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Abstract
Background: This study analyzes metabolomic data from a rice tillering (branching)
developmental profile to define a set of biomarker metabolites that reliably captures the metabolite
variance of this plant developmental event, and which has potential as a basis for rapid comparative
screening of metabolite profiles in relation to change in development, environment, or genotype.
Changes in metabolism, and in metabolite profile, occur as a part of, and in response to,
developmental events. These changes are influenced by the developmental program, as well as
external factors impinging on it. Many samples are needed, however, to characterize quantitative
aspects of developmental variation. A biomarker metabolite set could benefit screening of
quantitative plant developmental variation by providing some of the advantages of both
comprehensive metabolomic studies and focused studies of particular metabolites or pathways.

Results: An appropriate set of biomarker metabolites to represent the plant developmental
period including the initiation and early growth of rice tillering (branching) was obtained by: (1)
determining principal components of the comprehensive metabolomic profile, then (2) identifying
clusters of metabolites representing variation in loading on the first three principal components,
and finally (3) selecting individual metabolites from these clusters that were known to be common
among diverse organisms. The resultant set of 21 biomarker metabolites was reliable (P = 0.001)
in capturing 83% of the metabolite variation in development. Furthermore, a subset of the
biomarker metabolites was successful (P = 0.05) in correctly predicting metabolite change in
response to environment as determined in another rice metabolomics study.

Conclusion: The ability to define a set of biomarker metabolites that reliably captures the
metabolite variance of a plant developmental event was established. The biomarker metabolites are
all commonly present in diverse organisms, so studies of their quantitative relationships can provide
comparative information concerning metabolite profiles in relation to change in plant development,
environment, or genotype.
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Background
Variation in crop development due to genotype and envi-
ronment strongly impacts yield. Increases in crop produc-
tion efficiency are needed on a global basis because of
projected expanding human populations coincident with
regional decreases in area of arable land [1,2]. "An under-
standing of crop responses to environment will provide
the fundamental basis for developing methods for achiev-
ing these increases in efficiency" (Hall,[2]). Plants interact
with environment in both chemical and physical ways,
but we have very little systematic understanding of how
the plant responds chemically during development and in
developmental response to environment [3,4]. This lack
of knowledge of the broad changes in metabolite patterns
during development limits our efficiency to manipulate
the cellular or molecular aspects of plant development
with intent to influence yield or sustainability of
production.

Recent advances in plant metabolomics, that is large-scale
phytochemical analysis of plants [5-7], are paving the way
for identifying broad changes in metabolite patterns.
Metabolomics has typically been used to characterize the
comprehensive changes due to specific environmental or
genetic perturbations [6]. Gas chromatography-mass
spectrometry (GC-MS) methods currently are being used
in many of the metabolomics studies and can provide an
accurate and reproducible quantitative and qualitative
assessment of a large complement of the metabolome
[5,8,7]. A potential disadvantage of the GC-MS methods
lies in the serial processing of samples. The time required
to analyze large sample numbers can be lengthy for some
studies.

Many samples are needed to characterize quantitative
aspects of developmental variation. In these situations,
methods that use parallel processing of samples to allow
high-throughput assay would complement the traditional
comprehensive, but serial, procedures, such as GC-MS. A
potential disadvantage of the parallel processing methods
lies in their dependence on predetermination of the
metabolites to be assayed, which presents a possible bias
in observed metabolite patterns.

The use of biomarker metabolites is common in many
biological fields, including clinical chemistry. Foyer et al.
[9] have recently proposed the use of certain amino acids
or combinations of them as biomarker metabolites of sev-
eral metabolic processes or states of plants. In the clinical-
chemistry approach, the metabolites are typically chosen
based on their diagnostic value, whereas in our study an
approach was sought that combined the advantages of the
diagnostic approach and the comprehensive metabo-
lomic approach. The comprehensiveness is approached
when the set of biomarkers captures much of the variance

of the metabolome. The diagnostic value is approached
through interpretation of the pattern of the biomarkers
relative to each other, and the shifts or distortions in this
pattern under various conditions. We anticipate that a
biomarker metabolite set constructed through data reduc-
tion methods will substantially overlap or capture
biomarker sets developed through knowledge of plant
physiology.

Representatives from clusters of metabolites can probably
capture much of the metabolite variance of a metabo-
lomics study because multiple correlations among metab-
olites are commonly observed in metabolomics studies
[10]. If a set of representatives could be identified for
which: (1) the elements (metabolites) represented much
of the metabolite variance within a study potentially
impacting the improvement of crop production effi-
ciency, (2) the elements were relatively independent of
each other, and (3) the elements were common and
found in any typical plant sample, then the resultant set of
biomarker metabolites could be used in comparative
screening of metabolite patterns of plant developmental
periods, of plant response to specific environmental fac-
tors, or of genotypes in set conditions, and could provide
a complementary tool of the comprehensive metabo-
lomic technologies and of diagnostic biomarker
approaches.

Metabolite composition is expected to vary consistently in
response to development and environment. Core primary
metabolites are known to provide good metabolite dis-
crimination between genotypes [11]. This is expected
because their quantities are typically affected by many
genetic changes, i.e. they are involved in highly regulated
activities. Also likely would be an effect on their quantities
due to developmental change partially triggered by the
internal programming influencing development, and by
the need for certain metabolic transitions to occur with a
change in growth pattern [9]. Many of these core primary
or central metabolites show significant change in
response to environmental conditions [12,13]. Knowl-
edge of variation in central metabolism is furthermore
considered fundamental for the progress of metabolic
engineering [14], indicating a broad belief in its consistent
and impacting variation. Primary and central metabolites
need to change differentially in development and in
response to environment because of biological reasons,
and have been demonstrated to do so in a variety of
organisms (the examples above include higher plants and
Escherichia coli). In addition, a fair amount of general
knowledge and assay procedures exist for these metabo-
lites. The likelihood of meeting the three requirements
itemized in the above paragraph was considered good, if
the following simple procedure was used: 1) partition the
variance in metabolites of the developmental event into
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independent components, 2) ensure that the variation
within each of the major components was represented,
and then 3) identify a minimal set of central (or nearly
central) metabolites that satisfied these conditions.

The utility of a biomarker metabolite set for a develop-
mental study depends on the ability of the biomarkers to
provide a snapshot of an aspect of plant development. The
ability of the biomarkers to faithfully represent the pattern
of variation among the tissues sampled at various loca-
tions within the plant and at different plant ages provides
a type of internal validation. An appropriate representa-
tion of the pattern of relationships among the tissue sam-
ples of this study is the set of correlations, based on the
metabolite data, existing among them. The reliability of
the biomarker metabolite set to capture the metabolite
variance can thus be based on the ability to discern the
same pattern of relationships among the tissues based on
the correlations among them relative to the relationships
based on correlations utilizing a more comprehensive
metabolite dataset.

If a reliable, validated set of biomarker metabolites could
be developed, then a final objective was to provide a dem-
onstration of the type of output from comparative screen-
ing of metabolite patterns.

The metabolomics dataset used for development of the
proposed biomarker metabolite set examined metabolite
composition during initial tiller development of rice
(Oryza sativa L.). Tillering is a major yield component of
rice, as well as of wheat and many of the other small
grains, because the number of tillers per land area strongly
influences the number of panicles (heads of grain) per
land area. Tiller initiation is sensitive to genotype and
environmental effects. Environmental factors affecting
tiller initiation include most known to affect plant devel-
opmental events, such as radiation quantity and spectral
quality, adequacy of nutrition, extent of oxidative stress,
and presence of growth inhibitors. A longer-term goal of
our project is to understand the commonalities and differ-
ences in how these factors affect tiller initiation, so that
schemes can be developed to minimize their effects and
increase the consistency and manipulability of rice tiller-
ing and thus rice crop yield and quality.

Results and discussion
First, some interpretation is provided of the principal
components of the metabolite space in rice tiller develop-
ment. This includes some examination of the patterns in
metabolite loadings on Principal Component 1. Next, the
results from a metabolite clustering based on the ranked
principal component loadings are provided. This section
includes the resulting selection of the biomarker metabo-
lites, and a check of their relative independence. The next

section discusses the physiological relevance of the
biomarker metabolites with a focus on their loadings on
the top three principal components. After this, some inter-
nal validation is provided by analyzing the reliability of
the biomarker set to represent the pattern of metabolite
variation observed among the tissues. An external valida-
tion is then provided by testing the ability of individual
biomarkers to predict the changes in concentration of
other metabolites in response to an environmental varia-
ble. Finally, a type of output from comparative screening
of metabolite patterns is demonstrated.

Interpretation of principal components of the metabolite 
space in rice tiller development
The metabolite profiles from the rice tiller development
study were redistributed into independent subsets
through the application of principal component analysis
of the metabolite space (as opposed to plant developmen-
tal series space). Principal components in standardized
centered metabolite space were determined, thus the
results are based on analysis performed on the magnitude
and pattern of the variation in concentrations of the indi-
vidual metabolites (rather than on their absolute concen-
trations). The first five principal components, which
explained 83% of the total metabolite variance (the first
three principal components explained 62% of the total),
were evaluated in this study.

The first pass at interpreting the principal components
involved plotting the scores against the two developmen-
tal variables of days post-emergence and height of the
sample's mid-section (Figure 1). If a principal component
was strongly influenced by development, then its score
would be expected to demonstrate a pattern of change
with respect to both developmental variables. Such a pat-
tern was observed in the plots of Principal Component 1,
3, and 5 scores (Figure 1). If a principal component was
strongly influenced by environment, independently of
development, then the scores would be expected to dem-
onstrate a pattern of change relative to days post-emer-
gence but not height of the tissue section at sampling. An
example of a possible environmental variation that could
have an influence only on days post-emergence would be
change in photosynthetic radiation intensity on the day of
harvest due to variation in cloud cover. Such a pattern was
observed in the plots of Principal Component 4 (and
probably also Principal Component 2, if the strong influ-
ence of the most basal tissue location is temporarily disre-
garded) (Figure 1). The tendency of the main influence on
principal component scores' variations to alternate
among two main categories (possibly developmental and
environmental) of influences is not unusual (for another
example, see Tarpley et al. [15], in which there was dem-
onstrated alternation between physiological and environ-
mental influences).
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Patterns in metabolite loadings on Principal Component 1
Patterns in metabolite loadings on Principal Component
1 suggested some metabolite variation could be inter-
preted via well-known metabolism. For example, Ireland
[16] discusses the primary routes of nitrogen flow in
amino acid synthesis in plants. A number of the involved
amino acids were also relatively strong – positive or nega-
tive – contributors (loaders) on the Principal Component
1 of our study. About half of the relatively strong (top 8 or
9 positive or negative loaders of the 155 metabolites that
were identified with a standards library, and remaining
after removal of some members of highly correlated sets
of metabolites) were amino acids, including those indi-
cated by Ireland, indicating that patterns of metabolites
observed in relation to plant developmental or environ-
mental factors can sometimes be related to well-known
metabolism. For Principal Component 1 in this study,
several of the relatively strong positive loaders (serine, gly-
cine, alanine, aspartate) are fairly close in metabolic space
to glutamate, which is a relatively strong negative loader,
and thus somewhat distant from them in our metabolite
space. Glutamate and aspartate, for example, are sepa-
rated by a single metabolic step – the glutamate:oxaloace-
tate aminotransferase [16].

These same four metabolites opposing glutamate in the
Principal Component 1 loading in metabolite space
(alanine, aspartate, and the glycine/serine ratio) have
been proposed as a biomarker metabolite set of the rela-
tive rate of photorespiration in many C3 crop species
based on physiological understanding [17,9]. Photorespi-
ratory activity usually increases with advancement in leaf
development [18,19], and would be expected to increase
during the developmental period in this study. The high
positive loadings of the photorespiration markers on Prin-
cipal Component 1 supports this expectation because
Principal Component 1 scores tend to increase with devel-
opment, thus these high positive loaders are increasing in
relative concentration during development also. The met-
abolic links among these amino acids, or of the biomarker
metabolite set capturing their behaviour along with those
of other metabolites in more dimensions of the metabo-
lite space, will be of interest in interpreting the metabolite
variance present in tiller initiation and early development
in rice.

Metabolite clustering based on ranked principal 
component loadings
Metabolite selection was initiated via K-means clustering
into 27 clusters based on ranked loadings on the three top
principal components. Clusters representing 20 of these
27 combinations were found. From 17 of these clusters,
representative metabolites were selected based foremost
on their proximity to the center of the cluster and next-
most on their perceived commonality as a metabolite. For

Principal component scores during a rice plant developmen-tal period bridging first tilleringFigure 1
Principal component scores during a rice plant devel-
opmental period bridging first tillering. The scores 
(categorized by value using a grey-scale as indicated in the 
legend) of Principal Components 1 to 5 (Panels 1 to 5, 
respectively) are plotted against the progression in sampling 
of days post-emergence (horizontal axis) and the height of 
the sampled tissue section (as height [mm] of mid-section – 
the vertical axis of each panel). Rice plants have a basal mer-
istem, so an increase in mid-section height is also a progres-
sion in development. The principal components are of a 
standardized, centered metabolite space from an analysis of a 
comprehensive metabolomics dataset. Principal Components 
1, 3 and 5 show a pattern of change relative to both develop-
mental variables (axes), while Principal Component 4 and 
Principal Component 2 (if the influence of the 1-mm mid-sec-
tion height samples are ignored) vary mainly with days post-
emergence and are probably influenced by environment 
more than development. Each value is the mean of three rep-
licates, each of which pooled sections representing 50 differ-
ent plants.
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four of the remaining ten desired combinations, a metab-
olite from a neighboring cluster was considered suffi-
ciently close to be useful when it had loadings on the first
two principal components categorically identical to that
sought and with "near-miss" location in loadings on Prin-
cipal Component 3. No representative metabolites were
found for the remaining six combinations. The strongest
pattern in common among the six unfilled combinations
is that only one has a strong negative loading on Principal
Component 1. In other words, because of the tendency of
Principal Component 1 scores to increase with develop-
ment (grasses have basal meristematic tissue, so an
increase in mid-section height is also a progression in
development) (Figure 1), a representative metabolite
could almost always be found in this study when a
requirement for that metabolite was to possess a large spe-
cific proportional decline in its concentration during
development relative to other metabolites. The resultant
set of metabolites and the combinations they represent
are illustrated in Table 1. An additional data file (see Addi-
tional file: 1) lists the metabolites that were used in the
principal component analysis and subsequent clustering,
and have been at least partially or tentatively identified.

The actual ranks based on loading values on the top three
principal components are provided.

The distribution of the Pearson correlation values of pair-
wise comparisons among the selected biomarker metabo-
lites was determined. The systematic method used to
select the biomarker metabolites would be expected to
yield a range of Pearson values. For example, a metabolite
picked from a cluster of metabolites with strong negative
loadings on Principal Components 1, 2, and 3 (i.e., treha-
lose) would be expected to have a fairly positive correla-
tion with citrate (negative on Principal Components 1
and 2, little loading on 3), not much correlation with
galactose (not much loading on Principal Components 1
and 2, negative on 3), and a strong negative correlation
with uracil (positive loader on all three Principal Compo-
nents). The mean Pearson value was 0.06 ± 0.06 (95%
confidence interval) and the dispersion was 0.41 ± 0.04
(95% confidence interval) (for comparison, a normal dis-
tribution would have a mean of 0 and a dispersion of 1,
but remember that a non-pathological distribution of cor-
relation values cannot have a dispersion approaching 1
because the correlation values are always between -1 and

Table 1: The selected biomarker metabolites, and the combinations of loadings on principal components that they represent. The set 
of biomarker metabolites selected to capture much of the variance in metabolite composition of a rice tillering event is listed. The 
selection procedure constrained the biomarker metabolites to represent variation in loading on the top three principal components in 
the standardized centered metabolite space of an analysis of a comprehensive metabolomics dataset. The loading of the individual 
metabolite on the principal components is symbolically represented: high positive loading (POS), weak loading (---), or high negative 
loading (NEG).

Biomarker metabolite Principal Component 1 
loading

Principal Component 2 
loading

Principal Component 3 
loading

Trehalose NEG NEG NEG
Citric Acid NEG NEG ---
Glutamic Acid NEG NEG POS
Mannose NEG --- NEG
Phenylalanine NEG --- POS
gamma-Aminobutyric Acid 
(GABA)

NEG POS NEG

Lysine NEG POS ---
Leucine NEG POS POS
Shikimic Acid --- NEG NEG
Succinic Acid --- NEG ---
Pyroglutamic Acid --- NEG POS
Galactose --- --- NEG
Valine --- --- POS
p-Hydroxybenzoic Acid --- POS ---
Thymine --- POS POS
Malic Acid POS NEG NEG
Salicylic Acid POS NEG ---
Oxalic Acid POS --- NEG
trans-Aconitic Acid POS --- POS
Carbonate POS POS NEG
Uracil POS POS POS
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1), indicating a satisfactory – relatively independent –
distribution of biomarker metabolites based on their
correlations.

Interpretation of physiological relevance of biomarker 
metabolites in relation to their principal component 
loadings
The biomarker metabolites presented here were selected
partially based on their range of loadings on the top three
principal components, and any interpretation of their
physiological relevance starts with an examination of
physiologically relevant groups of them contributing in
common to a particular principal component.

The Principal Component 1 score tends to increase with
development (Fig. 1), thus the relatively high proportion
of amino acids among the biomarkers with strong nega-
tive loading on Principal Component 1 (gamma-amino
butyric acid, glutamate, leucine, lysine and phenyla-
lanine) is consistent with other observations of a decrease
in amino acid contents of leaves during development
[20].

The biomarkers present in the tricarboxylic acid cycle
(malate, succinate and citrate) are all strong negative load-
ers on Principal Component 2. This component tends to
vary more with days post-emergence than with the more
strictly developmental variable of height of sampling of
the tissue. These results suggest the tricarboxylic acid cycle
is subject to coarse control in response to the environmen-
tal factor/s influencing Principal Component 2 values.

A strong opposition exists between the positive- and neg-
ative-loading biomarkers on Principal Component 3 with
respect to the nitrogen content of the metabolites. Nearly
all of the positive-loading biomarker metabolites are
nitrogen-containing – glutamate, leucine, phenylalanine,
pyroglutamate, thymine, uracil and valine; the sole excep-
tion is trans-aconitate. Trans-aconititate is the stable form
of aconitate and is capable of being formed from cis-aco-
nitate [21]. Nearly all of the negative-loading biomarker
metabolites are sugar or organic acid, non-nitrogen com-
pounds – galactose, mannose, trehalose, carbonate,
malate, oxalate and shikimate; the sole exception is
gamma-amino butyric acid (GABA). Among the higher
plants, GABA is the most widely distributed of the amino
acids in which the amino group is not in the alpha posi-
tion [22].

Reliability of the biomarker set to represent the pattern of 
metabolite variation observed among the tissues
If the resultant set of biomarker metabolites captures
much of the metabolite variance in development as
obtained through the metabolomic profiling, then we
should be able to "flip" the analysis around and detect

natural patterns of tissue relationships that relate to devel-
opment, and possibly environment, based on their
biomarker metabolite concentrations.

In order to evaluate the biomarker metabolite set for abil-
ity to consistently detect patterns in metabolite distribu-
tions among the tissues during development, we
compared the set of all correlations among the sampled
tissues based on the standardized and centered concentra-
tions of the 21 biomarker metabolites vs. the set of all cor-
relations based on the values of the five principal
components that explained most (83%) variance in the
original metabolomics data set. Figure 2 is a scatter plot of
the pairs of values for these two data sets. These metabo-
lite concentrations are standardized and centered in the
figure because our study was mainly interested in the mag-
nitude and pattern of the variation in the metabolites dur-
ing development. The correlation values plotted in the
figure have also been transformed to a Z-scale to bring out
the accuracy (slope of a fitted line would be near 1 with an
intercept near 0) in the ability of the biomarker metabo-
lite set to mimic the pattern among the tissues, and with
reasonable precision (r = 0.82).

The biomarker metabolite set was determined to be relia-
ble (P = 0.001) in capturing the metabolite-based rela-
tionships among tissues present in this particular study of
the advent of tillering in rice. We chose to not try to
explain any more of the variance of the original dataset
because our objective was to develop a biomarker metab-
olite set to detect patterns among the tissues during devel-
opment, but we could not, using biological reasoning,
explain any of the principal components after Principal
Component 5 in terms of patterns among tissues during
development. Thus, using only the first five principal
components served as a way of filtering out noise [23] in
the comprehensive dataset. This helps avoid overfitting of
the data [24].

External validation of the biomarker metabolite set
The proposed biomarker metabolite set gains value if used
in comparative screening, but its use in comparative situ-
ations requires some confidence in its transferability to
different situations. Partial confidence is provided by the
internal validation described in the above section, which
indicates the set was well-constructed, and also by some
natural groupings of metabolites associated with the
detected principal components. Full confidence, however,
requires a demonstration that the set is transferable. An
external validation was developed by re-analysing the data
of Sato et al. (2004) [25], which is a capillary electro-
phoresis (CE) – mass spectrometer: CE-diode array detec-
tor metabolomics study of rice leaves, with an emphasis
on the day/night transition (their Table 2). Pairs of metab-
olites were identified, in which one member of a pair is a
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biomarker metabolite that they also measured in their
study, and the other member of a pair was a metabolite
measured by Sato et al. for which a metabolite had a
definitive pairing with the biomarker metabolite. The
changes in the day/night ratio in metabolite concentra-
tion were compared for the members of each pair that
could be constructed. For the six pairs that could be used
in the validation, 4 predicted a higher day/night ratio with
a higher day/night ratio being observed for each of them,
1 predicted a lower day/night ratio with a lower ratio
being observed for it, and one predicted no change in day/

night ratio with a higher ratio being observed. The results
indicate that the biomarker metabolite set is likely (P =
0.05) to be useful in some other situations, for which
these primary and central metabolites would be expected
to change in a highly regulated manner, because the tested
biomarkers worked well as predictors in the different envi-
ronmental situation of the day/night transition in leaves.

Example output from comparative screening of biomarker 
metabolite patterns
A possible way of presenting the results of a biomarker
metabolite study is provided in Figure 3, in which four of
the tissue sections representing a developmental range in
the tillering study are profiled with respect to biomarker
metabolite variation. Clearly, these biomarkers of metab-
olite change in the tillering study change in definable
ways. Some (such as several of the organic acids) tend to
increase in concentration during development, others
(leucine, phenylalanine, trehalose, glutamate) decrease,
and others exhibit a more complex pattern. The combina-
tion of these patterns reliably reflects the changes in the
comprehensive metabolomic profile, and provides a fresh
view of the biology of this developmental event. The pres-
entation of metabolite variation based on biomarker
variation allows viewing in a single chart whereas the var-
iation of the original 332 metabolites (actually those
remaining after the removal of some members of highly
intercorrelated sets of metabolites) cannot be easily cap-
tured in a single chart. In contrast, the presentation of the
variation in only one or a few metabolites fails to capture
the broader patterns of change in composition that the
presentation of the variation in the biomarker metabolites
provides. The distortions in the shape (the relationships
of the biomarker metabolites to each other based on their
patterns of variation) in the biomarker metabolite space
can be captured graphically and/or mathematically and
evaluated as an approximation of the change in the com-
prehensive set of metabolites.

Applicability of biomarker metabolite set for comparative 
screening
Tillering is an important, well-regulated developmental
event in cereal crops and many other grasses. The ability
to capture the metabolite variance of this developmental
profile using a small set of common metabolites as
biomarkers suggests the ability to capture a large portion
of it in other plant developmental events using the same
set of biomarker metabolites. These metabolites are typi-
cally involved in heavily regulated metabolic activities,
and it comes as no surprise that they can be useful as
biomarkers in plant development. Differences in the use
of various metabolic pathways need to occur in different
developmental or growth response events, but these are
differences in degree. Some of these differences can help
modulate the different developmental or growth response

Plot of correlations among samples based on biomarker metabolites vs. based on principal component scoresFigure 2
Plot of correlations among samples based on biomar-
ker metabolites vs. based on principal component 
scores. The biomarker metabolite set does a reasonable job 
of mimicking the pattern among the sampled tissues based on 
the top five principal components. The pattern among the 
tissues with respect to their metabolite composition is dis-
cerned by the set of all pairwise Pearson correlation values 
among the tissues. This "correlation measure" of the pattern 
among the tissues was applied using two different sets of 
markers. The set represented by the horizontal axis used the 
scores of the top five principal components from the analysis 
of the comprehensive metabolomics dataset. The set repre-
sented by the vertical axis used the biomarker metabolite 
concentrations. These metabolite concentrations are stand-
ardized and centered because our study was mainly inter-
ested in the magnitude and pattern of the variation in the 
metabolites during development. The correlation values plot-
ted in the figure have been transformed to a Z-scale to bring 
out the accuracy (slope of a fitted line would be near 1 with 
an intercept near 0) in the ability of the biomarker metabo-
lite set to mimic the pattern among the tissues, and with rea-
sonable precision (r = 0.82).
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Magnitude and pattern of variation in biomarker metabolite concentrations in samples ranging in developmentFigure 3
Magnitude and pattern of variation in biomarker metabolite concentrations in samples ranging in develop-
ment. Four of the tissue samples representing a developmental range are profiled with respect to biomarker metabolite varia-
tion. The samples progress in height at mid-section of the sampled tissue and in days post-emergence, thus they represent a 
cross-section of the larger set of tissue samples. The biomarker metabolites are listed along the horizontal axis, and each dot 
plot shows the Z-scores for the biomarker metabolite concentration. The metabolites vary a lot in absolute concentration, so 
the Z-score is used to equalize the overall variation in concentration of the metabolites during the study. Thus the figure shows 
the pattern and magnitude of the variation among the presented tissues, but also the amount of this variation relative to that of 
the metabolite concentration for the whole study. For example, oxalic acid and glutamate both have a fairly wide range of Z-
scores for these samples, although the pattern of variation is opposite.
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events [9]. The interrelationships among the biomarker
metabolites would be expected to change in consistent
ways in response to change in development, genotype and
environment. Comparisons of the changes in the interre-
lationships of the biomarkers (of the stretches and tucks –
the distortions – in the biomarker space) under various
conditions will provide new information about plant
physiological response in development and in response to
environment. The biomarker metabolite set cannot be
optimal for any set of conditions, but is likely to be fairly
robust in capturing physiologically real differences among
them, while being responsive to eventual metabolic
interpretation.

Conclusion
Variation in crop development due to genotype and envi-
ronment greatly impacts yield, yet the community's
understanding of the quantitative biochemical variation
in plant development is small.

This paper has presented an approach to developing a
biomarker metabolite set that captures much of the
metabolite variation present in a comprehensive metabo-
lomics set of a plant developmental event, tillering, in
rice. The resulting biomarker set is intended to provide
some of the advantages of a metabolomics approach and
of the use of one or a few diagnostic metabolites.

The approach uses simple and commonly available mul-
tivariate statistics, namely principal component analysis
and K-means clustering, to assist with the biomarker
metabolite selection. The resulting set of 21 biomarkers
was shown to be reliable in capturing the metabolite var-
iance in the comprehensive metabolomics study and valid
for predicting metabolite changes observed in another
metabolomics study, while capturing variation that has
reasonable potential to be related to well-known
metabolism.

The selection of the biomarker metabolites was further
constrained to primary or central or common metabo-
lites. Because the selected metabolites are common
among diverse organisms and often have specific assay
procedures already developed (e.g., Bergmeyer [26], Pas-
soneau and Lowry [27], Gibon et al. [4], and Kiianitsa et
al. [28]), the biomarker set is amenable to future assay via
high-throughput technologies, and in application to
diverse situations. The biomarker metabolite set can serve
as a basis for comparative screening of metabolite patterns
of plant developmental periods, of plant response to spe-
cific environmental factors, or of genotypes in set
conditions.

Methods
Culture of plants and initial preservation of tissue samples
Seedlings of rice cv. IR-36 were grown in a black clay soil,
typical of the area's rice fields, in flats in the greenhouse
under typical temperature and supplemental lighting
regimes at the Texas A&M Agricultural Research and
Extension Center at Beaumont, Texas, USA. Nitrogen fer-
tilizer was applied as urea at the 2–3 leaf stage. Sampling
started one week after emergence and continued at two- to
four-day intervals for a total of five dates over a 10-day
period. Separate sets of seedlings were used at each sam-
pling date, thus avoiding injury to existing plants. The
seedlings developed to about the 3-leaf to 5-leaf stage dur-
ing this interval. All samples were collected, processed and
stored between 1000 and 1400 h CDT (near solar mid-
day). The soil was washed off the seedlings within five
minutes, and the seedlings placed with roots in tap water
until dissection. This is an established procedure for
maintaining rice plant integrity for short periods during
sampling.

Seedlings were sectioned in 2-mm intervals along the
developing culm, starting at the base of the plant and con-
tinuing for a total of ten sections. At this developmental
stage, 2-mm sections are thick enough to ensure that the
large majority of cells are not disrupted from the slicing
action of the new ethanol-cleansed razor blades. This
minimizes injury response. Each replicate contained tis-
sue from an average of 50 seedlings, i.e. 2-mm sections
from the same culm position for each of 50 seedlings.
Slow-growing seedlings were avoided. The obtained sec-
tions were plunged within a few seconds into liquid nitro-
gen until all sections were collected. Sections were then
stored at -80°C in nitrogen-purged vials until lyophilized
for use in the metabolomics procedures. There were three
replicates, each with sections from 50 seedlings.

Only sections of positions 1, 3, 5, 7 and 9 from the base
of the plant were used for the metabolomics. The sections
were collected along two gradients: along the culm and
during development.

After lyophilization (Labconco Freezone 6, Kansas City,
Missouri, USA), the samples were capped in amber glass
vials under nitrogen and then sealed externally around the
cap rim with polyethylene homopolymer film (Parafilm
M; Pechiney Plastic Packaging, Neenah, Wisconsin, USA)
to further minimize gas penetration prior to shipment to
Noble Foundation laboratories for metabolomic analysis.

Extraction, derivatization, and instrumental analysis
A total of 6.02 mg (± 0.02 mg) of the lyophilized pulver-
ized tissue was weighed into 3.7-mL (1 dram) vials con-
taining teflon inlays. Metabolite extractions were
performed by adding 1.5 mL chloroform containing 5
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(page number not for citation purposes)



BMC Plant Biology 2005, 5:8 http://www.biomedcentral.com/1471-2229/5/8
mg/L phenanthrene internal standard and 1.5 mL bottled
water containing 25 mg/L ribitol internal standard, fol-
lowed by vortexing for 1 min. The samples were incubated
at 50°C for 1 h with shaking and placed at -20°C over-
night. The samples were again incubated at 50°C for 4 h
with shaking. The samples were then sonicated 30 s and
centrifuged in a swinging bucket rotor at 2,900 × g for 30
min. Aliquots of 1.2 mL were taken from both the polar
and lipophilic layers and transferred to 2.0 mL autosam-
pler vials (Agilent, Palo Alto, California, USA) with teflon/
silicon septa. The polar layer was dried in a speed vac
(Savant, Albertville, Minnesota, USA) for 4 h, and the
lipophilic layer dried under a stream of compressed nitro-
gen for 2 h. Extracts were stored at -20°C until ready for
analysis. Both the polar and lipophilic extracts were
analyzed.

Dried polar extracts were prepared by methoximation in
120 µl of 15 g/L methoxyamine hydrochloride in pyridine
at 50°C for 4 h followed by a brief sonication (<30 s) to
dislodge any pellet. Samples were derivatized by adding
120 µl N-methyl-N-(trimethylsilyl)trifluoroacetamide)
+1% trimethylchlorosilane followed by incubation at
50°C for 1 h.

Dried lipophilic extracts were prepared by transmethyla-
tion of fatty acid and lipids. Dried extracts were dissolved
in 100 µl chloroform and 300 µl methanol containing
1.25 M HCl and then incubated at 50°C for 24 h. Samples
were then dried under a stream of nitrogen for 2 h. Dried
transmethylated samples were resuspended in 70 µl pyri-
dine and derivatized in 30 µl N-methyl-N-(trimethylsi-
lyl)trifluoroacetamide) +1% trimethylchlorosilane at
50°C for 1 h.

Derivatized metabolite mixtures were analyzed using a
Hewlett Packard 6890 gas chromatograph, 5973 mass
selective detector, and 6890 series injector. The integrated
system was operated under HP Chemstation (Agilent).
Polar samples were analyzed by injecting 1 µl with a split
injection ratio of 5:1; lipophilic samples of 1 µl were ana-
lyzed using a 1:1 split injection ratio. All samples were
injected in duplicate. Analyses were performed using a 60-
meter DB-5MS capillary separation column (J&W Scien-
tific, Palo Alto, California, USA). Injection temperature
was 280°C, interface 280°C. Separations were achieved
using the following temperature program: 3 min
isothermal heating at 80°C, followed by a 5°C min-1 oven
ramp to 315°C, and a final isothermal heating at 315°C
for 14 min for polar and 12 min for lipophilic samples.
Mass spectra were recorded at 2.48 scans s-1 with a mass
scanning range of 50 to 650 m/z. Each run required
approximately 70 min including machine equilibration
time.

Metabolite identifications were determined using GC-MS
spectral database matching against the current National
Institute of Standards and Technology library (NIST02)
and a Noble Foundation in-house custom database
focused on plant metabolites. Standards for construction
of the in-house library were prepared by methoximation
and derivatization as described above. The Automated
Mass Spectral Deconvolution and Identification Software
(AMDIS) (National Institute of Standards and Technology
(NIST), Gaithersburg, MD) was utilized for library con-
struction and metabolite identification in the raw metab-
olite profiles.

The GC-MS chromatographic data alignment was per-
formed according to Duran et al. [29]. Selected ions were
extracted and aligned from raw metabolomic data files
using a custom Perl script. This provides a more compre-
hensive interrogation of the data and is capable of resolv-
ing coeluting chromatographic peaks based on the
underlying mass data.

Correlation among metabolites
The correlations between pairs of metabolites were evalu-
ated as Pearson correlation coefficients [30]. One or more
metabolites from highly intercorrelated sets of metabo-
lites were omitted from the dataset when necessary to
ensure subsequent calculations did not involve singular
matrices [31]. Singular matrices do not provide unique
solutions with many multivariate statistical methods.

Principal component analysis
Principal components in standardized centered metabo-
lite space were determined. This analysis included metab-
olites that were not matched against a standards library,
but did not include those omitted to avoid singular matri-
ces. The analysis was performed in MathCad 2001 (Math-
Soft, Inc., Cambridge, Massachusetts, USA) using the
matrix manipulations described by Pielou [23]. Although
there are methods available that can assist in determining
which principal components to retain (e.g., scree analy-
sis), the cut-off was made based on the observations that
other principal components neither explained much of
the variance nor exhibited any pattern in metabolite load-
ings that could be easily related to known metabolism, or
as a response to developmental or environmental varia-
bles [32].

Metabolite selection via K-means clustering
Individual metabolites were selected to provide a spread
of variation in loadings on the first three principal compo-
nents, while being potentially easy to assay. Metabolite
selection involved K-means clustering of the ranked load-
ings on the three top principal components, followed by
individual selection of promising metabolites from the
clusters. The K-means clustering was performed using
Page 10 of 12
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Cleaver (Classification of Expression, Array Version 1.0)
software available through the site for microarray analysis
maintained by the Helix Bioinformatics Group at the
Stanford School of Medicine [33]. The analysis sought 27
clusters using the Euclidean distance metric. This set-up
maximized the potential to obtain clusters representing
all possible combinations of strong positive loading, weak
loading, and strong negative loading elements for each of
the three principal components. In other words, 3 loading
strengths × 3 principal components, taken three at a time
= 27 combinations for which a representative metabolite
was desired. Representative metabolites were selected
based foremost on their proximity to the center of the
cluster and then on their perceived commonness as a
metabolite. For the remaining clusters, a metabolite from
a neighboring cluster was considered sufficiently close to
be useful when it had loadings on the first two principal
components categorically identical to that sought and
with "near-miss" location in loadings on Principal Com-
ponent 3. If no sufficiently representative metabolite
could be found with this approach, then no further effort
was made and such clusters remained unrepresented.

Reliability of the biomarker set to represent the pattern of 
metabolite variation observed among the tissues
In order to evaluate the biomarker metabolite set for abil-
ity to consistently detect patterns in metabolite distribu-
tions among the tissues during development, the set of all
pair-wise Pearson correlations [30] among the sampled
tissues based on the standardized and centered concentra-
tions of the biomarker metabolites were obtained. The
equivalent set of all pair-wise correlations was obtained
based on the unranked values of the five principal compo-
nents that explained most (83%) variance in the original
metabolomics data set. The reliability of the biomarker
metabolite set to capture the metabolite variation present
among the tissues in development was obtained by com-
paring the two sets of correlation values using the meth-
ods of Fisher [30]. There are 435 pairs of values to
compare, but these are not truly independent variables, so
the reliability was analyzed with 28 degrees of freedom
(30 tissue samples minus 2 degrees of freedom) to
account for the lack of independence among pairs of cor-
relation values.

External validation of the biomarker metabolite set
An external validation analysis was developed by re-ana-
lysing the data of Sato et al. (2004) [25], which is a capil-
lary electrophoresis (CE)- mass spectrometer: CE-diode
array detector metabolomics study of rice leaves, with an
emphasis on the day/night transition (their Table 2). Pairs
of metabolites were identified, in which one member of a
pair was a biomarker metabolite that they also measured
in their study, and the other member of a pair was a
metabolite measured by Sato et al. for which a metabolite

had a definitive pairing with the biomarker metabolite.
The changes in the day/night ratio in metabolite concen-
tration were compared for the members of each pair that
could be constructed, and the directions of changes in the
biomarker metabolites were used to predict the changes in
the other metabolites. The average percentage change in
concentration of the metabolites used in this validation
test was considered fairly small at 51% of the night-time
value, thus justifying the use of the measure of the ability
of the biomarkers to indicate the direction of change in
concentration of the respective predicted metabolites in
the day/night transition as a reasonably powerful valida-
tion test of the biomarkers' ability to mark broad changes
in the other metabolites.
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