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EXISTENCE AND UNIQUENESS OF WEAK SOLUTIONS TO
VISCOUS PRIMITIVE EQUATIONS FOR CERTAIN CLASS OF

DISCONTINUOUS INITIAL DATA

JINKAI LI AND EDRISS S. TITI

Abstract. We establish some conditional uniqueness of weak solutions to the
viscous primitive equations, and as an application, we prove the global existence and
uniqueness of weak solutions, with the initial data taken as small L∞ perturbations
of functions in the space X =

{

v ∈ (L6(Ω))2|∂zv ∈ (L2(Ω))2
}

; in particular, the
initial data are allowed to be discontinuous. Our result generalizes in a uniform
way the result on the uniqueness of weak solutions with continuous initial data and
that of the so-called z-weak solutions.

1. Introduction

The primitive equations are derived from the Boussinesq system of incompressible
flow under the hydrostatic balance assumption, by taking the zero singular perturba-
tion limit of the small aspect ratio. This singular perturbation limit of small aspect
ratio can be rigorously justified, see, Azérad–Guillén [1] and Li–Titi [26]. The prim-
itive equations play a fundamental role for weather prediction models, see, e.g., the
books by Lewandowski [24], Majda [30], Pedlosky [32], Vallis [38], and Washington–
Parkinson [39].

In this paper, we consider the following primitive equations (without considering
the coupling to the temperature equation):

∂tv + (v · ∇H)v + w∂zv +∇Hp(x
H , t)−∆v + f0k × v = 0, (1.1)

∇H · v + ∂zw = 0, (1.2)

where the horizontal velocity v = (v1, v2), the vertical velocity w and the pressure
p are the unknowns, and f0 is the Coriolis parameter. Note that though (1.1)–(1.2)
is a three-dimensional system, the pressure p depends only on two spatial variables,
and there is no dynamical equation for the vertical velocity w. We use x = (x1, x2, z)
to denote the spatial variable, xH = (x1, x2) the horizontal spatial variable, and
∇H = (∂1, ∂2) the horizontal gradient. We complement system (1.1)–(1.2) with
initial and boundary conditions which will be discussed in details below. Note that
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the primitive equations considered here, i.e., (1.1)–(1.2), do not include the coupling
with the temperature equation; however, one can adopt the same approach presented
in this paper to establish the corresponding results for the full primitive equations
coupled with temperature equation, for as long as the temperature equation has
full diffusivity. For the sake of simplicity, we consider here the primitive equations
without the coupling with the temperature equation, i.e., system (1.1)–(1.2).

Since the pioneer works by Lions–Temam–Wang [27–29] in the 1990s, there has
been a lot of literatures on the mathematical studies of the primitive equations. The
global existence of weak solutions has been proven long time ago by Lions–Temam–
Wang [27–29] in the 1990s; however, the uniqueness of weak solutions in the general
case is still an open question, even for the two-dimensional case. This is different from
the incompressible Navier-Stokes equations, since it is well-known that the weak so-
lution to the two-dimensional incompressible Navier-Stokes equations is unique (see,
e.g., Ladyzhenskaya [25], Temam [37] and Constantin–Foias [13]). The main ob-
stacle of proving the uniqueness of weak solutions to the two-dimensional primitive
equations is the absence of the dynamical equation for the vertical velocity. In fact,
the vertical velocity can only be recovered from the horizontal velocity through the
incompressibility condition, and as a result, there is one derivative loss for the hor-
izontal velocity. Though the general result on the uniqueness of weak solutions to
the primitive equations is still unknown, some particular cases have been solved, see
Bresch et al [3], Petcu–Temam–Ziane [33] and Tachim Madjo [36] for the case of the
so-called z-weak solutions, i.e., the weak solutions with initial data in X ∩ H (the
spaces X and H are given, below, by (1.14) and (1.15), respectively), and Kukavica–
Pei–Rusin–Ziane [20] for the case of weak solutions with continuous initial data. In
the context of strong solutions, the local well-posedness was established in Guillén-
González et al [14]. Remarkably, the strong solutions to the primitive equations have
already been proven to be global for both 2D and 3D cases, see Cao–Titi [11, 12],
Kobelkov [19] and Kukavica–Ziane [22, 23], see also Cao–Li–Titi [5–9] for some recent
progress in the direction of global well-posedness of strong solutions to the systems
with partial viscosities or diffusivity, as well as Hieber–Kashiwabara [17] for some
progress towards relaxing the smoothness on the initial data but still for the system
with full viscosities and diffusivity, by using the semigroup method. Notably, smooth
solutions to the inviscid primitive equations, with or without coupling to the temper-
ature equation, have been shown by Cao et al. [4] and Wong [40] to blow up in finite
time. For the results on the local well-posedness with monotone or analytic initial
data of the inviscid primitive equations (which are also called inviscid Prandtl equa-
tions or hydrostatic Euler equations), i.e., system (1.1)–(1.2), without the Lapalacian
term ∆v, see, e.g., Brenier [2], Masmoudi–Wong [31], Kukavica–Temam–Vicol–Ziane
[21], and the references therein.

Another remarkable difference between the incompressible Navier-Stokes equations
and the primitive equations is their well-posedness theories with Lp initial data. It is
well-known that, for any Lp initial data, with d ≤ p ≤ ∞, there is a unique local mild
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solution to the d-dimensional incompressible Navier-Stokes equations, see, Kato [18]
and Giga [15, 16]; however, for the primitive equations, though the Lp norms of the
weak solutions keep finite up to any finite time, as long as the initial data belong to
Lp (one can apply Proposition 3.1 in Cao–Li–Titi [7] to achieve this fact with the help
of some regularization procedure), it is still an open question to show the uniqueness
of weak solutions to the primitive equations with Lp initial data. One of the aims of
this paper is to partly answer the question of the existence and uniqueness of weak
solutions to the primitive equations, with initial data in L∞. It will be shown, as a
consequence of our result, that the primitive equations possess a unique global weak
solution, with initial data in L∞, as long as the discontinuity of the initial data is
sufficiently small.

We consider system (1.1)–(1.2) in the three-dimensional horizontal layer Ω0 =
M × (−h, 0), confined between the horizontal walls z = −h and z = 0, subject to
periodic boundary conditions with respect to the horizontal variables xH = (x1, x2)
with basic fundamental periodic domain M = (0, 1)× (0, 1) ⊂ R

2. We also suppose
that the flow is stress-free at, and tangential to, the solid boundaries z = −h and
z = 0. In other words, we complement system (1.1)–(1.2) with the following boundary
and initial conditions

v, w and p are periodic in xH , (1.3)

w|z=−h,0 = 0, ∂zv|z=−h,0 = 0, (1.4)

v|t=0 = v0. (1.5)

Extend the unknowns v and w evenly and oddly, respectively, with respect to z,
to be defined on the larger spatial domain Ω = M × (−h, h), then the extended
unknowns v and w are periodic, and are even and odd, respectively, in z. After such
kind extension of the unknowns, the boundary and initial conditions (1.3)–(1.5) are
equivalent to the following periodic boundary and initial conditions

v, w and p are periodic in x1, x2 and z, (1.6)

v and w are even and odd in z, respectively, (1.7)

v|t=0 = v0. (1.8)

Because of the equivalence of the above two kinds of boundary and initial con-
ditions, we consider, throughout this paper, the boundary and initial conditions
(1.6)–(1.8), in other words, we consider system (1.1)–(1.2), subject to (1.6)–(1.8).
Note that condition (1.7) is a symmetry condition, which is preserved by system
(1.1)–(1.2), that is, if a smooth solution to system (1.1)–(1.2) exists and is unique,
then it must satisfy the symmetry condition (1.7), as long as it is initially satisfied.
We also note that since there is no dynamical equation for the vertical velocity, no
initial condition is imposed on w. In fact, it is uniquely determined by the horizontal
velocity, through the incompressibility condition (1.2) and the boundary conditions
on w.
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Note that the vertical velocity w can be uniquely expressed in terms of the hor-
izontal velocity v, through the incompressibility condition (1.2) and the symmetry
condition (1.7), as

w(x, y, z, t) = −∇H ·
(
∫ z

−h

v(x, y, ξ, t)dξ

)

.

As a result, system (1.1)–(1.8) is equivalent to the following one

∂tv + (v · ∇H)v + w∂zv +∇Hp(x
H , t)−∆v + f0k × v = 0, (1.9)

∇H ·
(

∫ h

−h
v(x, y, z, t)dz

)

= 0, (1.10)

w(x, y, z, t) = −∇H ·
(

∫ z

−h
v(x, y, ξ, t)dξ

)

, (1.11)

subject to the boundary and initial conditions

p is periodic in xH ; and v is periodic in xH and z, and is even in z, (1.12)

v|t=0 = v0. (1.13)

Let us introduce some necessary notations, and give the definition of weak solutions.
We denote by

Cper(Ω) = {f ∈ C(R3)|f is periodic in x1, x2 and z, with basic periodic domain Ω},
and for any positive integer m, we set

Cm
per(Ω) = {f |∇αf ∈ Cper(Ω), 0 ≤ |α| ≤ m}.

For positive integer m and number q ∈ [1,∞], we use Wm,q
per (Ω) to denote the space

of the closure of Cm
per(Ω) in W

m,q(Ω), and denote by W−m,q′

per (Ω) its dual space, when
q ∈ [1,∞). One can easily verify, with the help of the standard modifier, that

Wm,q
per (Ω) = {f ∈ Wm,q(Ω)|f̃ ∈ Wm,q

loc (R3)},
where f̃ is the periodic extension of f to the whole space. In case that q = 2, we
always use Hm

per(Ω) instead of Wm,2
per (Ω). One may also define the periodic Lq(Ω)

space as the closure of Cper(Ω) in Lq(Ω); however, one can easily check that this
space coincides with Lq(Ω). For simplicity, we use the same notations to denote a
space and its product spaces, that is for a space Z, and a positive integer N , we still
use Z to denote its N -product space ZN . We always use ‖u‖p to denote the Lp norm
of u. The following two spaces X and H will be used throughout this paper

X = {v ∈ L6(Ω)|v is periodic in z, and ∂zv ∈ L2(Ω)}, (1.14)

and

H =

{

v ∈ L2(Ω)

∣

∣

∣

∣

v is periodic in xH , even in z, and ∇H ·
(
∫ h

−h

v(xH , z)dz

)

= 0

}

.

(1.15)
We state the definition of weak solutions to system (1.9)–(1.13) as follows.
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Definition 1.1. Given a function v0 ∈ H. A function v is called a global weak
solution to system (1.9)–(1.13), if the following hold:

(i) v ∈ C([0,∞);L2
w(Ω)) ∩ L2

loc([0,∞);H1
per(Ω) ∩ H), where L2

w stands for the L2

space equipped with the weak topology.
(ii) For any compactly supported in time function ϕ ∈ C([0,∞);C1

per(Ω) ∩ H)) ∩
C1([0,∞);Cper(Ω)), the following equality holds

∫ ∞

0

∫

Ω

[−v∂tϕ+ (v · ∇H)v · ϕ+ w∂zv · ϕ+∇v : ∇ϕ]dxdt =
∫

Ω

v0(x)ϕ(x, 0)dx,

where the vertical velocity w is given by (1.11).
(iii) The following differential inequality holds

1

2

d

dt
‖v‖22(t) + ‖∇v‖22(t) ≤ 0, in D′((0,∞));

(iv) The following energy inequality holds

1

2
‖v‖22(t) +

∫ t

0

‖∇v‖22(τ)dτ ≤ 1

2
‖v0‖22,

for a.e. t ∈ (0,∞).

For any initial data v0 ∈ H, following the arguments in [27–29], there is a global
weak solution to system (1.9)–(1.13); however, as we mentioned before, it is still an
open question to show the uniqueness of weak solutions to the primitive equations.
Nevertheless, we can prove the following theorem on the conditional uniqueness of
weak solutions to the primitive equations.

Theorem 1.1. Let v be a global weak solution to system (1.9)–(1.13). Suppose that
there is a positive time Tv, such that

v(x, t) = v̄(x, t) + V (x, t), x ∈ Ω, t ∈ (0, Tv),

∂z v̄ ∈ L∞(0, Tv;L
2(Ω)) ∩ L2(0, Tv;H

1
per(Ω)), V ∈ L∞(Ω× (0, Tv)).

Then, there is a positive constant ε0 depending only on h, such that v is the unique
global weak solution to system (1.9)–(1.13), with the same initial data as v, provided

sup
0<t<T ′

v

‖V ‖∞ ≤ ε0,

for some T ′
v ∈ (0, Tv).

To prove Theorem 1.1, we first show that any weak solution to the primitive equa-
tions is smooth away from initial time, see Corollary 3.1, below, which can be intu-
itively seen by noticing that weak solution has H1

per regularity, at almost any time

away from the initial time, and recalling that, for any H1
per initial data, there is a

unique global strong solution to the primitive equations; however, in order to rigor-
ously prove this fact, we need the the weak-strong uniqueness result for the primitive
equations, see Proposition 3.4, below, where we adopt the idea of Serrin [34]. Since
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weak solutions are smooth away from the initial time, one can perform the energy
estimates to the difference system between two weak solutions, on any finite time
interval away from the initial time. Next, by using the decomposition stated in the
theorem, and handling the nonlinear terms involving each parts in their own ways,
we then achieve the uniqueness.

It should be pointed out that one can not expect that all weak solutions to the
primitive equations, with general initial data in H, have the decomposition as stated
in the above theorem. In fact, by the weakly lower semi-continuity of the norms, in
order to have such decomposition, it is necessary to require that the initial data v0
has the decomposition v0 = v̄0 + V0, with ∂z v̄0 ∈ L2 and V0 ∈ L∞. Observing this, it
is necessary to state the following theorem on the global existence and uniqueness of
weak solutions to the primitive equations with such kind initial data.

Theorem 1.2. Suppose that the initial data v0 = v̄0 + V0, with v̄0 ∈ X ∩ H and
V0 ∈ L∞(Ω) ∩H. Then the following hold:

(i) There is a global weak solution v to system (1.9)–(1.13), such that

v(x, t) = v̄(x, t) + V (x, t), x ∈ Ω, t ∈ (0,∞),

∂z v̄ ∈ L∞
loc([0,∞);L2(Ω)) ∩ L2

loc([0,∞);H1
per(Ω)),

sup
0<s<t

‖V ‖∞(s) ≤ µ(t)‖V0‖∞, t ∈ (0,∞),

where

µ(t) = C0(1 + ‖v0‖4)40(t + 1)2 exp{C0e
2t(t+ 1)(1 + ‖v0‖4)4},

for some positive constant C0 depending only on h;
(ii) Let ε0 be the positive constant in Theorem 1.1, then the above weak solution is

unique, provided µ(0)‖V0‖∞ ≤ ε0
2
.

The uniqueness part of Theorem 1.2 is a direct consequence of the estimate in
(i) and Theorem 1.1. So the key ingredient of the proof of Theorem 1.2 is to find
the required decomposition. Note that in [20], the authors decompose the weak
solution v into a regular part v̄, which is a strong solution to the primitive equations,
with H2 initial data, and a small perturbation bounded part V , which satisfies a
nonlinear system, with small initial data in L∞. Noticing that the initial data v0
considered in this paper can be discontinuous, and recalling the Sobolev embedding
relation H2

per(Ω) →֒ Cper(Ω), hence v0 cannot be approximated in the L∞ norm by

H2 functions, and consequently the decomposition used in [20] does not apply to our
case. One may still use the same decomposition as in [20], but change the initial
data for v̄ and V in X and L∞, respectively; however, if by taking this approach,
we are not able to obtain the L∞ estimates on V , because the L∞

t (H2
x
) estimate

on v̄ plays an essential role in deriving such estimates on V , and it is obvious that
primitive equations with initial data in X does not necessary provide the required
L∞
t (H2

x
) estimate on v̄. We also note that the arguments used in [3, 33, 36] require
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the regularity of the kind ∂zv ∈ L∞
t (L2

x
)∩L2

t (H
1
x
) for the z-weak solutions, and thus

still cannot be applied to our case.
To obtain the desired decomposition on v, we use a different kind of decomposition

from that used in [20]. Indeed (ignoring the regularization procedure to justify the
arguments), we decompose the weak solution v into a “regular” part v̄, which is the
unique solution to a linearized primitive equations (i.e. system (5.8)–(5.9), below),
with initial data in X , and the remaining part V , which satisfies the same system as
that for v̄, but with initial data in L∞. The key observation is that both the L∞ and
the X regularities are preserved by the linearized primitive equations, i.e. systems
(5.3)–(5.4) and (5.8)–(5.9), below. Indeed, by making use of such kind of decompo-
sition, we are able to weaken the assumption on the initial data, without destroying
the uniqueness of the weak solutions. We point out that, compared with the decom-
position introduced in [20], in our decomposition systems, i.e. systems (5.3)–(5.4) and
(5.8)–(5.9), there are no nonlinear terms and no cross terms between v̄ and V , and
moreover, the systems for v̄ and V are decoupled and are independent of each other.
As will be shown later, see Proposition 5.3 and Proposition 5.4, below, the estimates
for v̄ and V in X and L∞, respectively, are global in time, and thus no local in time
arguments are required for deriving these estimates.

As an application of Theorem 1.2, we have the following result, which generalizes
the results in [3, 20, 33, 36].

Corollary 1.1. For any v0 ∈ X ∩ H (or v0 ∈ Cper(Ω) ∩ H), there is a constant σ0,
depending only on h and the upper bound of ‖v0‖4, such that for any V0 = v0 + V0,
with V0 ∈ L∞(Ω) ∩ H and ‖V0‖∞ ≤ σ0, system (1.9)–(1.13) with initial data V0 has
a unique weak solution, which has the regularities stated in Theorem 1.2.

Proof. (i) The case v0 ∈ X ∩ H. Let ε0 be the constant in Theorem 1.1. Recalling
that V0 = v0+V0, by the triangle inequality for the norms and the Hölder inequality,
one can easily check that

C0(1 + ‖V0‖4)40 exp{C0(1 + ‖V0‖4)4}‖V0‖∞ ≤ ρ(‖V0‖∞),

where

ρ(s) = C0(1 + ‖v0‖4 + (2h)
1
4 s)40 exp{C0(1 + ‖v0‖4 + (2h)

1
4 s)4}s.

Noticing that ρ is a continuous function, with ρ(0) = 0, and C0 is a positive constant
depending only on h, there is a positive constant σ0 depending only on h and the
upper bound of ‖v0‖4, such that ρ(s) ≤ ε0/2, for any s ∈ [0, σ0]. Thus, for any
V0 ∈ L∞(Ω) ∩H, with ‖V0‖∞ ≤ σ0, we have

C0(1 + ‖V0‖4)40 exp{C0(1 + ‖V0‖4)4}‖V0‖∞ ≤ ρ(‖V0‖∞) ≤ ε0/2,

and consequently, the conclusion follows by (ii) of Theorem 1.2, by viewing (V0, v0, V0)
as the (v0, v̄0, V0) in Theorem 1.2.
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(ii) The case v0 ∈ Cper(Ω) ∩ H. Let σ0 be the same positive constant as in (i).
We are going to show that the conclusion holds in this case for the new σ∗

0 := σ0

2
.

Suppose that

‖V0‖∞ ≤ σ∗
0 .

Let jη be a standard mollifier, i.e. jη(x) =
1
η3
j(x

η
), with 0 ≤ j ∈ C∞

0 (R3) and
∫

R3 jdx =

1. Since v0 ∈ Cper(Ω), we have

ṽ0 ∗ jη → v0, in Cper(Ω), as η → 0+,

where ṽ0 is the periodic extension of v0 to the whole space. Choose η0 ≤ min{1, 2h}
to be small enough, such that ‖v0 − ṽ0 ∗ jη0‖∞ ≤ σ∗

0 , and set v̄0 = ṽ0 ∗ jη0 . We have

V0 = v0 + V0 = v̄0 + (v0 − ṽ0 ∗ jη0) + V0 =: v̄0 + Ṽ0,

where Ṽ0 := (v0 − ṽ0 ∗ jη0) + V0. Recalling that ‖V0‖∞ ≤ σ∗
0, it follows that

‖Ṽ0‖∞ ≤ ‖v0 − ṽ0 ∗ jη0‖∞ + ‖V0‖∞ ≤ σ∗
0 + σ∗

0 = σ0.

Therefore, the initial data V0 can be decomposed as V0 = v̄0+ Ṽ0, with v̄0 = jη0 ∗ ṽ0 ∈
X ∩ H, ‖v̄0‖4 ≤ 9‖v0‖4, and ‖Ṽ0‖∞ ≤ σ0, where σ0 is the same constant as in (i),

which depends only on ‖v0‖4. By viewing (V0, v̄0, Ṽ0) as the (V0, v0, V0) in case (i), it
is clear that the assumptions in case (i) are fulfilled, and thus there is a unique weak
solution to the primitive equations with initial data V0. �

Remark 1.1. Given a constant vector a = (a1, a2), and two positive numbers δ
and η, with η ∈ (0, h). Set v0 = a|z|δ, V0 = σχ(−η,η)(z), and V0 = v0 + V0, for
z ∈ (−h, h), with σ = (σ1, σ2), where χ(−η,η)(z) is the characteristic function of the
interval (−h, h). Extend v0 and V0, and consequently V0, periodically to the whole
space, and still use the same notations to denote the extensions. Then, one can easily
check that v0 ∈ Cper(Ω)∩H and V0 ∈ L∞(Ω)∩H. By Corollary 1.1, there is a positive
constant ε0 = ε0(a, δ, η, h), such that, for any σ = (σ1, σ2), with 0 < |σ| ≤ ε0, system
(1.9)–(1.13) has a unique weak solution, with initial data V0. Note that

V0 = a|z|δ + σχ(−η,η)(z), z ∈ (−h, h).
One can easily verify that V0 lies neither in X ∩H nor in Cper(Ω) ∩H, and thus the
results established in [3, 20, 33, 36] cannot be applied to prove the uniqueness of weak
solutions with such kind of initial data.

The rest of this paper is arranged as follows: in section 2, we collect some pre-
liminary results; in section 3, as a preparation of proving Theorem 1.1, we show the
regularities, away from the initial time, of weak solutions to the primitive equations;
the proof of Theorem 1.1 is given in section 4; as a preparation of proving Theorem
1.2, we derive some relevant a priori estimates of the solutions to the primitive equa-
tions, with smooth initial data; the proof of Theorem 1.2 is given in the last section,
section 6.
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2. Preliminaries

In this section, we collect some preliminary results which will be used in the rest
of this paper. We start with the following lemma, which can be proven in the same
way as Proposition 2.2 in Cao–Titi [10], and thus we omit the proof of it here.

Lemma 2.1. The following inequalities hold
∫

M

(
∫ h

−h

|φ(xH , z)|dz
)(

∫ h

−h

|ϕ(xH , z)ψ(xH , z)|dz
)

dxH

≤C‖φ‖2‖ϕ‖
1
2

2 (‖ϕ‖2 + ‖∇Hϕ‖2)
1
2 ‖ψ‖

1
2

2 (‖ψ‖2 + ‖∇Hψ‖2)
1
2 ,

and
∫

M

(
∫ h

−h

|φ(xH , z)|dz
)(

∫ h

−h

|ϕ(xH , z)ψ(xH , z)|dz
)

dxH

≤C‖φ‖
1
2

2 (‖φ‖2 + ‖∇Hφ‖2)
1
2 ‖ϕ‖

1
2

2 (‖ϕ‖2 + ‖∇Hϕ‖2)
1
2 ‖ψ‖2,

for every φ, ϕ and ψ, such that the quantities on the right-hand sides make sense and
are finite.

The next lemma will be used in Proposition 5.3 to establish L∞ estimates for Vε.

Lemma 2.2. Let M0 ≥ 2 and δ0 > 0 be two constants. Suppose that the sequence
{Ak}∞k=1, with Ak ≥ 0, satisfies

A1 ≤M0δ
2
0 , Ak+1 ≤M0δ

2k+1

0 +Mk
0A

2
k, for k = 1, 2, · · · .

Then one has
Ak ≤ M

−(k+2)
0 (M4

0 δ
2
0)

2k−1

, k = 1, 2, · · · ,
and in particular Ak ≤ (M4

0 δ
2
0)

2k−1

, for k = 1, 2, · · · .

Proof. Define ak = M
−(k+2)
0 (M4

0 δ
2
0)

2k−1

, for k = 1, 2, · · · . Then, it suffices to prove
that Ak ≤ ak. For k = 1, it follows from the assumption that

a1 =M−3
0 M4

0 δ
2
0 =M0δ

2
0 ≥ A1.

Suppose that Ak ≤ ak holds, for some k. Then, by assumption, we have

Ak+1 ≤M0δ
2k+1

0 +Mk
0 a

2
k =M0δ

2k+1

0 +M
−(k+4)
0 (M4

0 δ
2
0)

2k

=M0δ
2k+1

0 +M−1
0 ak+1 ≤M0δ

2k+1

0 +
ak+1

2
.

We will show that
M0δ

2k+1

0 ≤ ak+1

2
,

and as a consequence of the above, we obtain

Ak+1 ≤
ak+1

2
+
ak+1

2
= ak+1.
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Therefore, by induction, the conclusion holds.
We now prove that M0δ

2k+1

0 ≤ ak+1

2
, for k = 1, 2, · · · . Recalling the definition of ak,

it follows

ak+1 =M
−(k+3)
0 (M4

0 δ
2
0)

2k =M
4×2k−(k+3)
0 δ2

k+1

0 .

Using binomial expansion, we have

4× 2k = 4(1 + 1)k = 4

k
∑

j=0

(

k
j

)

≥ 4(1 + k),

and thus

4× 2k − (k + 3) ≥ 4k + 4− k − 3 = 3k + 1 ≥ 4.

Therefore, we have

ak+1 =M
4×2k−(k+3)
0 δ2

k+1

0 ≥M4
0 δ

2k+1

0 ≥ 23M0δ
2k+1

0 ≥ 2M0δ
2k+1

0 .

This completes the proof. �

We also need the following Aubin–Lions lemma.

Lemma 2.3 (cf. Simon [35] Corollary 4). Let T ∈ (0,∞) be given. Assume that
X,B and Y are three Banach spaces, with X →֒→֒ B →֒ Y. Then it holds that

(i) If F is a bounded subset of Lp(0, T ;X), where 1 ≤ p <∞, and ∂F
∂t

=
{

∂f

∂t
|f ∈ F

}

is bounded in L1(0, T ; Y ), then F is relatively compact in Lp(0, T ;B);
(ii) If F is bounded in L∞(0, T ;X) and ∂F

∂t
is bounded in Lr(0, T ; Y ), where r > 1,

then F is relatively compact in C([0, T ];B).

3. Regularities of weak solutions for positive time

In this section, we prove that the global weak solution to system (1.9)–(1.13) is
smooth away from the initial time. To prove this fact, we will use the weak-strong
uniqueness result for the primitive equations. Therefore, Let us recall the definition
of strong solutions to the primitive equations as follows:

Definition 3.1. Given a positive time T ∈ (0,∞) and the initial data v0 ∈ H1
per(Ω)∩

H. A function v is called a strong solution to system (1.9)–(1.13), on Ω× (0, T ), if

v ∈ C([0, T ];H1
per(Ω) ∩H) ∩ L2(0, T ;H2

per(Ω)), ∂tv ∈ L2(0, T ;L2(Ω)),

satisfies equation (1.9) pointwisely, a.e. in Ω× (0, T ), and fulfills the initial condition
(1.13), with w given by equation (1.11), and p uniquely determined by the following
elliptic problem:

{

−∆Hp(x
H , t) = 1

2h

∫ h

−h
[∇H · ∇H · (v ⊗ v) + f0k × v]dz, in Ω,

∫

Ω
p(xH , t)dxH = 0, p is periodic in xH .
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Proposition 3.1. Let v be a weak solution to system (1.9)–(1.13), with initial data
v0 ∈ H. Then, there is a subset E ⊆ (0,∞) of measure zero, such that

lim
t→0+,t6∈E

v(t) = v0, in L2(Ω).

Proof. By (iv) of Definition 1.1, there is a subset E ⊆ (0,∞) of measure zero, such
that ‖v‖22(t) ≤ ‖v0‖22, for any t ∈ (0,∞) \ E. Thanks to this, and recalling that v(t)
is continuous in L2

w(Ω) with respect to t, it follows from the lower semi-continuity of
the norms that

‖v0‖22 ≤ lim
t→0+,t6∈E

‖v‖22(t) ≤ lim
t→0+,t6∈E

‖v‖22(t) ≤ ‖v0‖22,

and thus limt→0+,t6∈E ‖v‖22(t) = ‖v0‖22. Thanks to this, we deduce

lim
t→0+,t6∈E

‖v(t)− v0‖22 = lim
t→0+,t6∈E

∫

Ω

(|v(t)|2 + |v0|2 − 2v(t) · v0)dx

= lim
t→0+,t6∈E

∫

Ω

(|v(t)|2 − |v0|2)dx = 0,

proving the conclusion. �

The integral equality in the following proposition can be viewed as a replacement
of (ii) in Definition 1.1, without changing the definition of weak solutions.

Proposition 3.2. Let v be a weak solution to system (1.9)–(1.13). Then, for any
0 ≤ t1 < t2 <∞, the following holds

∫

Ω

v(x, t2)ϕ(x, t2)dx+

∫ t2

t1

∫

Ω

∇v : ∇ϕdxdt

=

∫

Ω

v(x, t1)ϕ(x, t1)dx+

∫ t2

t1

∫

Ω

[v · ∂tϕ− (v · ∇H)v · ϕ− w∂zv · ϕ]dxdt,

for vector field ϕ ∈ C([t1, t2];C
1
per(Ω) ∩ H) ∩ C1([t1, t2];Cper(Ω)).

Proof. We only prove the case that t1 > 0, the other case that t1 = 0 can be proven
similarly, by performing the arguments presented below for time t2 only. Set h0 =
min{t1, t2 − t1}, and define the extension of ϕ as

ϕ̃(t) =







2ϕ(t2)− ϕ(2t2 − t), t2 < t ≤ t2 + h0,
ϕ(t), t1 ≤ t ≤ t2,
2ϕ(t1)− ϕ(2t1 − t), t1 − h0 ≤ t < t1.

One can easily check that ϕ̃ ∈ C([t1 − h0, t2 + h0];C
1
per(Ω) ∩ H) ∩ C1([t1 − h0, t2 +

h0];Cper(Ω)). Let χ be a function, such that χ ∈ C∞(R), χ ≡ 1 on (−∞, 0], 0 ≤ χ ≤ 1
and χ′ ≤ 0 on (0, 1/2), and χ ≡ 0 on [1/2,∞). For any h ∈ (0, h0), set

χh(t) = χ

(

t1 − t

h

)

χ

(

t− t2
h

)

, t ∈ R.
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One can easily verify that χh ∈ C∞
0 ((t1 − h, t2 + h)) ⊆ C∞

0 ((0,∞)), χ′
h ≥ 0 on

(t1 − h, t1), χ ≡ 1 on (t1, t2), χ
′
h ≤ 0 on (t2, t2 + h), and |χ′

h| ≤ C
h
, for a positive

constant C independent of h. Set φ = ϕ̃χh. Taking φ as the testing function in (ii)
of Definition 1.1, and thanks to the properties of χh stated above, one obtains

∫ t2+h0

t1−h0

∫

Ω

[−v · ∂tϕ̃ + (v · ∇H)v · ϕ̃+ w∂zv · ϕ̃+∇v : ∇ϕ̃]dxχh(t)dt

=

∫ t1

t1−h

∫

Ω

v · ϕ̃dxχ′
h(t)dt+

∫ t2+h

t2

∫

Ω

v · ϕ̃dxχ′
h(t)dt, (3.1)

for any h ∈ (0, h0). Denote by LHS the quantity on the left-hand side of (3.1).
Since v ∈ L∞(0, t2 + h0;L

2(Ω)) ∩ L2(0, t2 + h0;H
1
per(Ω)), by the Lebesgue dominate

convergence theorem, one can see that

LHS →
∫ t2

t1

∫

Ω

[−v · ∂tϕ+ (v · ∇H)v · ϕ+ w∂zv · ϕ+∇v : ∇ϕ]dxdt,

as h→ 0+. Define the function f as

f(t) =

∫

Ω

v(x, t)ϕ̃(x, t)dx, t ∈ (t1 − h0, t2 + h0).

Recalling that v ∈ C([0,∞);L2
w(Ω)) and noticing that ϕ̃ ∈ C1(Ω̄× [t1−h0, t2+h0]), it

is clear that f ∈ C([t1−h0, t2+ h0]). Denote by RHS the quantity on the right-hand
side of (3.1). Recalling that χ′

h ≥ 0 on (t1 − h, t1), and χ
′
h ≤ 0 on (t2, t2 + h), and

applying the mean value theorem of integrals, one deduces

RHS =

∫ t1

t1−h

f(t)χ′
h(t)dt+

∫ t2+h

t2

f(t)χ′
h(t)dt

=f(t1 − θ1(h)h)

∫ t1

t1−h

χ′
h(t)dt+ f(t2 + θ2(h)h)

∫ t2+h

t2

χ′
h(t)dt

=f(t1 − θ1(h)h)− f(t2 + θ2(h)h) → f(t1)− f(t2),

as h → 0+, where θ1(h), θ2(h) ∈ [0, 1]. Thanks to the above statements, taking
h→ 0+ in (3.1) yields the conclusion. �

Withe the aid of Proposition 3.2, one can show that any weak solution to the
primitive equations on Ω×(0,∞) is also a weak solution to the primitive equations on
Ω× (t,∞), with initial data v(t), for a.e. t ∈ [0,∞), that is the following proposition.

Proposition 3.3. Let v be a global weak solution to system (1.9)–(1.13). Then, for
a.e. t ∈ [0,∞), by viewing time t as the initial time, v is also a weak solution to
system (1.9)–(1.13), on Ω× (t,∞), with initial data v(t).

Proof. We need to verify the terms (i)–(iv) in Definition 1.1 on the time interval
[t0,∞), for a.e. t0 ∈ [0,∞). It is clear that (i) and (iii) hold, while the validity of
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(ii) is guaranteed by Proposition 3.2. We still need to verify that (iv) holds on time
interval [t0,∞), for a.e. t0 ∈ [0,∞), or equivalently that

1

2
‖v‖22(t) +

∫ t

t0

‖∇v‖22(τ)dτ ≤ 1

2
‖∇v‖22(t0), (3.2)

for a.e. t0 ∈ [0,∞) and a.e. t ∈ (t0,∞). Setting f(t) = ‖v‖22(t) and g(t) = ‖∇v‖22(t),
for t ∈ [0,∞). Then by the regularities of weak solutions, one has f, g ∈ L1

loc([0,∞)).
By (iii) of Definition 1.1, it holds that

1

2
f ′(t) + g(t) ≤ 0, in D′((0,∞)).

Let 0 ≤ jε =
1
ε
j
(

t
ε

)

be a standard modifier, with j ∈ C∞
0 ((−1, 1)), and set fε = f ∗ jε

and gε = g ∗ jε, for ε > 0. For any t > 0, it is clear that 0 ≤ jε( · − t) ∈ C∞
0 ((0,∞)).

Thus, one can test the above inequality by jε( · − t) to get

1

2
f ′
ε(t) + gε(t) ≤ 0, t ∈ (0,∞), ε ∈ (0, t).

For any t0 ∈ (0,∞) and t ∈ (t0,∞), integration the above inequality over the interval
(t0, t) yields

1

2
fε(t) +

∫ t

t0

gε(s)ds ≤
1

2
fε(t0),

for any ε ∈ (0, t0). Note that fε(t) → f(t) and gε(t) → g(t), a.e. t ∈ (0,∞), and
gε → g in L1((0, T )), for any finite time T . Thanks to these, taking ε → 0+ in the
above inequality yields

1

2
f(t) +

∫ t

t0

g(s)ds ≤ 1

2
f(t0),

for a.e. t0 ∈ (0,∞) and a.e. t ∈ (t0,∞), which is exactly (3.2). This completes the
proof of Proposition 3.3. �

The following proposition states the weak-strong uniqueness result for the primitive
equations.

Proposition 3.4. Given the initial data v0 ∈ H1
per(Ω) ∩ H. Let vs and vw be the

unique global strong solution and an arbitrary global weak solution, respectively, to
system (1.9)–(1.13), with the same initial data v0. Then, we have vs ≡ vw.

Proof. Denote Us = (vs, ws) and Uw = (vw, ww), and set U = (v, w) = Uw −Us, where
ws and ww are determined uniquely by vs and vw, respectively, through the relation
(1.11).

Since strong solutions to the primitive equations are smooth away from the initial
time, one can choose ϕ = vs as the testing function in Proposition 3.2, and thus get

∫

Ω

vw(x, t) · vs(x, t)dx+

∫ t

s

∫

Ω

∇vw : ∇vsdxdτ
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=

∫

Ω

vw(x, s) · vs(x, s)dx+

∫ t

s

∫

Ω

[vw · ∂tvs − (Uw · ∇)vw · vs]dxdτ,

for any 0 < s < t < ∞. Adding both sides of the above equality by
∫ t

s

∫

Ω
∇vw :

∇vsdxdτ yields
∫

Ω

vw(x, t) · vs(x, t)dx+ 2

∫ t

s

∫

Ω

∇vw : ∇vsdxdτ

=

∫

Ω

vw(x, s) · vs(x, s)dx−
∫ t

s

∫

Ω

(Uw · ∇)vw · vsdxdτ

+

∫ t

s

∫

Ω

(vw · ∂tvs +∇vw : ∇vs)dxdτ,

for any 0 < s < t <∞. For the last term on the right-hand side of the above equality,
one can integrate by parts and use the equations for vs to get

∫ t

s

∫

Ω

(vw · ∂tvs +∇vw : ∇vs)dxdτ = −
∫ t

s

∫

Ω

(Us · ∇)vs · vwdxdτ.

Plugging this equality into the previous one leads to
∫

Ω

vw(x, t) · vs(x, t)dx+ 2

∫ t

s

∫

Ω

∇vw : ∇vsdxdτ

=

∫

Ω

vw(x, s) · vs(x, s)dx−
∫ t

s

∫

Ω

[(Uw · ∇)vw · vs + (Us · ∇)vs · vw]dxdτ, (3.3)

for any 0 < s < t <∞.
Multiplying the equation for vs by vs, and integrating over Ω, the it follows from

integration by parts, and integrating over the time interval (s, t) that

1

2
‖vs‖22(t) +

∫ t

s

‖∇vs‖22(τ)dτ =
1

2
‖vs‖22(s),

for any 0 < s < t <∞. Recalling the energy inequality in Definition 1.1, we have

1

2
‖vw‖22(t) +

∫ t

s

‖∇vw‖22(τ)dτ ≤ 1

2
‖vw‖22(s) +

1

2
(‖v0‖22 − ‖vw‖22(s)),

for a.e. 0 < s < t < ∞. Adding the above two equalities up, and subtracting the
resultant by (3.3) yield

1

2
‖v‖22(t) +

∫ t

s

‖∇v‖22(τ)dτ ≤
∫ t

s

∫

Ω

[(Uw · ∇)vw · vs + (Us · ∇)vs · vw]dxdτ

+
1

2
(‖v‖22(s) + ‖v0‖22 − ‖vw‖22(s)), (3.4)

for a.e. 0 < s < t <∞.
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We are going to deal with the first term on the right-hand side of (3.4). Recalling
the regularities of vs and vw, it follows from integration by parts that

I :=

∫ t

s

∫

Ω

[(Uw · ∇)vw · vs + (Us · ∇)vs · vw]dxdτ

=

∫ t

s

∫

Ω

[(Uw · ∇)vw · vs − (Us · ∇)vw · vs]dxdτ

=

∫ t

s

∫

Ω

(U · ∇)vw · vsdxdτ =

∫ t

s

∫

Ω

(U · ∇)v · vsdxdτ

=−
∫ t

s

∫

Ω

(U · ∇)vs · vdxdτ, (3.5)

for any 0 < s < t <∞. Note that

|∇Hvs(x
H , z)| ≤ 1

2h

∫ h

−h

|∇Hvs(x
H , z′)|dz′ +

∫ h

−h

|∇H∂zvs(x
H , z′)|dz′,

for any (xH , z) ∈ Ω. Therefore, by Lemma 2.1, and using the Young inequality, we
can estimate I as follows

|I| =
∣

∣

∣

∣

∫ t

s

∫

Ω

[(v · ∇H)vs + w∂zvs] · vdxdτ
∣

∣

∣

∣

≤
∫ t

s

∫

M

∫ h

−h

( |∇Hvs|
2h

+ |∇H∂zvs|
)

dz

∫ h

−h

|v|2dzdxHdτ

+

∫ t

s

∫

M

∫ h

−h

|∇Hv|dz
∫ h

−h

|∂zvs||v|dzdxHdτ

≤C
∫ t

s

(‖∇Hvs‖2 + ‖∇H∂zvs‖2)‖v‖2(‖v‖2 + ‖∇Hv‖2)dτ

+ C

∫ t

s

‖∇Hv‖2‖∂zvs‖
1
2

2 (‖∂zvs‖2 + ‖∇H∂zvs‖2)
1
2

× ‖v‖
1
2

2 (‖v‖2 + ‖∇Hv‖2)
1
2dτ

≤1

2

∫ t

s

‖∇Hv‖22dτ + C

∫ t

s

(1 + ‖∂zvs‖22)(1 + ‖∇vs‖22

+ ‖∇H∂zvs‖22)‖v‖22dτ, (3.6)

for any 0 < s < t <∞.
Substituting the above estimate into (3.4) yields

‖v‖22(t) +
∫ t

s

‖∇v‖22(τ)dτ ≤C
∫ t

s

(1 + ‖∂zvs‖22)(1 + ‖∇vs‖22 + ‖∇H∂zvs‖22)‖v‖22dτ

+
1

2
(‖v‖22(s) + ‖v0‖22 − ‖vw‖22(s)),
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for a.e. 0 < s < t <∞. By Proposition 3.1, there is a sequence {sn}, with sn → 0+,
as n → ∞, such that both vs(sn) and vw(sn) converge to v0 in L2(Ω), as n → ∞.
Choosing s = sn in the above inequality, and taking n→ ∞ yields

‖v‖22(t) +
∫ t

s

‖∇v‖22(τ)dτ ≤C
∫ t

s

m(τ)‖v‖22(τ)dτ,

for a.e. t ∈ (0,∞), where

m(τ) = (1 + ‖∂zvs‖22(τ))(1 + ‖∇vs‖22(τ) + ‖∇H∂zvs‖22(τ)), τ ∈ (0,∞).

Noticing that m ∈ L1
loc([0,∞)), by the Gronwall inequality, the above inequality

implies ‖v‖22(t) = 0, a.e. t ∈ (0,∞), that is vs = vw. This completes the proof. �

Corollary 3.1 (Regularities for positive time). Let v be a weak solution to system
(1.9)–(1.13). Then, the following two hold:

(i) v is smooth away from the initial time, i.e. v ∈ C∞(Ω̄× (0,∞));
(ii) v satisfies the energy identity

1

2
‖v‖22(t) +

∫ t

0

‖∇v‖22(τ)dτ =
1

2
‖v0‖22,

for any t ∈ (0,∞).

Proof. (i) By Proposition 3.3, for a.e. t ∈ [0,∞), v is still a weak solution to (1.9)–
(1.13) on Ω × (t,∞), with initial data v(t), by viewing t as the initial time. By the
energy inequality, it is clear that v(·, t) ∈ H1

per ∩ H, for a.e. t ∈ (0,∞). Therefore,
there is a subset E ⊆ (0,∞), of measure zero, such that v is a weak solution to (1.9)–
(1.13) on Ω× (t,∞), with initial data v(t) ∈ H1

per∩H, for all t ∈ (0,∞) \E. Take an
arbitrary time t0 ∈ (0,∞). Thanks to what we just stated, there is a time t′0 ∈ (0, t0),
such that v(·, t′0) ∈ H1

per(Ω) ∩ H, and v is a weak solution to system (1.9)–(1.13), on

Ω×(t′0,∞), with initial data v(t′0). Since v(t
′
0) ∈ H1

per(Ω)∩H, there is a unique global
strong solution vs to system (1.9)–(1.13), on Ω× (t′0,∞), with initial data v(t′0). By
the weak-strong uniqueness, i.e. Proposition 3.4, we then have v ≡ vs, on the time
interval [t′0,∞) ⊇ [t0,∞). Recalling that strong solutions to the primitive equations
are smooth away from the initial time, one has v = vs ∈ C∞(Ω̄×(t0,∞)), and further
v ∈ C∞(Ω̄× (0,∞)), and thus proves (i).

(ii) Thanks to (i), one can multiply equation (1.9) by v, and integrating the resul-
tant over Ω, then integration by parts yields

1

2

d

dt
‖v‖22(t) + ‖∇v‖22(t) = 0,

for all t ∈ (0,∞). Integrating the above equality over the time interval (s, t) leads to

1

2
‖v‖22(t) +

∫ t

s

‖∇v‖22(τ)dτ =
1

2
‖v‖22(s),
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for any 0 < s < t < ∞. By Proposition 3.1, there is a sequence of time {sn}, with
sn → 0+, such that v(sn) → v0 in L2(Ω), as n → ∞. Choosing s = sn in the above
equality, and letting n→ ∞ yield the conclusion. �

4. Proof of Theorem 1.1

With the preparations in the previous section, section 3, we are now ready to prove
Theorem 1.1.

Proof of Theorem 1.1. Denote by vs the weak solution stated in Theorem 1.1.
By assumption, there is a positive time Ts, such that

vs(x, y, z, t) = v̄s(x, y, z, t) + V̄s(x, y, z, t), (x, y, z) ∈ Ω, t ∈ (0, Ts),

∂z v̄ ∈ L∞(0, Ts;L
2(Ω)) ∩ L2(0, Ts;H

1
per(Ω)), V̄s ∈ L∞(Ω× (0, Ts)).

Let ε0 be a sufficiently small positive number, which will be determined later, and
suppose that there is a positive time T ′

s ∈ (0, Ts), such that

sup
0<t<T ′

s

‖V̄s‖∞(t) ≤ ε0.

Take an arbitrary weak solution vw solution to system (1.9)–(1.13), with the same
initial data as vs.

We denote Us = (vs, ws), Uw = (vw, ww) and set U = (v, w) = Uw − Us, where
ws and ww are determined in terms of vs and vw, respectively, through the relation
(1.11). We are going to show that vs ≡ vw, or equivalently v ≡ 0.

By Corollary 3.1, any weak solution to system (1.9)–(1.13) is smooth away from
the initial time. Therefore, we have vs ∈ C∞(Ω̄× (0,∞)) and vw ∈ C∞(Ω̄× (0,∞)).
By the same argument as that for (3.4), we have the following

1

2
‖v‖22(t) +

∫ t

s

‖∇v‖22(τ)dτ ≤
∫ t

s

∫

Ω

[(Uw · ∇)vw · vs + (Us · ∇)vs · vw]dxdτ

+
1

2
(‖v‖22(s) + ‖v0‖22 − ‖vw‖22(s)), (4.1)

for any 0 < s < t <∞. Recalling (3.5), we have by integration by parts that

J :=

∫ t

s

∫

Ω

[(Uw · ∇)vw · vs + (Us · ∇)vs · vw]dxdτ

=

∫ t

s

∫

Ω

(U · ∇)v · vsdxdτ =

∫ t

s

∫

Ω

(U · ∇)v · (v̄s + V̄s)dxdτ

=

∫ t

s

∫

Ω

(U · ∇)v · V̄sdxdτ −
∫ t

s

∫

Ω

(U · ∇)v̄s · vdxdτ =: J1 + J2,

for any 0 < s < t <∞.
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For J1, by the assumption, it follows from the Hölder and Young inequalities that

J1 =

∫ t

s

∫

Ω

[

(v · ∇H)v −
∫ z

−h

∇H · vdξ∂zv
]

· V̄sdxdτ

≤1

4

∫ t

s

‖∇Hv‖22dτ +
∫ t

s

‖V̄s‖2∞‖v‖22dτ + C0

∫ t

s

‖V̄s‖∞‖∇v‖22dτ

≤
(

1

4
+ C0ε0

)
∫ t

s

‖∇v‖22 + ε20

∫ t

s

‖v‖22(τ)dτ,

for any 0 < s < t ≤ T ′
s , where C0 is a positive constant depending only on h.

Choosing ε0 = min
{

1, 1
8C0

}

, then one has

J1 ≤
3

8

∫ t

s

‖∇v‖22 +
∫ t

s

‖v‖22(τ)dτ,

for any 0 < s < t ≤ T ′
s . While for J2, the same argument as that for (3.6) yields

J2 ≤
1

8

∫ t

s

‖∇Hv‖22dτ + C

∫ t

s

(1 + ‖∂z v̄s‖22)(1 + ‖∇v̄s‖22 + ‖∇H∂z v̄s‖22)‖v‖22dτ,

for any 0 < s < t <∞.
Thanks to the estimates for J1 and J2, it follows from (4.1) that

‖v‖22(t) +
∫ t

s

‖∇v‖22(τ)dτ ≤C
∫ t

s

(1 + ‖∂z v̄s‖22)(1 + ‖∇v̄s‖22 + ‖∇H∂z v̄s‖22)‖v‖22dτ

+ (‖v‖22(s) + ‖v0‖22 − ‖vw‖22(s)),

for any 0 < s < t ≤ T ′
s . By Proposition 3.1, there is a sequence {sn}, with sn → 0+,

as n → ∞, such that both vs(sn) and vw(sn) converge to v0 in L2(Ω), as n → ∞.
Choosing s = sn in the above inequality, and taking n→ ∞ lead to

‖v‖22(t) +
∫ t

0

‖∇v‖22(τ)dτ ≤C
∫ t

0

(1 + ‖∂z v̄s‖22)(1 + ‖∇v̄s‖22 + ‖∇H∂z v̄s‖22)‖v‖22dτ,

for any 0 < t ≤ T ′
s . By assumption, it is clear that

(1 + ‖∂z v̄s‖22(τ))(1 + ‖∇v̄s‖22(τ) + ‖∇H∂z v̄s‖22(τ)) ∈ L1((0, Ts)).

Therefore, one can apply the Gronwall inequality to the previous inequality to con-
clude that ‖v‖22(t) = 0, for t ∈ [0, T ′

s ], that is vs ≡ vw, on Ω × [0, T ′
s ]. Starting from

time T ′
s , both vs and vw are smooth, and thus are both strong solutions to system

(1.9)–(1.13), on Ω×(T ′
s ,∞), with the same initial data at time T ′

s . By the uniqueness
of strong solutions to the primitive equations, we have vs ≡ vw, on Ω× [T ′

s ,∞). This
completes the proof of Theorem 1.1. �
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5. A priori estimates for regular solutions

Let v0 = v̄0 + V0, with v̄0 ∈ X ∩ H and V0 ∈ L∞(Ω) ∩ H. Extend v0, v̄0 and
V0 periodically to the whole space, and still use the same notations to denote the
relevant extensions. Let jε, as before, be a standard compactly supported nonnegative
mollifier. Set v̄0ε = v̄0 ∗ jε, V0ε = V0 ∗ jε and v0ε = v0 ∗ jε. It is obvious that v̄0ε ∈ H,
V0ε ∈ H, and v0ε = v̄0ε + V0ε ∈ H. Moreover, we have, for any q ∈ [1,∞], and
ε ∈ (0,min{1, 2h}),

‖v0ε‖q ≤ 9‖v0‖q, ‖v̄0ε‖X ≤ 9‖v̄0‖X , ‖V0ε‖∞ ≤ ‖V0‖∞.
Note that v0ε ∈ H1

per(Ω) ∩ H, and consequently, there is a unique global strong
solution vε (cf. [11]), to system (1.9)–(1.13), with initial data v0ε. Moreover, vε
satisfies the basic energy identity and some additional Lq estimates, which are stated
in the following:

Proposition 5.1 (Lq estimate on vε). Let vε be the unique global strong solution
to system (1.9)–(1.13), with initial data v0ε. Then we have the basic energy identity

1

2
‖vε‖22(t) +

∫ t

0

‖∇vε‖22(τ)dτ =
1

2
‖v0ε‖22,

and the L4(Ω) estimate

sup
0≤s≤t

‖vε‖4(s) ≤ exp{Ce2t(t + 1)(1 + ‖v0‖22)2}(1 + ‖v0‖4),

for any t ∈ [0,∞). Furthermore, for any q ∈ [4,∞), we have

sup
0≤s≤t

‖vε‖q(s) ≤
√
qK1(t)(1 + ‖v0‖q),

for any t ∈ [0,∞), where C is a positive constant depending only on h, and K1 is a
continuously increasing function on [0,∞) determined by h and ‖v0‖4.
Proof. Multiplying equation (1.9) by vε and integrating by parts yields the first con-
clusion. The second and third ones are direct corollaries of Proposition 3.1 in [7]. In
fact, by (3.9) in [7], it follows

sup
0≤s≤t

‖vε‖4(s) ≤ exp{Ce2t(t+ 1)(1 + ‖v0ε‖22)2}(1 + ‖v0ε‖4)

≤ exp{Ce2t(t+ 1)(1 + ‖v0‖22)2}(1 + ‖v0‖4),
for a positive constant C depending only on h, and by Proposition 3.1 (iii) in [7], it
follows that

sup
0≤s≤t

‖vε‖q(s) ≤
√
qK1(t)(1 + ‖v0ε‖q) ≤

√
qK1(t)(1 + ‖v0‖q),

for some function K1, which is determined by the upper bonds of ‖v0ε‖2 and ‖v0ε‖4;
however, since ‖v0ε‖2 ≤ ‖v0‖2 and ‖v0ε‖4 ≤ ‖v0‖4, such function can be chosen to be
independent of ε. �
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Next, we show that away from the initial time, we have the H1 estimates for vε.

Proposition 5.2 (H1 estimate on vε). Let vε be the unique global solution to system
(1.9)–(1.13), with initial data v0ε. Then, for any 0 < t < T <∞, we have

sup
t≤s≤T

‖vε‖2H1(s) +

∫ T

t

(‖∇2vε‖22 + ‖∂tvε‖22)(s)ds ≤ K2(t, T ),

where K2 is a continuous function defined on R
2
+ and determined only by h and ‖v0‖22,

where R
2
+ = (0,∞)× (0,∞).

Proof. Fix T ∈ (0,∞), and let t ∈ [0, T ]. By Proposition 5.1, we have
∫ t

0

‖∇vε‖22(s)ds ≤
1

2
‖v0ε‖22 ≤

1

2
‖v0‖22,

and thus, one can choose such t0 ∈ (0, t) that

‖∇vε(t0)‖22 ≤
‖v0‖22
t

.

Now, taking t0 as the initial time, then it follows from the H1 type energy estimate
for the primitive equations, see (77)–(78) in [11], we obtain

sup
t≤s≤T

‖∇vε‖22(s) +
∫ T

t

‖∇2vε‖22(s)ds

≤ sup
t0≤s≤T

‖∇vε‖22(s) +
∫ T

t0

‖∇2vε‖22(s)ds ≤ K ′′
2 (t, T ),

where K ′′
2 is a continuous function on R

2
+ determined only by h and ‖v0‖22. Thus,

recalling the basic energy identity in Proposition 5.1, we then have

sup
t≤s≤T

‖vε‖2H1(s) +

∫ T

t

‖∇2vε‖22(s)ds ≤ K ′′
2 (t, T ) + ‖v0‖22 =: K ′

2(t, T ). (5.1)

Next, we estimate ‖∂tvε‖22. Multiplying equation (1.9) by ∂tvε, and integrating the
resultant over Ω, then it follows from integration by parts, and using (1.10)–(1.11)
that

‖∂tvε‖22 =
∫

Ω

(∆vε − (vε · ∇H)vε − wε∂zvε) · ∂tvεdx

≤
∫

M

(
∫ h

−h

|∇Hv|dz
)(

∫ h

−h

|∂zvε||∂tvε|dz
)

dxH

+

∫

Ω

(|∆vε|+ |vε||∇Hvε|)|∂tvε|dx =: L1 + L2. (5.2)
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The estimates on L1 and L2 are as follows. By Lemma 2.1, it follows from the
Poincaré and Young inequalities that

L1 ≤C‖∇Hvε‖
1
2

2 (‖∇Hvε‖2 + ‖∇2
Hvε‖2)

1
2

× ‖∂zvε‖
1
2

2 (‖∂zvε‖2 + ‖∇H∂zvε‖2)
1
2‖∂tvε‖2

≤C‖∇Hvε‖
1
2

2 ‖∇2
Hvε‖

1
2

2 ‖∂zvε‖
1
2

2 ‖∇∂zvε‖
1
2

2 ‖∂tvε‖2

≤1

4
‖∂tvε‖22 + C‖∇vε‖22‖∇2vε‖22,

for a positive constant depending only on h. For L2, by the Hölder, Sobolev, Poincaré
and Young inequalities, we deduce

L2 ≤‖∆vε‖2‖∂tvε‖2 + ‖vε‖3‖∇Hvε‖6‖∂tvε‖2
≤‖∆vε‖2‖∂tvε‖2 + C‖vε‖H1‖∇2vε‖2‖∂tvε‖2

≤1

4
‖∂tvε‖22 + C‖∇2vε‖22(1 + ‖vε‖2H1),

for a positive constant C depending only on h. Substituting the above estimates of
L1 and L2 into (5.2), and recalling (5.1), we obtain

∫ T

t

‖∂tvε‖22(s)ds ≤ C

∫ T

t

(1 + ‖vε‖2H1(s))‖∇2vε‖22(s)ds ≤C(1 +K ′
2(t, T ))

2.

Combining the above estimate with (5.1) yields the conclusion, with K2(t, T ) =
K ′

2(t, T ) + C(1 +K ′
2(t, T ))

2. This completes the proof. �

To obtain additional estimates on vε, we decompose vε into two parts

vε = v̄ε + Vε,

such that Vε is the unique solution to the following linear system

∂tVε + (vε · ∇H)Vε + wε∂zVε +∇HPε(x
H , t)−∆Vε + f0k × Vε = 0, (5.3)

∫ h

−h
∇H · Vε(xH , z, t)dz = 0, (5.4)

subject to the periodic boundary condition, with initial data V0ε.
The solvability of the above linear system can be done in the same way (in fact

much easier) as for the primitive equations. Based on the H1 theory for the primitive
equations, i.e., the global existence of strong solutions with H1 initial data, one can
show that the solution vε to the primitive equations with smooth initial data v0ε is
smooth, and as a result, Vε is also smooth.

Moreover, we have the L∞ estimates on Vε stated in the following proposition.

Proposition 5.3 (L∞ estimates on Vε). Let Vε be the unique solution to system
(5.3)–(5.4), subject to the periodic boundary condition, with initial data V0ε. Then
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we have the following estimate

sup
0≤s≤t

‖Vε‖∞(s) ≤ K3(t)‖V0‖∞,

for any t ∈ [0,∞), where

K3(t) = C(1 + ‖v0‖4)40(t + 1)2 exp{Ce2t(t + 1)(1 + ‖v0‖4)4},
for a positive constant C depending only on h.

Proof. Let q ∈ [2,∞). Multiplying equation (5.3) by |Vε|q−2Vε, and integrating over
Ω, it follows from integration by parts that

1

q

d

dt
‖Vε‖qq +

∫

Ω

∇Vε : ∇(|Vε|q−2Vε)dx =

∫

Ω

Pε(x
H , t)∇H · (|Vε|q−2Vε)dx.

Straightforward calculations yield
∫

Ω

∇Vε : ∇(|Vε|q−2Vε)dx =

∫

Ω

|Vε|q−2(|∇Vε|2 + (q − 2)|∇|Vε||2)dx.

We thus have
1

q

d

dt
‖Vε‖qq +

∥

∥

∥
|Vε|

q

2
−1∇Vε

∥

∥

∥

2

2
≤

∫

Ω

Pε(x
H , t)∇H · (|Vε|q−2Vε)dx.

By the Hölder inequality, we deduce
∫

Ω

Pε(x
H , t)∇H · (|Vε|q−2Vε)dx

≤(q − 1)

∫

M

|Pε(x
H , t)|

∫ h

−h

|Vε|q−2|∇HVε|dzdxH

≤(q − 1)

∫

M

|Pε(x
H , t)|

(
∫ h

−h

|Vε|q−2dz

)

1
2
(
∫ h

−h

|Vε|q−2|∇HVε|2dz
)

1
2

dxH

≤(q − 1)

(
∫

M

|Pε|
4q

q+2dxH

)
q+2

4q





∫

M

(
∫ h

−h

|Vε|q−2dz

)

2q

q−2

dxH





q−2

4q
∥

∥

∥
|Vε|

q

2
−1∇HVε

∥

∥

∥

2

≤(q − 1)‖Pε‖ 4q

q+2
,M





∫

M

∫ h

−h

|Vε|2qdz
(
∫ h

−h

1dz

)

q+2

q−2

dxH





q−2

4q
∥

∥

∥
|Vε|

q

2
−1∇HVε

∥

∥

∥

2

≤(q − 1)(2h)
q+2

4q ‖Pε‖ 4q

q+2
,M‖Vε‖

q−2

2

2q

∥

∥

∥
|Vε|

q

2
−1∇HVε

∥

∥

∥

2
,

which, substituted into the previous inequality, yields

1
q

d
dt
‖Vε‖qq +

∥

∥|Vε|
q

2
−1∇Vε

∥

∥

2

2

≤ (q − 1)(2h)
q+2

4q ‖Pε‖ 4q

q+2
,M‖Vε‖

q−2

2

2q

∥

∥|Vε|
q

2
−1∇HVε

∥

∥

2
. (5.5)
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We need to estimate the term ‖Pε‖ 4q

q+2
,M on the right-hand side of (5.5). Applying

the operator divH to equation (5.3), integrating the resulting equation in z over
(−h, h), and using (5.4), yield

−∆HPε(x
H , t) =

1

2h

∫ h

−h

[∇H · ∇H · (Vε ⊗ vε) + f0∇H · (k × Vε)]dz.

Note that Pε can be uniquely specified by requiring
∫

M
Pεdx

H = 0. Decompose
Pε = P 1

ε + P 2
ε , where P

1
ε and P 2

ε are the unique solutions to

−∆HP
1
ε (x

H , t) =
1

2h

∫ h

−h

∇H · ∇H · (Vε ⊗ vε)dz,

and

−∆HP
2
ε (x

H , t) =
f0
2h

∫ h

−h

∇H · (k × Vε)dz,

respectively, subject to the periodic conditions, and the average zero condition
∫

M
P i
εdx

H =

0, for i = 1, 2. Thus, noticing that 4q
q+2

∈ [2, 4), for q ∈ [2,∞), by the elliptic regular-

ity estimates, the Sobolev, Hölder and Young inequalities, we deduce

‖Pε‖ 4q

q+2
,M ≤‖P 1

ε ‖ 4q

q+2
,M + ‖P 2

ε ‖ 4q

q+2
,M ≤ ‖P 1

ε ‖ 4q

q+2
,M + C‖∇P 2

ε ‖ 4q

3q+2
,M

≤C
∥

∥

∥

∥

∫ h

−h

Vε ⊗ vεdz

∥

∥

∥

∥

4q

q+2
,M

+ C

∥

∥

∥

∥

∫ h

−h

k × Vεdz

∥

∥

∥

∥

4q

3q+2
,M

≤C
∫ h

−h

‖Vε ⊗ vε‖ 4q

q+2
,M dz + C

∫ h

−h

‖Vε‖ 4q

3q+2
,Mdz

≤C
∫ h

−h

‖vε‖4,M‖Vε‖2q,Mdz + C

∫ h

−h

‖Vε‖2q,M |M | 34dz

≤C‖vε‖4‖Vε‖2q(2h)
3
4
− 1

2q + C‖Vε‖2q|M | 34 (2h)1− 1
2q

≤C(1 + 2h)(1 + ‖vε‖4)‖Vε‖2q ≤ C(1 + ‖vε‖4)‖Vε‖2q,
for a positive constant C depending only on h.

Substituting the above inequality into (5.5) yields

1

q

d

dt
‖Vε‖qq +

∥

∥

∥
|Vε|

q

2
−1∇Vε

∥

∥

∥

2

2
≤ Cq(1 + ‖vε‖4)‖Vε‖

q

2

2q

∥

∥

∥
|Vε|

q

2
−1∇HVε

∥

∥

∥

2
, (5.6)

for a positive constant C depending only on h. By the Poincaré inequality and

the Gagliardo-Nirenberg-Sobolev inequality, ‖ϕ‖4 ≤ C‖ϕ‖
1
10

1 ‖∇ϕ‖
9
10

2 , for any average
zero function ϕ, we deduce

‖Vε‖
q

2

2q =
∥

∥

∥
|Vε|

q

2

∥

∥

∥

4
≤ C

∥

∥

∥
|Vε|

q

2

∥

∥

∥

1
10

1

(
∥

∥

∥
|Vε|

q

2

∥

∥

∥

1
+
∥

∥

∥
∇|Vε|

q

2

∥

∥

∥

2

)
9
10

,
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which, substituted into (5.6), and using the Young inequality, yields

1

q

d

dt
‖Vε‖qq +

∥

∥

∥
|Vε|

q

2
−1∇Vε

∥

∥

∥

2

2

≤Cq(1 + ‖vε‖4)
∥

∥

∥
|Vε|

q

2

∥

∥

∥

1
10

1

(
∥

∥

∥
|Vε|

q

2

∥

∥

∥

1
+
∥

∥

∥
∇|Vε|

q

2

∥

∥

∥

2

)
9
10
∥

∥

∥
|Vε|

q

2
−1∇HVε

∥

∥

∥

2

≤Cq(1 + ‖vε‖4)
(

∥

∥

∥
|Vε|

q

2

∥

∥

∥

1
+ q

9
10

∥

∥

∥
|Vε|

q

2

∥

∥

∥

1
10

1

∥

∥

∥
|Vε|

q

2
−1∇Vε

∥

∥

∥

9
10

2

)

∥

∥

∥
|Vε|

q

2
−1∇HVε

∥

∥

∥

2

≤1

4

∥

∥

∥
|Vε|

q

2
−1∇Vε

∥

∥

∥

2

2
+ Cq2(1 + ‖vε‖4)2

(

∥

∥

∥
|Vε|

q

2

∥

∥

∥

2

1
+ q

9
5

∥

∥

∥
|Vε|

q

2

∥

∥

∥

1
5

1

∥

∥

∥
|Vε|

q

2
−1∇Vε

∥

∥

∥

9
5

2

)

≤1

2

∥

∥

∥
|Vε|

q

2
−1∇Vε

∥

∥

∥

2

2
+ Cq2(1 + ‖vε‖4)2

∥

∥

∥
|Vε|

q

2

∥

∥

∥

2

1
+ Cq38(1 + ‖vε‖4)20

∥

∥

∥
|Vε|

q

2

∥

∥

∥

2

1

≤1

2

∥

∥

∥
|Vε|

q

2
−1∇Vε

∥

∥

∥

2

+ Cq38(1 + ‖vε‖4)20
(

‖Vε‖
q

2
q

2

)2

.

Therefore, applying Proposition 5.1, we have

d

dt
‖Vε‖qq ≤Cq40(1 + ‖vε‖4)20

(

‖Vε‖
q

2
q

2

)2

≤Cq40
[

(1 + ‖v0‖4) exp{Ce2t(t+ 1)(1 + ‖v0‖22)2}
]20

(

‖Vε‖
q

2
q

2

)2

≤Cq40
[

(1 + ‖v0‖4) exp{Ce2t(t+ 1)(1 + ‖v0‖4)4}
]20

(

‖Vε‖
q

2
q

2

)2

=Cq40S0(t)
(

‖Vε‖
q

2
q

2

)2

,

with K0 given by

S0(t) = [(1 + ‖v0‖4) exp{Ce2t(t+ 1)(1 + ‖v0‖4)4}]20,
and C a positive constant depending only on h. Set δ0 = ‖V0‖∞. Recalling that
‖V0ε‖∞ ≤ ‖V0‖∞, it follows that ‖V0ε‖qq ≤ 2hδq0. On account of this, it follows from
the previous inequality that

sup
0≤s≤t

‖Vε‖qq ≤ 2hδq0 + C∗
0q

40S1(t)

(

sup
0≤s≤t

‖Vε‖
q

2
q

2

)2

, (5.7)

for a constant C∗
0 depending only on h, where S1(t) :=

∫ t

0
S0(s)ds.

Define
Ak(t) = sup

0≤s≤t

‖Vε‖2
k

2k , k = 1, 2, · · · .

Then, setting q = 2k+1 in (5.7) yields

Ak+1(t) ≤ 2hδ2
k+1

0 + C∗
02

40(k+1)S1(t)Ak(t)
2, k = 1, 2, · · · ,

where C∗
0 is a positive constant depending only on h. Setting

M0(t) = 2h+ (1 + C∗
0)2

80(1 + S1(t)),
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then we have

C∗
02

40(k+1)S1(t) ≤ (1 + C∗
0)2

80k(1 + S1(t)) ≤ [(1 + C∗
0)2

80(1 + S1(t))]
k ≤M0(t)

k,

and consequently

Ak+1(t) ≤M0(t)δ
2k+1

0 +M0(t)
kAk(t)

2, k = 1, 2, · · · .
It is obviously that M0(t) ≥ 2. Thus, we can apply Lemma 2.2 to deduce that

Ak(t) ≤ (M0(t)
4δ20)

2k−1

, k = 1, 2, · · · .
Recalling the definition of Ak, then for any s ∈ [0, t], we have

‖Vε‖2
k

2k(s) ≤ Ak(t) ≤ (M0(t)
4δ20)

2k−1

,

which implies ‖Vε‖2k(s) ≤ M0(t)
2δ0, for any positive integer k and every s ∈ [0, t].

Taking k → ∞, we conclude

‖Vε‖∞(s) ≤M0(t)
2δ0 =M0(t)

2‖V0‖∞,
for every s ∈ [0, t], and hence

sup
0≤s≤t

‖Vε‖∞(s) ≤M0(t)
2‖V0‖∞.

Recalling the expressions of M0 and S0, one can easily verify that

M0(t)
2 ≤ C(1 + ‖v0‖4)40(t+ 1)2 exp{e2t(t+ 1)(1 + ‖v0‖4)4} =: K3(t),

for a positive constant C, depending only on h. Therefore, the conclusion holds. �

Recalling the definition of Vε, it is then clear that v̄ε satisfies

∂tv̄ε + (vε · ∇H)v̄ε + wε∂z v̄ε +∇H p̄ε(x
H , t)−∆v̄ε + f0k × v̄ε = 0, (5.8)

∫ h

−h
∇H · v̄ε(xH , z, t)dz = 0, (5.9)

subject to the periodic boundary condition, with initial data v̄0ε. Moreover, since vε
and Vε are both smooth, so is v̄ε.

For v̄ε, we have the following proposition, which states the estimate of v̄ε in X .

Proposition 5.4 (Estimate on v̄ε in X). Let v̄ε be the unique solution to system
(5.8)–(5.9), subject to periodic boundary condition, with initial data v̄0ε. Then we
have the following estimate

sup
0≤s≤t

(‖v̄ε‖22 + ‖∂z v̄ε‖22) +
∫ t

0

(‖∇v̄ε‖22 + ‖∇∂z v̄ε‖22)dτ ≤ K4(t),

where K4 is a continuous function on [0,∞), determined only by h, and the initial
norms ‖v̄0‖2, ‖V0‖∞ and ‖v0‖6.
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Proof. Multiplying equation (5.8) by v̄ε, and integrating over Ω, then it follows from
integration by parts that

1

2

d

dt
‖v̄ε‖22 + ‖∇v̄ε‖22 = 0,

which implies

1

2
sup
0≤s≤t

‖v̄ε‖22 +
∫ t

0

‖∇v̄ε‖22dτ ≤ 1

2
‖v̄0ε‖22 ≤

1

2
‖v̄0‖22. (5.10)

Set ūε = ∂z v̄ε. Differentiating equation (5.8) with respect to z yields

∂zūε + (vε · ∇H)ūε + wε∂zūε −∆ūε + (∂zvε · ∇H)v̄ε − (∇H · vε)ūε + f0k × ūε = 0.

Multiplying the above equation by ūε, and integrating over Ω, then it follows from
integration by parts that

1

2

d

dt
‖ūε‖22 + ‖∇ūε‖22 =

∫

Ω

[(∇H · vε)ūε − (∂zvε · ∇H)v̄ε] · ūεdx. (5.11)

We are going to estimate the terms on the right-hand side of the above equality.
For the first term, integration by parts, and using the Hölder, Sobolev, Poincaré and
Young inequalities lead to

I1 :=

∫

Ω

(∇H · vε)|ūε|2dx = −2

∫

Ω

(vε · ∇H)ūε · ūεdx

≤2‖vε‖6‖∇H ūε‖2‖ūε‖3 ≤ C‖vε‖6‖∇H ūε‖2‖ūε‖
1
2

2 ‖∇H ūε‖
1
2

2

≤1

6
‖∇ūε‖22 + C‖vε‖46‖ūε‖22 ≤

1

6
‖∇ūε‖22 + C‖vε‖46‖∇v̄ε‖22.

For the second term, it follows from integration by parts that

I2 :=−
∫

Ω

(∂zvε · ∇H)v̄ε · ūεdx = −
∫

Ω

∂z(v̄ε + Vε) · ∇H v̄ε · ūεdx

=−
∫

Ω

(ūε · ∇H)v̄ε · ūεdx−
∫

Ω

(∂zVε · ∇H)v̄ε · ūεdx =: I21 + I22.

Estimates on I21 and I22 are given as follows. Integrating by parts, it follows from
the Hölder, Sobolev, Poincaré and Young inequalities that

I21 =−
∫

Ω

(ūε · ∇H)v̄ε · ūεdx

=

∫

Ω

[(∇H · ūε)v̄ε · ūε + (ūε · ∇H)ūε · v̄ε]dx

≤2‖∇Hūε‖2‖v̄ε‖6‖ūε‖3 ≤ C‖∇H ūε‖2‖v̄ε‖6‖ūε‖
1
2

2 ‖∇ūε‖
1
2

2

≤1

6
‖∇ūε‖22 + C‖v̄ε‖46‖ūε‖22 ≤

1

6
‖∇ūε‖22 + C(‖vε‖46 + ‖Vε‖46)‖ūε‖22
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≤1

6
‖∇ūε‖22 + C(‖vε‖46 + ‖Vε‖4∞)‖∇v̄ε‖22,

and

I22 =−
∫

Ω

(∂zVε · ∇H)v̄ε · ūεdx

=

∫

Ω

[(Vε · ∇H)ūε · ūε + (Vε · ∇H)v̄ε · ∂zūε]dx

≤‖Vε‖∞‖∇H ūε‖2‖ūε‖2 + ‖Vε‖∞‖∇H v̄ε‖2‖∂zūε‖2

≤1

6
‖∇ūε‖22 + C‖Vε‖2∞(‖ūε‖22 + ‖∇H v̄ε‖22)

≤1

6
‖∇H ūε‖22 + C‖Vε‖2∞‖∇v̄ε‖22.

Substituting the estimates for I1, I21 and I22 into (5.11), we have

d

dt
‖ūε‖22 + ‖∇ūε‖22 ≤ C(‖vε‖46 + ‖Vε‖4∞ + 1)‖∇v̄ε‖22,

for a constant C depending only on h. Integrating the above inequality with respect
to time, recalling (5.10), and applying Proposition 5.1 and Proposition 5.3, we have

sup
0≤s≤t

‖ūε‖22(s) +
∫ t

0

‖∇ūε‖22(τ)dτ ≤ C sup
0≤s≤t

(‖vε‖46 + ‖Vε‖4∞ + 1)

∫ t

0

‖∇v̄ε‖22dτ

≤C‖v̄0‖22[K1(t)
4(1 + ‖v0‖46) + 1 +K3(t)

4‖V0‖4∞] =: K ′
4(t).

Combining the above inequality with (5.10), we then obtain

sup
0≤s≤t

(‖v̄ε‖22 + ‖ūε‖22) +
∫ t

0

(‖∇v̄ε‖22 + ‖∇ūε‖22)dτ ≤ K ′
4(t) + ‖v̄0‖22 =: K4(t),

completing the proof. �

6. Proof of Theorem 1.2

Based on the results established in the previous section, we can now give the proof
of Theorem 1.2 as follows.

Proof of Theorem 1.2. (i) Suppose v0 = v̄0 + V0, with v̄0 ∈ X ∩ H and V0 ∈
L∞(Ω) ∩ H. Extend v0, v̄0 and V0 periodically to the whole space, and use the same
notations to the relevant extensions. Let jε, as before, be the standard compactly
supported nonnegative mollifier, and set v̄0ε = v̄0 ∗ jε, V0ε = V0 ∗ jε and v0ε = v0 ∗ jε.
It is then obvious that v̄0ε ∈ X ∩H, V0ε ∈ L∞(Ω) ∩ H and v0ε = v̄0ε + V0ε.

Let vε be the unique global strong solution to system (1.9)–(1.13), with initial data
v0ε. As in section 5, we decompose vε into two parts as

vε = Vε + v̄ε,



28 JINKAI LI AND EDRISS S. TITI

where Vε is the unique solution to system (5.8)–(5.9), subject to periodic boundary
conditions, with initial data V0ε. By Propositions 5.1–5.4, we have the estimates

1

2
‖vε‖22(t) +

∫ t

0

‖∇vε‖22(τ)dτ ≤ 1

2
‖v0‖22,

sup
0≤s≤t

‖vε‖6(s) ≤
√
6K1(t)(1 + ‖v0‖6),

sup
t≤s≤T

‖vε‖2H1(s) +

∫ T

t

‖(∇2vε, ∂tvε)‖22(s) ≤ K2(t, T ),

sup
0≤s≤t

‖Vε‖∞(s) ≤ K3(t)‖V0‖∞,

sup
0≤s≤t

‖(v̄ε, ∂z v̄ε)‖22(s) +
∫ t

0

‖(∇v̄ε,∇∂z v̄ε)‖22(s)ds ≤ K4(t),

for any 0 < t < T < ∞, where Ki, i = 1, 2, 3, 4, are the same functions as those in
Propositions 5.1–5.4.

Note that the associated pressure pε(x
H , t) for the solution vε in system (1.9)–

(1.11) can be decomposed as pε = p1ε + p2ε, where p
1
ε and p2ε are the unique solutions

to systems

−∆Hp
1
ε(x

H , t) =
1

2h
∇H · ∇H ·

∫ h

−h

(vε ⊗ vε)dz,

and

−∆Hp
2
ε(x

H , t) =
f0
2h

∫ h

−h

∇H · (k × vε)dz,

respectively, subject to the periodic boundary conditions, and the average zero con-
dition

∫

M
piεdx

H = 0, for i = 1, 2. As a result, by the elliptic regularity estimates, and
recalling the L∞(0, t;L6(Ω)) estimate on vε stated above, we obtain by the Hölder
inequality that

‖p1ε‖L∞(0,t;L3(Ω)) ≤ C‖vε‖2L∞(0,t;L6(Ω)) ≤ CK1(t)
2(1 + ‖v0‖26),

and

‖∇p2ε‖L∞(0,t;L2(Ω)) ≤ C‖vε‖L∞(0,t;L2(Ω)) ≤ C‖v0‖22,
for any t ∈ (0,∞).

Rewrite equation (1.9) for vε as

∂tvε +∇H · (vε ⊗ vε) + ∂z(wεvε) +∇Hpε(x
H , t)−∆vε + f0k × vε = 0.

Noticing that L2(Ω) →֒ L
5
4 (Ω) →֒ W−1, 5

4 (Ω), and recalling that wε is determined by
vε through (1.11), it follows from the above equation and using the Hölder inequality
that

‖∂tvε‖
W

−1,5
4

per

≤‖∇H · (vε ⊗ vε)‖
W

−1,5
4

per

+ ‖∂z(wεvε)‖
W

−1, 5
4

per

+ ‖∆vε‖
W

−1,5
4

per
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+ ‖∇Hp
1
ε‖

W
−1,5

4
per

+ ‖∇Hp
2
ε‖

W
−1,5

4
per

+ f0‖k × vε‖
W

−1, 5
4

per

≤C(‖vε ⊗ vε‖ 5
4
+ ‖wεvε‖ 5

4
+ ‖∇vε‖ 5

4
+ ‖p1ε‖ 5

4
+ ‖∇Hp

2
ε‖2 + ‖vε‖2)

≤C(‖vε‖25
2

+ ‖wε‖2‖vε‖ 10
3
+ ‖∇vε‖2 + ‖p1ε‖2 + ‖vε‖2)

≤C(‖vε‖26 + ‖∇vε‖2‖vε‖6 + ‖∇vε‖2 + ‖vε‖2),

and thus we have

‖∂tvε‖
L

5
4 (0,t;W

−1, 5
4

per )
≤C(‖vε‖2L∞(0,t;L6(Ω)) + ‖vε‖L∞(0,t;L6(Ω))‖∇vε‖L2(Ω×(0,t))

+ ‖∇vε‖L2(Ω×(0,t)) + ‖vε‖L∞(0,t;L2(Ω)))

≤C(‖vε‖2L∞(0,t;L6(Ω)) + ‖∇vε‖2L2(Ω×(0,t)) + 1) ≤ B(t),

for a finite valued function B(t), for t ∈ [0, T ], which is independent of ε.
On account of the estimates obtained above, and noticing that H1

per →֒→֒ L2 →֒
W

−1, 5
4

per , and that H2
per →֒→֒ H1

per →֒ L2, one can apply the Aubin–Lions lemma, i.e.,
Lemma 2.3, to deduce that there is a subsequence, still denoted by {vε}, and a vector
field v = v̄ + V , such that

vε → v in L2(Ω× (0, t)) ∩ C([0, t];W−1, 5
4

per (Ω)),

vε ⇀ v in L2(0, t;H1
per(Ω) ∩ H), vε

∗
⇀ v in L∞(0, t;L2(Ω)),

∇vε ∗
⇀ ∇v in L∞(t, T ;L2(Ω)), (∇2vε, ∂tvε)⇀ (∇2v, ∂tv) in L

2(Ω× (t, T )),

Vε
∗
⇀ V in L∞(Ω× (0, t)),

∂z v̄ε
∗
⇀ ∂z v̄ in L∞(0, t;L2(Ω)), ∂z v̄ε ⇀ ∂z v̄ in L2(0, t;H1

per(Ω)),

for any 0 < t < T < ∞, where ⇀ and
∗
⇀ are the weak and weak-* convergences,

respectively. Moreover, by the weakly lower semi-continuity of the relevant norms,
we have

‖V ‖L∞(Ω×(0,t)) ≤ K3(t)‖V0‖∞,
1

2
‖v‖22(t) +

∫ t

0

‖∇v‖22(τ)dτ ≤ 1

2
‖v0‖22, (6.1)

for a.e. t ∈ [0,∞).
We claim that v is a weak solution to system (1.9)–(1.13). To this end, we need

to verify (i)–(iv) in Definition 1.1. By the strong convergences stated above, one can
see that

v ∈ C([0,∞);W
−1, 5

4
per (Ω)) ∩ L∞

loc([0,∞);L2(Ω)) ∩ L2
loc([0,∞);H1

per(Ω) ∩ H),

from which, by the density argument, one obtains

v ∈ C([0,∞);L2
w(Ω)) ∩ L2

loc([0,∞);H1
per(Ω) ∩ H),
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verifying (i) in Definition 1.1. Recalling that vε is smooth, it is clear that vε satisfies
the weak formula, i.e. (ii), stated in Definition 1.1. As a result, recalling the conver-
gences stated in the previous paragraph, one can take the limit, as ε goes to zero, to
show that v satisfies the weak formula (ii) in Definition 1.1. Note that

v ∈ L2(t, T ;H1
per(Ω)), ∂tv ∈ L2(t, T ;L2(Ω)),

v is actually a strong solution to the primitive equations, away from the initial time.
By the aid of this fact, the differential energy inequality (iii) in Definition 1.1 actually
holds as an equality. The term (iv) is guaranteed by (6.1). Therefore, v is a weak
solution to system (1.9)–(1.13), with initial data v0.

Recall that we have the decomposition v = v̄ + V , with v̄ and V being the weak
limits of v̄ε and Vε, respectively. By the weakly lower semi-continuity of norms, v̄ and
V have the same regularities and same estimates to those for v̄ε and Vε, respectively.
This completes the proof of (i).

(ii) Let v be the weak solution established in (i). Note that µ is continuous on
[0,∞). There is a positive short time Tv, such that

sup
0≤t≤Tv

‖V ‖∞(t) ≤ µ(Tv)‖V0‖∞ ≤ 2µ(0)‖V0‖∞ ≤ ε0.

Thanks to this, by Theorem 1.1, v is the unique weak solution to system (1.9)–(1.13),
with initial data v0. This completes the proof of (ii). �
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