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Abstract

We study theoretically the detection and possible utilization of electric current-induced mechan-

ical torques in ferromagnetic-normal metal heterostructures generated by spin-flip scattering or the

absorption of transverse spin currents by a ferromagnet. To this end, we analyze the DC voltage

signals over a spin valve driven by an AC current. In agreement with recent studies, this “recti-

fication”, measured as a function of AC frequency and applied magnetic field, contains important

information on the magnetostatics and –dynamics. Subsequently, we show that the vibrations ex-

cited by spin-transfer to the lattice can be detected as a splitting of the DC voltage resonance.

Finally, we propose a concept for a spin-transfer-driven electric nanomotor based on integrating

metallic nanowires with carbon nanotubes, in which the current-induced torques generate a rotary

motion

PACS numbers: 76.50.+g, 72.25.Ba, 85.85.+j
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I. INTRODUCTION

An electromotor is an apparatus that generates rotational motion with electrical cur-

rents, as demonstrated by Faraday in 1821. Under miniaturization, the torques generated

by Ørsted magnetic fields scale unfavorably compared to the increased friction, rendering

the Faraday motor an unfeasible concept at the nanoscale. Alternative concept for nanoma-

chines are based on electrostatic forces,1 thermal fluctuations,2, torques induced by circularly

polarized light3 and angular momentum transfer by spin-polarized currents.4–7 In this article,

we elaborate on the last idea.

A spin-polarized current carries an angular momentum current:

TSP = PI~/(2e) = PT0 (1)

where P = (I↑ − I↓) /I is the polarization of the charge current I = I↑+ I↓, e is the electron

charge and T0 = I~/(2e). If transferred completely to the lattice, mechanical torques are

created of the same magnitude, which can be relatively large in nanoscale structures. Since

spin currents are routinely excited in magnetoelectronic devices such as spin valves, we pose

here the question whether current-induced mechanical torques can be detected and utilized

in such structures. We conclude that the resonant magnetomechanical coupling studied

earlier6,8 should indeed be observable in spin valve structures, paving the way for applications

such as high frequency actuators and transducers of mechanical motion. Furthermore, we

propose a design for a spin-transfer driven electric nanomotor based on carbon nanotubes.3

The resonant rectification of a current in spin valve as a function of an applied AC

frequency has been found experimentally to form a rich source of information about the

magnetization dynamics in spin valve structures.9,10 Kupferschmidt et al. found theoretically

that the spin-pumping by the magnetization dynamics11 significantly modify these spectra.35

We suggest that the AC-DC conversion in spin valves can be used to detect vibrational modes

excited by the spin-polarized currents.

In this manuscript, we address the theory of spin valves excited by AC currents, show

how to include the effects of the magnetovibrational coupling, and predict signatures of the

current-induced mechanical torques. We also share our ideas how these torques could drive a

rotary (rather than vibrational) motion, i.e. an electric nanomotor. The manuscript is orga-

nized as follows. In Sec. II, we calculate (position-dependent) mechanical torques generated
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by the spin-flip dissipation of a spin current injected by a ferromagnet into a normal metal.

In Sec. III, we study the spin-transfer mechanical torques resulting from the absorption of

transverse spin-currents by a ferromagnet. We suggest to employ the recently reported diode

effect9,10 in F(erromagnet)|N(ormal)|F(erromagnet) metal spin valves to detect the vibra-

tions created by spin-transfer mechanical torques. We calculate the nonlinear DC voltage

emanating from the spin-transfer driven ferromagnetic resonance with and without the res-

onant magnetovibrational coupling. Spin transfer torques non-collinear with planes formed

by principal axis of anisotropies can deform the resonant line shape of DC voltage as a

function of the AC current bias frequency. In Appendix B and C, we calculate the extra

DC voltage caused by spin-pumping and prove that it can play a key role in sufficiently thin

films. In Appendix B, we also conclude that the magnetovibrational coupling is observable

by virtue of the spin-pumping even in asymmetric N|F|N heterostructures. In Sec. IV, we

propose a spin-transfer driven nanomotor concept based on integrating metallic nanowires

with carbon nanotubes.

II. MECHANICAL TORQUES DUE TO DISSIPATION OF SPIN CURRENTS

Consider a normal-metal diffusive wire or nanostructured pillar into which a spin accu-

mulation has been injected via an electrically biased ferromagnetic contact (Fig. 1). Spin

Is and charge I0 currents can be conveniently related via 2× 2-matrices in Pauli spin space

Î = (1̂I0 + σ̂ · Is)/2, where σ̂ is the vector or Pauli spin matrices and 1̂ is the 2 × 2 unit

matrix. Spin-orbit interactions or magnetic impurities cause spin-flip scattering that can

be parametrized by a spin-flip relaxation time tsf . µs, the local (vector) spin accumulation

is related to the spin current density js = Is/(eS) (e is the electron charge and S is the

cross-section of the wire) by the angular momentum conservation law:

∂

∂t
µs +

∂

∂y

js

N =
µs

tsf
. (2)

The dissipated angular momentum per unit length, τ = (~/2)SNµs/tsf , where N is the

density of states at the Fermi-level, is transferred as a mechanical torque to the lattice.

In the configuration sketched in Fig. 1, the injected spin accumulation |µs| = µs and the

mechanical torque are polarized in the y-direction. Newton’s Law for the mechanical motion
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of the substrate then reads12

ρI
∂2ϕ(y, t)

∂t2
= C

∂2ϕ(y, t)

∂y2
+

~

2
SN µs(y, t)

tsf
(3)

where ϕ(y, t) is the angle of torsion, I = Ix+Iz
(
Iz =

∫
x2dzdx, Iz =

∫
z2dzdx

)
is the moment

of inertia of the cross-section at y relative to its center of mass, ρ is the mass density, C is

an elastic constant defined by the shape and material of the wire (C = µR4/2 for a circular

cross section with radius R, µ is the Lamé constant). Eq. (3) must be complemented by the

boundary conditions (ϕ = 0) at the clamping points.

We now concentrate on a bimetal wire consisting of a ferromagnetic and a normal metal

(Fig. 1). We assume for simplicity here that the bulk resistances of the wires are much larger

than the interface resistance (Ref. 14 shows how interfaces can be taken into account) to the

extent that we may disregard the latter. The magnetization and mechanical motion is much

slower than the relaxation scattering, therefore, we can consider only the parametrically

stationary limit. The charge current density j0 is conserved (∂yj0 = 0) and Eq. (2) reduces

to
∂

∂y
js =

Nµs

tsf
=

2τ

~S
. (4)

In the normal metal, charge and spin currents are governed by Fick’s Laws jN = NNDN∂yµ
N
0

and jNs = NNDN∂yµ
N
s respectively, where DN is the diffusion constant and the index N

indicates the normal metal, leading to the diffusion equations:

∂2

∂y2
NNDNµN

0 = 0 ,
∂2

∂y2
NNDNµN

s = NNµN
s /t

N
sf =

τN
~

2
S
.

where τN is the mechanical torque per unit length for the normal metal. In a ferro-

magnet (F ), the particle and spin currents are jF = (N F
↑ DF

↑ ∂yµ↑ + N F
↓ DF

↓ ∂yµ↓)/2 and

jFs = m∂y(N F
↑ DF

↑ µ↑ − N F
↓ DF

↓ µ↓)/2, where DF
↑(↓) is the diffusion constants for spin-up (-

down) electrons and N F
↑(↓) is the corresponding spin-up (-down) density of states. The

diffusion equation in a ferromagnet then reads:

∂2

∂y2
(N F

↑ DF
↑ µ↑ +N F

↓ DF
↓ µ↓) = 0 ,

∂2

∂y2
(N F

↑ DF
↑ µ↑ −N F

↓ DF
↓ µ↓) = N F (µ↑ − µ↓)/t

F
sf ,

leading to
∂2

∂y2
DF (µ↑ − µ↓) = (µ↑ − µ↓)/t

F
sf = τF/

[
~

2
SN F

]
,

where τF is the mechanical torques per unit length for the ferromagnetic metal, DF =

2DF
↑ D

F
↓ NF/

(
N F

↑ DF
↑ +N F

↓ DF
↓

)
and N F = (N F

↑ +N F
↓ )/2.
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Figure 1: Spin transfer from spin-polarized currents to the lattice in a heterostructure consisting

of two (ferromagnetic and normal metal) sections connected to mechanically clamped normal and

ferromagnetic metal reservoirs. Polarized currents lead to torques twisting the middle section.

We can now calculate the mechanical torques by solving the diffusion equations, requiring

the continuity of distribution functions and conservation of the spin and charge currents at

the interface.13,14 We also require no spin accumulation at the connection with reservoirs.

For the ferromagnetic (y < 0) and normal (y > 0) metals we find, respectively:

τF (y) = T0

P sinh
[
(LF + y)/lFsd

]
/ sinh(LF/l

F
sd)

lFsd coth(LF/lFsd) + υlNsd coth(LN/lNsd)
, (5)

τN (y) = T0

υP sinh
[
(LN − y)/lNsd

]
/ sinh(LN/l

N
sd)

lFsd coth(LF/lFsd) + υlNsd coth(LN/lNsd)
, (6)

where P = (G↑ −G↓) / (G↑ +G↓) is the current polarization of the ferromagnet here defined

in terms of the spin-up and spin-down conductances G↑ and G↓, l
F
sd =

√
DF tFsf and lNsd =

√
DN tNsf are the spin-diffusion lengths in the ferromagnet and normal metals, respectively,

and T0 has been introduced in Eq. (1), LF and LN are the lengths of the ferromagnet and

normal metals respectively, and υ =
[
NN t

F
sf

]
/
[
NF t

N
sf

]
. For the configuration sketched in

Fig. 1, the mechanical torque is directed along the y axis. The torque density is discontinuous

when υ 6= 1. As shown in Fig. 2, the mechanical torques are enhanced close to the F|N
interface on the scale defined by the spin-diffusion length in both ferromagnet and normal

metals. The mechanical torques change sign with the electric currents direction.

Integrating Eqs. (5,6) leads to the total torque acting on the wire:

TF = T0
P lFsd tanh(LF/2l

F
sd)

lFsd coth(LF/l
F
sd) + υlNsd coth(LN/l

N
sd)

, (7)

TN = T0
υP lNsd tanh(LN/2l

N
sd)

lFsd coth(LF/l
F
sd) + υlNsd coth(LN/l

N
sd)

. (8)
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Figure 2: The mechanical torque per unit length along the F|N wire; P = 0.7, lFsd = 10nm,

lNsd = 20nm, LF /l
F
sd = 3, LN/lNsd = 5, and υ = 2.

When LF ≫ lFsd and LN ≫ lNsd, we obtain TSP = TF +TN = Pτ0 as expected by the complete

dissipation of the spin current in this limit (Eq. (1)). By ultrasensitive displacement detec-

tion, it should be possible to observe the mechanical strain caused by the spin-flip torques4

in the setup of Fig. 1.

III. GENERATION AND DETECTION OF THE MECHANICAL TORQUES DUE

TO SPIN TRANSFER

In the previous section, we studied mechanical torques arising from spin-flip relaxation

processes within the bulk of the metals. In contrast, in this section, we will consider struc-

tures (see Fig. 3) in which the spin transfer is dominated by dephasing processes (leading to

absorption of transversely polarized currents)13 at the normal metal|ferromagnetic interfaces,

whereas the spin-flip processes in the bulk materials are disregarded (which can be repaired

easily if necessary). Such a device is superior to the wires of the previous section in generat-

ing mechanical torques when the structures are smaller than the spin-diffusion length. We

propose here to induce and detect the magneto-vibrational modes8 driven by spin-transfer

torques in devices such as shown in Fig. 3, i.e. a doubly clamped heterostructure in the
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Figure 3: Model sample to study spin transfer to the lattice consisting of ferromagnets (F1 and

F2) and NM, i.e.. tunnel junctions or normal metal). F1 and the normal metal N are electron

reservoirs that are mechanically clamped. The vector diagram shows the reference frames used in

calculations with respect to the magnetizations. The magnetization of F1 is fixed, M1 ≡ Mfixed,

and that of F2 is variable, M2 ≡ M.

shape of a bar with a ferromagnetic load in the center. In our set-up, the mechanical torque

is generated in the ferromagnet F2 by the transversely polarized spin current (ferromagnet

F1 is supposed to be clamped by the substrate). The absorbed spin-angular momentum is

transferred to the lattice by the magnetic shape and crystal anisotropies. In the regime of

the resonant magnetovibrational coupling, the mechanical motion is strongly affected by the

magnetization dynamics created by spin-transfer torques,8 which, in turn affect the trans-

port properties. We predict that such vibrations should be detectable by current-driven

ferromagnetic resonance experiments reported in Refs. 9 and 10. We start by analyzing the

DC voltage signals over a spin valve resulting from the “rectification” of an AC current by

the precessing magnetization (without magnetovibrational coupling, e.g. setups from Refs.

9 and 10) as an intermediate step. A general analysis of the DC signals in the regime of the

resonant magnetovibrational coupling is subsequently given. We also estimate the maximum

torques that can be created in these structures.
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The derivation below is carried out for a system in which the ferromagnet F2 is inserted

into the normal metal island. However, the rectification of the AC current and the excitation

of magnetovibrational modes also occur (and can be treated by our methods) in a system in

which the ferromagnet is attached to the side or on top of the normal metal wire (“spin-flip

transistor”).15,16

A. Ferromagnetic resonance driven by spin-transfer torques

Initially, we assume that the mechanical modes are not excited in the device depicted in

Fig. 3. One (the“hard”) layer magnetization of F1 is assumed completely fixed by shape or

crystal anisotropies to the direction M1 = Mfixed with unit vector mfixed. We are interested

in the dynamics of the magnetization direction m = M2/Ms of the middle (“soft”) layer F2,

where |M2| = Ms is the constant saturation magnetization, in the presence of an AC electric

current bias. We consider the soft layer to be at resonance,10 but note that the soft and hard

layers can exchange their roles as a function of frequency (e.g. in Fig. 5). We model the

magnetization dynamics by the generalized Landau-Lifshitz-Gilbert (LLG) equation in the

macrospin approximation that is augmented by the current-dependent spin-transfer torque:17

dM

dt
= −γM×Heff+

α

Ms
M×

(
dM

dt

)
+γ

~

2e

I(t)

Vm
[η1m× (mfixed ×m) + η2(mfixed ×m)] , (9)

where I(t) is the time dependent current through the system, η1 describes the efficiency of

conventional spin transfer, and η2 parametrizes an “effective spin-transfer exchange field”.

When the spacer is an insulator, as in the experiment of the Tsukuba group,9 the parameter

η1 is a constant governed by the expressions such as derived by Slonczewski.18 The “effective

field” η2 has been less well investigated in magnetic tunnel junctions and is treated here as

an adjustable parameter. When the spacer is a normal metal in a configuration sketched in

Fig. 3, the LLG equation for the soft layer reads:

dM

dt
= −γM×Heff +

α

Ms

M×
(
dM

dt

)
− γ~

2eVm

m× [(Is1 + Is2)×m] (10)

where the spin currents leaving the soft ferromagnet can be computed by magnetoelectronic

circuit theory13 as

I1(2) = (G↑ +G↓)(µ
2(1)
0 − µ

1(2)
0 ) + (G↑ −G↓)(µ

2(1)
s − µ

1(2)
s ) ·m (11)

8



Is1(2) = m
[
(G↑ −G↓)(µ

2(1)
0 − µ

1(2)
0 ) + (G↑ +G↓)(µ

2(1)
s − µ

1(2)
s )

]

−
(
2m× µ

1(2)
s

)
×mGr −

(
2m× µ

1(2)
s

)
Gi, (12)

where α is the Gilbert damping constant, γ is the gyromagnetic ratio, G↑ and G↓ describe

the conventional spin-dependent conductances limited by bulk and interface scattering and

G↑↓ = Gr + iGi is the interface mixing conductance of the ferromagnet, µ0 and µs are the

chemical potential and spin-accumulation in the normal metals, respectively, the spin Is1(2)

and charge I1(2) currents correspond to the current (spin) flow into the normal metal node

1(2). It is shown in Appendix A that Eqs. (9) and (10) are equivalent when we allow for an

angle dependence of the parameters η1(2). The efficiencies of the spin-transfer torque η1(θ)
14

and the “effective spin-transfer field” η2(θ) mainly depend on the real and imaginary part of

the mixing conductance, respectively.

Choosing the z′-axis along the equilibrium direction (M0) of the soft layer and the x′-axis

perpendicular to both magnetizations (see Fig. 3), we expand the free energy close to the

equilibrium direction of the magnetization as

F (M) = F (M0) +Nx′M2
x′/2 +Ny′M

2
y′/2 +Nx′y′Mx′My′ (13)

such that the effective magnetic field

Heff = −∂F/∂M =− (Nx′Mx′ +Nx′y′My′)x
′ − (Ny′My′ +Nx′y′Mx′)y′ (14)

where Nx′ , Ny′ , and Nx′y′ are parameters characterizing the energy of the macrospin ex-

citations. The free energy Eq. (13) is not diagonal in the basis of the magnetizations

along the x′ and y′ axis, but can be diagonalized in another basis rotated by the angle

φ around the z′-axis, so that Nx′ = Nd
x cos

2 φ + Nd
y sin

2 φ, Ny′ = Nd
y cos

2 φ + Nd
x sin

2 φ,

Nx′y′ = (Nd
x −Nd

y ) cosφ sinφ. Here, Nd
x and Nd

y are the eigenvalues of the expansion tensor

in Eq. (13). We consider here an arbitrary direction of an external magnetic field H0. In

general, the components of H0 contribute to Eq. (13) in a non-trivial way. As an illus-

tration let us consider an external field along the z-axis, which can be included as follows:

Nx′ = N0
x′ + H0/Ms and Ny′ = N0

y′ + H0/Ms, where N0
x(y) are elements of the magnetic

anisotropy tensor.

The linear response of the magnetization to an AC current perturbation is given by the

9



response functions χx′I = (Mx′/I)ω and χy′I = (My′/I)ω. From Eqs. (9,14)

χx′I(ω) =
~γ sin θ

2eVm

iη2ω + γMsΓx′

ω2(1 + α2)− ω2
m + 2iα′ωωm

, (15)

χy′I(ω) =
~γ sin θ

2eVm

−iη1ω + γMsΓy′

ω2(1 + α2)− ω2
m + 2iα′ωωm

, (16)

where Vm is the volume of the magnet, ω2
m = γ2Nd

xN
d
yM

2
s = γ2M2

s (Nx′Ny′ − N2
x′y′), Γx′ =

η1(Ny′ + Nx′y′α) + η2(Nx′y′ − Ny′α), Γy′ = η1(Nx′y′ + Nx′α) + η2(Nx′ − Nx′y′α), and the

damping parameter is modified by the anisotropies as

α′ = α
(Nd

x +Nd
y )/2√

Nd
xN

d
y

= α
(Nx′ +Ny′)/2√
Nx′Ny′ −N2

x′y′

. (17)

From Eqs. (15,16), we conclude that both the field effect η2, characteristic for tunnel

junctions,9 and non-collinear anisotropies Nx′y′ cause a phase shift in the magnetization

response χy′I(ω) that is relevant to the rectification effect, as demonstrated below. At res-

onance, the parameters Γx′ and Γy′ are the components of the out-of-phase magnetization

response.

The resulting magnetization dynamics causes oscillations of the magnetoresistance

R(m1(t),m2(t)) = R(cos θ(t)) of the multilayer structure (details of the calculations are

given in Appendix A). In the presence of an AC current bias I(t) = I0Re e
iωt, the resistance

has an oscillating component that in the linear approximation reads:

R(cos θ(t)) ≈ R(ν)− sin θ
∂R(ν)

∂ν
△ θ(t) (18)

= R(ν)− sin θ
∂R(ν)

∂ν
my′(t) = R(ν)− I0

Ms
sin θ

∂R(ν)

∂ν
Re(eiωtχy′I), (19)

leading to a nonlinear phase-sensitive effect in the voltage across the sample

U = R(t)I(t) = R(ν)I(t)− sin θ

4Ms

∂R(ν)

∂ν
(I0e

iωtχy′I + I0e
−iωtχ∗

y′I)(I0e
iωt + I0e

−iωt) (20)

∼ I20 Re[
(
1 + ei2ωt

)
χy′I], (21)

where the parameter ν = cos θ describes the equilibrium configuration of the magnetizations

and θ(t) = θ + △θ(t) (to lowest order △θ ≈ my′). The magnetization dynamics is thus

manifest in the nonlinear response, i.e. the zero and second harmonic components of the

voltage across the sample:

U0 =
I20 sin θ

2Ms

∂R(ν)

∂ν
Reχy′I(ω)

ω→ωm= −I20 sin
2 θ

∂R(ν)

∂ν

~

2e

γ

2MsVm

1

ωm

×
(

α′ω2
m

(ω − ωm)2 + α′2ω2
m

− (ω − ωm)γMsΓy′

(ω − ωm)2 + α′2ω2
m

)
, (22)

10



U2ω =
I20 sin θ

2Ms

∂R(ν)

∂ν
|χy′I(ω)| ω→ωm= I20 sin

2 θ
∂R(ν)

∂ν

~

2e

γ

2Vm

×
√

1 + γ2M2
sΓy′/ω2

(ω − ωm)2 + α′2
. (23)

As pointed out in Ref. 9, the DC voltage U0 can be interpreted as a diode-like rectifica-

tion. The amplitudes U0 and U2ω show a resonant enhancement close to ωm (note that U0

corresponds to Vmix in Ref. 10 and its sign corresponds to a current flow from soft to hard

ferromagnetic layer). Eq. (22) is a linear combination of the symmetric and antisymmetric

Lorentzians (see Fig. 4). By fitting the DC voltage U0(ω) to a linear combination of the two

curves in Fig. 4, we can determine the parameter Γy′ ≈ η1Nx′y′+η2Nx′ that is affected by the

effective field η2 and the non-collinear anisotropy Nx′y′. In Fig. 5, we demonstrate how the

resonance becomes skewed merely by the non-collinear shape anisotropy (the spin-transfer

torque does not lie in a plane formed by principal axes of the shape anisotropy). The res-

onant layer with the magnetization M2 corresponds to the harder layer in this plot (as it

was discussed in Sec. IIIA, the harder and softer layers can switch their roles with a proper

choice of the AC current frequency). The opposite scenario,9 without anisotropies, the effec-

tive field η2 can still cause an antisymmetric Lorentzian signal since Γy′ ≈ η2Nx′ = η2H0/Ms,

as reported by Ref. 35.

B. Magnetovibrational resonance driven and detected by spin-transfer torques

In the following, we repeat the derivation of the previous section but allow for a torsional

degree of freedom along the current flow. This requires a free-standing conducting structure,

such as a doubly clamped cantilever. We already discussed the coupled dynamics of the

magnetization and the lattice for a small magnet at the free tip of a cantilever that is

clamped on the other side.8 However, here we consider the limit in which the magnet is

heavy compared to the cantilever. This reduces the mechanical resonance frequencies, but

increases the magnetomechanical coupling strength. The normal metal lattice serves as a

spring and the ferromagnet is the load. We first consider a well-aligned structure for which

the primed and unprimed coordinate systems in Fig. 6 coincide. A mechanical torsion

11
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Figure 4: The dimensionless DC voltage over the sample biased by an AC current has two compo-

nents that are plotted as a function of AC current frequency; V0 = I20 sin
2 θ

∂R(ν)

∂ν

~

2e

γ

2MsVm

1

α′ωm
.

profile described by the angle ϕ(y) increases the free energy as:

F (M) = F (M0) + Vm

(
Nx [Mx +Mzϕ(0)]

2 /2 +NyMy/2

+Nxy [Mx +Mzϕ(0)]My) +
C

2

∫ L/2

−L/2

(
∂ϕ

∂y

)2

dy, (24)

where C is an elastic constant defined by the shape of the cross-section and the material

of the normal metal link (C = µda3/3 for a long plate with thickness a much smaller than

width d, a ≪ d, µ is the Lamé constant for the normal metal), ϕ(0) is the torsion angle

at the middle magnetic section. The coefficients Nx, Ny and Nxy have the same meaning

as in the previous section (one expects Nxy = 0 in setup of Fig. 6; however, we keep Nxy

in order to use our results for more general configurations). The width L′ of the magnetic

layer along the axis y is supposed to be small compared to the length of the normal metal

links L(≫ L′), so internal strains and deformations in the magnetic section are disregarded.

The integration is therefore carried out from one clamping point y = −L/2 to the other at

y = L/2, excluding the ferromagnetic layer. With Eq. (24), the Landau-Lifshitz-Gilbert
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f
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Figure 5: The resonance peaks are skewed when the spin-transfer torque does not lie in a plane

formed by principal axes of the shape anisotropy. We illustrate this by exciting the magnetization

M2 of the harder (resonant) layer with an easy plane anisotropy by AC currents, while the soft

layer magnetization is forced into the directions φ = 0 : π/20 : π/10 : π/4 . by an external magnetic

field. Here η2 = 0.

equation has to be modified as:

dM

dt
= −γM×Heff +

α

Ms

M×
(
dM

dt

)

m

+ γ
~

2e

I(t)

Vm

[η1m× (mfixed ×m) + η2(mfixed ×m)]

(25)

Heff = − (NxMx +NxyMy +NxMzϕ(0))x (26)

− (NyMy +NxyMx +NxyMzϕ(0))y, (27)

where the derivative (dM/dt)m is defined in the reference frame of the magnet, since most

proposed mechanisms for Gilbert damping act on the magnetization motion relative to the

underlying lattice only. This can be taken into account by
(
dM

dt

)

m

=
dM

dt
− dϕ(0)

dt
Mzx. (28)

The equation of mechanical torsional motion of the normal metal strip is:12

C
∂2ϕ

∂y2
= ρI

∂2ϕ

∂t2
, (29)

13
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Figure 6: A device to detect magnetovibrational coupling caused by magnetic form and crystal

anisotropies. An external magnetic field H0 is used to tune the FMR frequency.

where I =
∫
(z2 + x2)dzdx ≃ ad3/12 is again the moment of inertia of the cross-section

about its center of mass and ρ is the mass density. The oscillating solution has the form ϕ =

(A1 sin(ky) + A2 cos(ky))e
iωt, where k = ω/c is the wave number, c = 2cta/d =

√
C/(ρI),

and ct =
√

µ/ρ is the sound velocity of the transverse mode. The free constants A1 and A2

are determined by the boundary conditions.

The first condition ϕ|y=L/2(−L/2) = 0 corresponds to perfect clamping at the boundaries.

The second one, at the connection with the ferromagnetic load, can be obtained from the

variational principle applied to Eq. (24), and corresponds to the torque C∂ϕ/∂y|y=±L′/2

exerted by the magnetization at the interface to the normal metal link:

C
∂ϕ

∂y
|y=±L′/2 =

1

γ

(
dM

dt
+ γM×H0

)
|y + L′IFρF

d2ϕ(0)

dt2
, (30)

where IF is the moment of inertia of the magnetic load (for a thin plate of mass M , we can

approximate it as L′IFρF = Md2F/12, where dF is its width, see Fig. 6), and ∂ϕ/∂y|y=±L′/2

is the derivative of the torsion angle of the normal metal link at the connection with the

ferromagnet. This boundary condition is equivalent to the conservation of the mechanical

angular momentum written for the magnetic load. With C∂ϕ/∂y|y=±L′/2 = Ckϕ cot kL, we

obtain:

Ckϕ(0) cot(kL)− L′IFρF
d2ϕ(0)

dt2
=

1

γ

(
dM

dt
+ γM×H0

)
|y, (31)

where the right hand side describes the magnetically induced torques that to leading order

equal the Gilbert and anisotropy torques. In the absence of the magnetic anisotropies and

Gilbert damping, the two terms dM/dt and γM×H0 cancel each other.

By only considering the left hand side of Eq. (31), we can find the mechanical resonance

frequency as ωe =
√

Ck cot(kL)/(L′IFρF ) ≈
√
C/(LL′IFρF ), where the approximation

14



holds when ωe is smaller than the resonant frequency of the normal metal link with a free

end (which corresponds to the heavy-load limit). In frequency space, the left hand side

of Eq. (31) can be expressed in terms of the dimensionless response function F (ω) of the

mechanical subsystem to an oscillating torque of frequency ω applied to the load:

F (ω) = ω2
e/

[
(ω2 − ω2

e + 2iβω)
]

(32)

where β is a phenomenological damping constant describing dissipation in Eq. (29) and it

is related to the quality factor Q of oscillator at the resonance frequency ωe as Q = ωe/(2β)

(at 1 GHz Q ∼ 500).19 In terms of F (ω), the mechanical response function reads:

(ϕ/T )ω = (1/Ck cot(kL))F (ω) ≈ (L/C)F (ω), (33)

where T is the torque externally exerted on the load.

To first order in the mechanical and magnetization oscillations, Eqs. (25) and (31) lead

us to the following response function:

χyI(ω)=(My/I)ω =
~γ

2eVm

×−iη1ω + Γyγ [Ms + g (H0/Nx)F (ω)]

ω2 − ω2
m + 2iα′ωωm + ΛF (ω)

(34)

g→0≈ ~ sin θγ

2eVm

−iη1ω + γMsΓy

ω2 − ωm + 2iα′ωωm + ΛF (ω)
, (35)

where

Λ = g
[
ω2 −H0ωm/(NxMs)

]
, (36)

and

g = M2
s VmNx (1/Ck cot(kL)) (37)

≈ M2
s VmNxL/C = Nx(L/a)

2(Vm/Vl)(M
2
s /µ),

Vm and Vl are the volumes of the magnetic load and the normal metal spring, respectively.

L and a are the largest and the smallest dimensions of the normal metal links, k = ωe/c. We

recover here the results from Ref. 6, implying that the spin polarized current is equivalent

to an external rf field along the x-axis applied to a magnetic cantilever. Since the ratio

Vm/Vl can be made much larger compared to the limit of light load considered in Ref. 6,

we conclude that by making the normal metal links thinner (in setup of Ref. 6 we have to

15



make the cantilever thinner) we reduce the stiffness of the device, which results in a better

sensitivity and stronger coupling. The reduced stiffness leads to a drop in the resonance

frequency that in turn can be compensated by making the structures smaller.

The nonlinear response to an AC current can now be found by substituting Eq. (34)

into the first parts of Eqs. (22,23). We conclude that the most conspicuous feature of the

magnetovibrational coupling is the formation of a magnetopolariton and the splitting of the

ferromagnetic resonance close to ω = ωm, which is governed by
√
Λ. The expression for

Λ, Eq. (36), suggests that the splitting can be tuned by the external magnetic field. The

line width of those two resonances is defined by α′ and β, and the shape is a combination

of the symmetric and antisymmetric Lorentzians as in Fig. 4. Let us make estimates

for a system shown in Fig. 6. The dimensions of the metallic links are here chosen as

(0.5× 0.05× 0.01)µm with a Py load of the size (0.1× 0.2× 0.02)µm, for which we can

estimate a resonance frequency in the range of 0.5GHz (µ ∼ 100GPa)20 and a coupling

parameter g ∼ 0.001 (free-standing metallic structures of such dimensions have already

been realized21). For intermetallic interfaces, the“effective field effect” due to η2 is very

small, thus the phase shift of the magnetization is absent (Γy = 0). The amplitudes, given

by Eqs. (22,23), are large in the proximity of the ferromagnetic resonance (FMR). The

magnetovibrational coupling splits the FMR peak by
√
gω (H0 < NxMs), which allows an

electric detection of the mechanical motion excited by the spin transfer. Normalized voltages

are plotted in Figs. 7 and 8 for purely ferromagnetic (mechanical motion is suppressed)

compared to magneto-vibrational (MVR) resonances.

Finally, we write the response function for arbitrary magnetization directions in Fig. (3):

χy′I(ω)=(My′/I)ω =
~γ sin θ

2eVm

(38)

g→0≈ ~ sin θγ

2eVm

−iη1ω + γMsΓy′

ω2 − ωm + 2iα′ωωm + ΛF (ω)
, (39)

where Λ is defined in Eq. (40). As one can see, the form of the response function does not

change. Eq. (38) can be substituted into the first parts of Eqs. (22,23) in order to calculate

the nonlinear response to an AC current. Similarly to Eq. (16), the parameter Γy′ ≈
η1Nx′y′ + η2Nx′ governs the balance between the symmetric and antisymmetric Lorentzians
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Figure 7: Dependence of the DC component of the voltage on the frequency or the AC current bias

for purely FMR (dashed line) and MVR (solid line) (ωm = ωe, α
′ = 0.02, β/ω = 0.002, g = 0.001).

composing each resonance (see Fig. 4). The magnetovibrational coupling is described by Λ:

ReΛ = g
[
ω2 − (Hz′ + cot θ1Hy′′)ωm/(Nx′′Ms)

]
(40)

ImΛ = gωγ [Hz′Nx′′y′′/Nx′′ + cot θ1(Hx′′ +Hy′′Nx′′y′′/Nx′′)] (41)

and

g = sin2 θ1M
2
s VmNx′′ (1/Ck cot(kL)) (42)

≈ sin2 θ1M
2
s VmNx′′L/C = sin2 θ1Nx′′(L/a)2(Vm/Vl)(M

2
s /µ),

where Vm and Vl are the volumes of the magnetic load and the normal metal spring, re-

spectively. L and a are the largest and the smallest dimensions of the normal metal links,

k = ωe/c, θ1 is the angle between the equilibrium direction of the magnetization M2 and the

current flow, and the external field is H0 = (Hx′′, Hy′′ , Hz′). The parameter Λ is calculated

in a reference frame x′′, y′′, z′ shown in Fig. (3). The x′′-axis is perpendicular to the current

flow and the axis z′ (in general, this reference frame is different from the one used in Sec.

IIIA, since the x′′-axis is not necessarily along the direction of m1 ×m2).
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Figure 8: Dependence of the second harmonic of the voltage on the frequency of the AC current bias

for purely FMR (dashed line) and MVR (solid line) (ωm = ωe, α
′ = 0.02, β/ω = 0.002, g = 0.001).

C. Mechanical torques due to absorption of transversely polarized currents

Let us now apply a DC current bias to the system in Fig. 6. According to the magne-

toelastic equations discussed above, the angular momentum of the spin polarized current

is completely transformed into mechanical torques when the crystal and shape anisotropies

are strong enough to prevent magnetization motion relative to the lattice. The mechanical

torque then equals the spin-transfer torque:

Tst = −γ
~

2e
Iη1m× (mfixed ×m) ≈ −γT0η1, (43)

The Gilbert damping does not appear explicitly in this formula; however, it determines the

time scale 1/(αγMs) in which the system reaches quasi-equilibrium. The upper boundary for

the spin-transfer-induced mechanical torque for a thin film of the size (20× 200× 200) nm

(without crystal anisotropy) is defined by the maximum effective magnetic field due to the

form anisotropy, Heff = 4πθMs, where θ ≈ π/20 ∼ H0/Ms corresponds to some small

stationary deflection of the magnetization out of the plane of the film in the presence of the

stabilizing external magnetic field H0 (Fig. 6). This field generates a torque of γ4πθMs ·
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Figure 9: A spin-transfer nanomotor in which a metallic wire (rotor) with strong spin-flip scattering

(such as Pt) is grown inside a MWNT that is connected to two ferromagnetic contacts.

MsVm/γ ∼ 10−16Nm, where Vm is the volume of the ferromagnet and Ms = 106 A /m is

the saturation magnetization for Py. Such torques are well above the sensitivity of existing

NEMS oscillators.22

IV. SPIN-TRANSFER NANOMOTOR

Finally, we address the question how the torque can be transformed into a potentially use-

ful rotary motion. It has been suggested in the literature to use carbon nanotubes as bearings

for metallic nanowires.1,3 In Fig. 9, we propose a design of a spin-transfer nanomotor based

on multi-wall carbon nanotube (MWNT) connected to two ferromagnetic electrodes (the

torque doubles when the second electrode is ferromagnetic, but one ferromagnet is sufficient

in principle). A metallic nanowire with strong spin-flip scattering nanowire is encapsulated

by the MWNT. Pt would be a good choice (lPt
sd ∼ 20 nm at 4.2 K23 and lPt

sd ∼ 1 nm at room

temperature24). FeCo nanowires that have already been grown inside nanotubes,25 presum-

ably have spin-flip diffusion lengths not much different from FeNi (lPy
sd ∼ 5 nm),26 which

makes this material also very suitable. The metallic nanowire should preferably be longer

than the spin-diffusion length in order to achieve a complete angular momentum transfer.

After burning off the outer shells over the platinum nanowire (in addition, the MWNT may

also be pulled out to open the Pt wire), we force the current to flow through the metallic

wire that serves as a spin-sink and a rotor. It has recently been calculated that the con-

ductance may rapidly oscillate due to quantum interference effects as we change the overlap

between two nanotube shells,27–29 but disorder strongly enhance the intershell conductance,

consistent with experiments.30

The situation with not too high polarization of the MWNT connection to ferromagnet31

(P ∼ 0.01) has tendency to improve with recent experiments reporting TMR = 5% (P ∼
0.2).38–40 Half-metallic contacts to nanotubes might lead to much higher values.41 Adopting
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the maximum current through a single MWNT measured to date34 I = 1mA, we arrive at

an estimate for the mechanical torque generated in the rotor T ∼ T0 ≃ 10−19Nm where we

optimistically assume P ∼ 1. This exceeds by many orders of magnitude the torques that

can be induced by circularly polarized light (T ∼ 10−29Nm).3 The advantage of a MWNT

bearing is that the friction force can be very small. The bearing may still get stuck at certain

preferred positions that minimize the interaction energy of the sleeve and shaft. However,

each layer is likely to have a different chirality, so the potential barrier (static friction force)

hindering rotation should be very small. An upper boundary for the static friction force per

unit area has been measured32 to be 6.6 × 10−13N / nm2 (but the actual value is possibly

much smaller). For a nanotube radius of 2 nm this corresponds to a static friction torque

per unit area of less than 10−21Nm / nm2. For the same nanotube radius, the overlap length

between the rotor and the outer shells can be made at least 10 nm without the risk that

the rotor gets stuck by the static friction. When the barrier to rotation is overcome, the

static friction is taken over by the dynamic friction. The latter is much smaller initially, but

increases proportional to the angular velocity.33

The proposed motor could be useful in the next generation of synthetic nanometer-scale

electromechanical systems. With an attached metal plate the rotor can serve as a mir-

ror, with relevance to high-density switching devices.1 The motor can find applications for

inducing and detecting motion in microfluidics systems and biological systems.

V. CONCLUSIONS AND OUTLOOK

We find that the electric current-induced creation and detection of mechanical torques

in magnetic nanostructures is possible by rectification technique suggested recently in Ref.

9 and 10. We develop a detailed theory of the magnetization dynamics in the presence

of electric currents relevant for these experiments that agrees with the very recent study

by Kupferschmidt et al..35 Subsequently, we predict that an alternating current can drive

magnetovibrational dynamics, which can be read out by the generated DC voltage. Finally,

we come to the conclusion that electric current-induced mechanical torques can create rotary

motion. We propose a novel spin-transfer driven nanomotor based on integrating metallic

nanowires with carbon nanotubes.

In the study of the rectification effect, we find that the DC voltage originates from
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two mechanisms: the rectification of the applied AC current and the spin-pumping by the

precessing ferromagnet. The second mechanism is important only in very thin ferromagnetic

layers when the Gilbert damping is strongly enhanced (in accord with Ref. 35). It should

be noted that the shape of DC voltage as a function of frequency is a symmetric Lorentzian

for the spin-pumping mechanism. This can be distinguished from the voltage induced in the

presence of noncollinear magnetic anisotropies or the “effective” spin-transfer field, which

causes asymmetric line shapes.

We generalized these results to treat magnetovibrationally coupled systems. The

strongest coupling is achieved when the lowest mechanical mode is at resonance with the

FMR frequency. In that case, a magnetopolariton is formed, and the Lorentzian shape of

the DC voltage splits by an amount that is governed by the sensitivity of the mechanical

system to external torques and by the magnetic anisotropies (without which there would be

no magnetovibrational coupling). The technique based on the resonant magnetovibrational

coupling can also be used to detect vibrations that are created externally. It can therefore be

an alternative to the magnetomotive technique employed in fast transducers of mechanical

motion.22

We conclude that the functionalities of the spin-transfer torque, already used in appli-

cations such as magnetic memories, can be extended by taking into account the coupling

with the mechanical degrees of freedom. The experimental realization is a challenge, since

free-standing metallic small structures on micro and nanoscale need to be fabricated and

manipulated.
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Appendix A: Effect of mixing conductance on the torque and magnetoresistance

In this Appendix, we generalize the relations derived in Ref. 14 for the torques and

resistances in a general N|F1|N|F2|N multilayered structures without bulk layer spin-flip

scattering to the presence of an imaginary part of the mixing conductances or“effective field”.

We use magnetoelectronic circuit theory as formulated by Eqs. (11,12). Our result for the

spin-transfer torque acting on the first ferromagnet (the torque on the second ferromagnet

can be obtained by permutation of indexes 1 and 2, and by replacing I with −I) can be

summarized by:

T1
ST =

I~

2e
[ηsm1 × (m1 ×m2) + ηf(m2 ×m1)] , (A1)

where we introduced the spin-transfer efficiencies:

ηs =

(
[R2−(Rr +R1)− R1−R2α] (1 +

R2r

Rr
G̃2

1i)

+
R1r

Rr

[
R2−

G1
− R1−

G2
α

]
G̃2

2i +
R1rR2r

Rr
(R1− +R2−α)G̃1iG̃2i

)/

(
(Rr +R1)(Rr +R2)−R1R2α

2 +

[
(Rr +R1)

G2

− R2

G1

α2

]
R2r

Rr

G̃2
1i

+

[
(Rr +R2)

G1

− R1

G2

α2

]
R1r

Rr

G̃2
2i + 2α

R1rR2r

Rr

(
1

G1

+
1

G2

)G̃1iG̃2i

)

,

ηf =

(
[R2− (Rr +R1)− R1−R2α]

R1r

Rr

G̃1i − [R1− (Rr +R2)− R2−R1α]
R2r

Rr

G̃2i

+
R1r

Rr

[
R2−

G1

− R1−

G2

α

]
G̃1iG̃

2
2i −

R2r

Rr

[
R1−

G2

− R2−

G1

α

]
G̃2iG̃

2
1i

)/

(
(Rr +R1)(Rr +R2)− R1R2α

2 +

[
(Rr +R1)

G2
− R2

G1
α2

]
R2r

Rr
G̃2

1i

+

[
(Rr +R2)

G1
− R1

G2
α2

]
R1r

Rr
G̃2

2i + 2α
R1rR2r

Rr
(
1

G1
+

1

G2
)G̃1iG̃2i

)

,

with α = cos θ, 4R1(2) = 1/G1(2)↑ + 1/G1(2)↓ − 2/G1(2)r, 4R1(2)− = 1/G1(2)↑ − 1/G1(2)↓,

4/G1(2) = 1/G1(2)↑ + 1/G1(2)↓, 2R1(2)r = 1/G1(2)r, 2Rr = 1/G1r + 1/G2r and G̃1(2)i =

G1(2)i/G1(2)r, where G1(2)↑ and G1(2)↓ are conductances of the left (right) ferromagnet in-

cluding the left (right) normal layer (when necessary, the middle layer conductance can also

be included in these conductances), G1(2)↑↓ = G1(2)r + iG1(2)i is the mixing conductance of

the left (right) ferromagnet.
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Figure 10: Enhancement of the torque by a nonzero imaginary part of the spin-mixing conductance;

dashed line for symmetric (P = R−G = 0.7, G/Gr = 0.6, G̃i = 0.6) and solid line for asymmetric

junctions (P1 = R1−G1 = 0.6, G1/G1r = G1/G2r = 0.6, G̃1i = −G̃2i = 0.4, G1 = 2G2, P2 =

R2−G2 = 0.13).

The angular magnetoresistance reads:

R(θ) = Rr +R1 +R2 −
([

R2
1− +R2

2− + 2R1−R2−α
]
(1 +

R2
2r

R2
r

G̃2
1i +

R2
1r

R2
r

G̃2
2i)

+
(1− α2)

R2
r

([
R2

1−R2 +R2
2−R1

] [
Rr + R2rG̃

2
1i +R1rG̃

2
2i

]
+R2

1−R1rR2rG̃
2
2i +R2

2−R1rR2rG̃
2
1i

)

+2(R1− +R2−α)(R2− +R1−α)
R1rR2r

R2
r

G̃1iG̃2i

)/

(
(1 +

R1

Rr
)(Rr +R2)−

R1

Rr
R2α

2 +

[
(Rr +R1)

G2
− R2

G1
α2

]
R2r

R2
r

G̃2
1i

+

[
(Rr +R2)

G1
− R1

G2
α2

]
R1r

R2
r

G̃2
2i + 2α

R1rR2r

R2
r

(
1

G1
+

1

G2
)G̃1iG̃2i

)

(A2)

When the imaginary part of the mixing conductance is small, the absolute value of the

torque Eq. (A1) and the magnetoresistance Eq. (A2) contain only second order corrections

in G̃1i and G̃2i. In general, we conclude that the torque is enhanced when the imaginary

part is not zero, as it is shown in Fig. 10. This enhancement makes it impossible to have

noncollinear points of zero torque reported earlier14,42 (see Fig. 10) which can influence the
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stable precessional states.

Appendix B: Spin pumping and DC voltage in asymmetric N|F|N structures

We consider here an asymmetric N1|F|N2 layered structure connected to two reservoirs

and excited by rf magnetic fields. We are interested in the DC voltage that builds up under

the condition of zero charge current. The system can be described by the generalized LLG

equation and magnetoelectronic circuit theory:

dM

dt
= −γM×Heff +

α

Ms

M×
(
dM

dt

)
− γ~

2eVm

m× [(Is1 + Is2)×m] (B1)

I1(2) = (G↑ +G↓)(µ
2(1)
0 − µ

1(2)
0 ) + (G↑ −G↓)(µ

2(1)
s − µ

1(2)
s ) ·m (B2)

Is1(2) = m
[
(G↑ −G↓)(µ

2(1)
0 − µ

1(2)
0 ) + (G↑ +G↓)(µ

2(1)
s − µ

1(2)
s )

]

−
(
2m× µ

1(2)
s − ~ṁ

)
×mGr −

(
2m× µ

1(2)
s − ~ṁ

)
Gi, (B3)

where G↑ and G↓ describe the spin-dependent conductance limited by interface and bulk

scattering of the ferromagnet, G↑↓ = Gr + iGi is the interface mixing conductance of the

ferromagnet, the vector m = M/Ms is the direction of the magnetization, µ0 and µs are the

chemical potential and spin-accumulation in the normal metals, respectively.

For metallic interfaces, Gi usually amounts to only a few percent of Gr. We calculate

here the linear response to the external rf magnetic field when Gi is disregarded:

χxx(ω) = (Mx/hx)ω =
(γMs)

2(Ny +Nxyα)

ω2(1 + α2
se)− ω2

m(1 + α2) + 2iα′ωωm
. (B4)

χyx(ω) = (My/hx)ω =
γMs [γMs(Nxy +Nxα)− iω]

ω2(1 + α2
se)− ω2

m(1 + α2) + 2iα′ωωm

. (B5)

where α is the bulk Gilbert damping, αse = γ~2 (G1 +G2) / (2eMsV ) is the extra damp-

ing due to spin-emission, 1/G1 = 1/g1 + 1/2Gr, 1/G2 = 1/g2 + 1/2Gr with g1 and g2

being conductances of the R1|N1 and N2|R2 interfaces, respectively, α′ = (α + αse)(Nx +

Ny)/
(
2
√
NxNy −N2

xy

)
(note that, when important, bulk scattering can be easily included

into the conductances g1, g2 and Gr).
14,43

By solving Eqs. (B1-B3) to the second order in a small rf magnetic field the generated

DC voltage can be expressed via the susceptibilities Eqs. (B5) and (B4) as:

eV = 2~ωPGr

(
1

g1
− 1

g2

)
Im

(
χxxχ

∗
yx

)
h2
x/M

2
s , (B6)
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where we introduced the effective polarization of the device P = (1/G↑ − 1/G↓)/(1/G↑ +

1/G↓+4/g1+4/g2). The asymmetry of the interfaces R1|N1 and N2|R2 is seen to be crucial

for the generation of a DC voltage in this geometry. Note that the dependence of the DC

voltage on the frequency has a Lorentzian line shape as follows from Eqs. (B4-B6). When

P > 0, the positive sign of the voltage corresponds to the voltage applied to the junction

with higher conductance g1(2).

The first order correction in the mixing conductance Gi leads to a slight change of the

height of the Lorentzian and to a shift of the resonance frequency:

ω2 = ω2
m(1−

γ~2 (G2
1 +G2

2)

4eMsVm

Gi

G2
r

) (B7)

Note that the magnetovibrational coupling does not change the form Eq. (B6), when the

proper susceptibilities Eqs. (34) are substituted. The magnetovibrational coupling can thus

be observed as a splitting of the Lorentzian peak due to spin pumping in an asymmetric

N1|F|N2 structure. Generation of a DC voltage by magnetization precession of a single

ferromagnetic layer has been suggested in Ref. 37. However, those authors concentrate on

the generation of a DC voltage due to spin-flip scattering in the ferromagnet.

Appendix C: Spin pumping and rectification of AC currents in F|N|F|N structures

It follows from the previous appendix on N1|F|N2 structures that a spin-coherent

F1|N|F2|N structures in which the normal metals are identical and an extra ferromagnetic

layer F1 (with fixed magnetization) causes the asymmetry, should generate a DC voltage

as well. In such a structure, AC currents instead of the rf magnetic field can generate spin

transfer torques when the magnetizations are non-collinear. Since the analytical expressions

for arbitrary angles between the magnetizations are complex, we concentrate here, without

loss of generality, on a 90 degree configuration.

We assume a constant AC current bias on the system, thus forcing the extra charge current

due to spin pumping to vanish. Following the derivation in Appendix B, and disregarding

the imaginary parts of mixing conductances for both interfaces, we arrive at the following

expressions for the linear response functions:

χxI(ω) = (My/I)ω =
~γ

2eVm

η1 [γMs(Ny +Nxyα)− iωαse
x ]

ω2(1 + αse
x αse

y )− ω2
m(1 + α2) + iω∆

, (C1)
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χyI(ω) = (Mx/I)ω =
~γ

2eVm

η1 [γMs(Nxy +Nxα)− iω]

ω2(1 + αse
x α

se
y )− ω2

m(1 + α2) + iω∆
, (C2)

where the anisotropic Gilbert dampings due to spin emission are αse
x =

γ~2 (G1 +G2) / (2eMsVm), αse
y = γ~2 (G↑↓ +G2) / (2eMsVm), ∆ = γMs(Nx(α + αse

x ) +

Ny(α + αse
y ) + α(αse

y − αse
x )Nxy), 1/G1 = (1/g1↑ + 1/g1↓)/4 + 1/2Gr, 1/G2 = 1/g2 + 1/2Gr,

1/G↑↓ = 1/2Gr + 1/2g1r with g1↑↓ = g1r + ig1i (however g1i is neglected) and g1↑(↓) being

the mixing and normal conductances of the R1|F interface, respectively.

The second order analysis provides us with an expression for the DC voltage. After

combining it with Eq. (22), we arrive at the full expression for the DC voltage in terms of

the susceptibilities Eqs. (C1,C2), consisting of separate contributions due to rectification

and spin pumping:

U0 =
I20
2Ms

∂R(ν)

∂ν
ReχyI +

2~ω

e
PGr

(
1

g̃1
− 1

g2

)
Im (χxIχyI) I

2
0/M

2
s , (C3)

where an effective conductance is 1/g̃1 = (3/2g1r + (1/4g1↑ + 1/4g1↓)R↑↓/R1) /4 and an ef-

fective polarization of the device is P = (1/4G↑− 1/4G↓)/(1/4G↑+1/4G↓+1/2g1r +1/g2).

The dependence of the first term in Eq. (C3) on the frequency is in general a combination of

the Lorentzian with an antisymmetric Lorentzian, as it is discussed in the Section IIIA. The

second term becomes important when αse & α and
1/g̃1 − 1/g2
1/g1↑ − 1/g1↓

& 1. When the damping

due to spin emission is small or the asymmetry of the tri-layer weak, the second term in Eq.

(C3) can be disregarded. Its dependence on the frequency has a Lorentzian shape, see Eqs.

(C1,C2). In general, the signs of the first and second term in Eq. (C3) can be opposite,

thus possible suppressing the symmetric-Lorentzian part of DC voltage.

The first order corrections in a small mixing conductances, Gi and g1i lead to a change

of the height of the symmetric and antisymmetric parts of Lorentzian and also to a shift of

the resonance frequency, as it arises from the expressions for the susceptibilities:

χxI(ω) = (My/I)ω =
~γ

2eVm

iω(η2 − η1α
se
x ) + γMsΓx

ω2(1 + αse
x α

se
y + 2κ)− ω2

m(1 + α2) + iω∆
, (C4)

χyI(ω) = (Mx/I)ω =
~γ

2eVm

−iω(η1 + η1κ− η2α
se
y ) + γMsΓy

ω2(1 + αse
x α

se
y + 2κ)− ω2

m(1 + α2) + iω∆
, (C5)

where κ = γ
~
2

4eMsVm
(

1

R↑↓R1
+

1

R2
2

)
Gi

G2
r

, Γx = η1(Ny + Nxyα) + η2(Nxy − Nyα) and Γy =

η1(Nxy +Nxα) + η2(Nx −Nxyα).
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Finally, we present our results in the presence of the magnetovibrational coupling (e.g.

see Fig. 6) keeping only the dominant terms in small Gilbert damping:

χxI(ω) =
~ sin θγ

2eVm

×iω(η2 − η1α
se
x + g(1−Nxy/Nx)F (ω)) + γMsΓx

ω2(1 + κ)− ω2
m + iω∆+ ΛF (ω)

g→0≈ ~ sin θγ

2eVm

η2iω + γMsΓx

ω2 − ωm + iω∆+ ΛF (ω)
,

(C6)

χyI(ω) =
~ sin θγ

2eVm

×−iω(η1 + η1κ+ η2α
se
y ) + γMsΓy [1 + g (Hz/MsN

1
x)F (ω)]

ω2(1 + 2κ)− ω2
m + iω∆+ ΛF (ω)

g→0≈ ~ sin θγ

2eVm

−η1iω + γMsΓy

ω2 − ωm + iω∆+ ΛF (ω)
.

(C7)

These susceptibilities can be used in Eq. (C3) in order to calculate the generated DC

voltage. In the regime of resonant magnetovibrational coupling, the second (spin emission)

term in Eq. (C3) is comparable with the first one only when αse ∼ β/ωm. The second term

corresponds to two symmetric Lorentzian peaks split by ReΛ.

Spin pumping therefore can play an important role when the enhanced interface damp-

ing is comparable to the bulk Gilbert damping and, in the regime of magnetovibrational

coupling, the mechanical damping.
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