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ABSTRACT

In string theory, nilpotence of the BRS operator δ for the string functional

relates the Chern-Simons term in the gauge-invariant antisymmetric tensor field

strength to the central term in the Kac-Moody algebra. We generalize these ideas

to p-branes with odd p and find that the Kac-Moody algebra for the string becomes

the Mickelsson-Faddeev algebra for the p-brane.
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1. Introduction

In a recent paper [1], the coupling of Yang-Mills fields to the heterotic string

in bosonic formulation was generalized to extended objects of higher dimension

(p-branes). In particular, it was noted that for odd p the Bianchi identities obeyed

by the field strengths of the (p+1)-forms receive Chern-Simons corrections. In the

case of the string (p=1), there is an equality between the coefficient n of the Chern-

Simons term I3(A) in the antisymmetric tensor field strength H3 = dB2 + nI3(A),

and the central charge n of the Kac-Moody algebra obeyed by certain operators

T a(σ) that appear in the gauge BRS transformations of the string functional [2].

The purpose of the present paper is to show that for 3-branes the coefficient of the

Chern-Simons term is equal to the coefficient of an Abelian extension of a T a(σj)

algebra involving new generators T a
i (σ

j), i, j = 1, 2, 3. The corresponding algebras

have already appeared before in the context of anomalies [3,4,5,6] and are known in

the mathematical literature as loop algebras with a Mickelsson-Faddeev extension

[7]. There is a straightforward generalization to p > 3 branes.

In string theory, the integer n also appears as a coefficient of the Wess-Zumino-

Witten term in the action, and the operators T a can be constructed from the action

[2], which is invariant under simultaneous gauge variations of the background fields

and the group coordinates. While this action is known for the p-branes[1], the

operators T a have not yet been constructed and examined. A second way to get

the relation is to insist on the nilpotence of the gauge BRS transformations of the

string field Φ and background fields A etc. It is this second method which will here

be generalized to the 3-brane.
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2. Loop Space Algebras

In manifestly supersymmetric and κ-symmetric form the heterotic string can

be formulated as a mapping from two dimensions to a target space parametrized by

variables Xµ, θα and ym. We ignore θ from now on. ym are bosons parametrizing

the group space. We take the σ-model point of view that there are also background

fields present representing the massless bosonic excitations of the string. Consider

the following BRS transformation:

δ = δ1 + δB (2.1)

Here δ1 is defined by:

δ1 =
∏

µ,m,σ′

∫

dym(σ′)dXµ(σ′)
{(

∫

dσ[−ωaT a(σ) + Λµ
dXµ

dσ
]Φ
) δ

δΦ

}

(2.2)

where the ‘doubly functional’ derivative is defined by:

δ

δΦ(X)
Φ(X ′) =

∏

σ

δD[X(σ)−X ′(σ)] (2.3)

and hence:

δ1Φ =

∫

dσ[−ωaT a(σ) + Λµ
dXµ

dσ
]Φ (2.4)

In the above, δ1 is a BRS transformation which acts on functionals of the string

field Φ, which is itself a functional of the string variables Xµ(σ) and ym(σ). Φ

is a string field, but we will ignore the problems of closed string field theory here

(for reviews see e.g. [8] [9] ) –in particular we ignore the dependence of Φ on

the reparametrization ghost fields. The exterior derivative d and the BRS oper-

ator δ are taken to be anticommuting in this paper. Our aim is to consider just

the Yang-Mills part of the BRS transformations of the background fields and the

corresponding transformation of the string field.
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The variable σ is the spacelike variable on the string world sheet. The operator

T a(σ) is assumed here to depend only on ym(σ) and functional derivatives with

respect to ym(σ). An example of T a(σ), for the case of the string, can be found in

[2]. We shall alternate between component and form notation, for example setting

dXµΛµ = Λ1 etc. The part δ1 is not separately nilpotent. The part δB is separately

nilpotent (δ2B = 0) and it acts only on the background fields Aa
µ(x) etc. These BRS

transformations of the background fields are:

δB =

∫

dDx
{

Dab
µ ωb δ

δAa
µ

−
1

2
fabcωbωc δ

δωa
+ [−nAa

[µ∂ν]ω
a + ∂[µΛν]]

δ

δBµν

+[nωa∂µω
a − ∂µB0]

δ

δΛµ
+

1

6
nfabcωaωbωc δ

δB0

}

(2.5)

Here Λµ is a ghost for the antisymmetric tensor field Bµν and B0 is a ‘ghost for

ghost’ for the ghost Λµ. The field ωa is the Yang-Mills Faddeev-Popov ghost. In

terms of fields this becomes, for example:

δAa
µ = Dab

µ ωb = ∂µω
a + fabcAb

µω
c (2.6)

Alternatively we can use the notation:

δAa = −dωa − fabcAbωc (2.7)

δΛ = nI21 + dB0 (2.8)

δB2 = nI12 + dΛ (2.9)

· · ·

In the above the terms I ip+2−i are the terms of ghost number i that appear in

the descent equations for the Yang-Mills fields. In our conventions the curvature
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two-form is:

F a = dAa +
1

2
fabcAbAc (2.10)

and it transforms as:

δF a = fabcF bωc (2.11)

The descent equations take the form:

δI ip+2−i = dI i+1
p+1−i (2.12)

so that

I04 = F aF a = dI03 (2.13)

I03 = AadAa +
1

3
fabcAaAbAc (2.14)

I12 = −Aadωa (2.15)

I21 = ωadωa (2.16)

I30 =
1

6
fabcωaωbωc (2.17)

Nilpotency follows easily using these. For example:

δ2B2 = nδI12 − dδΛ = 0 (2.18)

We note that:

H0
3 = dB2 + nI03 (2.19)

is gauge invariant:

δH0
3 = δBH

0
3 = 0 (2.20)

dH0
3 = I04 (2.21)

We assume that the background fields and their ghosts depend on X but not on

y, so that the action of T on the background fields and ghosts is trivial here. We
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also assume that the action of δB on the operators T is trivial, since they do not

depend on the background fields. We further assume that the string field Φ does

not depend on the background fields. Note that these operators have been defined

so that δ1 acts only on Φ and δB acts only on the background fields. For example:

δBΦ = δ1A
a
µ = δ1Λµ = 0 (2.22)

Calculation shows that nilpotency (δ2 = 0) of δ implies that the Kac-Moody alge-

bra of the generators T has a central term with coefficient n:

[T a(σ), T b(σ′)] = fabcT c(σ)δ(σ − σ′) + 2nδab
d

dσ
δ(σ − σ′) (2.23)

Now we want to generalize this string case to p-branes for odd p. The way that

δ2Φ = 0 works is that the variation δΛµ = nωa∂µω
a is compensated by the central

term in the commutator (2.23). For higher p-branes the variation δΛp = I2p always

involves the field Aa
µ in addition to the ghosts ωa. Hence the analogue of (2.2) for

p-branes must have an explicit dependence on Aa
µ as well as ωa and Λµ1···µp

.

For example, for the 3-brane, we can accomplish this by writing:

δ = δ3 + δB (2.24)

where δ3 acts on the 3-brane wave function Φ

δ3 =
∏

µ,m,σ′j

∫

dym(σ′)dXµ(σ′)
{(

∫

d3σ{−ωaT a(σ)

−nǫijkdabc∂µω
aAb

νΠ
µν
ij T

c
k(σ) + ΛµνλΠ

µνλ}Φ
) δ

dΦ

}

(2.25)

Here we use the notation:

Πµν
ij =

∂Xµ

∂σi
∂Xν

∂σj
(2.26)

Πµνλ = ǫijk
∂Xµ

∂σi
∂Xν

∂σj
∂Xλ

∂σk
(2.27)

In the foregoing, δ3 is a BRS transformation which acts on Φ, which is a functional
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of the 3-brane variables Xµ(σ) and ym(σ). All the T operators are again assumed

to involve only functions of ym(σ) and δ
δym(σ)

and hence the operators T commute

with δB. The background transformations are now:

δB =

∫

dDx
{

Dab
µ ωb δ

δAa
µ

−
1

2
fabcωbωc δ

δωa
+ [nI14 (A, ω) + dΛ]µνλρ

δ

δBµνλρ

+[nI23 (A, ω) + dB2]µνλ
δ

δΛµνλ
+ · · ·+ nI50 (ω)

δ

δB0

}

(2.28)

where

I05 = dabcAadAbdAc + · · · (2.29)

I14 = −dabcdωaAbdAc +
1

4
dabcdωaAbf cdeAdAe (2.30)

I23 = dabcdωaAbdωc (2.31)

I32 = −dabcdωadωbωc (2.32)

I41 = −
1

4
dabcf cdedωaωbωdωe (2.33)

I50 = −
1

40
dabcf bdef cfgωaωdωeωfωg (2.34)

In particular:

δΛµνλ = −dabc∂µω
aAb

ν∂λω
c + · · · (2.35)

By calculation, one can show that the above δ is nilpotent if T a and T a
i satisfy the
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Mickelsson-Faddeev algebra:

[T a(σ), T b(σ′)] = fabcT c(σ)δ3(σ − σ′)− 2ndabcǫijk∂iδ
3(σ − σ′)∂′jT

c
k(σ

′) (2.36)

[T a(σ), T b
i (σ

′)] = fabcT c
i (σ)δ

3(σ − σ′) + δab∂′iδ
3(σ − σ′) (2.37)

[T a
i (σ), T

b
j (σ

′)] = 0 (2.38)

One may verify that the Jacobi identities are satisfied by this algebra. Note the

new kind of generator T a
i , which forms a (non-invariant) Abelian subalgebra of the

T a algebra. T a
i transforms under the action of T a like a Yang-Mills field.

The gauge invariant field strength associated with this nilpotent δB is:

H5 = dB4 + nI05 (2.39)

and it satisfies:

δH5 = δBH5 = 0 (2.40)

dH5 = I06 = dabcF aF bF c (2.41)

3. Spacetime Algebras

If we take the term of δ that is linear in the field ωa(x), then its algebra is also

the Kac-Moody (p=1) or Mickelsson-Faddeev (p=3) algebra (pulled back). This

works as follows. Define

δ =

∫

d4xωa(x)T a
tot(x) + other terms (3.1)

where the other terms are those which do not have exactly one field ω in the

numerator of the transformation.
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Then nilpotence of δ implies that

1

2

∫

dDx

∫

dDx′ωa(x)ωb(x′)
{

[T a
tot(x), T

b
tot(x

′)]

−δD(x− x′)fabcT c
tot(x)]

}

Φ = n

∫

dpσI2p (X(σ))µ1...µp
Πµ1...µpΦ (3.2)

Using functional derivatives to peel off the two powers of ω in the above yields a

‘pulled back’ version of the algebra, which, for p ≥ 3, has an A-dependent central

extension, determined by the form of I2p (X(σ))µ1...µp
. For p = 1 the extension can

be chosen to be A-independent because I2p can be chosen to be A-independent. The

A-dependent extension for the p = 3 case is somewhat reminiscent of the situation

in four-dimensional Yang-Mills field theory with fermions [5]. Explicitly for the

3-brane case we have:

[T a
tot(x), T

b
tot(x

′)]Φ =
{

fabcT c
tot(x

′)δD(x− x′)

+2n
[

∫

d3σδD[x−X(σ)]dabcΠµνλ∂µA
c
ν

]

∂λδ
D(x− x′)

}

Φ (3.3)

4. Conclusion

Our motivation for this work was to see how the loop space algebra of the

heterotic string can be generalized to the p-branes. One constructs a BRS trans-

formation that transforms the background fields and the p-brane functional, and

then demands that it be nilpotent.

For the string, this nilpotence relates the coefficient n of the central extension

of the Kac-Moody algebra of the operators T a formed from the group coordinates

to the coefficient n in the gauge invariant field strength

H3 = dB2 + nI3 (4.1)

of the background Yang-Mills fields.
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We have shown that for the 3-brane, it is necessary to introduce operators

T a
i (σ) and T a(σ) which are formed from the group coordinates. These operators

obey the well-known Mickelsson-Faddeev algebra familiar from anomaly analysis in

four-dimensional theories with chiral fermions. In particular the operators T a
i (σ)

transform like Yang-Mills fields under the action of T a(σ). We believe that the

operators T obtained by an analysis along the lines of [2] of the action in [1] should

provide a realization of the Mickelsson-Faddeev algebra discussed here. Nilpotence

of the BRS transformation of the 3-brane functional Φ relates the coefficient n of

the (non-invariant) Abelian extension of the algebra (2.36) to the parameter n in

the gauge invariant field strength

H5 = dB4 + nI5 (4.2)

of the background Yang-Mills fields.

We anticipate that this procedure should easily generalize to higher p, and

in particular to the heterotic 5-brane [10,11,12,13,1] which in fact provided the

original impetus for the present paper.

Acknowledgment: We enjoyed conversations with Ergin Sezgin.
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