View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by Texas A&amp;M Repository

Multi-Writer Consistency Conditions for Shared Memory Registers*
Texas A&M University Department of Computer Science andrigmging Technical Report 2010-1-1

Cheng Shao Jennifer L. Welch Evelyn Pierce Hyunyoung Lee

Abstract

Regularity is a shared memory consistency condition thatrbeeived considerable attention. Lamport’s original
definition of regularity assumed a single-writer model, boer, and is not well defined when the shared register
may have multiple writers. In this paper, we consider fousgible definitions of multi-writer regularity. The
definitions are motivated by variations on a quorum-basepbEthm schema for implementing them. We study the
relationships between these definitions and a number of atbk-known consistency conditions, and give a partial
order describing the relative strengths of these conssteonditions. Finally, we provide a practical context farro
results by studying the correctness of two well-known dtlgors for mutual exclusion under each of our proposed
consistency conditions.

1 Introduction
1.1 Overview

Distributed computer systems are ubiquitous today, ranfyjom multiprocessors to local area networks to wide-
area networks such as the Internet. Shared memory — the regehaf information between processes by the
reading and writing of shared variables — is an importantlraagsm for interprocess communications in distributed
systems. Aconsistency conditioin a shared memory system is a set of constraints on valueseet by data
accesses when those accesses may be interleaved or oveylapphared memory system with a strong consistency
condition may be easy to design application protocols farrnay require a high-cost implementation. Conversely,
a shared memory system with a weak consistency conditiontaaasy to implement, but difficult for the user to
program or reason about. Finding a consistency conditiaincdin be implemented efficiently and that is nonetheless
strong enough to solve practical problems is one of the afrsbared memory research.

Perhaps the most desirable consistency condition for dhmgmory variables iatomicity (Lamport [17]), also
known aslinearizability (Herlihy and Wing [13]), in which read and write operatiorehbve as though they were
executed sequentially, i.e., with no interleaving or caprlin a sequence that is consistent with the relative order
of non-overlapping operations. In many cases, howeves, dbimantics is difficult to implement, particularly in
distributed systems where variables are replicated andeathe number of processes with access to the variable
is not known in advance. For some systems, the related blkenveandition ofregularity (Lamport [17]) may be
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easier to implement while retaining some usefulness. Hsmrédason, it has received considerable attention in its
own right, notably in connection withuorum-based shared memdAttiya et al. [4], Malkhi and Reiter [21], Lee
and Welch [18], Lynch and Shvartsman [20]).

Informally speaking, regularity requires that every reg@eration return either the value written by the latest
preceding write (in real time) or that of some write that ¢aps the read. This description is sufficiently clear
for the single-writer modé| in which the order of the writes performed on a given registeany execution is
well-defined; in fact, it was for this model that Lamport gdve definition of regularity [17]. In a multi-writer
model, however, multiple processes may perform overlappirite operations to the same register so that the “latest
preceding write” for a given read may have no obvious definiti

A common way to circumvent this problem is to rely on a plalgsieneralization of the informal definition
above, e.g., the following, which appears in Malkhi and &di21]:

¢ A read operation that is concurrent with no write operatigigrns a value written by the last preceding write
operation in some serialization of all preceding write apens, and

e A read operation that is concurrent with one or more writerafi@ens returns either the value written by the
last preceding write operation in some serialization ofpadiceding write operations, or any of the values
being written in the concurrent write operations.

Such a definition, however, leaves a good deal of room forpng¢ation. What is meant by “some serialization” in
this context? Is there a single serialization of the writgsifhich the above is true for all read operations, or does it
suffice for there to be some (possibly different) such seaibn foreachoperation? Or should all read operations
of the sameprocessperceive writes as occurring in the same order? Such antigiggian be avoided with a precise
definition of multi-writer regularity, but to our knowledg®ne has yet been proposed.

1.2 Contributions

In this paper, we extend the notion of regularity to a multiter model. Specifically, we propose four possible
definitions of regularity in the presence of multiple writeWWe then present a quorum-based algorithm to implement
each of these definitions and prove the algorithms corrédw.fifst condition is implemented with a basic algorithm,
while the other three conditions are obtained by addingethliferent mechanisms to the basic algorithm. Our
algorithms are designed for asynchronous message-pagstems in which no messages are lost. For simplicity
of presentation, we assume that no processes are faultige inanclusion we discuss how to accommodate crash
failures of processes.

The definitions form a lattice with respect to their strengihd the implementations have varying costs with
respect to number of messages, size of messages, time aatblgcal memory requirements. Taken together, the
definitions point out the ambiguity of the informal notionratilti-writer regularity and the algorithms suggest that
different costs may be associated with different choicesliambiguating.

A consistency condition is said to be local if the consisyerundition is satisfied on a per-variable basis. Locality
is a desirable property of consistency conditions: as raeat in Herlihy and Wing [13], locality enhances mod-
ularity and concurrency. We show that all our proposed dedims satisfy locality. We also study the relationships
between our definitions of multi-writer regularity and selexisting consistency conditions.

Finally, we provide a practical context for our results hydsting the behavior of two well-known algorithms for
mutual exclusion when the variables satisfy our proposetistency conditions. The algorithms we examine are
Peterson’s algorithm for two processes [23] and Dijkstedégorithm (as presented by Raynal [25]). We find that

!In the single-writermodel, only one process can write to each shared variabtettenwrites are sequential); other processes can only
read from it.
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Peterson’s algorithm remains correct under all the newitiond. Dijkstra’s algorithm satisfies only some of the
constraints of the mutual exclusion problem under the nevditions.

1.3 Related Work

There is copious literature on consistency conditions fiared memory, both implementations and applications
(e.g., Lamport [16], Lipton and Sandberg [19], Goodman [E&rlihy and Wing [13], Ahamad et al. [1, 2], Ray-
nal and Schiper [26], and Garg and Raynal [11]). Our workdsuibn the notion of regularity as introduced by
Lamport [17].

Friedman et al. [10] and Steinke and Nutt [30] identify buntgl blocks and use various combinations of such
building blocks to explore potential consistency conditio The difference between our work and theirs is that in
theirs the building blocks are identified at the definitiovelevhile in our work, the building blocks are identified at
the implementation level. We use a similar framework andesgsnodel to those introduced by Raynal and Schiper
[27]; the major difference is that the partial order used layial and Schiper is a combination of per-process order
and the “reads-from” relation, while we use the real-timdenrin which operations occur.

The locality property of consistency conditions was firsigosed and studied by Herlihy and Wing [13]. Viten-
berg and Friedman [31] studied the locality of a set of cdon# and developed some general criteria for when a
condition is local and when it is not.

Our algorithms are based on quorums. The use of quorum systedistributed computing for replicating data
has a long history. The most relevant papers to our work asethy Malkhi and Reiter [21], Bazzi [7], and Malkhi
et al. [22]. Our generic algorithm schema is a generaliratibthese algorithms, although without provisions for
tolerance to Byzantine failures of servers.

We follow the example of Attiya and Friedman [5], Ahamad et[4], and Higham and Kawash [14] in using
the mutual exclusion problem as an application for our &tascy conditions. Attiya and Friedman [5] revised
Peterson’s 2-process algorithm [23] to solve the mutualusian problem under their hybrid consistency model.
Ahamad et al. [1] examined the correctness of Petersontridign and Lamport’s bakery algorithm [15] under
the PCG consistency model, showing that Peterson’s ahgor#olves the mutual exclusion problem under PCG,
while Lamport’s algorithm fails to do so. Higham and Kawa&#][investigated other mutual exclusion algorithms,
including Dekker’s and Dijkstra’s, none of which guaramsteeutual exclusion under PCG.

1.4 Roadmap of Paper

The rest of the paper is organized as follows. Section 2 stsef the definitions we will use to discuss shared
memory consistency conditions, as well as a descriptionuofsgstem model, and an overview of quorum-based
shared memory algorithms. In Section 3 we describe our gegeorum-based algorithm and the different building
block mechanisms for implementing a shared read/writealabgi Section 4 presents our proposed definitions of
multi-writer regularity and their implementations. In 8en 5 we discuss the locality property of our proposed
definitions and compares their relative strengths. In 8edii we study the correctness of two mutual exclusion
algorithms — Peterson’s algorithm for two processes ankisg's algorithm — when their shared variables satisfy
our proposed definitions. Section 7 concludes this papedecdsses future work.

2 Preliminaries
2.1 Shared Read/Write Registers and Consistency Conditien

A sharedread/write registersupports concurrent execution of read and write operapen®rmed by some set,
P4, of n application processegy,p1,...,pn_1. Each operation has d@nvocationand aresponse For a read

3
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operation, the invocation is denotezhd, (where: is the index of the application process performing the dpmrg
and the response has the foreturn;(v), wherev, the value read from the register, is drawn from a predetezchi
set of possible values that the register can take on. Forta wperation, the invocation has the foumite;(v),
wherew is the value to be written to the register, and the respornderistedack;, indicating that the write operation
has completed.

If the operations on a register occur sequentially, withemt overlap, so that each invocation is immediately
followed by amatchingresponse (i.e., eaakad is followed by areturn; and eachwrite; is followed by anack;),
then we would expect each read to return the value of thetlpteseding write. This behavior is captured in the
next definition; note that it is only relevant to sequencestiich operations do not overlap.

Definition 1 A total order of operations on a shared registerlégal if each read returns the value of the latest
preceding write; if there is no preceding write, then thedeaturns the initial value of the register.

When operations do overlap, because of concurrent exechyionultiple processes, invocations and responses
are interleaved. We assume, however, that each processrhastane operation pending at a time. To capture such
“well-formedness” constraints, we define the notion of aeslthe next. Ifo is a sequence of operation invocations
and responses, we denote by the subsequence of containing all the invocations and responses performed by
procesy;.

Definition 2 A sequence of invocations and responses iseheduldf, for each i,0 < i < n, the following hold:
e o|i consists of alternating invocations and matching respsnieginning with an invocation; and

e if the number of steps taken byis finite, then the last step hy is a response, i.e., every invocation has a
matching response.

Note that this definition of a schedule allows arbitrary &$yony of process steps, i.e., ho constraints are placed
on the relative speed with which operations complete or ertithe between operation invocations. However, for
convenience of analysis, we follow the example of Lampori Eind Chandra and Toueg [9] in employing the useful
abstraction of an imaginary global clock. All our refereside “real time” in the sequel are with respect to this
imaginary clock, which is not available to the processesn®@ves. This is equivalent to the global-time model
introduced by Ben-David [8] and Anger [3].

A consistency conditiors specified by a particular set of schedules. Thus the velatrength of two consis-
tency conditions can be compared by considering the setshadsiles defining the two conditions; in particular,
consistency conditiod’; is strongerthan consistency conditiof, if C; C Cs.

By the definition of a schedule, each invocation has a magatesponse, namely the response by the same process
that follows it most closely; an invocation and its matchnegponse form an operation. Given a schedyleve
denote byops(o) the set of all operations whose invocations and respongesaano.> We usewrites(o) and
reads(o) to denote the set of all writes and the set of all reads apmeariops(o).

We define a partial order ovps(o), denoted<,, asop; <, ops if and only if the response afp; occurs in
o before the invocation ofp,. We frequently are concerned with a partial order on a sufisatops(o) where
the ordering relation is inherited from; we denote such a partial order by, <,). A total order on a subset of
ops(o) that respects the partial ordet, is said to be dinearization of the partial order; i.e., ibp; <, op2, then
op1 precede®ps, in the total order. We call such a total ordeiconsistent

We now use our framework to state Lamport’s original defimitof (single-writer) regularity, which we call
SWReg. A schedule isingle-writerif only one process invokes write operations.

2Assume for convenience that each operatios has a unique id, for instance, thieh operation invoked by procegs; this mechanism
allows us to distinguish between two reads (or two writeghefsame value by the same process that occur at differartspoithe schedule.

4
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Definition 3 A single-writer schedule satisfiesSWRedf, for every read- in ops(o), there exists a legal lineariza-
tion of (writes(o) U {r}, <.). A shared register satisfies SWReg if all schedules on &fgeB\WReg.

The next definition identifies writes that could possibly uefice a read, namely those that start before the read
ends.

Definition 4 A write w in ops(o) is relevantto a readr in ops(o) if r £, w; rel-writego, ) is the set of all writes
in ops(o) that are relevant to-.

We next formalize the notion of a read reading from a \irit€o model a read returning the initial value of the
register, we posit the existencedps(o) of a special writew;,;;, which writes the initial value of the register and
satisfiesw;,;+ <, op for every othewp in ops(o).

Definition 5 Given a schedule, consider a functiop from reads(o) to writes(o). p is areads-fromfunction if
for each readr, the value returned by is the same as the value written pi), p(r) is relevant tor, and there is
no writew in writes(o) such thatp(r) <, w <, r.

If w = p(r), we say that reads fromw with respect tg; whenp is understood from context, we simply say that
r reads fromp(r). A readr can only read from a write if either w overlapsr, or w precedes and no other write
is strictly betweenv andr. The reads-from function is not necessarily unique for a&dake, and in fact might not
exist.

2.2 System Model

We assume a system consisting of a collecfibof processes that communicate with each other through gpessa
passing. Eachrocesds modeled as a (possibly infinite) state machine, with aralrétate and a transition function.
The state machine represents the code for the registeraiowthat is running at the process. cAnfiguration
of the system is a vector of local states, one per procesdnifi@ configuration contains an initial state for each
process.

There are two kinds adventghat can occur in the system, input and output events. Eaaft eccurs at a single
process. The input events are the receipt of a message aimddlation of a shared register operation. The output
events are the sending of a message and the response of @ sdgster operation. Each input event triggers its
corresponding process to take a step: the transition fumdsi applied to the current state of the process and the
particular event, and produces a new state of the procesa sadof output events. The output events consist of a
set of messages sent by the process and at most one shasterregeration response to occur at the process.

An event listis a sequence of events, all taking place at the same prahas&egins with an input, followed by
any number of message sends, and ends with at most one opeestponse.

An executionis a sequendedy/,d,l2ds . . . Of alternating configurations,, and event listg,, starting with an
initial configurationdy, that satisfies the following conditions.

e Consider anyi,_1/,d; in the sequence, wherg takes place at procegs. Then applyingg;’s transition
function tog;’s state ind;_; and the first event ifi, produces the remaining eventsfinandg;’s state indj,.
All other components of, are the same as i, _,. That is, the process states and events occurring in the
sequence are consistent with the processes’ transitiatidms.

3This definition is similar to that ofvrites-into orderfrom Ahamad et al. [2]

“Event lists occurring simultaneously at different proessappear in the execution in arbitrary order. Since eacdht &seis concerned
only with local computation at a single process, the comnszu@ption that local processing time is negligible compp@menessage delays
allows us to model concurrent events as a sequence witheribfayenerality.
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e Every message sent is received exactly once and subsequisrgeénd; only messages sent are received. That
is, the communication is reliable.

e If event list £, occurring at procesg; begins with an operation invocation, then the most receatqating
invocation or response g (if any) is a response. That is, the component that is gangrdite invocations
waits for one operation to finish before invoking the next.one

We can now state our main correctness condition for simgadiregister with a particular consistency condition.

Definition 6 The systenmplements a read/write register with consistency coodif’ if, for every execution of the
system, the projection onto the set of invocations and resggof the register is a schedule that is in (i.e., satisfies)
C.

2.3 Quorum Systems

Although having processes communicate through sharedbles is generally viewed as desirable from a soft-
ware development perspective, most distributed systemwtdirectly provide such functionality. However, the
illusion of shared variables can be provided through a shamdable simulation layer that runs in a message-passing
communication environment. This software layer simulatesred registers on top of the message-passing layer.

The algorithms in this paper for simulating a shared regigse the notion of a quorum system, which is a
technique for handling replicated data. Some processdwisytstem play the role of “servers”, which maintain
replicas, while others play the role of “clients”, which lginvocations of operations on the replicated data. There
is one client process corresponding to each applicatiooggminP,. Let Ps be the set of server processes dfd
be the set of client processes. (It is possible for a singysipal node to host both a client and a server process.)

A quorum systen® (over Ps) is a collection of subsets d?s, each of which is called guorum satisfying the
property that for every two distinct quorumsand@’, Q N Q' # 0.

3 Algorithm Schema
3.1 Generic Algorithm

A generic algorithm that uses quorums to implement a shaadiwrite register with initial value, is given in
Figure 1. Upon receiving a read or write invocation on theathaegister, a client process chooses a quorum using
some quorum selection strategy and then queries each meifrthés quorum about its current “view” of the shared
register, which consists of the value of the register andithestamp associated with the value. After gathering all
the responses, the process decides which timestamp amemgsiionses is the latest, using functidmz7'S().

The operations then continue as follows:

e write: The process increments the timestamp returned/ty:7'S(), using the functionnc7'S(), sends an
UPDATE message with the new value and the incremented timestamyety member of some quorum, and
waits to receive @ONE message from each quorum member.

e read: The process calls the functi@retV alue(), which uses the timestamp returnedMy:z7'S() to decide
which value will be returned. The reading process then @flsnction Write Back(), which optionally
updates a quorum of servers regarding the value that thegsqaans to return.

The server responds to queries by sending the value andtéimesnformation that it has stored, and responds to
anUPDATE message by setting its stored information to that in the aggs# the timestamp in the message is larger
than the stored timestamp.
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Code for client processe; € Pe:

write; (v):

for some quorun® € Q, send(QUERY) to eachs; € Q

wait to receive(VIEW, u, t) from eachs; € Q

V :=set of(u, t) pairs received in Line 2

ts := MaxT]V)

ts := InCTts)

val :=v

for some quorun®’ € Q, send(UPDATE, val, ts) to eachs; € Q’
wait to receive{DONE) from eachs; € Q’

ack;()

O©CoO~NOULAWNPE

ead;():
for some quorun® € Q, send(QUERY) to eachs; € Q
wait to receive(VIEW, u, t) from eachs; € Q
V .= set of(u, t) pairs received in Line 2
t ;== MaxT]V)
v := GetValugV, t)
WriteBack)
return; (v)

~NOoO O~ WNE 3

Code for server processs; € Ps:

local variables: /* values persist over time */
val [*local copy of shared register, initiallyy */
ts [*local copy of timestamp, initially smallest timestampue*/

Whens; receives(QUERY) from ¢;:
1  send(VIEW,val, ts) toc;

Whens; receives(UPDATE, v, t) from ¢;:
1 if(ts < t)then

2 val := v

3 ts:=1t

4 endif

5 send(DONE) toc;

Figure 1. A generic quorum-based algorithm to implement a sh ared read/write register

By plugging in different implementations for the functioh&:z7'S(), IncT'S(), GetValue(), andWrite Back(),
we obtain registers satisfying different consistency dmus. This algorithm is a generalization of several eéript
quorum-based protocols. For example, the appropriatantiations of the functions yield the algorithms by Malkhi
and Reiter [21], Bazzi [7], and Malkhi et al. [22].

The following lemma states a key property of the genericrilgm which follows directly from the code.

Lemma 1 AssumdncT'S() always returns a timestamp larger than its argument. Thersttquence of timestamp
values taken on by the replica on any server is nondecreatingg any execution of the generic algorithm.

We denote bys(op) the timestamp of operatiasp. For a write operation, this is the timestamp appearing meLi
7 of thewrite; procedure. For a read operation, this is the timestamp iatedavith the value returned in Line 7 of
theread; procedure.

3.2 Building Blocks in the Generic Algorithm

We identify three building blocks that we use to create djpeicistantiations from the generic algorithm. Different
combinations of the building blocks give us different altfons, which in turn yield shared registers with different

7
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consistency conditions. The three building blocks are:

Code maodifications for client process:; € P without ID building block:
timestamp type is integer

MaxT]V'):

1 T:={t:(v,t) € Vforsomev}

2 returnmax(7T") /* max operates on integers */

IncTSts):

1 retunts+ 1

Code modifications for client process:; € P with ID building block:
timestamp type is ordered pair of integers

MaxT]V):

1 T:={t:(v,t) €V forsomev}

2 returnmax(7T") /* max operates lexicographically on ordered pairs of integers */

IncTY (¢, id)):
1  return(t + 1,4)

Figure 2. Code with and without ID building block

Code modifications for client process:; € P¢ without WB building block:

WriteBackK):
1  return /* do nothing */

Code maodifications for client process:; € Pe with WB building block:

WriteBackK):

1 for some quorun®’ € Q, send(UPDATE,val, ts) to eachs; € Q’
2 wait to receive(DONE) from eachs; € Q’

3 return

Figure 3. Code with and without WB building block

e Building block ID: Including unique id in timestamp. (See Figure 2 for pseudocode.) If this building block
is not used, then timestamps are natural numbeigz7'S() returns the largest integer in its argument, and
IncT'S() increments its argument by one. Note that timestamps aneguaissarily unique.

If this building block is used, then timestamps are orderanispof natural numbers, the first component
being a counter and the second component being a procesd 4d1'S() returns the largest timestamp in
lexicographic order among its arguments, d&nd7'S() increments the first component of its argument by one
and replaces the second component with the id of the exggcptotess. The cost of using this building block
is an additionalD (log n) bits to store a timestamp.

e Building block WB: Write-back phase in the read procedure. (See Figure 3 for pseudocode.) When this
building block is not used, the read procedure does notimrgrie 6.
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Code modifications for client process:; € P without LC building block:

GetValugV, t):

1
2
3

S := set of all elements oF with timestampt
choose any elemeilit, t) € S
returnv

Code maodifications for client process:; € P with LC building block:

local variables: /* local cache: values persist over time */

val [*local copy of shared register, initiallyy */
ts [*local copy of timestamp, initially smallest timestampduea*/

GetValugV, t):

O©CoO~NOUAWNPE

if t < ts then /* either compares ints or compares pairs of ints lgaphically */

returnval

else

S := set of all elements oF” with timestampt

choose any elemefit, t) € S

val := v [* record return value in local cache */

ts := t I* record associated timestamp in local cache */
returnv

endif

Figure 4. Code with and without LC building block

When this building block is used, after choosing the ret@lne®, the reader sends the value to be returned and
its associated timestamp in aDATE message to all the servers in some quorum. AfteoalE message is
received from these servers, the read returns. The cosiraf thés building block is an extr@(c) messages,
wherec is the size of the biggest quorum in the system. Furtherntbestime for a read is increased by a
round-trip message delay.

Building block LC: Local cache at clients. (See Figure 4 for pseudocode.) If this building block is unsxd,
then GetValue(V,t) returns any element contained Whwhose associated timestamptigthere might be
more than one such element if the ID building block is not iised

If this building block is used, then each client keeps a cdphe most recently written or read value and its
associated timestamp. This information persists even wbeoperation is currently underway at the client.
Specifically, the local variables:! andts at each client are declared as persistent. The write progeghaates
them with the value to be written and the timestamp calcdlégethat value; the parameter fac7'S() is the
cached timestamps. For the read procedure, @WetV alue(V,t), if ¢, the largest timestamp obtained from
querying a quorum, does not exceed the cached timestantipen the cached value is returned. Otherwise,
any element i/ with timestampt is chosen to be returned and the cached value and timestanup@ated

to be this value andrespectively. The cost of using this building block is thii¢ms now have to keep this
information for each shared register and thus it introdspese and robustness issues.

3.3 Lattice of Algorithms and Conditions

A summary of our results is shown in Figure 5. The lattice shallithe algorithms instantiated from the generic

algorithm by applying different combinations of the buildiblocks. Above each algorithm (rectangle) in the lattice
is the name of the consistency condition that the correspgradgorithm implements. The arrows go from a weaker
condition to a stronger condition. In the next section, wikwalk up the lattice to present the algorithms and their
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associated consistency conditions. For now we only focubhertase of a single register. In Section 5, we discuss
extensions to multiple registers.

Atomicity

ID, WB, LC

A‘O’“icnymwo A MWRegNI
ID, WB

egRF A MWRegNI

Figure 5. Lattice of algorithms and consistency conditions

4 Multi-Writer Consistency Conditions: Specifications andlmplementations
4.1 MWRegWeak: No Building Blocks

We first consider the generic algorithm when none of the thrglgling blocks is used, denoted ANone. We
specify a condition that we call MWRegWeak and show that Mlgne implements this condition.

Definition 7 (MWRegWeak) A scheduler satisfies MWRegWeal, for every read operation in ops(o), there
exists a legal linearization dfwrites(c) U {r}, <,). A shared register satisfies MWRegWeak if all schedules on it
satisfy MWRegWeak.

A schedule satisfies MWRegWeak if each readturns the value of some writethat either overlaps or precedes
r, as long as no other write falls completely betweeandr. Different reads are allowed to behave as though the
set of writes occurred in different orders, as long as alhsuderings are consistent with the partial order of the
writes in the schedule.

Figure 6 shows a schedule that satisfies MWRegWeak. (In ourelighV (x, v) denotes a write operation that
writes valuev to registerz, and R(z, v) denotes a read operation on registehat returns value. Time increases
from left to right. We use similar schedules to illustratbeatproposed definitions; the schedules differ only in the
return values of some of the read operations.) A possibémtimation for each read is given below.

Ry: W(z,2),W(z,1), Ry(z,1), W(z,4), W(z,3)
Ry: W(z,1),W(z,2), Ro(x,2),W(z,3), W(zx,4)
Rs: W(x,1),W(z,2), Rs(x,2), W(z,4), W(z,3)
Ry: W(x,1),W(z,2),W(z,4), Ry(x,4), W(x,3)
Rs: W(x,1),W(z,2), Rs(x,2), W(z,3), W(zx,4)
Rg: W(x,1),W(z,2),W(z,3), W(x,4), R¢(x,4)

[ =Y
o
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R WD), Rs(x,4)
y W(x2), Raxd) | R(x2)

P, RixD) | Re(x2) W(x,3)

” Rox2) W4

Figure 6. Schedule that satisfies MWRegWeak

The following lemma states that thienestamp ordefnumerical order by timestamp) of certain operations edden
the partial ordek,,.

Lemma 2 Consider any execution of Aljone and letr be its schedule.
(a) For every read operation and every write operatiomw in ops(o), if w <, r, thents(w) < ts(r).

(b) For every pair of write operationg andws in ops(o), if w1 <, wa, thents(wy) < ts(ws).

Proof. (@) Suppose writev ends before read begins ino. Let s be a server process that is in the intersection of
the quorum thatv uses for its update (Lines 7-8) and the quorum thases for its query (Lines 1-2). According
to Lemma 1, the sequence of timestamp values taken erisahon-decreasing. Sinee finishes before- starts,
s returns tor a timestamp that is at least(w). Sincer chooses the value associated with the largest timestamp
returned from its query;’s timestamp is no less than's.
(b) Using a similar argument to that in (a), we can show thateseerver processreturns tows a timestamp that
is at least as large @s(w). Sincets(ws) is larger than the largest timestamp obtained in the querg,timestamp
is larger thanw,’s. [

We next define a functiop from reads to writes and then show that it is a reads-fromtioncGiven a schedule
o of Alg_None, for each read in reads(o), choose a write invrites(o) to bep(r) as follows. Let(v,t) be the
element ofl” chosen in the execution of GetValli€ t) as containing the value to be returned. The redsot) is in
V' is that the client executing previously received &IEw message from some servgrcontaining(v, t). If t =0
(the initial timestamp), then let = w;,;;. Otherwise, since every executed write calculates a pedithestamp and
since servers are not faulty and communication is reliahlegnt thisview message because it had earlier received
an UPDATE message containing, t) from some client on behalf of a write. Let p(r) = w in this case; if there
are multiple choices fop(r), choose one arbitrarily. The functignis not necessarily unique, but it does not need
to be. In the analysis of AlgNone, references to “reads from” are with respect to thisiipeeads-from function.
Note thatts(r) = ts(p(r)).

Lemma 3 For every schedule of Alg None, the functiom just defined is a reads-from function.

Proof. We show thap satisfies the three properties of a reads-from functionByljonstruction, the value returned
by r is the value written by(r) = w. (2) If p(r) = winis, thenp(r) is relevant tor becausew;,;; <, r. If
p(r) # wini, thenp(r) is relevant tor since messages are not received before they are sent. (BpSum
contradiction there is some other writé € writes(o) such thatw <, w' <, r. By Lemma 2(b){s(w) < ts(w'),
and by Lemma 2(a),s(w') < ts(r), contradicting the fact that by constructian(w) = ts(r). ]

11
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Theorem 4 Algorithm AlgNone implements MWRegWeak.

Proof. Consider any execution of Allone, leto be its schedule and be its reads-from function. For each read
operationr in ops(c), we construct a total orddr, onwrites(c) U {r} as follows. Letp(r) = w* andts(r) = t*.
Order the writes imel-writeg(o, r') in any total order consistent with their timestamps sulijetiie condition that*

is the latest among all writes with timestarip Order the writes not irel-writes(o, r) in any total order consistent
with their timestamps. Order every writeiel-writes(o, r) before every write not imel-writes(o, ). Finally, order

r immediately aftep(r). L, is legal by construction.

We now show thaf., is o-consistent. Consider any write such thatw <, r. If ts(w) < t*, thenw is ordered
beforer in L, by construction. By Lemma 2(a), it is not possible fefw) to be greater thati.

Consider any writev such that <, w. Sincew is not inrel-writeg(o, r), w appears after in L,..

Consider two writesv; andws with wy <, ws. If both are inrel-writeg(o, r) or both are not imel-writes(c, ),
then they are ordered consistently/in by Lemma 2(b) and construction. df; is in rel-write§o, ) andws is not
in rel-writeg(o, ), then they are ordered consistentlyZip by construction. Since; <, ws, it is not possible for
wy to be inrel-writes(o, ) andw; not to be. ]

4.2 MWRegWO: Building Block ID

MWRegWeak is a weak consistency condition in that the readatipns do not have a common view on the order
of preceding write operations even for the read operatien®pned by the same process. For instance, in Figure 6,
po's first read, Ry, indicates that the write of 1 should follow the write of 2thud’s next read,R3, indicates the
opposite. By using the ID building block to break ties betwé¢ienestamps, we can obtain a stronger condition,
called MWRegWO. (WO is for “write order”.) This conditiongeires the linearization of two reads to agree on the
ordering of all writes that are relevant for both the readsr Writes that are relevant to only one or none of them,
the total orders are allowed to differ.

R WD), Rs(x,4)
y W(x2), Raxd) | R(x2)

P, Rux2) | Rex2) W(x,3)

” Rox2) W4

Figure 7. Schedule that satisfies MWRegWO

Definition 8 (MWRegWO) A schedules satisfies MWRegWOf for each readr in ops(o), there is a legal lin-
earizationL, of (writes(c) U {r}, <,), satisfying the following condition. For all reads andrz in ops(o), for
all writes wy andws, in rel-writeg(o, 1) N rel-writeg(o, r2), it holds thatw; <L, W2 if and only ifw; <L, w2- A
shared register satisfies MWRegWO if all schedules on sfyatlWRegWO.

The schedule in Figure 6 does not satisfy MWRegWO, siRcs linearization must have/ (z, 1) afteri (z, 2),
but Ry’s linearization must hav®/ (z, 2) afterWW (x, 1). However, the schedule in Figure 7 does satisfy MWRegWO;
a linearization for each read is given below. The ordefd(ir, 3) andW (z, 4) in R4’s total order differs from that
in Rg's total order (and it must do so); this difference is alloleagincelV (z, 3) is not a relevant write foRy.

12
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Ry : W(x,1),W(x,2), Ry (z,2), W(z,3), W(z,4)
Ry : W(x,1),W(x,2), Ra(z,2), W(z,3), W(z,4)
Rs : W(x,1),W(x,2), R3(z,2), W(z,3), W(z,4)
Ry : W(x,1),W(x,2), W(x,4), Ry(z,4), W(z, 3)
Rs : W(x,1),W(x,2), Rs(x,2), W(z,3), W(z,4)
R¢ : W(x,1),W(x,2), W(x,3), W(x,4), Re(z,4)

We now show that by using the ID building block, as in the alpon of Malkhi and Reiter [21], the resulting
register satisfies MWRegWO. We call this algorithm Al9. Since we use the timestamp of ANjone as the first
element of the timestamp in AltD, Lemma 2 still holds. We define the functignfor Alg_ID as we did in Sec-
tion 4.1 for Alg None. Lemma 3 still holds and thysis a reads-from function for AlgD. The use of the process
id in the second element of the timestamp as a tiebreakdreiuensures that:

Lemma 5 The write operations performed using Algorithm Alg are totally ordered by timestamp.
Theorem 6 Algorithm AlgID implements MWRegWO.

Proof. Consider any execution of AlfD, let o be its schedule angd the reads-from function defined above for
Alg_ID. Let r be any read imps(o). We construct_,., a linearization ofurites(c) U {r}, as follows. Order every
write in rel-writeg(o, r) before any write not imel-writes(o, ). Order all the writes imel-writes(o, ) by timestamp
order. Order all the writes not irel-write(o, ) by timestamp order. Orderimmediately aftep(r) (the write from
which it reads), ensuring thdt. is legal.

We now show that’, is o-consistent. For any two writes irel-writes(o, ) and for any two writes not in
rel-writeg(o, '), o-consistency follows from Lemma 2(b). For write in rel-writes(o, ) and writew, not in rel-
writeg(o, ), o-consistency follows from the fact that; starts before- ends andw, starts aften- ends, and thus
wy £, wi. Forreadr and any writew such thatr <, w, o-consistency follows from the fact that is not in
rel-writes(o, r) but p(r) is in rel-writeg(o, r) sincep is a reads-from function. For readand any writew such
thatw <, r, o-consistency follows if we can show that(w) < ts(w'), wherew’ = p(r). By definition of p,
ts(r) = ts(w'), and by Lemma 2 (a}s(w) < ts(r).

Now we show that all linearizations agree on the order ok/eelewrites. Consider two reads, andrs, in ops(o)
and two writesg; andws,, that are both imel-writes(o, r1 ) N rel-write(o, ). By construction ofL,, andL,., and
by Lemma 5,1 andws are ordered in both linearizations in timestamp order. [

4.3 MWRegRF: Building Block WB

In this subsection, we consider the use of the write-back YW ding block, resulting in algorithm AlyVB.
The use of the writeback prevents old-new inversions in @lees returned by reads. To capture the condition
ensured by this mechanism, we need the concept of a partiaf trat respects reads-from relationships between
reads and writes.

For a given schedule and a reads-from functiop on o, define the relatior<,. , on ops(o) to be the transitive
closure of the union of the, andp orders. We show that this relation is a partial order. (All referesito “reads
from” in the definition of the next consistency condition arigh respect to the reads-from functigrjust fixed.)

Lemma 7 <, , is a partial order.

Proof. Suppose in contradiction,, , is not a partial order. Lef’ be a shortest cycle i, ,. ThenC'is of the form
0po, 0p1, - - . , Opm—1 fOr some evenn > 2, where, for alli, 1 < i <m/2,

°If <,,, is applied to a subset s (o), first identify the pairs fronvps(c) that are in the relation, and then project onto the subset.

13
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e opo;_1 is aread that reads from writeo;_-, and

® 0p2i—1 <5 OP(2i) mod m-

l.e., the cycle consists of alternating reads and writeth) e@ach read reading from the preceding write, and each
write strictly following the preceding read. Note that regukrations have odd indexes and write operations have
even indexes.
For each, 1 < i < m/2, opy;—2 begins beforep,;_; ends (by definition of a reads-from function), ang; 1
ends befor@p 2y moa m beGINS (by definition ok ;). Thusopy begins beforep, begins, which is a contradiction.
[ ]

The partial ordek,,, is more restrictive thar:, since<,, , extends<, by taking into consideration reads-from
relationships between reads and writes.

Our next condition, which we call MWRegRF where the RF stdndsreads from”, strengthens MWRegWeak
by requiring that the linearization for each read(bep)-consistent, not jusi-consistent.

Definition 9 (MWRegRF) A scheduler satisfies MWRegRH there is a reads-from functiop on o such that for
every read operatiom in ops(o), there exists a legal linearization @fvrites(c) U {r}, <, ,). A shared register
satisfies MWRegRF if all schedules on it satisfy MWRegRF.

P W(x,1) Rs(x,3)

L """ L > |
P  W(x2) Raxd) | R(d)
P, ‘Rl(x,l) D R3(x,2) | W(x,3)
2 etk Wed

Figure 8. Schedule that satisfies MWRegRF.

The schedules shown in Figures 6 and 7 do not satisfy MWRegRiBoth schedulesiV (z,4) <,, W(z,3),
sinceR, reads fromiW (z,4) andR, <, W(x,3); sinceW (z,3) <, Rg, in any legal linearization consistent with
both the order of non-overlapping operations and any réads-function, Rs must return 3 instead of 4. However,
the schedule shown in Figure 8 satisfies MWRegRF; possitdalizations for the reads are given below.

Ry: W(x,2),W(z,1), Ri(z,1),W(z,4), W(z,3)
Ry: W(z,1),W(z,2), Ro(x,2), W(z,4), W(z,3)
Rs: W(x,1),W(z,2), R3(x,2), W(z,4), W(z,3)
Ry W(x,1),W(x,2),W(x,4), Ry(x,4), W(x,3)
Rs: W(x,1),W(x,2),W(x,4), Rs(x,4), W(x,3)
Re: W(x,1),W(x,2),W(x,4), W(x,3), Rs(x,3)

The schedule in Figure 8 does not satisfy MWRegWO for the saamson that the schedule in Figure 6 does not;
thus MWRegRF and MWRegWO are incomparable in terms of stheng

To show that AlgWB implements MWRegRF, we first look at how the write-backlding block affects the
relationship between the operations and their timestangiace we use the same timestamp in M@ as in
Alg_None, Lemma 2 still holds. We define the functiprfor Alg_-WB as we did in Section 4.1 for Alf§one.
Lemma 3 still holds and thysis a reads-from function for Al§VB.

14
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Lemma 8 Consider any execution of A/B and letr be its schedule.
(a) For every read operation and every write operatiow in ops(o), if r <, w, thents(r) < ts(w).

(b) For every pair of read operations andrs in ops(c), if r1 <y 72, thents(ry) < ts(ra).

Proof. The key is the non-empty intersection of quorums used inigsi®y read and write operations and quorums
used in updates by write operations. Essentially the sagwerant as in the proof of Lemma 2(b) is used to prove
(a), and essentially the same argument as in the proof of leeg{g) is used to prove (b). [

Theorem 9 Algorithm AlgWB implements MWRegRF.

Proof. Consider any schedule resulting from an execution of AI§VB, let p be the reads-from function for
o just defined, and let be any read irops(c). We construct a total ordek, on writes(c) U {r} as follows.
Divide writes(o) into two groups,G1 = {wlts(w) < ts(r)} andGe = {w|ts(w) > ts(r)}. In the total order,
all operations inGG; preceder, andr precedes all operations ;. The operations iz; are ordered by their
timestamps, breaking ties arbitrarily with the exceptiositp(r) (the write operation from which reads) is ordered
at the end. The operations (#, are ordered by their timestamps, breaking ties arbitrafdy construction,L,
is legal; Lemmas 2 and 8 and the construction ensure that(i,is)-consistent. Thus AlgVB implements a
MWRegRF shared register. [

4.4 MWRegNI: Building Block LC

The use of the LC building block, by which each reader keepzcal Icache with the latest timestamp of any
returned value, prevents a particular reader from retgraimolder value after it has already returned a newer value.
Since the LC and WB building blocks both prevent some kindseaf-old inversions, it is worth explicitly comparing
them. With LC, reads by the same client are always handlesistemtly, even with respect to concurrent writes that
have the same timestamp; however, reads by different slean experience new-old inversions even with respect
to writes with different timestamps. In contrast, when WRIsed, writes with different timestamps are handled
consistently by all clients, but writes with the same tiraegb can be viewed inconsistently even by a single client.

The next consistency condition, which we call MWRegNI whitestands for “no inversion”, captures the prop-
erty ensured by the use of the LC building block.

Definition 10 (MWRegNI) A scheduler satisfies MWRegNif there is a reads-from functiop on o such that the
following is true for every process. LetW; be{p(r) : r € reads(cli)}. Then there exists a legal linearization of
(Wi Ureads(oli), <,). A shared register satisfies MWRegNlI if all schedules ortigfgaM\WRegNI.

The idea is that, for each process there must be a fixed ordering of a certain set of writés, and all the
reads byp;. W; consists of all writes that are read from by at least one regg.bThe ordering must be legal and
o-consistent.

The schedules in Figures 6, 7, and 8 do not satisfy MWRegN¥idares 6 and 8, reads; and R3 by process»
are problematic, while in Figure 7, reaflg and R; by proces®; are problematic. However, the schedule shown in
Figure 9 satisfies MWRegNl, as the following per-processdiizations witness:

po:  W(z,4), Re(x,4)
p1: W(x,4), Ry(x,4), Rs(x,4)
p2: W(z,1),Ri(x,1), R3(x,1)
ps: W(z,2), Ra(z,2)



Texas A&M University Department of Computer Science andrigmging Technical Report 2010-1-1

R WD), Rs(x,4)
y W(x2), Raxd) | R(xd)

P, RixD) | RexD) W(x,3)

” Rox2) W4

Figure 9. Schedule that satisfies MWRegNI.

The schedule in Figure 9 does not satisfy MWRegWO or MWRegiREhe same reasons that the schedule in
Figure 6 does not.

The next lemma shows how the local cache affects the refdtipa between two operations and their timestamp
order. Since we use the same timestamp inl&@@as in Alg None, Lemma 2 still holds. We define the functipn
for Alg_LC as for Alg.None; even though the value returned by a read might have digtaimed byGetV alue()
from the client’s local cache, it is still true that it was ¢aimed in anuPDATE message previously received from a
server. Lemma 3 still holds and thuss a reads-from function for Alg.C.

Lemma 10 Consider any execution of AlgC and leto be its schedule andits reads-from function.

(a) For every read operatiom and every write operationw by the same process wps(o), if r <, w, then
ts(r) < ts(w).

(b) For every pair of read operations andr, by the same process ips(o), if 11 <, 72, thents(ry) < ts(rs).

(c) For every pair of read operations, andry by the same process ips(o), if ts(ry) = ts(ra), thenp(ri) =
p(ra).

Proof. Parts (a) and (b) follow from the code.

(c) Supposés(ry) = ts(re); call this valuet. Whenr; finishes, the timestamp ip;’s cache ist. Whenr,
executes, the largest timestamp among all the views rat@ivkine 2 is at most, otherwiset would not be the
timestamp ofr,. Also, the timestamp ip;’s local cache during the execution ©f is at mostt, otherwiset would
not be the timestamp oaf,. Since the timestamp ip;'s local cache never decreases, it must equdlhusry uses
the data in the local cache to determine its return value péngd = p(r1). ]

Theorem 11 Algorithm AlgLC implements MWRegNI.

Proof. Consider any execution of AlgC and leto be its schedule ang its reads-from function as defined just
above. Letp; be any process and I1&; be {p(r) : r € reads(o|i)}. By Lemma 10 (c), there is at most one write
in W; with a given timestamp. None of the readsrituds(c|i) overlap each other. Construct a total ordgron
W; U {reads(c|i)} as follows. Order all the writes ifi’; according to their timestamp. For each writen W,
order immediately aftew, in ac-consistent total order, every readh reads(o|i) such thaip(r) = w.

By construction,; is legal. We now show; is o-consistent. By Lemma 2 (b), the relative order of two non-
overlapping writes is correct. By Lemma 10 (b), the relativder of two non-overlapping reads is correct: the
timestamp of the earlier read,, is at most the timestamp of the later reagl, so eitherp(r1) = p(r2) or p(r1) is
ordered inL; beforep(ry). Supposev <, r. By Lemma 2 (a)ts(w) < ts(r). Thusp(r) equalsw or a write that
appears later thaw in L;, and sor is placed aftew in L;. Suppose: <, w. By Lemma 10 (a)ts(r) < ts(w).
Thusp(r) is a write that precedes in L;, and sor is placed beforev in L;. [

16
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4.5 Combining the Building Blocks

If the building blocks are combined, we obtain stronger ddmas than if they are used separately.

When ID and LC are combined, the resulting algorithm Ay LC implements MWRegWO MWRegNI. The
schedule in Figure 10 satisfies MWRegWMWRegNI, but not MWRegRF for the same reason that the scbedul
in Figure 6 does not.

P, \M‘ Rg(x,4)
P W2, | Rat®) | Rl |

5 Rix2) | Rex2) | W(x,3)

Py \M‘ W(x,4) |

Figure 10. Schedule that satisfies MWRegWO N MWRegNI.

When WB and LC are combined, the resulting algorithm_ ¥ _LC implements MWRegRFR MWRegNI. The
schedule in Figure 11 satisfies MWRegRMWRegNI, but not MWRegWO for the same reason that the scleedul
in Figure 6 does not.

R WD, Re(x.3)
P  W(2), CRax4) o Rs(x4)

P, ‘Rl(x,l) O Ry(x,1) | W(x,3)

P Re(x2) | W(x,4) |

Figure 11. Schedule that satisfies MWRegRF N MWRegNI

When ID and WB are combined, the resulting algorithm Mg WB satisfies Atomicity (see Appendix for defi-
nition) as we prove next. The schedule in Figure 12 satisftesity.

Since we use the timestamp of Alpne as the first element of the timestamp in Ay WB, Lemma 2 still
holds. We define the function for Alg_ID_WB as for Alg None. Lemma 3 still holds and thysis a reads-from
function for Alg_.ID_WB. In addition, Lemmas 5 and 8 continue to hold.

Theorem 12 Alg_ID_WB implements Atomicity.

Proof. Consider any execution of Alb_ WB and leto be its schedule and the reads-from function defined
just above. We will construct a legal linearizati@nof (ops(o), <,). DefineL as follows. Order all the writes
by timestamp. For all reads with timestariip order them after the write with timestarip (which is unique by
Lemma 5) and before the next write in timestamp order; orlesd reads among themselves according to their
invocation order. is legal by construction. We now show thais o-consistent.

Case 1:Consider two writesv; andws wherew; <, we. From Lemma 2(b)¢s(w;) < ts(wz) and thusw; is
ordered beforevy in L.

17
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Case 2:Consider a read and a writew wherer <, w. By Lemma 8(a)¢s(r) < ts(w). Letw’ = p(r). Since
ts(w') = ts(r), w' is ordered before in L. Sincer is ordered afters’ but before the next write in timestamp order,
r is ordered beforev in L.

Case 3:Consider a writev and a read- wherew <, r. By Lemma 2(a){s(w) < ts(r). Letw’ = p(r). Since
ts(w') = ts(r), it follows thatts(w) < ts(w'). If ts(w) = ts(w'), thenw = w’ by Lemma 5, and the construction
of L ensures that is ordered before. If ts(w) < ts(w’), then inL, w is ordered befores’, which is ordered
beforer.

Case 4:Consider two reads; andry wherer; <, ro. By Lemma 8(b)ts(r1) < ts(re). If ts(r1) = ts(ra),
then p(r1) = p(re) and the construction of ensures that, is ordered before,. If ts(r1) < ts(re), then

ts(p(r1)) < ts(p(rz)); the construction of. ensures that; is ordered before,. |
P, W(x,1) Rg (x,3)
P, W(x,2) | R4 (x,4) o Rs (x,4) ‘
P, | R4 (x,2) L R3(x,2) ‘ W(x,3)
P, R, (x,2) W(x,4) ‘

Figure 12. Schedule that satisfies Atomicity

5 Properties of the Definitions

This section explores some of the properties of our new s@18y conditions: how they compare to the original
definition when there is just one writer, how they can be edeerto the multi-register situation, and how they relate
to some previously known consistency conditions.

5.1 Relation to the Original Single-Writer Definition

The following lemma states the relationship between oupg@sed definitions and SWReg, the single-writer
definition of Lamport.

Lemma 13 Suppose there is only a single writer. Then MWRegWeak and@dWR are equivalent to SWReg while
MWRegRF and MWRegNI are stronger than SWReg.

Proof. If there is only a single writer, then the definition of MWReg#¥ is the same as that of SWReg.

The definition of MWRegWO implies SWReg for a single writern @e other hand, for any schedutethat
satisfies SWReg, for every read there is a total orderingldhalwrites and itself that is legal andconsistent.
Since there is only one writeg-consistency implies that all the writes appear in the samderan each read’s
total order. Thus for any two reads, the writes that are egieto both the reads appear in the same order in the
linearizations for the reads. Therefore SWRe]lWRegWO. Thus SWReg MWRegWO.

The schedule in Figure 13 has one reader and one writerfisat®/VReg, but satisfies neither MWRegRF nor
MWRegNI. By inspection, the definitions of MWRegRF and MWR&doth imply the definition of SWReg when
only one writer is considered, [

It follows that when there is only one writer, MWRegWOMWRegNI and MWRegRF MWRegNI are also
stronger than SWReg.
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R W(x,1) W(x,2)

|
Pl ‘ R(X,Z)

|
R(x,1)

Figure 13. Single-writer schedule that satisfies SWReg but n either MWRegRF nor MWRegNI.

5.2 Locality

A consistency conditiol' is local whenever a schedule satisfiesC' if and only if the projection ot on each
shared variable satisfi€s. Locality is a desirable property of consistency conditoas mentioned in Herlihy and
Wing [13], locality enhances modularity and concurrenay. particular, if a consistency condition is local, then
each shared variable in a system can be implemented indijdand the composition of multiple such variable
implementations produces a system that satisfies the aamdit

The specifications given in Section 4 of the four new consisteconditions apply to the multi-register case after
making some small alterations to the constituent defirstiolm particular, a total order of operations on a set of
registers idegal if, for each register, the restriction of the total orderhattregister is legal. No changes are needed
to the definitions of schedule or relevant writes. The dedinibf a reads-from functiop becomes the following,
with the modifications in bold:

Definition 11 Given a schedule, consider a function from reads(o) to writes(o). p is areads-fronfunction if
for each readr, r and p(r) operate on the same register, the value returned by is the same as the value written
by p(r), p(r) is relevant tor, and there is no writev in writes(o|x) such thato(r) <, w <, .

If w = p(r), we say that reads fromw with respect tg; whenp is understood from context, we simply say that
r reads fromp(r).

Theorem 14 MWRegWeak is local.

Proof. For any schedule, if o satisfies MWRegWeak, then cleadyx satisfies MWRegWeak for every register
xZ.

For the other direction, consider any schedulsuch thats|z satisfies MWRegWeak for every register We
show that satisfies MWRegWeak. Consider any read operatiorops (o) on some shared register We construct
a total order,. onwrites(o) U {r} as follows. LetZ; be a legal linearization dfwrites(o|z) U {r}, <4, ) which
exists sincer|x satisfies MWRegWeak. Define the relatien on writes(o) U {r} to be the transitive closure of
the union of<, andL¥; <, is a partial order sincé&? is consistent with<,.. Let L, be any linearization ok,. By
construction,L, is o-consistent. Sincé&¥ is legal andL, contains no additional operations onL, is also legal.

[ ]

The next three proofs use the technique of Herlihy and Wiigj fdr proving the locality of linearizability. The
only difference between the proofs is the construction cdrdig order, which is then extended into a total order.

Theorem 15 MWRegWO is local.

Proof. Leto be any schedule that satisfies MWRegWO. Without loss of gdibgrassume that for every write
to every register, there is at least one read:othat ends aftew begins. It follows from the definition that, for each
registerz, o|x satisfies MWRegWO.
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For the other direction, consider any schedukich that, for each register o|x satisfies MWRegWO. We must
show thatr satisfies MWRegWO. For each reaih ops(c), we first define a partial ordet, onwrites(o) U {r},
and then let,. be a linearization ok ,.. We then show that these linearizations satisfy the dedmiif MWRegWO
foro.

Fix a readr of registerx in ops(c). Let Ly be a linearization ofwrites(o|x) U{r}, <,,) guaranteed by the
assumption thatr|z satisfies MWRegWO. For each register z, let r, be the first read of) that starts after
ends. If there is no such read, thenrigibe the last read af. The important point is that every write fothat starts
beforer ends also starts beforg ends. LetZ} be a linearization ofwrites(o|y) U {ry}, <, ) guaranteed by the
assumption that |y satisfies MWRegWO. Define the relatien. onwrites(o) U {r} to be the transitive closure of
the union of<,, L7, and all theL} linearizations for each # .

Claim: <,. is a partial order.

Proof of claim: Suppose in contradiction it is not, and Et= opg, op1, ..., opm_1, 0pg be a shortest cycle i .
SinceC is shortest, the edges alternate betwegrandL;’f,’ for somer’ (for possibly different:’ registers) and thus
m is even. Without loss of generality, lebg <, op; andopy <[/ 0P2 mod m- Note thatL;f,' is (o|z’)-consistent,

by assumption that |z’ satisfies MWRegWO.

Supposen = 2. Thenops mod m = 0po @and we have thatp, ends beforep, begins, andp, begins beforep,
ends, contradiction. Thus must be at least 4.

Then ino, opg ends beforeop; begins,op; begins beforep, ends, andp, ends beforeops begins. But then
opo ends beforeps begins, i.e.opy <, ops, and we can get a shorter cycle by deleting andop, from C, a
contradiction.End of proof of claim.

Let L, be alinearization ok, in which incomparable operations are ordered in a detestienvay (say, in order
of the writers’ identifiers). Since is the only read in the set of operations over whighis defined, the legality of
L, follows from the legality ofL?. L, is o-consistent because, includes<,.

We now show that the linearizations agree on the relevarniesvriConsider any two reaas andrs in ops(o).
Let w; andws be any two writes imel-write(o, 1) N rel-writeg(o, 2).

Supposeav; andw; both write to the same register, sayBy construction,L,., includest{i, wherer] is some

read ofy such that every write tg that starts before; ends also starts befor¢ ends. Similarly,L,., incIudest, .
2

wherer?, is some read of such that every write tg that starts before, ends also starts beforg ends. By the
definition of MWRegWO,L?, andL?, agree on the order of all writes jothat are relevant to botH andrj. Since
1 2

wy andws are relevant to both] andr}, L,, andL,, agree on the order af; andws.

Supposev; andws write to different registers. lv; andws do not overlap, theik,, andL,, agree on the order
of w; andws because they are bothconsistent. Ifw; andwsy overlap, then agreement follows because of the
deterministic method used in the linearizations to restiteeordering of incomparable operations. [

Theorem 16 MWRegRF is local.

Proof. Leto be any schedule that satisfies MWRegRF. To showdhasatisfies MWRegRF for each register
set the reads-from function ferjz to be the projection onto operations orof the reads-from function for. The
result follows from the definition.

For the other direction, consider a schedaleuch that, for each shared regisiero|z satisfies MWRegRF. In
other words, for each, there is a reads-from functigst on o |« such that the following holds: For each reath
o|z, there exists a legal linearizatidif’ of (writes(o|z) U {7}, <s|z,,+). We must show that the original schedule
o satisfies MWRegRF. That is, we must show that there existadgsfFom functiorp on o such that the following
holds: For each readin o, there exists a legal linearizatidn. of (writes(o) U {r}, <o)
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First, definep, a reads-from function for, asp(r) = p*(r), wherez is the register that accesses.

Now consider any read in ops(o) on some register. For each registey # x, choose any reagd, ony and
consider the linearizatiohy, . Define the relation<, onwrites(o) U {r} to be the transitive closure of the union of
<o, Ly, and all theL%y linearizations.

Claim: <,. is a partial order.

Proof of claim: Suppose in contradictior,- contains a cycle and l&t' = opg, op1, ..., 0pm—_1, 0po be a shortest
cycle. SinceC' is a shortest cycle, it consists of alternating , edges anchE,' edges, and thus: is even. In fact,
sincep only relates two operations on the same register, and sihoperations on the same register, sdyare

ordered bnyE,' , the <, , edges are actually,, edges and they relate operations on different registers.s@me ar-
gument as in the proof of Theorem 15 shows thaian be shortened, which is a contradicti&@md of proof of claim.

Let L, be any linearization of the partial order,. Since L, containsL¥, which is legal, and no additional
operations o are considered,, is also legal. FinallyL, is (o, p)-consistent since:, contains<, . [

Theorem 17 MWRegNI is local.

Proof. Let o be any schedule andbe any reads-from function far that satisfy MWRegNI. To show that|x
satisfies MWRegNI for each registeyuse the reads-from function fetz that is the projection g onto operations
onz. The result follows from the definition.

For the other direction, consider any schedulsuch that, for each registet o|x satisfies MWRegNI. That is,
for each register, there is a reads-from functigit from reads(o|x) to writes(o|x) such that for each procegs
there exists a legal linearizatidif of (W Ureads(o|x|i), <,|,), whereW = {p(r) : r € reads(o|xz|i} (the set
of all writes tox that are read from by at least one readphy

We must show that satisfies MWRegNI. We will define a reads-from functipfrom reads(c) to writes(o)
such that for each procegs, there exists a legal linearizatidny of (W; U reads(oli), <, ), whereW; = {p(r) :
r € reads(cli)} (the set of all writes that are read from by at least one reaa oy

Let p be defined for eachin reads(o) asp(r) = p*(r), wherez is the register that accesses. Fix a process
Define the relation<; on W; U reads(o|i) to be the transitive closure of the union «f, and all theL?, wherex
ranges over all the registers. We will show thatis a partial order, then take any linearization of ittgsand show
that L; is legal andr-consistent.

Claim: <; is a partial order.

Proof of claim: Suppose in contradiction it is not, and t8t= opg, ops, . . . , 0pm_1, 0po be a shortest cycle ir;.
SinceC' is shortest, the edges alternate betwegrand L7 (for possibly different registers), and thusn is even.
The same argument as in the proof of Theorem 15 showg tltain be shortened, which is a contradictidand of
proof of claim.

Let L; be any linearization ok;. Itis legal because each constitudiftis legal. It iso-consistent because;
includes<,. [ |
Vitenberg and Friedman [31] prove that any consistency itiandthat is the intersection of two local conditions

is also local. Thus, since MWRegWO, MWRegRF, and MWRegNIeseh local, the intersection of any two of
them is also local.
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5.3 Comparison

In this section, we first compare our proposed consistenngitions to each other; then we relate our definitions
to other existing consistency conditions.

5.3.1 Comparison Between Proposed Definitions

Sched in Fig 12

hed in Fig 7 \\ / Sched in Fig 8
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Sched in Fig 6
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Sched in Fig 9

@ MWRegWeak (\\] MWRegWO () MWRegRF E— MWRegNI

Figure 14. Venn diagram of the proposed definitions

The Venn diagram in Figure 14 summarizes the relationshipgaden our proposed definitions. The diagram
describes sets of schedules. The outer rectangle indialiteshedules that satisfy MWRegWeak. The left circle
represents all schedules that satisfy MWRegWO, the rigblecihose that satisfy MWRegRF, and the bottom circle

those that satisfy MWRegNI. The small solid squares givddhbations of the seven example schedules discussed
in Section 4.

Lemma 18 The relationships between the conditions are as indicatdddure 14. That is,

(a) MWRegWO, MWRegRF, and MWRegNI are proper subsets of Mgk,
(b) Each pair of MWRegWO, MWRegRF, and MWRegNI have a notyémbgrsection but are incomparable.

(c) Furthermore, Atomicity is contained in the intersentof MWRegWO, MWRegRF,and MWRegNI.
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Proof. (a) The schedule in Figure 6 satisfies MWRegWeak, but doesatafy MWRegWO, MWRegRF, or
MWRegNI. Therefore, to complete the proof, it suffices towghbat each of the three conditions of interest is a
subset of MWRegWeak.

MWRegWOC MWRegWeak since the only difference between the definitiid&WRegWO and MWRegWeak
is that the former puts an additional constraint on the meguper-read linearizations. The same argument shows
that MWRegRFC MWRegWeak.

To show that MWRegNEC MWRegWeak, consider any scheduldghat satisfies MWRegNI. Consider any read
rin ops(o). From the definition of MWRegNI, there exists a reads-fromction p ono. Letw = p(r).

Case 1:w <, r: Define the following total ordef., onwrites(o) U {r}. First, put all the writes that precede
or overlapw in any o-consistent total order. Put next in the total order. Then putnext in the total order. Finally,
follow r with any o-consistent total order on all the remaining writes.

By constructionL,. is legal. To show thaL, is o-consistent, we check thatis ordered properly with respect
to each non-overlapping write’ other thanw. Supposew’ <, r. Thenw' either precedes or overlaps by the
definition of a reads-from function, and thu$ appears beforein L,.. Suppose <, w’. Sincew <, r, w’ follows
w and appears afterin L.

Case 2:w andr overlap ino. Define the following total ordef, onwrites(o) U {r}. First, put all the writes
that precede in anyo-consistent total order. Put next in the total order. Then putnext in the total order. Finally,
follow r with any o-consistent total order on all the remaining writés.is legal andr-consistent by construction.

(b) The schedule in Figure 10 shows that MWRegWO and MWRegNéra nonempty intersection, while the
schedules in Figures 7 and 9 show that they are incomparghéeschedule in Figure 11 shows that MWRegRF and
MWRegNI have a nonempty intersection, while the scheduldsgures 8 and 9 show that they are incomparable.
The schedule in Figure 12 shows that MWRegWO and MWRegRF &ianmempty intersection, while the sched-
ules in Figures 7 and 8 show that they are incomparable.

(c) The definition of Atomicity appears in the Appendix. loebe any schedule satisfying Atomicity and febe
the linearization ofops(o), <. ). To show that also satisfies MWRegWO, for each readet L, be the restriction
of L to writes(o) U {r}. To show thatr also satisfies MWRegRF, letbe the reads-from function such that each
read reads from the write that most recently precedes it,iand, for each read, let L,. be the same as for the
MWRegWO argument. To show thatalso satisfies MWRegNI, use the samas for the MWRegRF argument,
and for each procegs, let the projection of. onto W; U reads(o|i), whereW; is the set of all writes that are read
from by proces®;, be the desired linearization. [

Recall that Theorem 4 shows that every execution of Algori&kig_None satisfies MWRegWeak. But it does not
show that every schedule satisfying MWRegWeak can be geukely Algorithm AlgNone. Perhaps Algorithm
Alg_None actually guarantees a stronger condition than MWRegWee., perhaps the set of schedules that can
be generated by Algorithm Alfjlone is a proper subset of those satisfying MWRegWeak. Iip fdg_ID cannot
generate all MWRegWO schedules: Consider a schedule irwhiarites 1 and simultaneously; writes 2, and
then laterp, reads 1. Although this schedule satisfies MWRegWO (and i) &atisfies Atomicity), it cannot be
generated by the algorithm, which would give priorityptcs write, sincep’s ID is larger tharpg’s.

We patrtially address the issue of characterizing exactystthedules that each algorithm can generate by showing
that Algorithm Alg.None can generate the schedule in Figure 6, which, as iedi¢atthe Venn diagram, does not
satisfy any of our other consistency conditions. Similankg can show that Algorithm AlgD, which implements
MWRegWO, can generate the schedule in Figure 7, etc. Foil@lkizonstructions of the schedules by the algo-
rithms, see Shao’s thesis [28]. Thus, our results show tltatd, Alg_WB, and Alg LC generate incomparable sets
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of schedules.

5.3.2 Comparison with Existing Consistency Conditions

The relationships between our new consistency conditindglge known consistency conditions Sequential Consis-
tency, Goodman'’s Processor Consistency (PCG), Causalstemsy, PRAM and Coherence are shown as a patrtial
order in Figure 15. Definitions of these additional condiicare given in Appendix A. The relationships on the
right side come from Ahamad et al. [1, 2] and Vitenberg an@dirian [31]. This figure indicates that all of our
new conditions are incomparable with the existing condgitisted above; these relationships are proved in the next
theorem.

Atomicity

T

Sequential

Consistency

MWRegRF MWRegNI

MWRegWO
Causal

NI =\

MWRegWeak

Coherence } ‘ PRAM

Figure 15. Partial order among some consistency conditions

Theorem 19 Each of MWRegWO, MWRegRF, and MWRegNI is incomparable adthaf Sequential Consistency,
PCG, Causal Consistency, Coherence, and PRAM.

Proof. We show that for each pair of conditio€’;, C5), whereC is one of our four new conditions an@, is
one of the five previously proposed conditions, there is @dule that satisfie€; but notC, and vice versa. For
several of the pairs, we can use the same schedule.

R | W(x,l)‘ | W(X,Z)‘

Pl Rl (X|1)

Figure 16. Schedule that is Sequentially Consistent but not MWRegWeak.

The schedule in Figure 16 satisfies Sequential Consistandythus also PCG, Causal Consistency, Coherence,
and PRAM: the operations can be ordefédz, 1), Ry (z,1), W (x,2). However, this schedule does not satisfy
MWRegWeak, and thus does not satisfy MWRegWO, MWRegRF, orR&gNI: the only legal linearization fdr,
isW(z,1), Ri(z,1), W(z,2), but this violatesr-consistency.
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P | W(x,1) ‘

P, RulkD | RO Re2) |

R, (x,1)

W(x,2) ‘

Figure 17. Schedule that satisfies MWRegWO, MWRegRF, and MWR  egNI but not PRAM

The schedule in Figure 17 satisfies MWRegWO, MWRegRF, and M#MR, and thus also MWRegWeak, as we
now show. The linearizations given next—one for each redwbwsthat the schedule satisfies MWRegWO. The
same linearizations also show that it satisfies MWRegRF.

Ry: W(x,1),Ri(z,1),W(y, 1), W(z,2), W(y,2)
Re: Ra(y,0),W(y,1),W(x,2),W(y,2), W(zx,1)
RS: W(I,1),W(y,1),W(x,2),W(y,2),R3(y,2)
Ry: W(y,1),W(z,2),W(y,2), W(x,1), Rs(x,1)

To show that the schedule satisfies MWRegNI, we just neeceariation fomp, since the other processes never
read. We can usB/ (z, 1), Ry(x, 1), R2(y,0), W(y,2), Rs(y,2), Ry(x, 1).

However, the schedule in Figure 17 does not satisfy PRAM,thod does not satisfy Causal Consistency or
Sequential Consistency: in order to satisfy legality fog first three reads gf; as well as program order, the
linearization forp; must beW (z, 1), Ry (z, 1), Ra(y,0), W(y, 1), W(z,2), W(y,2), R3(y,2), R4(z,1). But the
return value ofR, violates legality, as it should be 2 instead of 1.

The schedule in Figure 7 satisfies MWRegWO (and thus also MyMRak) as discussed earlier. However, it
does not satisfy Coherence, and thus it also does not s®@&G or Sequential Consistency: To be led#l(z, 2)
must precedeiy(z,2), and W (z,4) must precedd?,(z, 4) in the linearization forz. To respect the per-process
orders, thoughRs(z,2) must precedéV (z,4), andR4(x,4) must preceders (z, 2). But then it is not legal foR?;

to return 2.
Finally, the schedule in Figure 18 satisfies MWRegRF and M@hRdand thus also MWRegWeak). It satisfies
MWRegRF with the following linearizations for the reads:

R(z,1): W(x,0),W(x,1), R(x,1)
R(z,0): W(z,1),W(x,0), R(z,0)

It satisfies MWRegNI with the following per-process lingations:

p1: W(zx,1),R(z,1)
pa: W(z,0), R(x,0)

However, this schedule does not satisfy Coherence, anddites not satisfy PCG or Sequential Consistency,
sincepy must viewlW (x, 1) after W (z, 0) whereag; must viewlW (z,0) after W (z, 1). ]

6 Mutual Exclusion Using Multi-Writer Regular Shared Registers

In this section, we use the mutual exclusion problem as aipsh@ontext to evaluate the strength of our new
specifications for multi-writer regular shared registe8pecifically, we study the correctness of two well-known
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Figure 18. Schedule that satisfies MWRegRF and MWRegNI but no  t Coherence

1. Peterson’s Algorithm for 2 Processes
Code for procesp;, i € {0,1}:

shared registers:
Flag[0..1] : integer  /*initially 0 */
Turn :integer  [*initially 0 */

[* entry section */

1 repeat

2 Flagli] :==0;

3 wait until (Flag[1 — i] = 0 or Turn = 3);
4 Flagli] := 1,

5 until (Turn =i or Flag[l — i] = 0)

[e)]

if (Twrn = 1) then wait until Flag[1l — i] = 0);
Critical Section

/* exit section */

7 Turn =1 — 1,

8 Flag[i] :==0;

Remainder Section

2. Dijkstra’s Algorithm for n Processes
Code for procesg;, 0 <i <n — 1:

shared registers:
Flag[0..n — 1] : idle, requesting, in-cs/* Initially, idle */
Turn :integer  /* Initially 0 */

[* entry section */

1 repeat

2 Flagli] :== requesting;

3 while (I'urn # i) do

4 if (Flag[Turn] = idle) thenTurn := ;
5 end while

6 Flagli] := in-cs,

7 until (V§ # 4, Flag[j] # in-c9)

Critical Section

[* exit section */
8  Flag[i] := idle;

Remainder Section

Figure 19. Algorithms for mutual exclusion

algorithms for mutual exclusion when the variables satibfy consistency conditions we have proposed. The al-
gorithms we examine are Peterson’s algorithm for two preee$23] and Dijkstra’s algorithm for processes (as
presented by Raynal [25]). The algorithms are shown in Eig@®

Algorithms for solving mutual exclusion are assumed to Have sections:entry, critical, exit andremainder
Thecritical section is code that must be protected from concurrent &eecul heentry section is the code executed
in preparation for entering the critical section. Tt section is executed to release the critical section. Thefes

the code is in theemaindersection.

A run of an algorithm(not to be confused with an execution on a shared registegfised as an interleaving of
local operations and shared-memory operation invocaaosresponses performed by the participating processes,

such that the following are satisfied:

¢ the projection of the algorithm run onto (the actions perfed by) each individual process is consistent with
the order of operations imposed by the local algorithm fat girocess, and

¢ the projection of the algorithm run onto the shared-memamrations on each register is a schedule on that

register.

®Although Lamport’'s Bakery algorithm [15] and Peterson atstRer’'s algorithm [24] are often studied in this contekiyt are not of
interest to us here since these algorithms use only singterghared variables.
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Table 1. Correctness of mutual exclusion algorithms using m ulti-writer regular registers.
Peterson’s Algorithm Dijkstra’s Algorithm
MWRegWeak ME, EP, NL ME
MWRegWO ME, EP, NL ME, EP
MWRegRF ME, EP, NL ME
MWRegNI ME, EP, NL ME
Atomicity ME, EP, NL ME, EP

(In this context, we consider a shared-register “requesbetthe invocation of a request by a process, and a shared-
register “response” to be the receipt of a response by a gsodéhey are thus process actions, but can nevertheless
be meaningfully projected onto the register also.) We saydh algorithnruns under consistency conditiar if
its projection onto the invocations and responses on thef siiared registers satisfi€s

We say that an algorithm solves mutual exclusion under consistency conditidgf 10r each run ofA underC,
the following constraints hold:

e mutual exclusion (ME): there is at most one process in the critical section at anyt jpothe execution.

e eventual progress (EP) if there is some process waiting to enter the critical sectiben eventually some
process enters the critical section.

¢ no lockout (NL): if some process is waiting to enter the critical sectionntbeentuallythat process enters
the critical sectiof¥.

We now examine the two mutual exclusion algorithms shownguie 19. Table 1 shows which of the conditions
of mutual exclusion described above are met by each algonthen implemented with variables satisfying each
of our consistency conditions. As a comparison, we alsdHistconditions that are guaranteed by these algorithms
when the shared variables are Atomic.

We first consider Peterson’s algorithm for two processe$. [Zdis algorithm uses two single-writer shared
variables,F'lag[0] and Flag[1], and one multi-writer shared variablEyrn.

Theorem 20 Peterson’s Algorithm solves mutual exclusion (ME, EP, ahdl ihder MWRegWeak, and thus under
all the proposed definitions.

Proof. First we show that ME is satisfied. Suppose in contradictiwmnet is a run in which ME is violated and let
t be the time of the first violation. Without loss of generalist Turn = 0 at timet. SinceTurn is only changed
when a process leaves the critical section, and is only sebtoprocess;, Turn remains 0 throughout the entry
section ofp; that most recently precedésas well as throughout the critical sectiongafthat includes time. In
this entry section op;, the last execution of Line 5 reads 0 frofiag[0] sinceTurn is 0. The latest preceding
execution of Line 4 writes 1 télag[1].

Case 1:pg reads 0 froni"urn in its last execution of Line 6 preceding timeThus the last execution of the wait
construct in Line 6 reads 0 frofilag[1]. See Figure 20.

"We use this term, rather than the more traditional ND (“noditezk”) in order to avoid ambiguity: the term “deadlock” setimes
includes “livelock” (in which processes continue takings but keep one another trapped in a loop due to timing isamelssometimes
does not. The definition of “eventual progress” explicithe@udes either situation.

8Although NL implies EP, we include both requirements, paftr historical reasons (e.g.,Higham and Kawash [14]) bimarily
because it gives us a finer gauge of the effectiveness ofusacdonsistency conditiongiz. Dijkstra’s algorithm, which solves EP but not NL
under MWRegWO and MWRegNI.
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Figure 20. Figure for Case 1 of proof of Theorem 20.

By the definition of MWRegWeak, this read lyy of Flag[1] must start before the end of the write of 1 py
to Flag[1] (in p1's last execution of Line 4), because Flag[1] remains 1 dftisrexecution of Line 4 untip; exits
its critical section. But before, executes Line 6, it executes Line 4 and writes 1Fiag[0]. Thus it violates
MWRegWeak forp,’s last execution of Line 5 to read 0 frofilag[0], contradiction.

Case 2:pg reads 1 fronil'urn in its last execution of Line 6 preceding timeBy MWRegWeak, this read must
begin before the end of the previous write of Oltern by p; whenp; was last in its exit section. See Figure 21.

Line 7 Line 3

‘ W(Turn,0) ???

pl

W(Flag[0],1) R(Turn,1)

Line 4 Line 6

Figure 21. Figure for Case 2 of proof of Theorem 20.

Beforepy’s last execution of Line 6p, did its last execution of Line 4, and wrote 1 #ag[0]. Thus, after the
end ofp;’s write of 0 toTurn until (at least) timeg, Flag[0] remains 1 and urn remains 0. But thep; is stuck in
aloop at Line 3, checking faF'lag[0] = 0 or Turn = 1, and it cannot be that, is in its critical section at time,
contradiction.

Now we show EP. If only one process, sayis contending for the critical section, then there are nacaorent
accesses to the shared variables mndill pass all the tests (Lines 3, 5, and 6) and enter the afisection. So in
order to violate EP, both processes must be contendingt lhethe time after which both are stuck in their entry
sections forever. Without loss of generality, 1étrn = 0 at timet. T'urn is never changed subsequently, since only
a process in its exit section writesTa:.rn and no process is ever in its exit section after timBut thenp, passes
all the tests (Lines 3, 5 and 6) and enters the critical sectiontradiction.

Finally, we show NL. Without loss of generality, supposedontradiction thap is locked out starting at time
Since EP holdsy; must enter the critical section infinitely often. Duripgs first exit after timet, p; setsTurn to
0. Subsequentlyl"urn is always 0, since only, can change it to 1 and only whey is in its exit section. But then
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po passes all the tests (Lines 3, 5, and 6) and enters the tsiéicton, contradiction. [

Dijkstra’s algorithm forn processes uses single-writer shared variables and one multi-writer starariable
(we follow the presentation of Raynal [25]). As shown nexider MWRegWO it behaves the same way as under
atomicity: ME and EP are guaranteed, but not NL. Under MWRegRd MWRegNI, however, only ME is guar-
anteed. It seems that a commerconsistent total order on writes is necessary for Dijkstadgorithm to satisfy
EP.

Theorem 21 The following are true of Dijkstra’s algorithm:
(a) ME is satisfied under MWRegWeak.

(b) EP is satisfied under MWRegWO.

(c) EP is satisfied under neither MWRegRF nor MWRegNI.

Proof. (@) Suppose in contradiction there is a run of Dijkstra’soathm under MWRegWeak in which ME is
violated. Lett be the earliest time in this run at which two processes,gand p;, are in the critical section
simultaneously.

Let r; be the last execution by; of Line 7 before timet; this is whenp; readsp;’'s Flag and sees that it is not
in-cs Letw; be the last execution by of Line 6 beforer;; this is wherp; sets itsF'lag toin-cs Similarly, letr; be
the last execution by; of Line 7 before time (whenp; readsp;'s Fllag and sees that it is nat-cs) and letw; be
the last execution by; of Line 6 beforer; (whenp; sets itsF'lag to in-cs).

By the definition of MWRegWeak;; begins beforev; ends, and by the algorithm; begins afterw; ends. Thus
r; begins before; begins. But by a symmetric argumenf,begins before:; begins, hence a contradiction.

(b) Suppose in contradiction there is a run of Dijkstra’soalkhm under MWRegWO in which EP is violated.
Lett be the earliest time in this run after which no process chaitgesection and every process in its entry section
has finished executing Line 2 at least once after enteringnitisy section. Thus there is a fixed nonempty Seif
processes that are stuck in their entry section and the frés processes are in their remainder section.

First, we show thal urn is written only finitely often. Suppose in contradiction thare infinitely many writes to
Turn. After timet, all the writes tdl'urn are by processes that arednas a result of such a writé,urn holds the id
of a process iry. Also, every read of'lagli] that starts after timereturnsidle if and only if i ¢ S. Thus eventually
each read of urn returns the id of a process Band thus the condition in Line 4 (whethBiag[Turn| = idle) is
false, andl'urn is not written. This contradicts the assumption thatn is written infinitely often.

Let Wr be the (finite) set of all writes t@'urn. Letr be any read of 'urn that starts after time and after all
writes inWr have finished. By the definition of MWRegWO, there must be a wider on all the writes in the run,
plusr, that is legal and consistent with the order of non-oveiilagpperations in the run. Let;, ws, ..., w,,,r be
the projection of this total order ontd’r U {r}. Note thatr is at the end and returns the value written by,,, .

Let p;, be the process that performs,,, implying thatw,, writes k to Turn. We next show thap, is in S.
Suppose not. The process that executesbtainingk as the value of 'urn, next reads'lag[k| as beingdle, and
then writesTurn, contradicting the choice afas occurring after the last write #ourn.

By the definition of MWRegWOeveryread of T'urn occurring after the last write il and after time must
order the writes itV the same way. If the read is by a process other thathe process remains stuck in the while
loop of Lines 3-5 forever, with it$'lag equal torequesting If the read is bypy, though,p;. falls through the while
loop, finds the condition in Line 7 true, and enters the ait&ection. This is a contradiction to the assumption that
EP is violated.

(c) We describe a run of the algorithm under MWRegRF thatatés EP. Suppose that only andp, are active
and they execute in lockstep. They both execute Line 2 ani vequestingto their Flag variables. Then they
both execute Line 3 and read 0 fréfurn. Then they both execute Line 4 and redig from Flag[0], after which
they write their respective ids tBurn. Then they both execute Line 3 again and réadn; p, obtains 2 whilep
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obtains 1. Since MWRegRF allows the total order for thesdséadiffer,p; viewsp-’s write to T'urn as occurring
later than its own write t@urn, and vice versa fops. Then they both execute Line g; readsF'lag[2] and obtains
requesting while p, readsF'lag[1] and obtaingequesting Then they repeat executing Lines 3 and 4 forever, and
neither ever enters the critical section.

It can be shown that the same run also satisfies MWRegNI asduider MWRegNI, EP can be violated. =

7 Conclusion

The ever-growing popularity of data sharing on the web thhoapplications such as Wikis and peer-to-peer file
sharing indicates the usefulness of providing data thatbeanpdated by multiple users but that does not require
stringent consistency guarantees. Thus it is essentiaivbaker conditions, such as Lamport's regularity, be ex-
tended into the multi-writer model. While this extensiorsisple in the case of atomicity, it is more difficult and
potentially ambiguous for the weaker condition of regari

This paper grew out of an attempt to extend Lamport’s dedinitf regularity from the single-writer model [17] to
the more general multi-writer model. We have shown that ®tersion is not trivial. While there exist various ways
to extend the single-writer definition, the resulting defoms have different strengths. We started from a generic
algorithm, which is a generalization of several existingtpcols that use quorum systems to implement a read/write
register. We then identified three building blocks from tlgpdathms. By applying different combinations of the
building blocks, we obtained different algorithms. Forleatgorithm, we proposed a new consistency condition and
proved that the corresponding algorithm implemented tfi@itien. Out of the four new consistency conditions that
we studied, two of them (MWRegWeak and MWRegWO) are esdeaalod candidates for being a multi-writer
version of regularity, since in the presence of only oneeasritihe condition reduces to the original definition.

The definitions form a lattice with respect to their strengihd the implementations have varying costs with
respect to number of messages, size of messages, time aatbgcal memory requirements. Taken together, the
set of definitions point out the ambiguity of the informaliootof regularity and the algorithms suggest that different
costs may be associated with different choices for disanabigg. Locality is a desirable property of consistency
conditions, which enhances modularity and concurrencyshggved that all our proposed definitions satisfy locality.
We have also analyzed the relationships between thesestamsy conditions and a number of other well-known
consistency conditions.

Finally, we provided a practical context for our results hydying the correctness of two well-known algorithms
for mutual exclusion when the variables satisfy our prodosensistency conditions. We found that Peterson’s
algorithm is fully correct under all the conditions, whilgjitra’s algorithm satisfies only some of the constraints
of the mutual exclusion problem under any of the conditions.

Although the presentation in this paper did not take intaaot any kind of failures, crash failures of clients can
be handled as in other papers (e.g., [13]). The definitionswhedule would be modified to allow some invocations
(namely, the last one by a crashed client) to lack a matcl@aganse. Then the set of operations that appear in the
definitions of the conditions, instead of being all the ofiers, would be all the completed operations and some
subset of the uncompleted writes. In the algorithms, cradrés of some of the servers can be accommodated via
the quorum system by having clients continue to send queriapdates to servers until hearing back from at least
one quorum of servers. As long as crash failures have natpted all the quorums, the clients will be able to make
progress. However, handling more malignant failures ofstirwers, especially Byzantine failures, as is done in the
work of, e.g., Malkhi and Reiter [21] and Bazzi [7], is leftrfluture work.

Our algorithms exhibit differences in cost, but we do notwné the differences are inherent. It would be
interesting to show a complexity separation between oysgsed conditions, i.e., to prove some lower bound on the
cost of any algorithm for some consistency condition. Sanhy| it would be worthwhile to identify certain problems
that cannot be solved at all under some consistency condlifitne still weaker condition cfafety(Lamport [17])
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can also be extended to the multi-writer model by means ollainechniques to those we have used here; this is
one possible avenue of future work. It might also be worthevto explore ways of formalizing the multi-writer
version of consistency conditions met by the probabiligimrum systems of Malkhi et al. [22], which operate
more efficiently than strict quorum systems at the expenseacdsionally providing outdated information. Finally,
exploring the semantics and consistency model of otherstaiatures, which are built on top of quorum systems,
is also of interest.
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Appendix: Existing Consistency Models

We give the definitions of several existing consistency @@k using the model we defined in Section 2.
Atomicity (Lamport [17]), also called Linearizability (Highy and Wing [13]) is a strong condition requiring that
there exist a total ordering of all the operations in a scleethat respects both the semantics of the objects and the

partial order of executions of the operations. A schedudatisfies Atomicity if:

Definition 12 (Atomicity) There exists a legal linearization @ps(c), <,).

Sequential consistency (Lamport [16]) requires that thetist a total order of all the operations in a schedule
that respects the semantics of the objects and is consisténthe order of operations executed by each process;
operations by different processes can be reordered. A stthedatisfies Sequential Consistency if:

Definition 13 (Sequential ConsistencyYhere exists a legal linearization @ps(o), Uiep, <o|i)-

PRAM was introduced by Lipton and Sandberg [19]. This cdasisy condition requires that the write operations
of a process be observed by other processes in the order éh Wigy are performed. A schedutesatisfies PRAM
if:

Definition 14 (PRAM) For each process € P4, there exists a legal linearization 6ps(c|i) Uwrites(o), Ujep,
<0‘j)'

Coherence (Goodman [12]) requires sequential consistameyper-object basis, which means that the operations
on different objects executed by the same process may beveldsie an order other than that in which they are
invoked. A schedule satisfies Coherence if:

Definition 15 (Coherence)For each registete, there exists a legal linearization of
(ops(o|x),Uiep, <oli)-

Goodman’s Processor Consistency (PCG) is rigorously défiiyeAhamad et al. [1]. It is a combination of
Coherence and PRAM. A schedutesatisfies PCG if:

Definition 16 (PCG)For each process € P4, there exists a legal linearizatioh; of (ops(c|i)Uwrites(o), Ujep,
<,j)- Furthermore, for all processes andp; in P4, and for all registersr, L; and L; agree on the ordering of all
writes toz.

Causal Consistency was introduced by Ahamad et al. [2].qtires that each process have a legal view of its
own operations and all writes that is consistent with thegrecess order and some reads-from relation. A schedule
o satisfies Causal Consistency if:

Definition 17 (Causal Consistency)lhere exists a reads-from relatignsuch that for each processc P4, there
exists a legal linearization dfops(oli) U writes(o), Ujep, <olj,p)-
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