Downloaded from http://aac.asm.org/ on September 11, 2018 by guest

Copyright © 2015, American Society for Microbiology. All Rights Reserved.

1	
2	
3	
4	ORIGINAL ARTICLE:
5	Effective sequestration of <i>Clostridium difficile</i> protein toxins by calcium aluminosilicate
6	
7	
8	
9	RUNNING TITLE: Clostridium difficile toxin sequestration
10	
11	
12	
13	
14	Joseph M. Sturino ^{<i>a</i>,#} , Karina Pokusaeva ^{<i>a</i>} and Robert Carpenter ^{<i>b</i>,<i>c</i>}
15	
16	
17	^a Nutrition and Food Science Department, Texas A&M University,
18	College Station, Texas 77843
19	^b Texas EnteroSorbents, Inc., Bastrop, Texas 78602
20	^c Salient Pharmaceuticals Incorporated, Houston, Texas 77005
21	
22	
23	
24	
25	* Corresponding Author: Dr. Joseph M. Sturino;
26	Telephone: +1 (805) 317-4243; E-Mail: joseph.sturino@gmail.com;
27	URL: <u>www.josephsturino.com/</u>
28 29	
30 31	

33	Clostridium difficile is a leading cause of antibiotic-associated diarrhea and the
34	etiologic agent responsible for C. difficile infection. TcdA and TcdB are nearly
35	indispensible virulence factors for Clostridium difficile pathogenesis. Given the toxin-
36	centric mechanism by which C. difficile pathogenesis occurs, the selective sequestration
37	and neutralization of TcdA and TcdB by non-antibiotic agents represents a novel mode of
38	action to prevent or treat C. difficile-associated disease. In this preclinical study, we used
39	quantitative enzyme immunoassays to determine the extent by which a novel drug,
40	calcium aluminosilicate uniform particle size Novasil (CAS UPSN M-1), is capable of
41	sequestering TcdA and TcdB in vitro. The following major findings were derived from
42	the present study: Firstly, CAS UPSN M-1 efficiently sequestered both TcdA and TcdB
43	to undetectable levels. Secondly, we show that CAS UPSN M-1's affinity for TcdA is
44	greater than its affinity for TcdB. Lastly, we show that CAS UPSN M-1 exhibited limited
45	binding affinity for non-target therapeutic proteins. Together, these results suggest that
46	ingestion of calcium aluminosilicate might protect gastrointestinal tissues from antibiotic-
47	or chemotherapy-induced C. difficile infection by neutralizing the cytotoxic and pro-
48	inflammatory effects of luminal TcdA and TcdB.
49	
50	
51	KEYWORDS: <i>Clostridium difficile</i> , TcdA, TcdB, calcium aluminosilicate,
52	gastrointestinal inflammation, quantitative enzyme immunoassay

Antimicrobial Agents and Chemotherapy

Accepted Manuscript Posted Online

Antimicrobial Agents and Chemotherapy

Clostridium difficile is a leading cause of antibiotic-associated diarrhea (AAD) 55 56 and the etiologic agent responsible for C. difficile-associated infection (CDI). CDI 57 typically starts as a mild diarrhea but rapidly degenerates into a variety of potentially life-58 threatening conditions, including sepsis syndrome and pseudomembranous colitis (1). In 59 the United States, approximately 330,000 cases of CDI are estimated each year (2); 60 however the incidence of C. difficile infection continues to increase (2-3). Increasing CDI 61 rates highlight that current infection control procedures and treatment options are 62 insufficient. 63 In the healthcare setting, endospore-forming C. difficile are transmitted to patients 64 via the fecal-oral route (4). Following exposure, the host's gastrointestinal microbiota 65 typically either quells a nascent C. difficile infection or suppresses it to sub-clinical levels (5). As a result of the latter, approximately 20% of hospitalized adults become 66 67 asymptomatic C. difficile carriers, while carriage rates approach 50% for patients in long-68 term care (6-9). The likelihood of developing CDI increases in patients with dysbiotic 69 gastrointestinal microbiota, since C. difficile can thrive in the dysbiotic niche (5, 10). This 70 dysbiosis is often the result of non-specific chemotherapies that are used to treat 71 conditions unrelated to C. difficile infection (e.g., antibacterial agents or antineoplastic 72 drugs). 73 The antibiotics metronidazole and vancomycin are currently used to treat CDI 74 (11). Unfortunately, given the conflicting roles of antibiotics in the establishment and 75 resolution of CDI, C. difficile AAD is recurrent in up to 1 in 5 patients (12). These 76 already high reoccurrence rates are expected to increase if C. difficile strains with

INTRODUCTION

Page 3 of 23

77	intermediate- and complete-resistance to metronidazole and vancomycin emerge (13).
78	Together, these alarming trends illustrate an urgent need to develop novel and efficacious
79	therapeutics to treat CDI, including non-traditional therapeutic agents.
80	C. difficile is an extracellular pathogen and it typically does not invade host
81	tissues. While a number of C. difficile-encoded virulence factors are responsible for C.
82	difficile carriage and pathogenesis, toxin A (TcdA) and toxin B (TcdB) are among the
83	best-studied (14). Once secreted into the colon, these cytotoxic protein-based enzymes
84	are translocated across the membrane bilayer and into the cytosol by receptor-mediated
85	endocytosis (15). Once inside the cell, these glycosyltransferases trigger altered cellular
86	transcription, which results in significant cellular apoptosis and tissue remodeling (16-
87	18). TcdA and TcdB are also strongly pro-inflammatory, which exacerbates their effects
88	on structural and functional changes in tissue integrity (19-20). Together, these
89	inflammation-related activities contribute to the progressive ablation of gastrointestinal
90	function that is characteristic of CDI. In animal models, the administration of purified C.
91	difficile TcdA induces the hallmark symptoms of an acute, pseudomembranous colitis-
92	like condition: edema, gastrointestinal inflammation, cellular necrosis, and gastroenteritis
93	in the absence of the bacterium (19, 21-23). The administration of TcdB elicits similar
94	effects, albeit to a lesser degree (22, 24). As a result, these protein-based enzymes have
95	been ascribed as nearly indispensible determinants for C. difficile pathogenesis.
96	Given the toxin-centric mechanism by which C. difficile pathogenesis occurs, the
97	selective sequestration and neutralization of TcdA and TcdB by non-antibiotic agents
98	represents a novel mode of action to prevent or treat C. difficile-associated diseases (25-
99	26). To date, four C. difficile toxin-binding agents have been examined in pre-clinical

AAC

100	studies: cholestyramine, colestipol, synsorb 90, and tolevamer (25). Of these toxin-
101	binding agents, only three have been tested in clinical studies. Unfortunately, none of
102	these agents have proven to be as efficacious as traditional antibiotic therapies.
103	Nevertheless, it is important to continue to develop new candidate therapies. In this
104	manuscript, we describe the characterization of CAS UPSN M-1, a novel calcium
105	aluminosilicate agent that has been developed to selectively bind to and neutralize large
106	clostridial protein toxins. Calcium aluminosilicate is recognized by the Food and Drug
107	Administration (FDA) as a Generally Regarded as Safe (GRAS) additive, which can be
108	supplemented to foods at levels up to 2% (w/w) (27).
109	
110	MATERIALS AND METHODS
111 112	Protein-based cytotoxic enzymes and reagents. Lyophilized C. difficile TcdA
112	rotem-based cytotoxic enzymes and reagents. Eyophinized C. aggicae rear
112	and <i>C. difficile</i> TcdB were stored according to the manufacturer's specification
113	and C. difficile TcdB were stored according to the manufacturer's specification
113 114	and <i>C. difficile</i> TcdB were stored according to the manufacturer's specification (Calbiochem, Gibbstown, NJ). TcdA and TcdB were resuspended in 10 mM 2,2-
113 114 115	and <i>C. difficile</i> TcdB were stored according to the manufacturer's specification (Calbiochem, Gibbstown, NJ). TcdA and TcdB were resuspended in 10 mM 2,2- bis(hydroxymethyl)-2,2',2-nitrilotriethanol (Bis-Tris) buffer (Sigma-Aldrich, St. Louis,
113 114 115 116	and <i>C. difficile</i> TcdB were stored according to the manufacturer's specification (Calbiochem, Gibbstown, NJ). TcdA and TcdB were resuspended in 10 mM 2,2- bis(hydroxymethyl)-2,2',2-nitrilotriethanol (Bis-Tris) buffer (Sigma-Aldrich, St. Louis, MO) and maintained on ice prior to being assayed. All other chemicals were molecular
113 114 115 116 117	and <i>C. difficile</i> TcdB were stored according to the manufacturer's specification (Calbiochem, Gibbstown, NJ). TcdA and TcdB were resuspended in 10 mM 2,2- bis(hydroxymethyl)-2,2',2-nitrilotriethanol (Bis-Tris) buffer (Sigma-Aldrich, St. Louis, MO) and maintained on ice prior to being assayed. All other chemicals were molecular biology grade and stored as recommended by the manufacturer. A SevenMulti
 113 114 115 116 117 118 	and <i>C. difficile</i> TcdB were stored according to the manufacturer's specification (Calbiochem, Gibbstown, NJ). TcdA and TcdB were resuspended in 10 mM 2,2- bis(hydroxymethyl)-2,2',2-nitrilotriethanol (Bis-Tris) buffer (Sigma-Aldrich, St. Louis, MO) and maintained on ice prior to being assayed. All other chemicals were molecular biology grade and stored as recommended by the manufacturer. A SevenMulti conductivity meter (Mettler Toledo, Columbus, OH) was used for pH measurements.
 113 114 115 116 117 118 119 	and <i>C. difficile</i> TcdB were stored according to the manufacturer's specification (Calbiochem, Gibbstown, NJ). TcdA and TcdB were resuspended in 10 mM 2,2- bis(hydroxymethyl)-2,2',2-nitrilotriethanol (Bis-Tris) buffer (Sigma-Aldrich, St. Louis, MO) and maintained on ice prior to being assayed. All other chemicals were molecular biology grade and stored as recommended by the manufacturer. A SevenMulti conductivity meter (Mettler Toledo, Columbus, OH) was used for pH measurements. Putative toxin binding agent. Calcium aluminosilicate uniform particle size
 113 114 115 116 117 118 119 120 	and <i>C. difficile</i> TcdB were stored according to the manufacturer's specification (Calbiochem, Gibbstown, NJ). TcdA and TcdB were resuspended in 10 mM 2,2- bis(hydroxymethyl)-2,2',2-nitrilotriethanol (Bis-Tris) buffer (Sigma-Aldrich, St. Louis, MO) and maintained on ice prior to being assayed. All other chemicals were molecular biology grade and stored as recommended by the manufacturer. A SevenMulti conductivity meter (Mettler Toledo, Columbus, OH) was used for pH measurements. Putative toxin binding agent. Calcium aluminosilicate uniform particle size Novasil M-1 (CAS UPSN M-1), the novel sequestering agent used in this study, was

Page 5 of 23

	125	Bioscience Inc., Cincinnati, OH) except that a series of assay positive control samples
	126	(<i>i.e.</i> , TcdA and TcdB reference standards at a range of known concentrations) was
2025	127	incorporated into each repeated measurement; the concentration of these reference
<u>,</u> זינ	128	standards typically ranged from 5 to 20 ng/ml. In brief, the resultant qEIA uses C.
ζ	129	difficile TcdA- and TcdB-specific polyclonal antibodies to capture TcdA and TcdB and to
	130	non-covalently anchor them to the solid-phase EIA support matrix. Matrix-bound toxins
	131	were subsequently complexed with horseradish peroxidase (HRP)-conjugated mouse
	132	anti-toxin A (monoclonal) or goat anti-toxin B (polyclonal) antibodies, respectively.
	133	After the removal of unbound HRP-antibody conjugates, degradation of urea hydrogen
	134	peroxide by toxin-bound horseradish peroxidase was assayed in the presence of the
rapy	135	reducing co-substrate 3,3',5,5'-tetramethyl-[1,1'-biphenyl]-4,4'-diamine (TMB).
Chemotherapy	136	Phosphoric acid (1 M) was used to arrest the reaction. The terminal chromophore
Che	137	benzidine-4,4'-diimine (BZDI), an oxidized derivative of TMB, was measured in
	138	arbitrary units (AU) at an optical density of 450 nm (OD _{450 nm}) using an Infinite M200
	139	microplate reader (Tecan US Inc., Durham, NC). The Infinite M200 iControl software
	140	was used to generate custom EIA microplate templates to speed data acquisition and to

ensure accurate sample assignation.

124

142 **Toxin sequestration assays.** This qEIA was used to assess the sequestration (an 143 aggregate of adsorption and absorption) of large clostridial protein toxins by calcium 144 aluminosilicate. Unless otherwise indicated, calcium aluminosilicate was suspended up to 145 a final concentration of 0.5 mg/ml in 10 mM Bis-Tris (pH 6.5) and pre-equilibrated to 146 37°C in a Thermomixer R shaking incubator (Eppendorf, Hauppauge, NY) equipped with

enzyme immunoassay (EIA) according to the manufacture's instructions (Meridian

Antimicrobial Agents and

Page 6 of 23

147	a 1.5-ml block with constant agitation at 1,200 revolutions per minute (rpm). Individual
148	sequestration reactions were started by the addition of the toxin to a final concentration of
149	10 ng/ml (TcdA) or 15 ng/ml (TcdB), unless otherwise indicated. Sequestration reactions
150	were then incubated for 10 min at 37°C with constant agitation at 1,200 rpm in a
151	Thermomixer R (Eppendorf). The sequestration reaction was stopped when the residual
152	calcium aluminosilicate and calcium aluminosilicate-bound toxin complexes were
153	pelleted by centrifugation (2 min at $21,130 \times g$) in a 5424 bench top centrifuge
154	(Eppendorf). Following centrifugation, the clarified supernatant was carefully removed
155	by aspiration, transferred to a 1.5 ml tube, and chilled on ice prior to toxin quantification
156	using the qEIA described above.
157	Heterologous, non-therapeutic protein-binding and SDS-PAGE. Calcium
158	aluminosilicate (5 mg/ml) was co-incubated with the SeeBlue Plus2 protein ladder (750
159	μ g/ml; Invitrogen, San Diego, CA), which contains a number of non-therapeutic target
160	proteins. Samples were incubated at 37°C for 20 min with constant agitation (1,200 rpm).
161	The reaction was stopped when the residual calcium aluminosilicate and calcium
162	aluminosilicate-bound protein complexes were pelleted by centrifugation (2 min at
163	$21,130 \times g$) in an Eppendorf 5424 bench top centrifuge (Eppendorf). The supernatant
164	was carefully transferred to a fresh tube and set on ice. The pellet containing the residual
165	calcium aluminosilicate and calcium aluminosilicate-bound protein complexes was re-
166	suspended in 1 volume buffer and agitated for 20 min at (1,200 rpm). The unbound
167	calcium aluminosilicate and calcium aluminosilicate-bound protein complexes were
168	again pelleted by centrifugation (2 min at $21,130 \times g$). The resultant pellet eluate—
169	including any proteins eluted from the calcium aluminosilicate-was carefully transferred

Page 7 of 23

	172
po	173
W	174
(I	175
in	176
bı	177
ac	178
F	179
Ir	180
	181
SC	182
P	183
re	184
st	185
сı	186

171	aluminosilicate) were otherwise treated identically to experimental samples.
172	The original supernatant and the pellet eluate were both subjected to
173	polyacrylamide gel electrophoresis (PAGE). Samples (15 μ l) were loaded into the 1-mm
174	wells of a NuPAGE Novex Tris-Acetate gel (Invitrogen) using $1 \times$ lithium dodecyl sulfate
175	(LDS) sample buffer (Invitrogen). Protein electrophoresis was carried out (150 V for 1 h)
176	in an Xcell SureLock Mini Cell (Invitrogen) and $1 \times$ NuPAGE tris-acetate SDS running
177	buffer (Invitrogen). Proteins were stained using the SimplyBlue Safe Stain (Invitrogen)
178	according to the manufacturer's instruction. The results were captured using the
179	FluorChem HD2 documentation system with a 5 MHz cooled digital CCD camera (Alpha
180	Innotech).
181	Biostatistics. Raw qEIA data were captured using the Infinite M200 i-Control
182	software, exported to Excel (Microsoft Corporation, Redmond, WA), and analyzed using
182 183	software, exported to Excel (Microsoft Corporation, Redmond, WA), and analyzed using Prism (GraphPad Software Inc., La Jolla, CA). Unless otherwise indicated, data
183	Prism (GraphPad Software Inc., La Jolla, CA). Unless otherwise indicated, data
183 184	Prism (GraphPad Software Inc., La Jolla, CA). Unless otherwise indicated, data represent at least three repeated measures. Data are expressed as the mean $(\vec{x}) \pm$ either the
183 184 185	Prism (GraphPad Software Inc., La Jolla, CA). Unless otherwise indicated, data represent at least three repeated measures. Data are expressed as the mean $(\bar{x}) \pm$ either the standard error of the mean (SEM) or standard deviation (SD), as noted. Calibration
183 184 185 186	Prism (GraphPad Software Inc., La Jolla, CA). Unless otherwise indicated, data represent at least three repeated measures. Data are expressed as the mean $(\vec{x}) \pm$ either the standard error of the mean (SEM) or standard deviation (SD), as noted. Calibration curves were generated by least-squares regression. ANOVA was used to determine the
183 184 185 186 187	Prism (GraphPad Software Inc., La Jolla, CA). Unless otherwise indicated, data represent at least three repeated measures. Data are expressed as the mean $(\vec{x}) \pm$ either the standard error of the mean (SEM) or standard deviation (SD), as noted. Calibration curves were generated by least-squares regression. ANOVA was used to determine the statistical significance of the measured differences between treatments. When significant
183 184 185 186 187 188	Prism (GraphPad Software Inc., La Jolla, CA). Unless otherwise indicated, data represent at least three repeated measures. Data are expressed as the mean $(\bar{x}) \pm$ either the standard error of the mean (SEM) or standard deviation (SD), as noted. Calibration curves were generated by least-squares regression. ANOVA was used to determine the statistical significance of the measured differences between treatments. When significant differences were detected by ANOVA, Bonferroni tests were performed <i>posthoc</i> in order
183 184 185 186 187 188 189	Prism (GraphPad Software Inc., La Jolla, CA). Unless otherwise indicated, data represent at least three repeated measures. Data are expressed as the mean $(\bar{x}) \pm$ either the standard error of the mean (SEM) or standard deviation (SD), as noted. Calibration curves were generated by least-squares regression. ANOVA was used to determine the statistical significance of the measured differences between treatments. When significant differences were detected by ANOVA, Bonferroni tests were performed <i>posthoc</i> in order explore these differences. An associated <i>p</i> value of less than 0.05 was considered
183 184 185 186 187 188 189 190	Prism (GraphPad Software Inc., La Jolla, CA). Unless otherwise indicated, data represent at least three repeated measures. Data are expressed as the mean $(\vec{x}) \pm$ either the standard error of the mean (SEM) or standard deviation (SD), as noted. Calibration curves were generated by least-squares regression. ANOVA was used to determine the statistical significance of the measured differences between treatments. When significant differences were detected by ANOVA, Bonferroni tests were performed <i>posthoc</i> in order explore these differences. An associated <i>p</i> value of less than 0.05 was considered statistically significant. The base-10 logarithm (<i>log</i> ₁₀) of each data point was calculated

Downloaded from http://aac.asm.org/ on September 11, 2018 by guest

to a fresh tube. Negative control samples (i.e., SeeBlue Plus2 devoid of calcium

193
194

Accepted Manuscript Posted Online

Antimicrobial Agents and Chemotherapy

AAC

RESULTS

195	Optimization of a quantitative enzyme immunoassay (qEIA) to detect TcdA
196	and TcdB. Samples containing known concentrations of TcdA or TcdB were used to
197	generate standard curves. The standard curves from each of six randomly selected vials of
198	TcdB are plotted in FIGURE 1. A one-factor ANOVA found toxin vial-specific effects
199	were statistically significant ($p < 0.0051$); however, <i>posthoc</i> comparisons using the
200	Bonferroni test indicated that—with the exception of one obvious outlier ($p < 0.05$)—
201	differences between the remaining five curves were statistically nonsignificant ($p > 0.05$).
202	For this experimental subset $(n = 5)$, the Pearson product-moment correlation coefficient
203	(r) indicated a strong, co-linear relationship between toxin concentration and optical
204	density that was statistically significant between inter-experimental EIA replicates ($r =$
205	0.9078, $p = 0.0047$). Similar results were seen for TcdA ($n = 5$), although differences
206	between individual vials of TcdA were statistically nonsignificant ($p = 0.8707$). As seen
207	with TcdB, a strong co-linear relationship between toxin concentration and optical
208	density was observed. This co-linear relationship was statistically significant between
209	inter-experimental qEIA replicates ($r = 0.9973$, $p = 0.0027$). In separate experiments that
210	examined the effect of toxin thermostability, differences in qEIA reactivity following
211	short-term (e.g., 8 h) incubation on ice were found to be statistically nonsignificant ($p >$
212	0.05). As a result, individual toxin vials were used to conduct multiple sequestration
213	assays within a single workday and were then discarded.
214	Data distribution and transformation. The descriptive statistic skewness (g_1)
215	and the Kolmogorov-Smirnov (K-S) normality test were used to examine the data
216	distribution within the TcdA and TcdB datasets. While both datasets skewed right

Page 9 of 23

217	(TcdA: $g_1 = 0.6626$; TcdB: $g_1 = 1.331$), the K-S test indicated that neither exhibited
218	significant differences from the Gaussian distribution ($p > 0.10$). Nevertheless, the base-
219	10 logarithm (log_{10}) of each datapoint was calculated to normalize the data. Linear
220	regressions of mean TcdA ($n = 4$; $R^2 = 0.968$) and TcdB ($n = 5$; $R^2 = 0.966$) reference
221	curves are plotted in FIGURE 2. Signal response plateaus were observed at very high
222	toxin concentrations and very low toxin concentrations (data not shown).
223	Calcium aluminosilicate does not affect the pH of the qEIA. In order to
224	determine if calcium aluminosilicate might artificially diminish the sensitivity of the
225	qEIA by affecting the pH of the buffer system, calcium aluminosilicate was
226	supplemented to a final working concentration of 0.5 mg/ml in 100 mM Tris (pH 6.5) and
227	the pH was measured ($n = 3$) once the mixture was equilibrated to 37°C. Incorporation of
228	calcium aluminosilicate up to 0.5 mg/ml did not affect the pH of the buffer system (\bar{x} =
229	6.52, $SD = 0.01$) when compared to a buffer control that was devoid of calcium
230	aluminosilicate ($\bar{x} = 6.50$, SD = 0.001), as expected.
231	Effective, dose-dependent sequestration of large C. difficile cytotoxic enzymes
232	by calcium aluminosilicate. Calcium aluminosilicate was assessed for its ability to
233	reduce the concentration of large clostridial protein-based cytotoxic enzymes in vitro.
234	During these dose-response experiments, the concentration of TcdA or TcdB (FIGURE
235	3) was fixed at 10 ng/ml, while the calcium aluminosilicate concentration was varied
236	100-fold (<i>i.e.</i> , 0.05 mg/ml, 0.075 mg/ml, 0.1 mg/ml, 0.3 mg/ml, 0.5 mg/ml, 0.75 mg/ml, 1
237	mg/ml, 2 mg/ml, 3 mg/ml, and 5 mg/ml). Calcium aluminosilicate efficiently sequestered
238	TcdA and TcdB <i>in vitro</i> . Differences in mean endpoint $OD_{450 nm}$ between the assay
239	negative control (<i>i.e.</i> , vehicle devoid of TcdA) samples (\bar{x} = 0.044 AU, SD = 0.001 AU)

Page 10 of 23

Downloaded from http://aac.asm.org/ on September 11, 2018 by guest

240	and experimental samples supplemented with calcium aluminosilicate up to 2 mg/ml (\bar{x} =
241	0.049 AU, SD = 0.004 AU), 3 mg/ml (\bar{x} = 0.049 AU, SD = 0.005 AU), and 5 mg/ml (\bar{x} =
242	0.048 AU, SD = 0.004 AU) were statistically nonsignificant ($p > 0.05$).
243	The raw qEIA measurements obtained from experimental samples were converted
244	to residual toxin concentrations using intra-experimental EIA calibration curves.
245	Differences in residual TcdA concentration between the assay positive control (i.e.,
246	TcdA-containing samples devoid of calcium aluminosilicate) samples and experimental
247	samples containing calcium aluminosilicate supplemented up to 0.05 mg/ml (\bar{x} = 11.11
248	ng/ml, SD = 1.82 ng/ml), 0.075 mg/ml (\bar{x} = 11.35 ng/ml, SD = 0.22 ng/ml), and 0.1
249	mg/ml (\bar{x} = 10.93 ng/ml, SD = 0.06 ng/ml) were statistically nonsignificant (FIGURE 3).
250	In contrast, statistically significant differences in residual TcdA concentrations were
251	measured between the assay positive control and experimental samples containing
252	calcium aluminosilicate supplemented to 0.3 mg/ml ($\bar{x} = 8.54$ ng/ml, SD = 1.19 ng/ml, p
253	< 0.05), 0.5 mg/ml (\bar{x} = 4.88 ng/ml, SD = 0.80 ng/ml, p < 0.001), 0.75 mg/ml (\bar{x} = 3.20
254	ng/ml, SD = 0.65 ng/ml, $p < 0.001$), 1 mg/ml (\bar{x} = 1.67 ng/ml, SD = 0.71 ng/ml), 2 mg/ml
255	(\bar{x} = below the lower limit of detection (bLLD), $p < 0.001$), 3 mg/ml (\bar{x} = bLLD, $p < 0.001$)
256	0.001), and 5 mg/ml (\bar{x} = bLLD, $p < 0.001$). The lower limit of detection for this qEIA is
257	approximately 1.4 ng/ml for TcdA and 2.4 ng/ml for TcdB.
258	The efficiency by which the calcium aluminosilicate calcium aluminosilicate
259	sequestered TcdB was also explored (FIGURE 3). Differences in endpoint $OD_{450 nm}$
260	measurements between the assay negative control (i.e., vehicle devoid of TcdB) samples
261	$(\bar{x} = 0.047 \text{ AU}, \text{SD} = 0.004 \text{ AU})$ and experimental samples supplemented with calcium
262	aluminosilicate up to 3 mg/ml (\bar{x} = 0.043 AU, SD = 0.001 AU), and 5 mg/ml (\bar{x} = 0.041

263	AU, SD = 0.002 AU) were statistically nonsignificant ($p > 0.05$). As performed with
264	TcdA, the raw qEIA measurements were converted to residual toxin concentrations.
265	Differences in residual TcdB concentration between the assay positive control (<i>i.e.</i> ,
266	TcdB-containing samples devoid of calcium aluminosilicate) samples and experimental
267	samples containing calcium aluminosilicate supplemented up to 0.05 mg/ml (\bar{x} = 9.07
268	ng/ml, SD = 0.06 ng/ml), 0.075 mg/ml (\bar{x} = 8.75 ng/ml, SD = 0.05 ng/ml), 0.1 mg/ml (\bar{x} =
269	9.02 ng/ml, SD = 1.38 ng/ml), and 0.3 mg/ml (\bar{x} = 8.44 ng/ml, SD = 0.8 ng/ml) were
270	statistically nonsignificant ($p > 0.05$). In contrast, statistically significant differences in
271	residual TcdB concentrations were measured between the assay positive control and
272	experimental samples containing calcium aluminosilicate supplemented up to 0.5 mg/ml
273	$(\bar{x} = 6.27 \text{ ng/ml}, \text{SD} = 0.36 \text{ ng/ml}, P < 0.001), 0.75 \text{ mg/ml} (\bar{x} = 5.47 \text{ ng/ml}, \text{SD} = 0.64$
274	ng/ml; $p < 0.001$), 1 mg/ml ($\bar{x} = 4.99$ ng/ml, SD = 1.23 ng/ml), 2 mg/ml ($\bar{x} = 3.75$ ng/ml;
275	$p < 0.001$), 3 mg/ml (\bar{x} = bLLD, $p < 0.001$), and 5 mg/ml (\bar{x} = bLLD, $p < 0.001$).
276	The protein-binding activity of calcium aluminosilicate. The selectivity of
277	calcium aluminosilicate's protein-binding activity was explored further using a variation
278	of the C. difficile toxin-binding assay described above. During these experiments,
279	calcium aluminosilicate (5 mg/ml) was challenged with a commercial protein cocktail
280	that contained a number of non-therapeutic proteins, including myosin, bovine serum
281	albumin, and glutamate dehydrogenase. A representative SDS-PAGE gel of the
282	supernatant and the pellet eluate can be found in FIGURE 4. CAS UPSN M-1 bound
283	non-therapeutic proteins, but did so with varying efficiency. Indeed, CAS UPSN M-1
284	bound myosin and bovine serum albumin inefficiently, while glutamate dehydrogenase
285	was bound efficiently. Attempts to elute proteins bound to CAS UPSN M-1 were

Page 12 of 23

286 unsuccessful (FIGURE 4, lanes 4-5), which suggests that proteins bound to CAS UPSN

287 M-1 are bound tightly.

288

289

DISCUSSION

290 The initial toxin concentrations used in this study were selected because they 291 approximated the median concentration of TcdA (4.3 ng/ml) that is typically found in the 292 stool of patients with C. difficile-associated diarrhea (range 0.6 ng/ml to $19 \mu g/ml$) (28). 293 As such, the developed qEIA protocol enabled C. difficile TcdA and TcdB quantification 294 at clinically relevant concentrations. No hook effect was obvious for either toxin at toxin 295 concentrations between 5 to 15 ng/ml, which constituted the linear range for this qEIA. 296 The high-dose hook effect occurs when the antigen negatively affects the binding 297 capacity of the reporter antibody or when it is added in excess of the reporter antibody 298 (29). The intra-experimental EIA calibration curves generated using this qEIA protocol 299 enabled toxin quantification via interpolation and, thus, facilitated the conversion of 300 optical density measurements to residual toxin concentrations. Furthermore, given the 301 high degree of reproducibility, this qEIA supported inter-experimental comparisons 302 between repeated measurements (e.g., randomized block experiments). 303 This assay revealed that calcium aluminosilicate efficiently removed both TcdA 304 and TcdB at physiologically relevant concentrations. Indeed, calcium aluminosilicate 305 neutralized TcdA to sub-clinical levels *in vitro*. Like tolevamer, protein binding by 306 calcium aluminosilicate does not occur in a generalized or otherwise indiscriminate 307 fashion and, thus, displays a degree of target specificity. Tolevamer is an anionic, high-308 molecular-weight polymer (>400 kDa) that was developed to neutralize TcdA and TcdB.

Downloaded from http://aac.asm.org/ on September 11, 2018 by guest

addition, tolevamer has demonstrated therapeutic efficacy in a number of phase II and
phase III clinical studies (25-26). While effective, tolevamer's cure rate was found to be
inferior to those of vancomycin and metronidazole (26, 31). Surprisingly, however, the

Tolevamer has been shown to ameliorate CDI-like symptoms in hamsters (30). In

313 rate of CDI reoccurrence was generally lower with tolevamer than with either

314 vancomycin or metronidazole (26)

315 TcdA and TcdB are postulated to be paralogs (32-33). As a result, these proteins 316 share significant amino acid sequence similarity to one another-especially at their 317 amino- and carboxy-terminal regions. Both toxins share approximately 47% identity to 318 each other and approximately 68% sequence similarity (data not shown). Both proteins 319 are comprised of three well-characterized functional domains (15). The amino-terminus 320 of the protein encodes a peptidase C80-type glycosyltransferase domain and a proximal 321 substrate recognition domain. The hydrophobic middle region is putatively involved in 322 membrane translocation. The carboxy terminus of the protein encodes the clostridial 323 repetitive oligopeptides (CROPS)—also known as cell wall binding (CWB) domains. 324 The carboxy-terminal CROPS facilitate calcium-dependent host cell recognition (33), and 325 may also play a role in the sequestration of TcdA and TcdB by calcium aluminosilicate. 326 Proteins that are evolutionarily and/or structurally related to TcdA and TcdB might also 327 be viable therapeutic targets for calcium aluminosilicate, however additional research is 328 required to test this hypothesis.

In addition to the similarities noted above, a number of toxin-specific differences
were also observed. For example, the lowest experimental concentration of calcium
aluminosilicate for which there was no observable effect was 0.1 mg/ml for TcdA, but 0.3

cium alumir
nditions, the
C ₁₀₀) was 2 r
ovided appro
ntrast the EC
cium alumir
ggest that its
As antil
tibiotic treat
lcium alumi
ivity and sel
calcium alur
pothesis that
d accelerate

333	calcium aluminosilicate was 0.3 mg/ml for TcdA, but 0.5 mg/ml for TcdB. Under these
334	conditions, the calcium aluminosilicate concentration that achieved maximum efficacy
335	(EC100) was 2 mg/ml for TcdA, but the concentration of calcium aluminosilicate that
336	provided approximately 50% of the maximum effect (EC ₅₀) for TcdA was 0.5 mg/ml. In
337	contrast the EC_{100} and EC_{50} for TcdB were 3 mg/ml and 1 mg/ml, respectively. While
338	calcium aluminosilicate sequesters both protein-based cytotoxic enzymes, these results
339	suggest that its affinity for TcdA is greater than its affinity for TcdB.
340	As antibiotic resistant pathogens continue to emerge, the development of non-
341	antibiotic treatment options represents a timely therapeutic approach to CDI management.
342	Calcium aluminosilicate exhibited potent C. difficile TcdA- and TcdB-neutralizing
343	activity and selective protein binding in vitro. Given the well-documented safety profile

mg/ml for TcdB. The minimum effective concentration (i.e., the threshold dose) for

- 344 of ninosilicate (34), these studies provide in vitro evidentiary support our
- 345 hyp ingestion of calcium aluminosilicate might protect gastrointestinal tissues
- 346 and accelerate a patient's recovery from antibiotic- or chemotherapy-induced, C. difficile-
- 347 associated diarrhea by neutralizing the cytotoxic effects of luminal TcdA and TcdB.
- 348 Depending on its relative effectiveness and tolerability during downstream clinical
- 349 studies, CAS UPSN M-1, the novel sequestration agent described in this study, may be
- 350 used to complement or, possibly, replace existing antibiotic therapies for the treatment of
- 351 CDI. However, it is beyond the scope of this current study to examine the biological
- 352 effects of calcium aluminosilicate in vivo.
- 353
- 354

355	ACKNOWLEDGEMENTS
356	Salient Pharmaceuticals Incorporated (Houston, TX) provided the calcium
357	aluminosilicate (CAS UPSN M-1) used in this study without cost. Salient
358	Pharmaceuticals, LLC (Houston, TX) provided funding for this study to Texas A&M
359	AgriLife Research (JMS). Additional support was provided by the United States
360	Department of Agriculture, Cooperative State Research, Education and Extension Service
361	Hatch project TEX 09436 and Texas A&M AgriLife Research. The sponsors had no role
362	in the data collection or analysis, the production of the submitted manuscript, or the
363	decision to submit the manuscript for publication.
364	The authors would like to thank Trung Nguyen and Lynn Jones for technical
365	support. In addition, the authors would like to thank Richard Scruggs at Salient
366	Pharmaceuticals Incorporated for insightful conversations and Michael Pendleton at the
367	Microscopy and Imaging Center at Texas A&M University (College Station, Texas,
368	USA) for assistance with scanning electron microscopy. Lastly, the authors would like to
369	thank the anonymous reviewers for their valuable comments.
370	

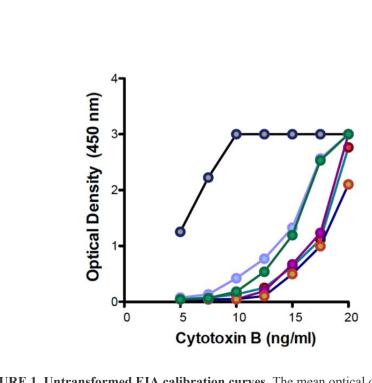
Downloaded from http://aac.asm.org/ on September 11, 2018 by guest

371

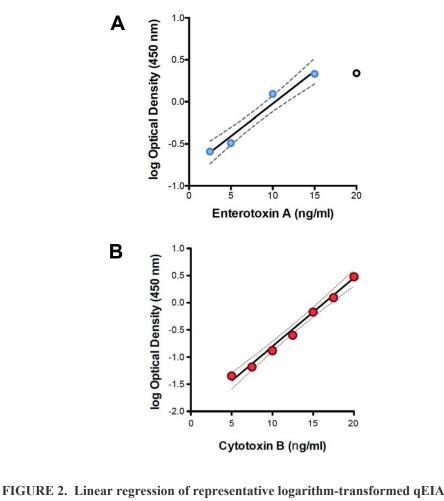
Antimicrobial Agents and Chemotherapy Page 16 of 23

372		REFERENCES
373		
373	1.	Eaton SR, Mazuski JE. 2013. Overview of severe Clostridium difficile infection.
375	1.	Crit. Care Clin. 29: 827-839.
376	2.	Lessa FC, Gould CV, McDonald LC. 2012. Current status of <i>Clostridium</i>
377	2.	<i>difficile</i> infection epidemiology. Clin. Infect. Dis. 55 (Suppl 2):S65-70.
378	3.	Gerding DN. 2010. Global epidemiology of <i>Clostridium difficile</i> infection in
379	5.	2010. Infect. Control Hosp. Epidemiol. 31 (Suppl 1):S32-34.
380	4.	Sunenshine RH, McDonald LC. 2006. <i>Clostridium difficile</i> -associated disease:
381		new challenges from an established pathogen. Cleve. Clin. J. Med. 73: 187-197.
382	5.	Britton RA, Young VB. 2014. Role of the intestinal microbiota in resistance to
383		colonization by <i>Clostridium difficile</i> . Gastroenterology. 146: 1547-1553.
384	6.	Riggs MM, Sethi AK, Zabarsky TF, Eckstein EC, Jump RL, Donskey CJ.
385		2007. Asymptomatic carriers are a potential source for transmission of epidemic
386		and nonepidemic Clostridium difficile strains among long-term care facility
387		residents. Clin. Infect. Dis. 45:992-998.
388	7.	Ryan J, Murphy C, Twomey C, Paul Ross R, Rea MC, MacSharry J, Sheil B,
389		Shanahan F. 2010. Asymptomatic carriage of Clostridium difficile in an Irish
390		continuing care institution for the elderly: prevalence and characteristics. Ir. J.
391		Med. Sci. 179:245-250.
392	8.	Rea MC, O'Sullivan O, Shanahan F, O'Toole PW, Stanton C, Ross RP, Hill
393		C. 2012. Clostridium difficile carriage in elderly subjects and associated changes
394		in the intestinal microbiota. J. Clin. Microbiol. 50:867-875.
395	9.	Hung YP, Lee JC, Lin HJ, Liu HC, Wu YH, Tsai PJ, Ko WC. 2014. Clinical
396		impact of Clostridium difficile colonization. J. Microbiol. Immunol. Infect.
397	10.	Pérez-Cobas AE, Artacho A, Ott SJ, Moya A, Gosalbes MJ, Latorre A. 2014.
398		Structural and functional changes in the gut microbiota associated to <i>Clostridium</i>
399		difficile infection. Front. Microbiol. 5:335.
400	11.	Luciano JA, Zuckerbraun BS. 2014. Clostridium difficile infection:
401		prevention, treatment, and surgical management. Surg. Clin. North Am.
402	10	94: 1335-1349.
403	12.	Fekety R, McFarland LV, Surawicz CM, Greenberg RN, Elmer GW,
404		Mulligan ME. 1997. Recurrent <i>Clostridium difficile</i> diarrhea: characteristics of
405		and risk factors for patients enrolled in a prospective, randomized, double-blinded
406	12	trial. Clin. Infect. Dis. 24:324-333.
407	13.	Shah D, Dang MD, Hasbun R, Koo HL, Jiang ZD, DuPont HL, Garey KW.
408		2010. <i>Clostridium difficile</i> infection: update on emerging antibiotic treatment
409 410	14.	options and antibiotic resistance. Expert Rev. Anti. Infect. Ther. 8:555-564. Awad MM, Johanesen PA, Carter GP, Rose E, Lyras D. 2014. <i>Clostridium</i>
410	14.	<i>difficile</i> virulence factors: insights into an anaerobic spore-forming pathogen. Gut
412		Microbes. 1:0.
413	15.	Voth DE, Ballard JD. 2005. <i>Clostridium difficile</i> toxins: mechanism of action
414	10.	and role in disease. Clin. Microbiol. Rev. 18: 247-263.
415	16.	Just I, Gerhard R. 2004. Large clostridial cytotoxins. Rev. Physiol. Biochem.
416	10.	Pharmacol. 152: 23-47.

417	17.	Feltis BA, Wiesner SM, Kim AS, Erlandsen SL, Lyerly DL, Wilkins TD,
417	17.	Wells CL. 2000. <i>Clostridium difficile</i> toxins A and B can alter epithelial
410		permeability and promote bacterial paracellular migration through HT-29
420		enterocytes. Shock. 14:629-634.
	10	
421	18.	Farrow MA, Chumbler NM, Lapierre LA, Franklin JL, Rutherford SA,
422		Goldenring JR, Lacy DB. 2013. Clostridium difficile toxin B-induced necrosis is
423		mediated by the host epithelial cell NADPH oxidase complex. Proc. Natl. Acad.
424	10	Sci. U.S.A. 110:18674-18679.
425	19.	Hirota SA, Iablokov V, Tulk SE, Schenck LP, Becker H, Nguyen J, Al Bashir
426		S, Dingle TC, Laing A, Liu J, Li Y, Bolstad J, Mulvey GL, Armstrong GD,
427		MacNaughton WK, Muruve DA, MacDonald JA, Beck PL. 2012. Intrarectal
428		instillation of Clostridium difficile toxin A triggers colonic inflammation and
429		tissue damage: development of a novel and efficient mouse model of Clostridium
430		difficile toxin exposure. Infect. Immun. 80(12):4474-84.
431	20.	Vohra P, Poxton IR. 2012. Induction of cytokines in a macrophage cell line by
432		proteins of Clostridium difficile. FEMS Immunol Med Microbiol. 65:96-104.
433	21.	Lyerly DM, Saum KE, MacDonald DK, Wilkins TD. 1985. Effects of
434		Clostridium difficile toxins given intragastrically to animals. Infect. Immun.
435		47: 349-352.
436	22.	Lima AA, Lyerly DM, Wilkins TD, Innes DJ, Guerrant RL. 1988. Effects of
437		Clostridium difficile toxins A and B in rabbit small and large intestine in vivo and
438		on cultured cells in vitro. Infect. Immun. 56:582-588.
439	23.	Sun X, Savidge T, Feng H. 2010. The enterotoxicity of Clostridium difficile
440		toxins. Toxins (Basel). 2:1848-80.
441	24.	Savidge TC, Pan WH, Newman P, O'brien M, Anton PM, Pothoulakis C.
442		2003. Clostridium difficile toxin B is an inflammatory enterotoxin in human
443		intestine. Gastroenterology.125:413-420.
444	25.	Weiss K. 2009. Toxin-binding treatment for <i>Clostridium difficile</i> : a review
445		including reports of studies with tolevamer. Int. J. Antimicrob. Agents. 33:4-7.
446	26.	Bauer MP, van Dissel JT. 2009. Alternative strategies for Clostridium difficile
447		infection. Int. J. Antimicrob. Agents. 33(Suppl 1):S51-56.
448	27.	Electronic Code of Federal Regulations. 2010. 21 CFR §182.2729.
449	28.	Solomon K, Webb J, Ali N, Robins RA, Mahida YR. 2005. Monocytes are
450		highly sensitive to <i>Clostridium difficile</i> toxin A-induced apoptotic and
451		nonapoptotic cell death. Infect. Immun. 73:1625-1634.
452	29.	Fernando SA, Wilson GS. 1992. Studies of the 'hook' effect in the one-step
453		sandwich immunoassay. J. Immunol. Methods. 151:47-66.
454	30.	Barker RH Jr, Dagher R, Davidson DM, Marquis JK. 2006. Review article:
455	20.	tolevamer, a novel toxin-binding polymer: overview of preclinical pharmacology
456		and physicochemical properties. Aliment. Pharmacol. Ther. 24 :1525-1534.
457	31.	Louie TJ, Peppe J, Watt CK, Johnson D, Mohammed R, Dow G, Weiss K,
458	51.	Simon S, John JF Jr, Garber G, Chasan-Taber S, Davidson DM; Tolevamer
459		Study Investigator Group. 2006. Tolevamer, a novel nonantibiotic polymer,
460		compared with vancomycin in the treatment of mild to moderately severe
461		<i>Clostridium difficile</i> -associated diarrhea. Clin. Infect. Dis. 43: 411-420.
101		Ciosii iuiuni uijjiciie-associated diattilea. Chii. Infect. Dis. 43. 411-420.

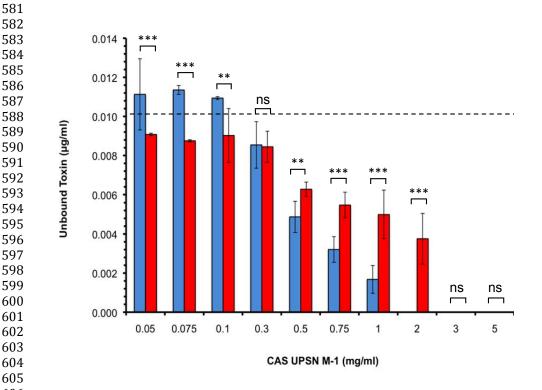

Page 18 of 23

462	32.	Hofmann F, Herrmann A, Habermann E, von Eichel-Streiber C. 1995.
463		Sequencing and analysis of the gene encoding the alpha-toxin of <i>Clostridium</i>
464		novyi proves its homology to toxins A and B of Clostridium difficile. Mol. Gen.
465		Genet. 247:670-679.
466	33.	Demarest SJ, Salbato J, Elia M, Zhong J, Morrow T, Holland T, Kline K,
467		Woodnutt G, Kimmel BE, Hansen G. 2005. Structural characterization of the
468		cell wall binding domains of <i>Clostridium difficile</i> toxins A and B; evidence that
469		Ca2+ plays a role in toxin A cell surface association. J. Mol. Biol. 346:1197-
470		1206.
471	34.	Mitchell NJ, Kumi J, Aleser M, Elmore SE, Rychlik KA, Zychowski KE,
472		Romoser AA, Phillips TD, Ankrah NA. 2014. Short-term safety and efficacy of
473		calcium montmorillonite clay (UPSN) in children. Am. J. Trop. Med. Hyg.
474		91: 777-85.
475		
476		
477		
478		
470		
4 - 0		
479		
480		
481		
482		
482		
484		
485		


Downloaded from http://aac.asm.org/ on September 11, 2018 by guest

Page 19 of 23

AAC



518
519 FIGURE 1. Untransformed EIA calibration curves. The mean optical density (*y*-axis)
520 for each of six randomly selected cytotoxin B EIA calibration curves is plotted as a
521 function of cytotoxin B concentration (*x*-axis). The data are expressed as means ± SEM.
522

calibration data. The logarithm (base 10) of the optical density of each reference standard (y-axis) was determined by EIA and plotted against toxin concentration (x-axis). Circles denote median calibration data from *n* repeated replicates. The solid line denotes linear regression with 95% confidence limits, while dashed lines denote the boundaries of the calculated 95% confidence interval. **Panel A**, linear regression of enterotoxin A data (n = 5, $R^2 = 0.968$). **Panel B**, linear regression of cytotoxin B calibration data (n = 4, $R^2 =$ 0.966).

Antimicrobial Agents and Chemotherapy

Downloaded from http://aac.asm.org/ on September 11, 2018 by guest

606 607 FIGURE 3. The selective and dose-dependent adsorption of C. difficile toxins by 608 CAS UPSN M-1 in vitro. CAS UPSN M-1 was supplemented to a final concentration 609 between 0.05 to 5 mg/ml (100-fold range) (x-axis), while toxin concentration was fixed 610 to 10 µg/ml (dashed line). After a 10-min co-incubation, the mineral-toxin complexes 611 were removed by centrifugation and the residual concentration of enterotoxin A (blue) 612 and cytotoxin B (red) was determined by quantitative EIA (y-axis). The data are 613 expressed as the means \pm SD. The statistical significance of differences in toxin-specific 614 binding-ability are reported for each concentration. Abbreviations: ns, statistically 615 nonsignificant (P > 0.05); **, statistically significant (P < 0.01); ***, statistically 616 significant (P < 0.001). 617

618

621 622 623 624 625 626						
627 628						
629						
630						
631						
632						
633		1	2	3	4	5
634						
635	Mussin				٩	۷
636	Myosin				•	~
637		L				
638						
639	BSA	1			٩	⊲
640	2011					
641						
642	GLUD		۵	4	4	۵
(10						
643 644	0101		-			

FIGURE 4. Non-therapeutic protein-binding assay. SDS-PAGE gels illustrating

differential binding of myosin (top panel), bovine serum albumin (BSA) (middle panel),

and glutamate dehydrogenase (GLUD) (bottom panel). Lane 1, untreated reference

protein (negative control); Lanes 2-3, CAS UPSN M-1-treated protein samples

(duplicates); Lanes 4-5, eluate of protein-bound-CAS UPSN M-1 complexes (duplicates).

White carrots are used to mark lanes that are devoid of a protein band.