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Abstract. Adaptive evolutionary processes in plants may be accompanied by episodes of introgression, parallel evo-
lution and incomplete lineage sorting that pose challenges in untangling species evolutionary history. Genus Pinus (pines)
is one of the most abundant and most studied groups among gymnosperms, and a good example of a lineage where
these phenomena have been observed. Pines are among the most ecologically and economically important plant species.
Some, such as the pines of the southeastern USA (southern pines in subsection Australes), are subjects of intensive breed-
ing programmes. Despite numerous published studies, the evolutionary history of Australes remains ambiguous and often
controversial. We studied the phylogeny of four major southern pine species: shortleaf (Pinus echinata), slash (P. elliottii),
longleaf (P. palustris) and loblolly (P. taeda), using sequences from 11 nuclear loci and maximum likelihood and Bayesian
methods. Our analysis encountered resolution difficulties similar to earlier published studies. Although incomplete lineage
sorting and introgression are two phenomena presumptively underlying our results, the phylogenetic inferences seem to
be also influenced by the genes examined, with certain topologies supported by sets of genes sharing common putative
functionalities. For example, genes involved in wood formation supported the clade echinata–taeda, genes linked to plant
defence supported the clade echinata–elliottii and genes linked to water management properties supported the clade
echinata–palustris. The support for these clades was very high and consistent across methods. We discuss the potential
factors that could underlie these observations, including incomplete lineage sorting, hybridization and parallel or adaptive
evolution. Our results likely reflect the relatively short evolutionary history of the subsection that is thought to have begun
during the middle Miocene and has been influenced by climate fluctuations.
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Introduction
Plant genome structure and evolution are subjects of
intensive investigations with recent milestone advances
spanning whole-genome sequencing of some of the

largest plant genomes, such as those of pines and
spruces (Birol et al. 2013; Nystedt et al. 2013; Krutovsky
et al. 2014; Neale et al. 2014; Zimin et al. 2014). These
advancements bring opportunities to ask more focussed
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questions about the dynamic processes that have con-
tributed to plant genome evolution and influenced phylo-
genetic relationships among plant species. Duplications,
from single gene to whole genome, are an intrinsic pro-
cess that appears to be the major force driving genome
evolution in plants (Freeling 2009; Li et al. 2015). Other
processes, such as introgression, incomplete lineage sort-
ing and parallel evolution, primarily influenced by extrin-
sic factors, additionally contribute to plant genome
complexity and evolution (Martinsen et al. 2001; Wood
et al. 2005; Willyard et al. 2009). The latter processes
may also shape phenotypic and genotypic similarities
among species becoming a challenge in phylogenetic
studies.

Pines (genus Pinus, family Pinaceae) comprise a group
of coniferous tree species occurring almost exclusively in
the Northern Hemisphere, with populations often domin-
ant across areas of the North Temperate Zone (Critchfield
and Little 1966). They are keystone species of the vast
boreal forest ecosystem. They provide pulp and timber
products as primary commodities (Lowe et al. 1999;
Borders and Bailey 2001; Alexander et al. 2002; Wear
and Greis 2002; Croitoru 2007), but some additional
pine forest products may include, for example, pine
nuts, berries, herbs and mushrooms (Alexander et al.
2002; Bürgi et al. 2013; Nagasaka 2013). They provide a
pivotal habitat for wildlife species (Brockerhoff et al.
2008), and greatly contribute to carbon storage and
other ecosystem services (Goodale et al. 2002; McKinley
et al. 2011). Due to their aesthetic value, they add recre-
ational and ornamental dimensions in urban and subur-
ban areas (Tyrväinen and Väänänen 1998; Knoth et al.
2002). These qualities extend to southeastern forest eco-
systems of the USA, where pines may grow also in mixed
forests with hardwoods (Sharitz et al. 1992), and where
they additionally play an important role in ecosystem
recovery from natural disturbances. For example, longleaf
pine has developed complex adaptations to fire that
allow fast stand regeneration (Outcalt 2000), and loblolly
pine helps minimize soil erosion and provides watershed
protection due to its fast growth (Schultz 1997).

Four major pines of the southeastern USA were investi-
gated in this study: shortleaf (Pinus echinata), slash
(P. elliottii), longleaf (P. palustris) and loblolly (P. taeda)
(four of the ‘southern pines’; subsection Australes, section
Trifoliae, genus Pinus). They are widely cultivated, greatly
dominating the southern US forest inventory (Sternitzke
and Nelson 1970), and are, therefore, a subject of breeding
programmes in the region (Wear and Greis 2002; McKeand
et al. 2003; Fox et al. 2007). The traditional classification
(Little and Critchfield 1969) considered 11 species in this
subsection with habitat stretching cumulatively from the
southeastern USA, through Mexico, to the Caribbean and
Central America: slash (P. elliottii), spruce (P. glabra), long-
leaf (P. palustris), pond (P. serotina) and loblolly (P. taeda)
pines in the southeastern USA; shortleaf (P. echinata),
Table Mountain (P. pungens) and pitch (P. rigida) pines in
the eastern USA; Cuban pine (P. cubensis) in Cuba; West
Indian pine (P. occidentalis) in the West Indies; and Carib-
bean pine (P. caribaea) in both the West Indies and
adjacent Central America. Attempts to refine the phyl-
ogeny of Australes are ongoing, but typically have been
approached in the broader context of the Pinaceae family
or along with other subsections.

Several previous investigations have provided insights to
the phylogenetic relationships of the four species on which
we focus in our study (i.e. P. echinata, P. elliottii, P. palustris
and P. taeda; Fig. 1). Adams and Jackson (1997) found a
very close relationship between P. palustris and P. taeda
based on 21 morphological characters, but their relation-
ship to P. echinata and P. elliottii remained unresolved, and
no statistical support was provided. Later, using RAPD mar-
kers and the neighbour-joining method, Dvorak et al.
(2000) suggested a close relationship among P. echinata,
P. palustris and P. taeda, in which P. echinata and P. taeda
were sister lineages, and P. elliottii was sister to P. caribaea.
Using a supertree approach and previously published phy-
logenies based on both morphological and molecular data,
Grotkopp et al. (2004) also inferred a close relationship
among P. echinata, P. palustris and P. taeda, but found
that P. palustris was sister to P. taeda; P. elliottii was,
again, sister to P. caribaea. Gernandt et al. (2005) used

Figure 1. Cladograms for the four Australes species—P. echinata, P. elliottii, P. palustris and P. taeda—from published studies. (A) Adams and
Jackson (1997). (B) Dvorak et al. (2000). (C) Grotkopp et al. (2004). (D) Gernandt et al. (2005). (E) Eckert and Hall (2006). (F) Hernández-León et al.
(2013). The original studies presented the four species in a broader context along with other pines.
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two chloroplast genes in 101 pine species, but relationships
among the four Australes species remained unresolved.
Eckert and Hall (2006) used four chloroplast genes in 83
pine species. In their study, P. echinata and P. palustris
were placed in one clade with low support, and P. elliottii
and P. taeda were placed in another. Most recently, based
on five chloroplast DNA (cpDNA) markers, Hernández-León
et al. (2013) placed P. echinata, P. elliottii and P. palustris
within the same clade, where P. elliottii and P. palustris
were sisters, and P. taeda was in a separate clade, albeit
with low bootstrap support (BS). Consequently, the mono-
phyly of the four species was placed under question.

Evidence from cpDNA used in recent studies additionally
questioned monophyly of the subsection Australes as
defined by Little and Critchfield (1969), and suggested
that the 11 Australes species may be scattered throughout
a larger clade of over twice as many species (Gernandt
et al. 2005; Eckert and Hall 2006; Hernández-León et al.
2013). Chloroplast genomes, however, may follow differ-
ent evolutionary trajectories than nuclear genomes, with
potentially confounding effects in phylogenetic studies
(Rieseberg and Soltis 1991). In pines, chloroplast genomes
are strictly paternally inherited, thus having smaller effect-
ive population sizes than nuclear genomes. Additionally,
cpDNA experiences lower substitution rates (Willyard
et al. 2007). Consequently, these factors may lead to dis-
cordant patterns of polymorphism between the two gen-
omes (Soltis et al. 1992; Hong et al. 1993b). Moreover,
cpDNA differentiation among populations of a species
can be high (Hong et al. 1993a), and the cpDNA sequence
variation in pines may be unevenly distributed throughout
the genome requiring a representative locus sampling
(Whittall et al. 2010). Finally, foreign chloroplast genomes
introduced through hybridization may undergo a rapid fix-
ation—chloroplast capture (Rieseberg and Soltis 1991;
Matos and Schaal 2000; Liston et al. 2007).

Apart from the specificity of cpDNA evolution, additional
problems with taxonomic classification of Australes may
stem from incomplete lineage sorting, a phenomenon
reported in pines (Syring et al. 2007; Willyard et al. 2009),
especially considering the relatively recent evolutionary
history of the subsection. Radiation within Australes
is thought to have begun only 7–15 million years ago
(MYA) (Willyard et al. 2007; Hernández-León et al. 2013).
Large overlap in present-day areas of the four species stud-
ied here has fostered occasional or historic hybridization
between some of them that may have additionally contrib-
uted to insufficient resolution in phylogenetic studies. Nat-
ural hybridization has been observed between P. echinata
and P. taeda (Zobel 1953; Mergen et al. 1965; Smouse
and Saylor 1973; Edwards-Burke et al. 1997), between
P. palustris and P. taeda (Chapman 1922) and between
P. elliottii and P. palustris (Mergen 1958). Almost all possible

hybrids for these species can be artificially generated in
controlled crosses, with the exception of P. echinata and
P. palustris that are not considered interfertile despite a
reported hybrid case (Snyder and Squillace 1966; Campbell
et al. 1969). Additionally, similar environmental constraints
could lead to a parallel support for beneficial alleles and/or
removal of detrimental ones. Nevertheless, sympatry
could have been repeatedly disturbed in the past; for
example, during the Pleistocene, P. taeda was likely con-
stricted to two refugia, P. elliottii and P. palustris could
have been separated, each one occupying one of the two
refugia, while P. echinata’s range was probably continuous
due to its cold-hardiness (Wells et al. 1991; Schmidtling and
Hipkins 1998; Schmidtling 2003). Each of these factors, or
their combination, could confound phylogenetic inference.

The challenge with inferring relationships among Aus-
trales indicates that more work is needed. Nuclear markers
are recommended to use when introgression, cytoplasmic
in particular, or lineage sorting phenomena are present
(Soltis et al. 1992). Consequently, we used 11 nuclear pro-
tein coding genes. Our objective was to refine and poten-
tially clarify the phylogenetic relationships among
P. echinata, P. elliottii, P. palustris and P. taeda. Pinus pinas-
ter was used as an outgroup. Despite the larger dataset
and application of advanced methods, untangling their
phylogeny was not straightforward. We discuss potential
factors that likely contributed to this problem and could
explain the difficulties in inferring phylogenies using mul-
tiple genes observed in previous studies.

Methods

Source of data

Data from 32 genes recently sequenced and annotated in
four pines from subsection Australes, namely P. taeda
(Brown et al. 2004; González-Martı́nez et al. 2006),
P. echinata, P. elliottii and P. palustris (Koralewski et al.
2014), were used to query the NCBI GenBank database
(Benson et al. 2013) for orthologs in related pine (genus
Pinus) taxa that could be used as appropriate outgroup
species. Eleven putative orthologous genes were identi-
fied in P. pinaster (Table 1), which was used as an out-
group. Given that the ingroup species belong to a single
subsection, it is possible that a species from a more
closely related subsection could be a more optimal out-
group for phylogenetic analyses; however, P. pinaster is
the best studied species with respect to the genes inves-
tigated in the southern pines, allowing us to utilize more
sequence data in the analyses. We assumed orthology of
the genes based on exon–intron structure and very high
sequence similarity. For each putative ortholog, the
E-value was 3E-46 or less and identity score was 95 %
or more in at least one comparison of an ingroup species
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with P. pinaster; additionally, in comparisons where the
E-value was higher than E-100, the identity score was
99 %. However, well-annotated, mapped and well-
assembled whole-genome data are ultimately needed
to validate orthology. Such data are still unavailable,
although the first incomplete draft genome assembly
was published recently for loblolly pine (Neale et al.
2014; Zimin et al. 2014).

Multiple alignment

The FASTA sequences for individual genes were aligned
using BioEdit (ver. 7.0.9.0) (Hall 1999) and merged into
one dataset in SeaView (ver. 4.0) (Galtier et al. 1996). Con-
version from FASTA to NEXUS was done in SeaView, and
from FASTA to PHYLIP manually in the text editor
Notepad++ (ver. 5.9.3) (Ho 2011). Coding sites were
assigned based on annotation data in NCBI GenBank for
each individual gene separately using DnaSP (ver.
5.10.01) (Librado and Rozas 2009). The merged NEXUS
file was further manually annotated, and one of five cat-
egories was assigned to each site: a codon position (1, 2
or 3), intron or 3′UTR. All sites with missing data were
removed from the analysis [see Supporting Informa-
tion—Dataset S1].

Partitioning

Partitioning schemes and models of molecular evolution
were evaluated using PartitionFinder (ver. 1.1.1) (Lanfear
et al. 2012). Model selection was restricted to the set of
models implemented in the software in which we
intended to run the phylogenetic analysis (parameter

‘model ¼’ in PartitionFinder). At most 42 models were
evaluated simultaneously based on Akaike information
criterion (AIC) and Bayesian information criterion (BIC).
The parameters describing gamma distribution of rates
among sites (G or G) and a proportion of invariable sites
(I) were considered among the models exclusively, i.e.
none of the evaluated models accounted for both G and
I jointly, because of reported problems with independent
optimization of these two parameters (see discussions
and relevant references in Stamatakis 2008: pp. 20–21
and in Stamatakis 2014: p. 49). Additionally, in the
group of models evaluated for GARLI (Zwickl 2006) (see
below), one or more of the K81 models (K81, K81 + I
and K81 + G, depending on the subset of data; a few
data subsets were affected) caused convergence pro-
blems and were not considered. Depending on the
intended phylogenetic analysis, alternative partitioning
schemes were then implemented [see Supporting Infor-
mation—Table S1]: (i) by-gene-site: best partitioning
schemes for 39 sets corresponding to different genes
and site categories within genes, or (ii) by-gene: best
models identified for each of the 11 genes in the set (no
partitioning within a gene). Additionally, in the cases
where each gene was analysed separately, models were
identified for every gene independently with sites
assigned to one of the five site categories (by-site).

Phylogenetic analysis

The combined dataset of 11 genes was subjected to two
gene tree methods with partitioning by-gene-site: max-
imum likelihood (ML; GARLI, ver. 2.01) (Zwickl 2006) and

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 1. Genes used in the study and their NCBI accession numbers. Genomic DNA sequences for the ingroup (P. echinata, P. elliottii, P. palustris
and P. taeda) were newly generated and presented in Koralewski et al. (2014), and both genomic DNA and mRNA sequences for the outgroup
(P. pinaster) were already available in NCBI.

Gene name Gene

abbreviation

Pinus

echinata

Pinus

elliottii

Pinus

palustris

Pinus

taeda

Pinus

pinaster

4-coumarate:CoA ligase 4cl KF158811 KF158813 KF158814 KF158816 HM482497

arabinogalactan 4 agp-4 KF158819 KF158821 KF158822 KF158824 AM501931

trans-cinnamate 4-hydroxylase 2 c4h-2 KF158875 KF158877 KF158878 KF158880 JN013973

cinnamyl alcohol dehydrogenase cad KF158882 KF158883 KF158884 KF158885 FN824799

cellulose synthase cesA3 KF158898 KF158900 KF158901 KF158903 FN257074

caffeate O-methyltransferase comt-2 KF158906 KF158908 KF158909 KF158911 HE574557

dehydrin 2 dhn-2 KF158924 KF158926 KF158927 KF158929 HE796687

early response to drought 3 erd3 KF158931 KF158932 KF158933 KF158934 EU020011

glycine hydroxymethyltransferase glyhmt KF158935 KF158936 KF158937 KF158938 HE574564

ABII protein phosphatase 2C-like pp2c KF158952 KF158953 KF158954 KF158955 EU020014

chloroplast Cu/Zn superoxide

dismutase

sod-chl KF158978 KF158979 KF158980 KF158981 AF434186
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Bayesian inference (BI; MrBayes, ver. 3.2.2) (Ronquist et al.
2012). Species trees were reconstructed using the Bayes-
ian method BEST (ver. 2.3) (Liu 2008) with partitioning
by-gene. To account for potential polytomies, and thus
potential for the star tree paradox (Suzuki et al. 2002;
Lewis et al. 2005), we ran Phycas (ver. 1.2.0) (Lewis et al.
2010), also a Bayesian method, with partitioning
by-gene-site. We then analysed each gene separately
using GARLI and MrBayes (partitioning by-site). The
MrBayes outputs were further investigated using Bayes-
ian concordance analysis (Ané et al. 2007), as implemen-
ted in BUCKy (ver. 1.4.0, mbsum ver. 1.4.2) (Larget et al.
2010), for seven values of a: 0.01, 0.5, 1, 2, 5, 10 and
10 000. The value of a corresponds to the probability
that loci share the same tree (the lower a the higher
the probability, and vice versa), thus affecting the clade
support (the higher the probability the higher support).
Formally, BUCKy is not considered a species-tree method;
however, the resulting primary concordance tree can be
generally considered comparable with species trees (for
an in-depth discussion about the species methods, see
Mateos et al. 2012).

All analyses were run in Windows 7 [see Supporting
Information—Table S1] except for BUCKy, which was
compiled and run under Cygwin. The tree figures were
visualized in FigTree (ver. 1.4) (Rambaut 2013) and further
edited manually to increase their readability and
compactness.

Clade support and convergence

In order to determine the clade support, BS was calculated
in GARLI using 1000 replicates [see Supporting Informa-
tion—Table S1]. SumTrees (ver. 3.3.1) (Sukumaran and
Holder 2010) was used to generate majority consensus
trees. Posterior probability (PP) estimates were used for
the BI methods. To verify that the Markov chain Monte
Carlo analysis converged on a stationary distribution and
that the sampling of the distribution was adequate, the fol-
lowing criteria were applied for MrBayes and BEST: (i) stable
PP values, (ii) small and stable average standard deviation
of the split frequencies of independent runs, (iii) potential

scale reduction factor close to 1 and (iv) an effective sample
size of at least 200 for the posterior probabilities. The con-
ditions (i) and (iv) were evaluated also for Phycas, and add-
itionally the split PP plot and split sojourn plot were
examined. Samples prior to reaching stationarity were dis-
carded as ‘burnin’. The conditions (i) and (iv) were evalu-
ated in Tracer (ver. 1.5.0) (Rambaut and Drummond
2009). Average standard deviation of mean sample-wide
concordance factor (CF) was examined for BUCKy, and
the CF was used to determine clade support.

Results

Combined evidence from all genes

Three methods, GARLI, MrBayes and Phycas, recovered
the clade echinata–elliottii for the concatenated matrix
of 11 genes. Support from the ML method was much
lower (highest BS ¼ 65 %, AIC partitioning) than that
from the BI methods (lowest PP ¼ 0.98 in MrBayes, BIC
partitioning). The BI methods additionally supported the
clade echinata–elliottii–palustris, but support varied con-
siderably (from PP , 0.50 in Phycas, AIC, to PP ¼ 0.94 in
MrBayes, BIC). Significant differences between the ML
and BI methods in support for the clade echinata–elliottii,
and in the case of the clade echinata–elliottii–palustris,
also between Phycas and MrBayes (Fig. 2) are character-
istic signatures of true or approximate star phylogenies
(Suzuki et al. 2002; Lewis et al. 2005).

BEST supported the clade echinata– taeda, absent in
the gene-tree methods, with PP ¼ 0.53 (AIC and BIC;
Fig. 3). This clade was present also in the primary con-
cordance tree in BUCKy (CF ranging from 0.35 to 0.44,
depending on a and model selection criterion). Another
clade present in the BUCKy’s primary concordance tree
was elliottii–palustris (CF ranging from 0.24 to 0.44,
depending on a and model selection criterion).

Individual gene approach

Given the results from the analysis of the combined data-
set resulting in mostly unresolved relationships among
the studied species, and the conflicts found between

Figure 2. Joint analysis of 11 genes in P. echinata, P. elliottii, P. palustris and P. taeda using GARLI (A), MrBayes (B) and Phycas (C). Numbers at
nodes correspond to BS for GARLI (%; AIC/BIC), and PP for MrBayes and Phycas (AIC/BIC). Branch lengths are shown for the BIC partitioning
schemes.
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the gene-tree and species-tree methods, we looked at
each gene separately using ML (GARLI) and BI (MrBayes).
The two approaches produced consistent results for each
gene, although the difference in clade support varied
among the genes [see Supporting Information—Fig.
S1]. We, therefore, clustered genes into three groups fol-
lowing similarity in topologies. The genes 4cl, c4h-2 and
cesA3 (Group A) supported the clade echinata– taeda,
the genes agp-4 and sod-chl (Group B) supported the
clade echinata–elliottii and the genes dhn-2 and erd3
(Group C) supported the clade echinata–palustris. Group
C genes disagreed in the placement of the species
P. elliottii and P. taeda; however, we decided to focus on
the similarity. Additional analysis in the R environment
(ver. 2.15.2) (R Core Team 2012) supported these group-
ings—principal coordinate analysis (function pcoa, pack-
age ape ver. 3.0-11) (Paradis et al. 2004) run on
Robinson–Foulds distance matrix for the individual gene
trees (function RF.dist, package phangorn ver. 1.99-7)
(Schliep 2011) placed the three groups of genes in distinct
clusters [see Supporting Information—Fig. S2]. Each set
was partitioned by-gene-site, and analysed using GARLI
and MrBayes. In general, the BS for the clades jointly sup-
ported by genes within each group increased, the PP
reached (or stayed at) 1.00 and the level of support for
these clades became consistent between GARLI and

MrBayes (Fig. 4) [see Supporting Information—Fig. S3].
In the case of Group B, the clade palustris–taeda, previ-
ously present only in the agp-4 gene tree, was also recov-
ered, although with low support. In Group C, P. elliottii and
P. taeda were placed as sister taxa in a clade with low BS
and high PP, which reflects the conflict between the two
individual gene trees.

Discussion
The discordance among various approaches applied in
this study mirrors the conflicting results from previously
published work (see Introduction). Comparison of the
topologies supported by Group A vs. Group B vs. Group C
genes shows highly consistent results within each group
across different methods, yet the conclusions contradict
each other among the groups. The clade echinata2

taeda, supported by Group A genes, was previously recov-
ered by Dvorak et al. (2000) using RAPD markers and the
neighbour-joining method with BS ¼ 0.90. The species in
the clade palustris–taeda, supported by the gene agp-4
(Group B), were placed in one clade by Adams and Jack-
son (1997) based on parsimony analysis of morphological
characters, and by Grotkopp et al. (2004) through a super-
tree approach (57 % of individual trees agreed with the
supertree at the node). Both clades echinata–palustris
and elliottii–taeda supported by the Group C genes corre-
sponded to grouping in Eckert and Hall (2006), who used
chloroplast data.

Given life history of the subsection (see Introduction),
long-distance gene flow through pollen, hybridization
events that still occur today and large (but variable in the
past) population sizes of the investigated species, incom-
plete lineage sorting could be the simplest and most
straightforward explanation of the pattern observed in
our study. It is a known phenomenon in pines (Syring
et al. 2007; Willyard et al. 2009), and it is likely to confound
phylogenetic inference in a clade as recent as Australes.
Interestingly, however, the genes forming the three groups

Figure 3. Joint analysis of 11 genes in P. echinata, P. elliottii,
P. palustris and P. taeda using BEST (A) and BUCKy (cladogram; B).
Numbers at nodes correspond to PP for BEST (AIC/BIC) and CFs for
BUCKy (AIC/BIC; range of CFs for a values from 10 000 to 0.01).

Figure 4. Analysis of three groups of genes: Group A (4cl, c4h-2 and cesA3; A), Group B (agp-4 and sod-chl; B) and Group C (dhn-2 and erd3; C) in P.
echinata, P. elliottii, P. palustris and P. taeda using GARLI and MrBayes. Cladograms are shown. Numbers at nodes correspond to clade support:
GARLI (AIC/BIC; top row) and MrBayes (AIC/BIC; bottom row). The BS for the clade palustris–taeda in Group B was ,0.50.
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are also connected at the putative functional level
(Table 2). The Group A genes all directly affect wood prop-
erties: 4cl and c4h-2 are both part of the lignin biosynthesis
pathway (Whetten and Sederoff 1995; Boerjan et al. 2003),
and cesA3 is involved in cellulose synthesis (Pot et al.
2005). Another gene in our dataset, comt-2, is also
involved in lignin biosynthesis (Whetten and Sederoff
1995; Boerjan et al. 2003) but did not recover the echi-
nata–taeda clade. Unlike the other three genes in Group
A, it supported the clade elliottii–palustris. An additional
joint analysis of all four genes, using the same method-
ology, showed that the support for the previously recov-
ered clade echinata–taeda almost did not change, while
the clade elliottii–palustris received a low-to-moderate
support [see Supporting Information—Fig. S4]. The
latter two species were previously placed in one clade
(BS ≤ 0.50) by Hernández-León et al. (2013) based on an
ML method applied to plastid data. Conversely, the Group
B and C genes are not involved in the lignin biosynthesis
pathway directly. The Group B genes (agp-4 and sod-chl)
appear to contribute to plant defence, water management
and other functions. Proteins from the arabinogalactan
family play signalling and protective roles, and participate
in xylem development, cell growth and expansion, pro-
grammed cell death and other processes (Loopstra and
Sederoff 1995; Loopstra et al. 2000; Zhang et al. 2000,
2003; Showalter 2001; Seifert and Roberts 2007). Sod-chl
has antioxidative properties (Huttunen and Heiska 1988;
Bowler et al. 1992). It was also drought responsive (Costa
et al. 1998) and hence was considered a drought-tolerance
candidate gene in loblolly pine (González-Martı́nez et al.
2006). Dhn-2 and erd3 (Group C) are also associated with
water stress recognition and response. Dhn-2, a dehydrin,
is responsive to dehydration stress and also plays
other protective functions (González-Martı́nez et al. 2006;
Eveno et al. 2008). The role of erd3 is less known, but it has
been found active in an early stage of dehydration stress
(González-Martı́nez et al. 2006; Eveno et al. 2008).

Regardless of the extent of the potential effects of
shared ancestral polymorphisms, two other hypotheses
of parallel evolution within the functional gene groups
could be pursued in follow-up studies. The functionally
bound clades could have resulted from a transfer of

adaptive alleles via introgressive hybridization from an
adapted pine donor, followed by positive selection and
subsequent purifying or balancing selection acting in
both donor and acceptor populations. Alternatively, spe-
ciation could have begun while the locus was already
under purifying or balancing selection, which continued
working simultaneously in both populations in parallel,
given common habitat locations and environmental pres-
sures. Sympatry, shifting locale of the optimum habitat,
population size changes and the recent evolutionary ori-
gin of the southern pines could have facilitated hybridiza-
tion, while crucial roles of the genes belonging to the
three groups could have resulted in preservation of adap-
tive variants, especially under similar environmental
selection pressures. A tight physical linkage among the
loci within each group can be excluded as an alternative
possible explanation for the observed phenomenon. Most
of the genes studied here are mapped to different linkage
groups in P. taeda, or far from each other, although no
linkage data were found for dhn-2 and erd3 [see Support-
ing Information—Table S2]. These two hypotheses
require more assumptions to explain the observed pat-
tern when compared with the hypothesis of incomplete
lineage sorting, and therefore, the latter should be pre-
ferred, although some form of interplay of all three is cer-
tainly possible.

In order to reject the hypothesis of incomplete lineage
sorting, and to pursue an alternative, limitations of our
study need to be overcome. Multiple individuals sampled
for each species would allow for thorough identification
of shared ancestral polymorphisms and variation fixed
at the species level. Including more genes per functional
group would allow to examine whether the observed pat-
tern holds also for other members of a given pathway or
process, or if it is purely stochastic. Samples from all
members of the clade Australes would likely help improve
overall robustness of the phylogenetic inference. Add-
itionally, to test the monophyly of the clade Australes in
the traditional sense (Little and Critchfield 1969), which
has been questioned by cpDNA-based studies (Gernandt
et al. 2005; Eckert and Hall 2006; Hernández-León et al.
2013), species traditionally classified as Attenuatae,
Leiophyllae and Oocarpae should be included in the

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 2. Groups of genes based on phylogenetic analysis of P. echinata, P. elliottii, P. palustris and P. taeda, their selected putative functions and
numbers of nonsynonymous (N) and silent (S) nucleotide substitutions in each group.

Group Genes Putative function N S

A 4cl, c4h-2 and cesA3 Wood properties 2 10

B agp-4 and sod-chl Plant defence, water management 4 10

C dhn-2 and erd3 Water stress recognition and response 2 11
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nuclear marker-based study. Alternative outgroup spe-
cies could also be considered, especially those from sub-
sections Contortae and Ponderosae that are more closely
related to the ingroup than P. pinaster. Solving these
caveats, however, requires additional resources and can-
not be done purely analytically. Given the limitations of
the data, our primary intention was to apply a spectrum
of methods to a gene sample that would maximize gen-
ome coverage.

Recent estimates of radiation within Australes sug-
gested that it could have begun as recently as 7 MYA
(P. taeda–P. radiata split), although the split between
the ancestors of Ponderosae and Australes might have
happened as early as 15 MYA (Willyard et al. 2007). This
timeframe overlaps with the mid- to late-Miocene
(about 14–15 MYA), starting at or directly following the
middle Miocene climate transition (MMCT), a period of
cooling and ice-sheet expansion that took place about
14 MYA (Shevenell et al. 2004). Pines experienced habitat
locale shifts both before and after the MMCT, for example,
during the Eocene (56–34 MYA), interpreted as the major
stimulus for pine divergence at the time, and during the
Pleistocene (2.6–0.01 MYA) (Millar 1993). The MMCT likely
affected population sizes, species range and distribution
of the allelic variation, and probably had the momentum
to trigger radiation within Australes. The potential for
hybridization events resulting in introgression was likely
greater back in time, especially when the ancestral spe-
cies were far less diverged and stressed by recurrent
changes in environmental pressures and by range shifts.
Range expansions could have then brought multiple gen-
etic effects (Excoffier et al. 2009) including increase in fre-
quency of rare (and also newly introduced) variants. This
process would have happened much faster if the newly
acquired alleles were advantageous.

The adaptations shared among the southern pines and
shaped by the vibrant historic climate are particularly
interesting in the light of the ongoing and forthcoming cli-
mate changes, amidst the discussion on assisted migra-
tion (Vitt et al. 2010; Krutovsky et al. 2012; Koralewski
et al. 2015). The historical events might have led to
increased standing genetic variation in these species, dir-
ectly influencing their level of adaptability and making
them somewhat ‘climate-change ready’. Additional
inquiries directed towards the loci studied here could
improve breeding strategies in the face of climate change
(Krutovsky et al. 2013).

Conclusions
Incomplete lineage sorting, introgression and parallel
evolution can explain inconsistencies observed in the
phylogenetic analysis of the four southern pines. However,

more data are needed to discriminate among these
hypotheses. The conflicting signals were vigorously tested,
but evidence in the current data was not robust enough to
support potent claims, and thus, the simplest hypothesis
of incomplete lineage sorting may be preferred, while
the alternatives may be pursued in future studies. To over-
come limitations of our study, additional sampling should
include multiple individuals per species, additional species
that form one clade with the four pines investigated here,
less distant outgroup species and additional functionally
related genes. Our work provided new insights into the
Australes phylogeny, but their evolutionary history remains
elusive.
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Supporting Information
The following additional information is available in the
online version of this article —

Dataset S1. Multiple alignment in NEXUS format.
Figure S1. Separate analysis of each gene for the four

Australes species: P. echinata, P. elliottii, P. palustris and
P. taeda. Cladograms are shown. From top to bottom:
4cl, c4h-2 and cesA3 (A); agp-4 and sod-chl (B); dhn-2
and erd3 (C); cad, glyhmt, pp2c and comt-2 (D). Numbers
at nodes correspond to clade support: GARLI (AIC/BIC; top
row) and MrBayes (AIC/BIC; bottom row).

Figure S2. Principal coordinate analysis run on Robin-
son–Foulds distance matrix for the individual gene
trees. Group A gene names (4cl, c4h-2 and cesA3) are in
green, Group B gene names (agp-4 and sod-chl) are in
orange and Group C gene names (dhn-2 and erd3) are
in blue.

Figure S3. Joint analysis of the genes from Group A (4cl,
c4h-2 and cesA3; A), Group B (agp-4 and sod-chl; B) and
Group C (dhn-2 and erd3; C) in P. echinata, P. elliottii,
P. palustris and P. taeda using GARLI and MrBayes. From
top to bottom: GARLI (AIC), GARLI (BIC), MrBayes (AIC)
and MrBayes (BIC). Numbers at nodes correspond to
clade support.

Figure S4. Joint analysis of the genes from Group A (4cl,
c4h-2 and cesA3) and comt-2 in P. echinata, P. elliottii,
P. palustris and P. taeda using GARLI and MrBayes. From
top to bottom: GARLI (AIC), GARLI (BIC), MrBayes (AIC)
and MrBayes (BIC). Numbers at nodes correspond to
clade support.

Table S1. Partitioning schemes and software settings.
Table S2. Linkage information for the studied genes.
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