreaker further ensures that:

Lemma 5 The write operations performed using Algorithm AlgID are totally ordered by timestamp.

Theorem 6 Algorithm Alg ID implements MWRegWO.

Proof. Consider any execution of AlgID, let σ be its schedule andρ the reads-from function defined above for
Alg ID. Let r be any read inops(σ). We constructLr, a linearization ofwrites(σ) ∪ {r}, as follows. Order every
write in rel-writes(σ, r) before any write not inrel-writes(σ, r). Order all the writes inrel-writes(σ, r) by timestamp
order. Order all the writes not inrel-writes(σ, r) by timestamp order. Orderr immediately afterρ(r) (the write from
which it reads), ensuring thatLr is legal.

We now show thatLr is σ-consistent. For any two writes inrel-writes(σ, r) and for any two writes not in
rel-writes(σ, r), σ-consistency follows from Lemma 2(b). For writew1 in rel-writes(σ, r) and writew2 not in rel-
writes(σ, r), σ-consistency follows from the fact thatw1 starts beforer ends andw2 starts afterr ends, and thus
w2 6<σ w1. For readr and any writew such thatr <σ w, σ-consistency follows from the fact thatw is not in
rel-writes(σ, r) but ρ(r) is in rel-writes(σ, r) sinceρ is a reads-from function. For readr and any writew such
that w <σ r, σ-consistency follows if we can show thatts(w) ≤ ts(w′), wherew′ = ρ(r). By definition ofρ,
ts(r) = ts(w′), and by Lemma 2 (a),ts(w) ≤ ts(r).

Now we show that all linearizations agree on the order of relevant writes. Consider two reads,r1 andr2, in ops(σ)
and two writes,w1 andw2, that are both inrel-writes(σ, r1) ∩ rel-writes(σ, r2). By construction ofLr1

andLr2
and

by Lemma 5,w1 andw2 are ordered in both linearizations in timestamp order.

4.3 MWRegRF: Building Block WB

In this subsection, we consider the use of the write-back (WB) building block, resulting in algorithm AlgWB.
The use of the writeback prevents old-new inversions in the values returned by reads. To capture the condition
ensured by this mechanism, we need the concept of a partial order that respects reads-from relationships between
reads and writes.

For a given scheduleσ and a reads-from functionρ on σ, define the relation<σ,ρ on ops(σ) to be the transitive
closure of the union of the<σ andρ orders5. We show that this relation is a partial order. (All references to “reads
from” in the definition of the next consistency condition arewith respect to the reads-from functionρ just fixed.)

Lemma 7 <σ,ρ is a partial order.

Proof. Suppose in contradiction<σ,ρ is not a partial order. LetC be a shortest cycle in<σ,ρ. ThenC is of the form
op0, op1, . . . , opm−1 for some evenm ≥ 2, where, for alli, 1 ≤ i ≤ m/2,

5If <σ,ρ is applied to a subset ofops(σ), first identify the pairs fromops(σ) that are in the relation, and then project onto the subset.

13

Texas A&M University Department of Computer Science and Engineering Technical Report 2010-1-1

• op2i−1 is a read that reads from writeop2i−2, and

• op2i−1 <σ op(2i) mod m.

I.e., the cycle consists of alternating reads and writes, with each read reading from the preceding write, and each
write strictly following the preceding read. Note that readoperations have odd indexes and write operations have
even indexes.

For eachi, 1 ≤ i ≤ m/2, op2i−2 begins beforeop2i−1 ends (by definition of a reads-from function), andop2i−1

ends beforeop(2i) mod m begins (by definition of<σ). Thusop0 begins beforeop0 begins, which is a contradiction.

The partial order<σ,ρ is more restrictive than<σ since<σ,ρ extends<σ by taking into consideration reads-from
relationships between reads and writes.

Our next condition, which we call MWRegRF where the RF standsfor “reads from”, strengthens MWRegWeak
by requiring that the linearization for each read be(σ, ρ)-consistent, not justσ-consistent.

Definition 9 (MWRegRF) A scheduleσ satisfies MWRegRFif there is a reads-from functionρ on σ such that for
every read operationr in ops(σ), there exists a legal linearization of(writes(σ) ∪ {r}, <σ,ρ). A shared register
satisfies MWRegRF if all schedules on it satisfy MWRegRF.

P0

P1

P2

P3
R 2(x,2)

R 1(x,1)

R 4(x,4) R 5(x,4)

R 6(x,3)

R 3(x,2)

W(x,4)

W(x,3)

W(x,1)

W(x,2)

Figure 8. Schedule that satisfies MWRegRF.

The schedules shown in Figures 6 and 7 do not satisfy MWRegRF:In both schedules,W (x, 4) <σ,ρ W (x, 3),
sinceR4 reads fromW (x, 4) andR4 <σ W (x, 3); sinceW (x, 3) <σ R6, in any legal linearization consistent with
both the order of non-overlapping operations and any reads-from function,R6 must return 3 instead of 4. However,
the schedule shown in Figure 8 satisfies MWRegRF; possible linearizations for the reads are given below.

R1: W (x, 2), W (x, 1), R1(x, 1), W (x, 4), W (x, 3)
R2: W (x, 1), W (x, 2), R2(x, 2), W (x, 4), W (x, 3)
R3: W (x, 1), W (x, 2), R3(x, 2), W (x, 4), W (x, 3)
R4: W (x, 1), W (x, 2), W (x, 4), R4(x, 4), W (x, 3)
R5: W (x, 1), W (x, 2), W (x, 4), R5(x, 4), W (x, 3)
R6: W (x, 1), W (x, 2), W (x, 4), W (x, 3), R6(x, 3)

The schedule in Figure 8 does not satisfy MWRegWO for the samereason that the schedule in Figure 6 does not;
thus MWRegRF and MWRegWO are incomparable in terms of strength.

To show that AlgWB implements MWRegRF, we first look at how the write-back building block affects the
relationship between the operations and their timestamps.Since we use the same timestamp in AlgWB as in
Alg None, Lemma 2 still holds. We define the functionρ for Alg WB as we did in Section 4.1 for AlgNone.
Lemma 3 still holds and thusρ is a reads-from function for AlgWB.

14

Texas A&M University Department of Computer Science and Engineering Technical Report 2010-1-1

Lemma 8 Consider any execution of AlgWB and letσ be its schedule.

(a) For every read operationr and every write operationw in ops(σ), if r <σ w, thents(r) < ts(w).

(b) For every pair of read operationsr1 andr2 in ops(σ), if r1 <σ r2, thents(r1) ≤ ts(r2).

Proof. The key is the non-empty intersection of quorums used in queries by read and write operations and quorums
used in updates by write operations. Essentially the same argument as in the proof of Lemma 2(b) is used to prove
(a), and essentially the same argument as in the proof of Lemma 2(a) is used to prove (b).

Theorem 9 Algorithm AlgWB implements MWRegRF.

Proof. Consider any scheduleσ resulting from an execution of AlgWB, let ρ be the reads-from function for
σ just defined, and letr be any read inops(σ). We construct a total orderLr on writes(σ) ∪ {r} as follows.
Divide writes(σ) into two groups,G1 = {w|ts(w) ≤ ts(r)} andG2 = {w|ts(w) > ts(r)}. In the total order,
all operations inG1 preceder, andr precedes all operations inG2. The operations inG1 are ordered by their
timestamps, breaking ties arbitrarily with the exception thatρ(r) (the write operation from whichr reads) is ordered
at the end. The operations inG2 are ordered by their timestamps, breaking ties arbitrarily. By construction,Lr

is legal; Lemmas 2 and 8 and the construction ensure that it is(σ, ρ)-consistent. Thus AlgWB implements a
MWRegRF shared register.

4.4 MWRegNI: Building Block LC

The use of the LC building block, by which each reader keeps a local cache with the latest timestamp of any
returned value, prevents a particular reader from returning an older value after it has already returned a newer value.
Since the LC and WB building blocks both prevent some kinds ofnew-old inversions, it is worth explicitly comparing
them. With LC, reads by the same client are always handled consistently, even with respect to concurrent writes that
have the same timestamp; however, reads by different clients can experience new-old inversions even with respect
to writes with different timestamps. In contrast, when WB isused, writes with different timestamps are handled
consistently by all clients, but writes with the same timestamp can be viewed inconsistently even by a single client.

The next consistency condition, which we call MWRegNI whereNI stands for “no inversion”, captures the prop-
erty ensured by the use of the LC building block.

Definition 10 (MWRegNI) A scheduleσ satisfies MWRegNIif there is a reads-from functionρ on σ such that the
following is true for every processpi. LetWi be{ρ(r) : r ∈ reads(σ|i)}. Then there exists a legal linearization of
(Wi ∪ reads(σ|i), <σ). A shared register satisfies MWRegNI if all schedules on it satisfy MWRegNI.

The idea is that, for each processpi, there must be a fixed ordering of a certain set of writes,Wi, and all the
reads bypi. Wi consists of all writes that are read from by at least one read by pi. The ordering must be legal and
σ-consistent.

The schedules in Figures 6, 7, and 8 do not satisfy MWRegNI: InFigures 6 and 8, readsR1 andR3 by processp2

are problematic, while in Figure 7, readsR4 andR5 by processp1 are problematic. However, the schedule shown in
Figure 9 satisfies MWRegNI, as the following per-process linearizations witness:

p0: W (x, 4), R6(x, 4)
p1: W (x, 4), R4(x, 4), R5(x, 4)
p2: W (x, 1), R1(x, 1), R3(x, 1)
p3: W (x, 2), R2(x, 2)

15

Texas A&M University Department of Computer Science and Engineering Technical Report 2010-1-1

P0

P1

P2

P3
R 2(x,2)

R 1(x,1)

R 4(x,4) R 5(x,4)

R 6(x,4)

R 3(x,1)

W(x,4)

W(x,3)

W(x,1)

W(x,2)

Figure 9. Schedule that satisfies MWRegNI.

The schedule in Figure 9 does not satisfy MWRegWO or MWRegRF for the same reasons that the schedule in
Figure 6 does not.

The next lemma shows how the local cache affects the relationships between two operations and their timestamp
order. Since we use the same timestamp in AlgLC as in Alg None, Lemma 2 still holds. We define the functionρ
for Alg LC as for Alg None; even though the value returned by a read might have beenobtained byGetV alue()
from the client’s local cache, it is still true that it was contained in anUPDATE message previously received from a
server. Lemma 3 still holds and thusρ is a reads-from function for AlgLC.

Lemma 10 Consider any execution of AlgLC and letσ be its schedule andρ its reads-from function.

(a) For every read operationr and every write operationw by the same process inops(σ), if r <σ w, then
ts(r) < ts(w).

(b) For every pair of read operationsr1 andr2 by the same process inops(σ), if r1 <σ r2, thents(r1) ≤ ts(r2).

(c) For every pair of read operationsr1 andr2 by the same process inops(σ), if ts(r1) = ts(r2), thenρ(r1) =
ρ(r2).

Proof. Parts (a) and (b) follow from the code.
(c) Supposets(r1) = ts(r2); call this valuet. Whenr1 finishes, the timestamp inpi’s cache ist. Whenr2

executes, the largest timestamp among all the views received in Line 2 is at mostt, otherwise,t would not be the
timestamp ofr2. Also, the timestamp inpi’s local cache during the execution ofr2 is at mostt, otherwiset would
not be the timestamp ofr2. Since the timestamp inpi’s local cache never decreases, it must equalt. Thusr2 uses
the data in the local cache to determine its return value, andρ(r2) = ρ(r1).

Theorem 11 Algorithm AlgLC implements MWRegNI.

Proof. Consider any execution of AlgLC and letσ be its schedule andρ its reads-from function as defined just
above. Letpi be any process and letWi be{ρ(r) : r ∈ reads(σ|i)}. By Lemma 10 (c), there is at most one write
in Wi with a given timestamp. None of the reads inreads(σ|i) overlap each other. Construct a total orderLi on
Wi ∪ {reads(σ|i)} as follows. Order all the writes inWi according to their timestamp. For each writew in Wi,
order immediately afterw, in aσ-consistent total order, every readr in reads(σ|i) such thatρ(r) = w.

By construction,Li is legal. We now showLi is σ-consistent. By Lemma 2 (b), the relative order of two non-
overlapping writes is correct. By Lemma 10 (b), the relativeorder of two non-overlapping reads is correct: the
timestamp of the earlier read,r1, is at most the timestamp of the later read,r2, so eitherρ(r1) = ρ(r2) or ρ(r1) is
ordered inLi beforeρ(r2). Supposew <σ r. By Lemma 2 (a),ts(w) ≤ ts(r). Thusρ(r) equalsw or a write that
appears later thanw in Li, and sor is placed afterw in Li. Supposer <σ w. By Lemma 10 (a),ts(r) < ts(w).
Thusρ(r) is a write that precedesw in Li, and sor is placed beforew in Li.

16

Texas A&M University Department of Computer Science and Engineering Technical Report 2010-1-1

4.5 Combining the Building Blocks

If the building blocks are combined, we obtain stronger conditions than if they are used separately.
When ID and LC are combined, the resulting algorithm AlgID LC implements MWRegWO∩ MWRegNI. The

schedule in Figure 10 satisfies MWRegWO∩ MWRegNI, but not MWRegRF for the same reason that the schedule
in Figure 6 does not.

P0

P1

P2

P3
R 2(x,2)

R 1(x,2)

R 4(x,4) R 5(x,4)

R 6(x,4)

R 3(x,2)

W(x,4)

W(x,3)

W(x,1)

W(x,2)

Figure 10. Schedule that satisfies MWRegWO ∩ MWRegNI.

When WB and LC are combined, the resulting algorithm AlgWB LC implements MWRegRF∩ MWRegNI. The
schedule in Figure 11 satisfies MWRegRF∩ MWRegNI, but not MWRegWO for the same reason that the schedule
in Figure 6 does not.

P0

P1

P2

P3
R 2(x,2)

R 1(x,1)

R 4(x,4) R 5(x,4)

R 6(x,3)

R 3(x,1)

W(x,4)

W(x,3)

W(x,1)

W(x,2)

Figure 11. Schedule that satisfies MWRegRF ∩ MWRegNI

When ID and WB are combined, the resulting algorithm AlgID WB satisfies Atomicity (see Appendix for defi-
nition) as we prove next. The schedule in Figure 12 satisfies Atomicity.

Since we use the timestamp of AlgNone as the first element of the timestamp in AlgID WB, Lemma 2 still
holds. We define the functionρ for Alg ID WB as for Alg None. Lemma 3 still holds and thusρ is a reads-from
function for Alg ID WB. In addition, Lemmas 5 and 8 continue to hold.

Theorem 12 Alg ID WB implements Atomicity.

Proof. Consider any execution of AlgID WB and letσ be its schedule andρ the reads-from function defined
just above. We will construct a legal linearizationL of (ops(σ), <σ). DefineL as follows. Order all the writes
by timestamp. For all reads with timestampT , order them after the write with timestampT (which is unique by
Lemma 5) and before the next write in timestamp order; order these reads among themselves according to their
invocation order.L is legal by construction. We now show thatL is σ-consistent.

Case 1:Consider two writesw1 andw2 wherew1 <σ w2. From Lemma 2(b),ts(w1) < ts(w2) and thusw1 is
ordered beforew2 in L.

17

Texas A&M University Department of Computer Science and Engineering Technical Report 2010-1-1

Case 2:Consider a readr and a writew wherer <σ w. By Lemma 8(a),ts(r) < ts(w). Let w′ = ρ(r). Since
ts(w′) = ts(r), w′ is ordered beforew in L. Sincer is ordered afterw′ but before the next write in timestamp order,
r is ordered beforew in L.

Case 3:Consider a writew and a readr wherew <σ r. By Lemma 2(a),ts(w) ≤ ts(r). Let w′ = ρ(r). Since
ts(w′) = ts(r), it follows thatts(w) ≤ ts(w′). If ts(w) = ts(w′), thenw = w′ by Lemma 5, and the construction
of L ensures thatw is ordered beforer. If ts(w) < ts(w′), then inL, w is ordered beforew′, which is ordered
beforer.

Case 4:Consider two readsr1 andr2 wherer1 <σ r2. By Lemma 8(b),ts(r1) ≤ ts(r2). If ts(r1) = ts(r2),
then ρ(r1) = ρ(r2) and the construction ofL ensures thatr1 is ordered beforer2. If ts(r1) < ts(r2), then
ts(ρ(r1)) < ts(ρ(r2)); the construction ofL ensures thatr1 is ordered beforer2.

P0

P1

P2

P3
R 2 (x,2)

R 1 (x,2)

R 4 (x,4) R 5 (x,4)

R 6 (x,3)

R 3 (x,2)

W(x,4)

W(x,3)

W(x,1)

W(x,2)

Figure 12. Schedule that satisfies Atomicity

5 Properties of the Definitions

This section explores some of the properties of our new consistency conditions: how they compare to the original
definition when there is just one writer, how they can be extended to the multi-register situation, and how they relate
to some previously known consistency conditions.

5.1 Relation to the Original Single-Writer Definition

The following lemma states the relationship between our proposed definitions and SWReg, the single-writer
definition of Lamport.

Lemma 13 Suppose there is only a single writer. Then MWRegWeak and MWRegWO are equivalent to SWReg while
MWRegRF and MWRegNI are stronger than SWReg.

Proof. If there is only a single writer, then the definition of MWRegWeak is the same as that of SWReg.
The definition of MWRegWO implies SWReg for a single writer. On the other hand, for any scheduleσ that

satisfies SWReg, for every read there is a total ordering of all the writes and itself that is legal andσ-consistent.
Since there is only one writer,σ-consistency implies that all the writes appear in the same order in each read’s
total order. Thus for any two reads, the writes that are relevant to both the reads appear in the same order in the
linearizations for the reads. Therefore SWReg⊆ MWRegWO. Thus SWReg= MWRegWO.

The schedule in Figure 13 has one reader and one writer, satisfies SWReg, but satisfies neither MWRegRF nor
MWRegNI. By inspection, the definitions of MWRegRF and MWRegNI both imply the definition of SWReg when
only one writer is considered,

It follows that when there is only one writer, MWRegWO∩ MWRegNI and MWRegRF∩ MWRegNI are also
stronger than SWReg.

18

Texas A&M University Department of Computer Science and Engineering Technical Report 2010-1-1

W(x,1) W(x,2)

R(x,2) R(x,1)

P0

P1

Figure 13. Single-writer schedule that satisfies SWReg but n either MWRegRF nor MWRegNI.

5.2 Locality

A consistency conditionC is local whenever a scheduleσ satisfiesC if and only if the projection ofσ on each
shared variable satisfiesC. Locality is a desirable property of consistency conditions: as mentioned in Herlihy and
Wing [13], locality enhances modularity and concurrency. In particular, if a consistency condition is local, then
each shared variable in a system can be implemented individually, and the composition of multiple such variable
implementations produces a system that satisfies the condition.

The specifications given in Section 4 of the four new consistency conditions apply to the multi-register case after
making some small alterations to the constituent definitions. In particular, a total order of operations on a set of
registers islegal if, for each register, the restriction of the total order to that register is legal. No changes are needed
to the definitions of schedule or relevant writes. The definition of a reads-from functionρ becomes the following,
with the modifications in bold:

Definition 11 Given a scheduleσ, consider a functionρ from reads(σ) to writes(σ). ρ is a reads-fromfunction if
for each readr, r and ρ(r) operate on the same registerx, the value returned byr is the same as the value written
byρ(r), ρ(r) is relevant tor, and there is no writew in writes(σ|x) such thatρ(r) <σ w <σ r.

If w = ρ(r), we say thatr reads fromw with respect toρ; whenρ is understood from context, we simply say that
r reads fromρ(r).

Theorem 14 MWRegWeak is local.

Proof. For any scheduleσ, if σ satisfies MWRegWeak, then clearlyσ|x satisfies MWRegWeak for every register
x.

For the other direction, consider any scheduleσ such thatσ|x satisfies MWRegWeak for every registerx. We
show thatσ satisfies MWRegWeak. Consider any read operationr in ops(σ) on some shared registerx. We construct
a total orderLr onwrites(σ) ∪ {r} as follows. LetLx

r be a legal linearization of(writes(σ|x) ∪ {r}, <σ|x) which
exists sinceσ|x satisfies MWRegWeak. Define the relation<r on writes(σ) ∪ {r} to be the transitive closure of
the union of<σ andLx

r ; <r is a partial order sinceLx
r is consistent with<σ. Let Lr be any linearization of<r. By

construction,Lr is σ-consistent. SinceLx
r is legal andLr contains no additional operations onx, Lr is also legal.

The next three proofs use the technique of Herlihy and Wing [13] for proving the locality of linearizability. The
only difference between the proofs is the construction of a partial order, which is then extended into a total order.

Theorem 15 MWRegWO is local.

Proof. Let σ be any schedule that satisfies MWRegWO. Without loss of generality, assume that for every writew
to every registerx, there is at least one read ofx that ends afterw begins. It follows from the definition that, for each
registerx, σ|x satisfies MWRegWO.

19

Texas A&M University Department of Computer Science and Engineering Technical Report 2010-1-1

For the other direction, consider any scheduleσ such that, for each registerx, σ|x satisfies MWRegWO. We must
show thatσ satisfies MWRegWO. For each readr in ops(σ), we first define a partial order<r onwrites(σ) ∪ {r},
and then letLr be a linearization of<r. We then show that these linearizations satisfy the definition of MWRegWO
for σ.

Fix a readr of registerx in ops(σ). Let Lx
r be a linearization of(writes(σ|x) ∪{r}, <σ|x) guaranteed by the

assumption thatσ|x satisfies MWRegWO. For each registery 6= x, let ry be the first read ofy that starts afterr
ends. If there is no such read, then letry be the last read ofy. The important point is that every write toy that starts
beforer ends also starts beforery ends. LetLy

ry
be a linearization of(writes(σ|y) ∪ {ry}, <σ|y) guaranteed by the

assumption thatσ|y satisfies MWRegWO. Define the relation<r onwrites(σ) ∪ {r} to be the transitive closure of
the union of<σ, Lx

r , and all theLy
ry

linearizations for eachy 6= x.

Claim: <r is a partial order.
Proof of claim: Suppose in contradiction it is not, and letC = op0, op1, . . . , opm−1, op0 be a shortest cycle in<r.
SinceC is shortest, the edges alternate between<σ andLx′

r′ for somer′ (for possibly differentx′ registers) and thus
m is even. Without loss of generality, letop0 <σ op1 andop1 <

Lx′

r′
op2 mod m. Note thatLx′

r′ is (σ|x′)-consistent,

by assumption thatσ|x′ satisfies MWRegWO.
Supposem = 2. Thenop2 mod m = op0 and we have thatop0 ends beforeop1 begins, andop1 begins beforeop0

ends, contradiction. Thusm must be at least 4.
Then inσ, op0 ends beforeop1 begins,op1 begins beforeop2 ends, andop2 ends beforeop3 begins. But then

op0 ends beforeop3 begins, i.e.,op0 <σ op3, and we can get a shorter cycle by deletingop1 andop2 from C, a
contradiction.End of proof of claim.

Let Lr be a linearization of<r in which incomparable operations are ordered in a deterministic way (say, in order
of the writers’ identifiers). Sincer is the only read in the set of operations over whichLr is defined, the legality of
Lr follows from the legality ofLx

r . Lr is σ-consistent because<r includes<σ.
We now show that the linearizations agree on the relevant writes. Consider any two readsr1 andr2 in ops(σ).

Let w1 andw2 be any two writes inrel-writes(σ, r1) ∩ rel-writes(σ, r2).
Supposew1 andw2 both write to the same register, sayy. By construction,Lr1

includesLy
r′
1

, wherer′1 is some

read ofy such that every write toy that starts beforer1 ends also starts beforer′1 ends. Similarly,Lr2
includesLy

r′
2

,

wherer′2 is some read ofy such that every write toy that starts beforer2 ends also starts beforer′2 ends. By the
definition of MWRegWO,Ly

r′
1

andLy
r′
2

agree on the order of all writes toy that are relevant to bothr′1 andr′2. Since

w1 andw2 are relevant to bothr′1 andr′2, Lr1
andLr2

agree on the order ofw1 andw2.
Supposew1 andw2 write to different registers. Ifw1 andw2 do not overlap, thenLr1

andLr2
agree on the order

of w1 andw2 because they are bothσ-consistent. Ifw1 andw2 overlap, then agreement follows because of the
deterministic method used in the linearizations to resolvethe ordering of incomparable operations.

Theorem 16 MWRegRF is local.

Proof. Let σ be any schedule that satisfies MWRegRF. To show thatσ|x satisfies MWRegRF for each registerx,
set the reads-from function forσ|x to be the projection onto operations onx of the reads-from function forσ. The
result follows from the definition.

For the other direction, consider a scheduleσ such that, for each shared registerx, σ|x satisfies MWRegRF. In
other words, for eachx, there is a reads-from functionρx on σ|x such that the following holds: For each readr in
σ|x, there exists a legal linearizationLx

r of (writes(σ|x) ∪ {r}, <σ|x,ρx). We must show that the original schedule
σ satisfies MWRegRF. That is, we must show that there exists a reads-from functionρ onσ such that the following
holds: For each readr in σ, there exists a legal linearizationLr of (writes(σ) ∪ {r}, <σ,ρ).

20

Texas A&M University Department of Computer Science and Engineering Technical Report 2010-1-1

First, defineρ, a reads-from function forσ, asρ(r) = ρx(r), wherex is the register thatr accesses.
Now consider any readr in ops(σ) on some registerx. For each registery 6= x, choose any readry on y and

consider the linearizationLy
ry

. Define the relation<r onwrites(σ)∪{r} to be the transitive closure of the union of
<σ,ρ, Lx

r , and all theLy
ry

linearizations.

Claim: <r is a partial order.
Proof of claim: Suppose in contradiction<r contains a cycle and letC = op0, op1, . . . , opm−1, op0 be a shortest
cycle. SinceC is a shortest cycle, it consists of alternating<σ,ρ edges andLx′

r′ edges, and thusm is even. In fact,
sinceρ only relates two operations on the same register, and since all operations on the same register, sayx′, are
ordered byLx′

r′ , the<σ,ρ edges are actually<σ edges and they relate operations on different registers. The same ar-
gument as in the proof of Theorem 15 shows thatC can be shortened, which is a contradiction.End of proof of claim.

Let Lr be any linearization of the partial order<r. SinceLr containsLx
r , which is legal, and no additional

operations onx are considered,Lr is also legal. Finally,Lr is (σ, ρ)-consistent since<r contains<σ,ρ.

Theorem 17 MWRegNI is local.

Proof. Let σ be any schedule andρ be any reads-from function forσ that satisfy MWRegNI. To show thatσ|x
satisfies MWRegNI for each registerx, use the reads-from function forσ|x that is the projection ofρ onto operations
onx. The result follows from the definition.

For the other direction, consider any scheduleσ such that, for each registerx, σ|x satisfies MWRegNI. That is,
for each registerx, there is a reads-from functionρx from reads(σ|x) to writes(σ|x) such that for each processpi,
there exists a legal linearizationLx

i of (W x
i ∪ reads(σ|x|i), <σ|x), whereW x

i = {ρx(r) : r ∈ reads(σ|x|i} (the set
of all writes tox that are read from by at least one read bypi).

We must show thatσ satisfies MWRegNI. We will define a reads-from functionρ from reads(σ) to writes(σ)
such that for each processpi, there exists a legal linearizationLi of (Wi ∪ reads(σ|i), <σ), whereWi = {ρ(r) :
r ∈ reads(σ|i)} (the set of all writes that are read from by at least one read bypi).

Let ρ be defined for eachr in reads(σ) asρ(r) = ρx(r), wherex is the register thatr accesses. Fix a processpi.
Define the relation<i on Wi ∪ reads(σ|i) to be the transitive closure of the union of<σ and all theLx

i , wherex
ranges over all the registers. We will show that<i is a partial order, then take any linearization of it asLi and show
thatLi is legal andσ-consistent.

Claim: <i is a partial order.
Proof of claim: Suppose in contradiction it is not, and letC = op0, op2, . . . , opm−1, op0 be a shortest cycle in<i.
SinceC is shortest, the edges alternate between<σ andLx

i (for possibly different registersx), and thusm is even.
The same argument as in the proof of Theorem 15 shows thatC can be shortened, which is a contradiction.End of
proof of claim.

Let Li be any linearization of<i. It is legal because each constituentLx
i is legal. It isσ-consistent because<i

includes<σ.

Vitenberg and Friedman [31] prove that any consistency condition that is the intersection of two local conditions
is also local. Thus, since MWRegWO, MWRegRF, and MWRegNI areeach local, the intersection of any two of
them is also local.

21

Texas A&M University Department of Computer Science and Engineering Technical Report 2010-1-1

5.3 Comparison

In this section, we first compare our proposed consistency conditions to each other; then we relate our definitions
to other existing consistency conditions.

5.3.1 Comparison Between Proposed Definitions

MWRegWeak

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������

������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������

���
���
���

���
���
���

���
���
���
���

����
����
����
����

Sched in Fig 7 Sched in Fig 8

Sched in Fig 11

Sched in Fig 10

Sched in Fig 9
Sched in Fig 6

Sched in Fig 12

MWRegNIMWRegRFMWRegWO

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

Figure 14. Venn diagram of the proposed definitions

The Venn diagram in Figure 14 summarizes the relationships between our proposed definitions. The diagram
describes sets of schedules. The outer rectangle indicatesall schedules that satisfy MWRegWeak. The left circle
represents all schedules that satisfy MWRegWO, the right circle those that satisfy MWRegRF, and the bottom circle
those that satisfy MWRegNI. The small solid squares give thelocations of the seven example schedules discussed
in Section 4.

Lemma 18 The relationships between the conditions are as indicated in Figure 14. That is,

(a) MWRegWO, MWRegRF, and MWRegNI are proper subsets of MWRegWeak.

(b) Each pair of MWRegWO, MWRegRF, and MWRegNI have a non-empty intersection but are incomparable.

(c) Furthermore, Atomicity is contained in the intersection of MWRegWO, MWRegRF,and MWRegNI.

22

Texas A&M University Department of Computer Science and Engineering Technical Report 2010-1-1

Proof. (a) The schedule in Figure 6 satisfies MWRegWeak, but does notsatisfy MWRegWO, MWRegRF, or
MWRegNI. Therefore, to complete the proof, it suffices to show that each of the three conditions of interest is a
subset of MWRegWeak.

MWRegWO⊆ MWRegWeak since the only difference between the definition of MWRegWO and MWRegWeak
is that the former puts an additional constraint on the required per-read linearizations. The same argument shows
that MWRegRF⊆ MWRegWeak.

To show that MWRegNI⊆ MWRegWeak, consider any scheduleσ that satisfies MWRegNI. Consider any read
r in ops(σ). From the definition of MWRegNI, there exists a reads-from functionρ onσ. Let w = ρ(r).

Case 1:w <σ r: Define the following total orderLr on writes(σ) ∪ {r}. First, put all the writes that precede
or overlapw in anyσ-consistent total order. Putw next in the total order. Then putr next in the total order. Finally,
follow r with anyσ-consistent total order on all the remaining writes.

By constructionLr is legal. To show thatLr is σ-consistent, we check thatr is ordered properly with respect
to each non-overlapping writew′ other thanw. Supposew′ <σ r. Thenw′ either precedes or overlapsw by the
definition of a reads-from function, and thusw′ appears beforer in Lr. Supposer <σ w′. Sincew <σ r, w′ follows
w and appears afterr in Lr.

Case 2:w andr overlap inσ. Define the following total orderLr on writes(σ) ∪ {r}. First, put all the writes
that preceder in anyσ-consistent total order. Putw next in the total order. Then putr next in the total order. Finally,
follow r with anyσ-consistent total order on all the remaining writes.Lr is legal andσ-consistent by construction.

(b) The schedule in Figure 10 shows that MWRegWO and MWRegNI have a nonempty intersection, while the
schedules in Figures 7 and 9 show that they are incomparable.The schedule in Figure 11 shows that MWRegRF and
MWRegNI have a nonempty intersection, while the schedules in Figures 8 and 9 show that they are incomparable.
The schedule in Figure 12 shows that MWRegWO and MWRegRF havea nonempty intersection, while the sched-
ules in Figures 7 and 8 show that they are incomparable.

(c) The definition of Atomicity appears in the Appendix. Letσ be any schedule satisfying Atomicity and letL be
the linearization of(ops(σ), <σ). To show thatσ also satisfies MWRegWO, for each readr, let Lr be the restriction
of L to writes(σ) ∪ {r}. To show thatσ also satisfies MWRegRF, letρ be the reads-from function such that each
read reads from the write that most recently precedes it inL, and, for each readr, let Lr be the same as for the
MWRegWO argument. To show thatσ also satisfies MWRegNI, use the sameρ as for the MWRegRF argument,
and for each processpi, let the projection ofL ontoWi ∪ reads(σ|i), whereWi is the set of all writes that are read
from by processpi, be the desired linearization.

Recall that Theorem 4 shows that every execution of Algorithm Alg None satisfies MWRegWeak. But it does not
show that every schedule satisfying MWRegWeak can be generated by Algorithm AlgNone. Perhaps Algorithm
Alg None actually guarantees a stronger condition than MWRegWeak, i.e., perhaps the set of schedules that can
be generated by Algorithm AlgNone is a proper subset of those satisfying MWRegWeak. In fact, Alg ID cannot
generate all MWRegWO schedules: Consider a schedule in which p0 writes 1 and simultaneouslyp1 writes 2, and
then laterp2 reads 1. Although this schedule satisfies MWRegWO (and in fact, satisfies Atomicity), it cannot be
generated by the algorithm, which would give priority top1’s write, sincep1’s ID is larger thanp0’s.

We partially address the issue of characterizing exactly the schedules that each algorithm can generate by showing
that Algorithm Alg None can generate the schedule in Figure 6, which, as indicated in the Venn diagram, does not
satisfy any of our other consistency conditions. Similarly, we can show that Algorithm AlgID, which implements
MWRegWO, can generate the schedule in Figure 7, etc. For detailed constructions of the schedules by the algo-
rithms, see Shao’s thesis [28]. Thus, our results show that Alg ID, Alg WB, and Alg LC generate incomparable sets

23

Texas A&M University Department of Computer Science and Engineering Technical Report 2010-1-1

of schedules.

5.3.2 Comparison with Existing Consistency Conditions

The relationships between our new consistency conditions and the known consistency conditions Sequential Consis-
tency, Goodman’s Processor Consistency (PCG), Causal Consistency, PRAM and Coherence are shown as a partial
order in Figure 15. Definitions of these additional conditions are given in Appendix A. The relationships on the
right side come from Ahamad et al. [1, 2] and Vitenberg and Friedman [31]. This figure indicates that all of our
new conditions are incomparable with the existing conditions listed above; these relationships are proved in the next
theorem.

MWRegNI

Atomicity

PRAMCoherence

PCGPCG

Sequential
Consistency

Causal

MWRegWeak

MWRegWO MWRegRF

Figure 15. Partial order among some consistency conditions

Theorem 19 Each of MWRegWO, MWRegRF, and MWRegNI is incomparable with each of Sequential Consistency,
PCG, Causal Consistency, Coherence, and PRAM.

Proof. We show that for each pair of conditions(C1, C2), whereC1 is one of our four new conditions andC2 is
one of the five previously proposed conditions, there is a schedule that satisfiesC1 but notC2 and vice versa. For
several of the pairs, we can use the same schedule.

P0

P1

W(x,2)

R 1(x,1)

W(x,1)

Figure 16. Schedule that is Sequentially Consistent but not MWRegWeak.

The schedule in Figure 16 satisfies Sequential Consistency,and thus also PCG, Causal Consistency, Coherence,
and PRAM: the operations can be orderedW (x, 1), R1(x, 1),W (x, 2). However, this schedule does not satisfy
MWRegWeak, and thus does not satisfy MWRegWO, MWRegRF, or MWRegNI: the only legal linearization forR1

is W (x, 1), R1(x, 1),W (x, 2), but this violatesσ-consistency.

24

Texas A&M University Department of Computer Science and Engineering Technical Report 2010-1-1

W(x,1)
0

P1

P2

R 1 (x,1) R 2 (y,0)

W(x,2) W(y,2)

R 3 (y,2) R 4 (x,1)

W(y,1)

P

Figure 17. Schedule that satisfies MWRegWO, MWRegRF, and MWR egNI but not PRAM

The schedule in Figure 17 satisfies MWRegWO, MWRegRF, and MWRegNI, and thus also MWRegWeak, as we
now show. The linearizations given next—one for each read—show that the schedule satisfies MWRegWO. The
same linearizations also show that it satisfies MWRegRF.

R1: W (x, 1), R1(x, 1), W (y, 1), W (x, 2), W (y, 2)
R2: R2(y, 0), W (y, 1), W (x, 2), W (y, 2), W (x, 1)
R3: W (x, 1), W (y, 1), W (x, 2), W (y, 2), R3(y, 2)
R4: W (y, 1), W (x, 2), W (y, 2), W (x, 1), R4(x, 1)

To show that the schedule satisfies MWRegNI, we just need a linearization forp1, since the other processes never
read. We can useW (x, 1), R1(x, 1), R2(y, 0),W (y, 2), R3(y, 2), R4(x, 1).

However, the schedule in Figure 17 does not satisfy PRAM, andthus does not satisfy Causal Consistency or
Sequential Consistency: in order to satisfy legality for the first three reads ofp1 as well as program order, the
linearization forp1 must beW (x, 1), R1(x, 1), R2(y, 0),W (y, 1),W (x, 2),W (y, 2), R3(y, 2), R4(x, 1). But the
return value ofR4 violates legality, as it should be 2 instead of 1.

The schedule in Figure 7 satisfies MWRegWO (and thus also MWRegWeak) as discussed earlier. However, it
does not satisfy Coherence, and thus it also does not satisfyPCG or Sequential Consistency: To be legal,W (x, 2)
must precedeR2(x, 2), andW (x, 4) must precedeR4(x, 4) in the linearization forx. To respect the per-process
orders, though,R2(x, 2) must precedeW (x, 4), andR4(x, 4) must precedeR5(x, 2). But then it is not legal forR5

to return 2.
Finally, the schedule in Figure 18 satisfies MWRegRF and MWRegNI (and thus also MWRegWeak). It satisfies

MWRegRF with the following linearizations for the reads:

R(x, 1): W (x, 0), W (x, 1), R(x, 1)
R(x, 0): W (x, 1), W (x, 0), R(x, 0)

It satisfies MWRegNI with the following per-process linearizations:

p1: W (x, 1), R(x, 1)
p2: W (x, 0), R(x, 0)

However, this schedule does not satisfy Coherence, and thusdoes not satisfy PCG or Sequential Consistency,
sincep0 must viewW (x, 1) afterW (x, 0) whereasp1 must viewW (x, 0) afterW (x, 1).

6 Mutual Exclusion Using Multi-Writer Regular Shared Registers

In this section, we use the mutual exclusion problem as a practical context to evaluate the strength of our new
specifications for multi-writer regular shared registers.Specifically, we study the correctness of two well-known

25

Texas A&M University Department of Computer Science and Engineering Technical Report 2010-1-1

R(x,0)

W(x,0) R(x,1)P0

P1
W(x,1)

Figure 18. Schedule that satisfies MWRegRF and MWRegNI but no t Coherence

1. Peterson’s Algorithm for 2 Processes
Code for processpi, i ∈ {0, 1}:

shared registers:
F lag[0..1] : integer /* initially 0 */
Turn : integer /* initially 0 */

/* entry section */
1 repeat
2 F lag[i] := 0;
3 wait until (F lag[1 − i] = 0 or Turn = i);
4 F lag[i] := 1;
5 until (Turn = i or F lag[1 − i] = 0)

6 if (Turn = i) then wait until (F lag[1 − i] = 0);

Critical Section

/* exit section */
7 Turn := 1 − i;
8 F lag[i] := 0;

Remainder Section

2. Dijkstra’s Algorithm for n Processes
Code for processpi, 0 ≤ i ≤ n − 1:

shared registers:
F lag[0..n − 1] : idle, requesting, in-cs /* Initially, idle */
Turn : integer /* Initially 0 */

/* entry section */
1 repeat
2 F lag[i] := requesting;
3 while (Turn 6= i) do
4 if (F lag[Turn] = idle) thenTurn := i;
5 end while
6 F lag[i] := in-cs;
7 until (∀j 6= i, F lag[j] 6= in-cs)

Critical Section

/* exit section */
8 F lag[i] := idle;

Remainder Section

Figure 19. Algorithms for mutual exclusion

algorithms for mutual exclusion when the variables satisfythe consistency conditions we have proposed. The al-
gorithms we examine are Peterson’s algorithm for two processes [23] and Dijkstra’s algorithm forn processes (as
presented by Raynal [25]). The algorithms are shown in Figure 19.6

Algorithms for solving mutual exclusion are assumed to havefour sections:entry, critical, exit andremainder.
Thecritical section is code that must be protected from concurrent execution. Theentrysection is the code executed
in preparation for entering the critical section. Theexit section is executed to release the critical section. The rest of
the code is in theremaindersection.

A run of an algorithm(not to be confused with an execution on a shared register) isdefined as an interleaving of
local operations and shared-memory operation invocationsand responses performed by the participating processes,
such that the following are satisfied:

• the projection of the algorithm run onto (the actions performed by) each individual process is consistent with
the order of operations imposed by the local algorithm for that process, and

• the projection of the algorithm run onto the shared-memory operations on each register is a schedule on that
register.

6Although Lamport’s Bakery algorithm [15] and Peterson and Fischer’s algorithm [24] are often studied in this context, they are not of
interest to us here since these algorithms use only single-writer shared variables.

26

Texas A&M University Department of Computer Science and Engineering Technical Report 2010-1-1

Table 1. Correctness of mutual exclusion algorithms using m ulti-writer regular registers.
Peterson’s Algorithm Dijkstra’s Algorithm

MWRegWeak ME, EP, NL ME
MWRegWO ME, EP, NL ME, EP
MWRegRF ME, EP, NL ME
MWRegNI ME, EP, NL ME
Atomicity ME, EP, NL ME, EP

(In this context, we consider a shared-register “request” to be the invocation of a request by a process, and a shared-
register “response” to be the receipt of a response by a process. They are thus process actions, but can nevertheless
be meaningfully projected onto the register also.) We say that an algorithmruns under consistency conditionC if
its projection onto the invocations and responses on the setof shared registers satisfiesC.

We say that an algorithmA solves mutual exclusion under consistency condition Cif, for each run ofA underC,
the following constraints hold:

• mutual exclusion (ME): there is at most one process in the critical section at any point in the execution.

• eventual progress (EP):7 if there is some process waiting to enter the critical section, then eventually some
process enters the critical section.

• no lockout (NL): if some process is waiting to enter the critical section, then eventuallythat process enters
the critical section.8

We now examine the two mutual exclusion algorithms shown in Figure 19. Table 1 shows which of the conditions
of mutual exclusion described above are met by each algorithm when implemented with variables satisfying each
of our consistency conditions. As a comparison, we also listthe conditions that are guaranteed by these algorithms
when the shared variables are Atomic.

We first consider Peterson’s algorithm for two processes [23]. This algorithm uses two single-writer shared
variables,Flag[0] andFlag[1], and one multi-writer shared variable,Turn.

Theorem 20 Peterson’s Algorithm solves mutual exclusion (ME, EP, and NL) under MWRegWeak, and thus under
all the proposed definitions.

Proof. First we show that ME is satisfied. Suppose in contradiction there is a run in which ME is violated and let
t be the time of the first violation. Without loss of generality, let Turn = 0 at timet. SinceTurn is only changed
when a process leaves the critical section, and is only set to0 by processp1, Turn remains 0 throughout the entry
section ofp1 that most recently precedest, as well as throughout the critical section ofp1 that includes timet. In
this entry section ofp1, the last execution of Line 5 reads 0 fromFlag[0] sinceTurn is 0. The latest preceding
execution of Line 4 writes 1 toFlag[1].

Case 1:p0 reads 0 fromTurn in its last execution of Line 6 preceding timet. Thus the last execution of the wait
construct in Line 6 reads 0 fromFlag[1]. See Figure 20.

7We use this term, rather than the more traditional ND (“no deadlock”) in order to avoid ambiguity: the term “deadlock” sometimes
includes “livelock” (in which processes continue taking steps but keep one another trapped in a loop due to timing issues) and sometimes
does not. The definition of “eventual progress” explicitly precludes either situation.

8Although NL implies EP, we include both requirements, partly for historical reasons (e.g.,Higham and Kawash [14]) but primarily
because it gives us a finer gauge of the effectiveness of various consistency conditions,viz. Dijkstra’s algorithm, which solves EP but not NL
under MWRegWO and MWRegNI.

27

Texas A&M University Department of Computer Science and Engineering Technical Report 2010-1-1

Line 5

R(Flag[1],0)

Line 6

W(Flag[0],1)

Line 4Line 4

p1

p0

W(Flag[1],1)

Line 4

R(Flag[0],0)

Figure 20. Figure for Case 1 of proof of Theorem 20.

By the definition of MWRegWeak, this read byp0 of Flag[1] must start before the end of the write of 1 byp1

to Flag[1] (in p1’s last execution of Line 4), because Flag[1] remains 1 afterthis execution of Line 4 untilp1 exits
its critical section. But beforep0 executes Line 6, it executes Line 4 and writes 1 toFlag[0]. Thus it violates
MWRegWeak forp1’s last execution of Line 5 to read 0 fromFlag[0], contradiction.

Case 2:p0 reads 1 fromTurn in its last execution of Line 6 preceding timet. By MWRegWeak, this read must
begin before the end of the previous write of 0 toTurn by p1 whenp1 was last in its exit section. See Figure 21.

Line 3

R(Turn,1)

Line 6

W(Flag[0],1)

Line 4Line 4

p1

p0

W(Turn,0)

Line 7

 ???

Figure 21. Figure for Case 2 of proof of Theorem 20.

Beforep0’s last execution of Line 6,p0 did its last execution of Line 4, and wrote 1 toFlag[0]. Thus, after the
end ofp1’s write of 0 toTurn until (at least) timet, Flag[0] remains 1 andTurn remains 0. But thenp1 is stuck in
a loop at Line 3, checking forFlag[0] = 0 or Turn = 1, and it cannot be thatp1 is in its critical section at timet,
contradiction.

Now we show EP. If only one process, saypi, is contending for the critical section, then there are no concurrent
accesses to the shared variables andpi will pass all the tests (Lines 3, 5, and 6) and enter the critical section. So in
order to violate EP, both processes must be contending. Lett be the time after which both are stuck in their entry
sections forever. Without loss of generality, letTurn = 0 at timet. Turn is never changed subsequently, since only
a process in its exit section writes toTurn and no process is ever in its exit section after timet. But thenp0 passes
all the tests (Lines 3, 5 and 6) and enters the critical section, contradiction.

Finally, we show NL. Without loss of generality, suppose forcontradiction thatp0 is locked out starting at timet.
Since EP holds,p1 must enter the critical section infinitely often. Duringp1’s first exit after timet, p1 setsTurn to
0. Subsequently,Turn is always 0, since onlyp0 can change it to 1 and only whenp0 is in its exit section. But then

28

Texas A&M University Department of Computer Science and Engineering Technical Report 2010-1-1

p0 passes all the tests (Lines 3, 5, and 6) and enters the critical section, contradiction.

Dijkstra’s algorithm forn processes usesn single-writer shared variables and one multi-writer shared variable
(we follow the presentation of Raynal [25]). As shown next, under MWRegWO it behaves the same way as under
atomicity: ME and EP are guaranteed, but not NL. Under MWRegRF and MWRegNI, however, only ME is guar-
anteed. It seems that a commonσ-consistent total order on writes is necessary for Dijkstra’s algorithm to satisfy
EP.

Theorem 21 The following are true of Dijkstra’s algorithm:
(a) ME is satisfied under MWRegWeak.
(b) EP is satisfied under MWRegWO.
(c) EP is satisfied under neither MWRegRF nor MWRegNI.

Proof. (a) Suppose in contradiction there is a run of Dijkstra’s algorithm under MWRegWeak in which ME is
violated. Lett be the earliest time in this run at which two processes, saypi and pj, are in the critical section
simultaneously.

Let ri be the last execution bypi of Line 7 before timet; this is whenpi readspj ’s Flag and sees that it is not
in-cs. Let wi be the last execution bypi of Line 6 beforeri; this is whenpi sets itsFlag to in-cs. Similarly, letrj be
the last execution bypj of Line 7 before timet (whenpj readspi’s Flag and sees that it is notin-cs) and letwj be
the last execution bypj of Line 6 beforerj (whenpj sets itsFlag to in-cs).

By the definition of MWRegWeak,ri begins beforewj ends, and by the algorithm,rj begins afterwj ends. Thus
ri begins beforerj begins. But by a symmetric argument,rj begins beforeri begins, hence a contradiction.

(b) Suppose in contradiction there is a run of Dijkstra’s algorithm under MWRegWO in which EP is violated.
Let t be the earliest time in this run after which no process changes its section and every process in its entry section
has finished executing Line 2 at least once after entering itsentry section. Thus there is a fixed nonempty setS of
processes that are stuck in their entry section and the rest of the processes are in their remainder section.

First, we show thatTurn is written only finitely often. Suppose in contradiction there are infinitely many writes to
Turn. After timet, all the writes toTurn are by processes that are inS; as a result of such a write,Turn holds the id
of a process inS. Also, every read ofFlag[i] that starts after timet returnsidle if and only if i 6∈ S. Thus eventually
each read ofTurn returns the id of a process inS and thus the condition in Line 4 (whetherFlag[Turn] = idle) is
false, andTurn is not written. This contradicts the assumption thatTurn is written infinitely often.

Let WT be the (finite) set of all writes toTurn. Let r be any read ofTurn that starts after timet and after all
writes inWT have finished. By the definition of MWRegWO, there must be a total order on all the writes in the run,
plusr, that is legal and consistent with the order of non-overlapping operations in the run. Letw1, w2, . . . , wm, r be
the projection of this total order ontoWT ∪ {r}. Note thatr is at the end andr returns the value written bywm.

Let pk be the process that performswm, implying thatwm writes k to Turn. We next show thatpk is in S.
Suppose not. The process that executesr, obtainingk as the value ofTurn, next readsFlag[k] as beingidle, and
then writesTurn, contradicting the choice ofr as occurring after the last write toTurn.

By the definition of MWRegWO,everyread ofTurn occurring after the last write inWT and after timet must
order the writes inWT the same way. If the read is by a process other thanpk, the process remains stuck in the while
loop of Lines 3–5 forever, with itsFlag equal torequesting. If the read is bypk, though,pk falls through the while
loop, finds the condition in Line 7 true, and enters the critical section. This is a contradiction to the assumption that
EP is violated.

(c) We describe a run of the algorithm under MWRegRF that violates EP. Suppose that onlyp1 andp2 are active
and they execute in lockstep. They both execute Line 2 and write requestingto their Flag variables. Then they
both execute Line 3 and read 0 fromTurn. Then they both execute Line 4 and readidle from Flag[0], after which
they write their respective ids toTurn. Then they both execute Line 3 again and readTurn; p1 obtains 2 whilep2

29

Texas A&M University Department of Computer Science and Engineering Technical Report 2010-1-1

obtains 1. Since MWRegRF allows the total order for these reads to differ,p1 viewsp2’s write toTurn as occurring
later than its own write toTurn, and vice versa forp2. Then they both execute Line 4;p1 readsFlag[2] and obtains
requesting, while p2 readsFlag[1] and obtainsrequesting. Then they repeat executing Lines 3 and 4 forever, and
neither ever enters the critical section.

It can be shown that the same run also satisfies MWRegNI and thus under MWRegNI, EP can be violated.

7 Conclusion

The ever-growing popularity of data sharing on the web through applications such as Wikis and peer-to-peer file
sharing indicates the usefulness of providing data that canbe updated by multiple users but that does not require
stringent consistency guarantees. Thus it is essential that weaker conditions, such as Lamport’s regularity, be ex-
tended into the multi-writer model. While this extension issimple in the case of atomicity, it is more difficult and
potentially ambiguous for the weaker condition of regularity.

This paper grew out of an attempt to extend Lamport’s definition of regularity from the single-writer model [17] to
the more general multi-writer model. We have shown that the extension is not trivial. While there exist various ways
to extend the single-writer definition, the resulting definitions have different strengths. We started from a generic
algorithm, which is a generalization of several existing protocols that use quorum systems to implement a read/write
register. We then identified three building blocks from the algorithms. By applying different combinations of the
building blocks, we obtained different algorithms. For each algorithm, we proposed a new consistency condition and
proved that the corresponding algorithm implemented the definition. Out of the four new consistency conditions that
we studied, two of them (MWRegWeak and MWRegWO) are especially good candidates for being a multi-writer
version of regularity, since in the presence of only one writer, the condition reduces to the original definition.

The definitions form a lattice with respect to their strength, and the implementations have varying costs with
respect to number of messages, size of messages, time delay,and local memory requirements. Taken together, the
set of definitions point out the ambiguity of the informal notion of regularity and the algorithms suggest that different
costs may be associated with different choices for disambiguating. Locality is a desirable property of consistency
conditions, which enhances modularity and concurrency. Weshowed that all our proposed definitions satisfy locality.
We have also analyzed the relationships between these consistency conditions and a number of other well-known
consistency conditions.

Finally, we provided a practical context for our results by studying the correctness of two well-known algorithms
for mutual exclusion when the variables satisfy our proposed consistency conditions. We found that Peterson’s
algorithm is fully correct under all the conditions, while Dijkstra’s algorithm satisfies only some of the constraints
of the mutual exclusion problem under any of the conditions.

Although the presentation in this paper did not take into account any kind of failures, crash failures of clients can
be handled as in other papers (e.g., [13]). The definition of aschedule would be modified to allow some invocations
(namely, the last one by a crashed client) to lack a matching response. Then the set of operations that appear in the
definitions of the conditions, instead of being all the operations, would be all the completed operations and some
subset of the uncompleted writes. In the algorithms, crash failures of some of the servers can be accommodated via
the quorum system by having clients continue to send queriesor updates to servers until hearing back from at least
one quorum of servers. As long as crash failures have not disrupted all the quorums, the clients will be able to make
progress. However, handling more malignant failures of theservers, especially Byzantine failures, as is done in the
work of, e.g., Malkhi and Reiter [21] and Bazzi [7], is left for future work.

Our algorithms exhibit differences in cost, but we do not know if the differences are inherent. It would be
interesting to show a complexity separation between our proposed conditions, i.e., to prove some lower bound on the
cost of any algorithm for some consistency condition. Similarly, it would be worthwhile to identify certain problems
that cannot be solved at all under some consistency conditions The still weaker condition ofsafety(Lamport [17])

30

Texas A&M University Department of Computer Science and Engineering Technical Report 2010-1-1

can also be extended to the multi-writer model by means of similar techniques to those we have used here; this is
one possible avenue of future work. It might also be worthwhile to explore ways of formalizing the multi-writer
version of consistency conditions met by the probabilisticquorum systems of Malkhi et al. [22], which operate
more efficiently than strict quorum systems at the expense ofoccasionally providing outdated information. Finally,
exploring the semantics and consistency model of other datastructures, which are built on top of quorum systems,
is also of interest.
Acknowledgments: We thank the anonymous referees for their thoughtful comments that greatly improved the
paper. We also thank Hyun-Chul Chung, Scott Pike, Gautam Roy, Srikanth Sastry, and Saira Viqar for helpful
conversations.

References

[1] M. Ahamad, R. Bazzi, R. John, P. Kohli, and G. Neiger. The Power of Processor Consistency.ACM Symposium
on Parallel Algorithms and Architectures, Velen, Germany, pp. 251–260, 1993.

[2] M. Ahamad, P. W. Hutto, G. Neiger, J. E. Burns, and P. Kohli. Causal Memory: Definitions, Implementations
and Programming. TR GIT-CC-93/55, Georgia Institute of Technology, July 1994.

[3] F. Anger. On Lamport’s Interprocess Communication Model. ACM Transactions on Programming Languages
and Systems, Vol. 11, No. 3, pp. 404–417, 1989.

[4] H. Attiya, A. Bar-Noy, and D. Dolev. Sharing Memory Robustly in Message Passing Systems.Journal of the
ACM, Vol. 42, No. 1, pp. 124–142, 1995.

[5] H. Attiya and R. Friedman. A Correctness Condition for High Performance Multiprocessors.SIAM Journal on
Computing, Vol. 27, No. 6, pp. 1637–1670, 1998.

[6] H. Attiya and J. Welch.Distributed Computing: Fundamentals, Simulations and Advanced Topics, 2nd Ed.
Hoboken, New Jersey, USA, John Wiley and Sons, 2004.

[7] R. A. Bazzi. Synchronous Byzantine Quorum Systems.Distributed Computing, Vol. 13, No. 1, pp. 45–52,
2000.

[8] S. Ben-David. The Global Time Assumption and Semantics for Concurrent Systems.Proc. 7th ACM Sympo-
sium on Principles of Distributed Computing, pp. 223-231, 1988.

[9] T. D. Chandra and S. Toueg. Unreliable Failure Detectorsfor Reliable Distributed Systems.Journal of the
ACM, Vol. 43, No. 2, pp. 225–267, 1996.

[10] R. Friedman, R. Vitenberg, and G. Chockler. On the Composability of Consistency Conditions.Information
Processing Letters, Vol. 86, pp. 169–176, 2003.

[11] V. K.Garg and M. Raynal. Normality: A Consistency Condition for Concurrent Objects.Parallel Processing
Letters, Vol. 9, No. 1, pp. 123–134, 1999.

[12] J. Goodman. Cache Consistency and Sequential Consistency. Technical Report 61, IEEE Scalable Coherent
Interface Working Group, 1989.

[13] M. Herlihy and J. Wing. Linearizability: A CorrectnessCondition for Concurrent Objects.ACM Transactions
on Programming Languages and Systems, Vol. 12, No. 3, pp. 463–492, 1990.

31

Texas A&M University Department of Computer Science and Engineering Technical Report 2010-1-1

[14] L. Higham and J. Kawash. Tight Bounds for Critical Sections in Processor Consistent Platforms.IEEE Trans-
actions on Parallel and Distributed Systems. Vol. 17, No. 10, pp. 1072–1083, 2006.

[15] L. Lamport. A New Solution of Dijkstra’s Concurrent Programming Problem.Communications of the ACM,
Vol. 17, No. 8, pp. 453–455, 1974.

[16] L. Lamport. How to Make a Multiprocessor Computer That Correctly Executes Multiprocess Programs.IEEE
Transactions on Computers, Vol. C-28, No. 9, pp. 690–691, 1979.

[17] L. Lamport. On Interprocessor Communication. Part I and II. Distributed Computing, Vol. 1, No. 2, pp. 77–101,
1986.

[18] H. Lee and J. Welch. Randomized Registers and IterativeAlgorithms.Distributed Computing, Vol. 17, No. 3,
pp. 209–221, 2005.

[19] R. Lipton and J. Sandberg. PRAM: A Scalable Shared Memory. Technical Report 180-88, Department of
Computer Science, Princeton University, 1988.

[20] N. Lynch and A. Shvartsman. RAMBO: A Reconfigurable Atomic Memory Service for Dynamic Networks.
Proc. 16th International Symposium on Distributed Computing, pp. 173–190, 2002.

[21] D. Malkhi and M. Reiter. Byzantine Quorum Systems.Distributed Computing, Vol. 11, No. 4, pp. 203–213,
1998.

[22] D. Malkhi, M. Reiter, A. Wool, and R. Wright. Probabilistic Quorum Systems.Information and Computation,
Vol. 170, No. 2, pp. 184–206, 2001.

[23] G. L. Peterson. Myths about the Mutual Exclusion Problem. Information Processing Letters, Vol. 12, No. 3,
pp. 115–116, 1981.

[24] G. L. Peterson and M. J. Fischer. Economical Solutions for the Critical Section Problem in a Distributed
System.Proc. 9th ACM Symposium on Theory of Computing, pp. 91–97, 1977.

[25] M. Raynal.Algorithms for Mutual Exclusion. MIT Press, Cambridge, Massachusetts, USA, 1986.

[26] M. Raynal and A. Schiper. From Causal Consistency to Sequential Consistency in Shared Memory Systems.
Proc. 15th Conference on Foundations of Software Technologies and Theoretical Computer Science, Bangalore,
India, pp. 180–194, 1995.

[27] M. Raynal and A. Schiper. A Suite of Formal Definitions for Consistency Criteria in Distributed Shared
Memories.Proc. 9th International Conference on Parallel and Distributed Computing Systems, pp. 125–131,
1996.

[28] C. Shao. Multi-Writer Consistency Conditions for Shared Memory Objects. M.S. Thesis, Department of Com-
puter Science, Texas A&M University, 2007.

[29] C. Shao, Evelyn Pierce and J. L. Welch. Multi-Writer Consistency Conditions for the Shared Memory Objects.
Proc. 17th International Symposium on Distributed Computing, pp. 92-105, 2003.

[30] R. C. Steinke and G. J. Nutt. A Unified Theory of Shared Memory Consistency.Journal of the ACM, Vol. 51,
No. 5, pp. 800–849, 2004.

[31] R. Vitenberg and R. Friedman. On the Locality of Consistency Conditions.Proc. 17th International Conference
on Distributed Computing, pp. 92–105, 2003.

32

Texas A&M University Department of Computer Science and Engineering Technical Report 2010-1-1

Appendix: Existing Consistency Models

We give the definitions of several existing consistency conditions using the model we defined in Section 2.
Atomicity (Lamport [17]), also called Linearizability (Herlihy and Wing [13]) is a strong condition requiring that

there exist a total ordering of all the operations in a schedule that respects both the semantics of the objects and the
partial order of executions of the operations. A scheduleσ satisfies Atomicity if:

Definition 12 (Atomicity) There exists a legal linearization of(ops(σ), <σ).

Sequential consistency (Lamport [16]) requires that thereexist a total order of all the operations in a schedule
that respects the semantics of the objects and is consistentwith the order of operations executed by each process;
operations by different processes can be reordered. A schedule σ satisfies Sequential Consistency if:

Definition 13 (Sequential Consistency)There exists a legal linearization of(ops(σ),∪i∈PA
<σ|i).

PRAM was introduced by Lipton and Sandberg [19]. This consistency condition requires that the write operations
of a process be observed by other processes in the order in which they are performed. A scheduleσ satisfies PRAM
if:

Definition 14 (PRAM) For each processi ∈ PA, there exists a legal linearization of(ops(σ|i)∪writes(σ), ∪j∈PA

<σ|j).

Coherence (Goodman [12]) requires sequential consistencyon a per-object basis, which means that the operations
on different objects executed by the same process may be observed in an order other than that in which they are
invoked. A scheduleσ satisfies Coherence if:

Definition 15 (Coherence)For each registerx, there exists a legal linearization of
(ops(σ|x),∪i∈PA

<σ|i).

Goodman’s Processor Consistency (PCG) is rigorously defined by Ahamad et al. [1]. It is a combination of
Coherence and PRAM. A scheduleσ satisfies PCG if:

Definition 16 (PCG)For each processi ∈ PA, there exists a legal linearizationLi of (ops(σ|i)∪writes(σ), ∪j∈PA

<σ|j). Furthermore, for all processespi andpj in PA, and for all registersx, Li andLj agree on the ordering of all
writes tox.

Causal Consistency was introduced by Ahamad et al. [2]. It requires that each process have a legal view of its
own operations and all writes that is consistent with the per-process order and some reads-from relation. A schedule
σ satisfies Causal Consistency if:

Definition 17 (Causal Consistency)There exists a reads-from relationρ such that for each processi ∈ PA, there
exists a legal linearization of(ops(σ|i) ∪ writes(σ),∪j∈PA

<σ|j,ρ).

33

