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S U M M A R Y
The critical geometrical parameters that quantify the spatial distribution of natural fractures
are the orientation, length and position of fractures. Knowledge of their spatial distribution
is important as they control the movement of subsurface fluids and also influence seismic
waves propagating in the subsurface. However, generating realistic models of all of these
geometrical parameters to use in forward seismic modelling or inversion applications can
become very difficult, especially when constraints are available only at a few sparse well
locations. Hence, this provides strong motivation for applying seismic data to estimate these
quantities in field settings, and reliable seismic modelling provides important constraints for
interpretation and inversion. The Discrete Fracture Network (DFN) approach has been used
frequently to generate models with stochastic distributions of fractures based on sparse well and
seismic data. However, most of these studies lack any constraint from physical models of the
behaviour of fractured media. In this paper, we implement and extend an alternative modelling
technique to generate several realizations of a fracture model beginning with theoretical results
for the strain energy of a fractured material and propose ways to better incorporate geological
field observations. The method utilizes an elastic energy function that sums the interactions
of all pairs of fractures present in the model. The energy for each pair depends on the distance
between the two fractures, their orientations, lengths and some material properties. This energy
function also serves as an objective function for a simulated annealing (SA) algorithm used
to obtain multiple realizations of correlated fracture networks. We improve earlier versions of
this technique by incorporating periodic boundary conditions, including criteria to limit the
maximum range of pair-wise calculations and suggesting methods to constrain models to match
field data. Assuming that the host rock is isotropic and homogeneous, this method produces
orthogonal sets of fractures, a pattern that is commonly observed during basin formation or
subsidence. This shows how the method can be utilized to provide constraints with a physical
basis to facilitate the development of fracture models. We also outline how the fracture model
can be converted into an anisotropic seismic velocity model to compute synthetic seismograms
for reservoir characterization applications.

Key words: Inverse theory; Fracture and flow; Seismic anisotropy; Computational seismol-
ogy; Statistical seismology; Mechanics, theory, and modelling.

1 I N T RO D U C T I O N

The quantification of the spatial distribution of fractures in low per-
meability rocks, at least for areas with both high and low fracture
density zones, is essential as they control the nature of fluid flow
in those rocks. To date very few studies have been performed on
the spatial correlation of parameters such as length, orientation and
position of fractures, though some of the studies concentrated on
long-range density correlations using fractal geometry (Berkowitz
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et al. 2000; Darcel et al. 2003). Bour & Davy (1999) have studied
the correlation between the position and the length of the frac-
ture. However, most of these studies either used the sparse well
data or scanline data from the outcrops. Hence, utilizing seismic
reflection data to determine the spatial distribution, orientations
and other fracture-related properties is therefore a very important
task, especially since it is otherwise difficult to obtain any infor-
mation between well locations. A number of investigations have
described methods for accomplishing this goal by inverting seismic
data (Beretta et al. 2002; Angerer et al. 2003). However, we still
lack a physically accurate method for estimating fracture distribu-
tions for both forward modelling and inversion studies. A common
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approach used for modelling natural fractures is to apply the dis-
crete fracture network (DFN) method, a statistical method which
produces a list of locations, sizes and orientations of individual
fractures. However, one of the major limitations is that the data
used to populate fractures in large DFN models are either obtained
from 1-D well data or scanline data that introduces significant errors
into the models.

In this paper, we implement and extend a model of the spatial
distribution of fractures that directly considers the elastic energy in
a fractured material (Masihi & King 2007), a model that has not
previously been applied in seismic applications. The modelling is
based on the assumption that the elastic free energy associated with
the fracture distribution follows the Boltzmann distribution. The
expression that determines the spatial correlation function for the
displacement of fractures is used as an objective function to gener-
ate several realizations for fracture distributions using a simulated
annealing (SA) algorithm that minimizes that objective function.
The basic assumption for this method is that the reference rock
sample used for study is already fractured and the rock sample has
already achieved mechanical equilibrium. This equilibrium assump-
tion allows us to use entropy arguments and statistical mechanics
for modelling fractures. The first general goal of the paper is there-
fore to review and to extend this stochastic modelling technique
to develop a method for simulating fracture distributions in large,
field-scale settings for seismic and flow studies. We then show how
to incorporate periodic boundary conditions (PBC) into the simu-
lations, describe criteria to limit the maximum range of pair-wise
interactions, and suggest methods to constrain models to match field
data. Finally, we show how the stochastic models generated with this
concept can be converted into anisotropic seismic velocity models
to simulate 3-D seismic surveys.

2 E L A S T I C E N E RG Y F U N C T I O N F O R
S PAT I A L LY C O R R E L AT E D F R A C T U R E S

This section discusses the important steps involved in the derivation
of the energy function for the spatial correlation of the elastic dis-
placement of fractures, which also serves as the objective function
for the SA algorithm. The complete derivation is given in Shekhar
(2008). We write the vector displacement field within the fractured
rock volume as u(x) = x − x′, noting that the particle at x has
moved to x′. Beginning with the theoretical expressions suggested
by Landau & Lifshitz (1982b, chapter IV) that describe elastic de-
formations in the presence of dislocations, Masihi & King (2007)
propose a model in which a fracture is defined as a discontinuity
in the displacement vector. Therefore, the displacement vector is
assumed to have continuous part (elastic displacement ue) and a
discontinuous part (the inelastic displacement ui ). The latter acts as
a source term for inelastic strain. Similarly, the strain and stress can
be decomposed into elastic and inelastic parts,

ei j = ee
i j + Ei j and σi j = σ e

i j + Si j . (1)

If the system is in mechanical equilibrium, that is, in the absence of
any external body forces, the equation of continuity becomes,

∂ jσi j = ∂ jσ
e
i j + ∂ j Si j = 0 or ∂ jσ

e
i j = −∂ j Si j , (2)

where the inelastic part of stress, the internal sources of stress,
becomes the fictitious body force that gives rise to displacement
and fracturing and also keeps fractures open. Heffer & King (2006)
note that the total elastic energy per unit volume required to keep
fractures open is the work done by elastic forces on the total strain.

This total elastic energy is given as

E = 1

2
σ e

i jε
e
ji . (3)

Assuming isotropic stress conditions and using Fourier transforms
of stress and strain fields and contracting terms as in eq. (3), the
expression for the elastic energy is

E(k) = 1

2

[
(λ + μ)kkkl + μk2δkl

]
ue

k(k)ue
l (−k)

= μ

2
Lkl (k)ue

k(k)ue
l (−k), (4)

where Lkl is the linear operator of isotropic elasticity and is the in-
verse of the Green’s function, LklGlm = δkm. Applying the assump-
tion that the frequency distribution, p(E), of strain energy due to
the displacements/dislocations or fractures follows the Boltzmann
Law,

p(E) ∝ exp(−E/ 〈E〉), (5)

implies that the dislocations or fractures adopt a configuration that
maximizes the entropy of the system subject to mean strain energy,
〈E〉, being fixed. This assumption leads to the following expres-
sion for the spatial correlation between the elastic displacements or
fractures in real space,

Ckl (r) = 〈E〉
μ

Gkl (r)

= 〈E〉
16πμ(1 − ν)

( (3 − 4ν)δkl

r
+ rkrl

r 3

)
, (6)

where the terms μ, ν are the shear modulus of elasticity and the
Poisson ratio of the rock sample, respectively. Realizations of the
random fields described by this covariance relationship will satisfy
eq. (2), which can be used to determine both σ e

ij and εe
ji. Using

general results for spatial correlations of vector fields (Daly 2001),
it can be shown that the energy function for the above distributions
of fractures can be written as (Shekhar 2008)

E =
N∑

k=1

N∑
l=1
k �=l

Aukul [η|cos(θk − θl )|

+ |cos(α − θl )cos(α − θk)|]/rkl , (7)

where A = 〈E〉 /16πμ(1 − ν), N is the number of fractures in the
system, and the components uk and ul are the displacements on
fractures in k and l direction. α, θ k and θ l specify the orientations of
the distance vector r and fracture vectors uk and ul with respect to
the horizontal x-axis. This equation relates the pairwise interactions
of fractures to the total elastic energy of the system.

3 M E T H O D F O R M O D E L L I N G
F R A C T U R E D I S T R I B U T I O N S

A set of fractures that minimizes the energy function in eq. (7) will
satisfy the physical model used in its derivation, which assumes
equilibrium. This requires the choice of an optimization algorithm
that allows a minimum to be found for arbitrary fractures. SA is
in fact such a stochastic optimization method that has been used
in variety of problems that involve finding global optimum values
of a function consisting of large number of independent variables
(e.g. Tran 2007). Below we outline our implementation of SA for
the estimation of fracture distributions. We then describe our choice
of PBC, including parameter choices for minimizing computation
time. This section concludes with test applications illustrating the
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Spatially correlated fracture models 343

sensitivity of the algorithm to important model parameters and sug-
gests several steps to constrain results to fit field observations such
as fracture orientations detected from core, image logs or seismic
attributes.

3.1 SA algorithm

To apply the SA optimization algorithm for any problem, one must
define several important quantities: initial description of sets of pos-
sible configurations of the system, probability distributions used
for updating unknown parameters, an energy function E (analogue
of energy) used for global minimization, a control parameter T
(analogue of energy) and an annealing schedule of changing a
temperature-like parameter, so that system can reach its equilib-
rium.

In the application of SA to the current fracture modelling prob-
lem, the objective function is the elastic energy function (eq. 7),
while the fracture model parameters such as position, length and
orientation are the quantities that are selected for an optimal, low-
energy configuration. The first step in the application of SA is to
choose the initial fracture configuration. Because most model per-
turbations are accepted during the initial stages of the SA procedure,
the model can become quite different from the initial configuration,
and the choice of the initial model is not too important. For this rea-
son, we can start with any configuration of fractures having length
l and orientation θ in a square system of side length L. We start
with the calculation of initial energy of the fracture configuration,
Ei, using eq. (7). The initial temperature, Ti, is chosen of the same
order of magnitude as the initial energy value so that the acceptance
ratio at the start is approximately 99–100 per cent. To change the
current configuration of fractures, a fracture j is selected randomly
and its length, orientation and/or position are changed slightly. The
distribution functions used for selecting updates to the orientation,
length and the position are identical to Masihi & King (2007)

θnew
j = θ j + 0.05π (2R − 1) (8a)

lnew
j = l j + 0.5(2R − 1) (8b)

r new
j = r j + 0.5(2R − 1), (8c)

where R is a random number selected from a uniform distribution
in the range of [0–1]. Once again the energy of the new state of the
configuration, Ei+1, is calculated using eq. (7). To determine the
acceptance of the new, perturbed configuration, Ei+1, with respect
to previous configuration, Ei, the change in energy �E = Ej − Ei

is calculated assuming A to be one as it as just a scaling factor. If
�E < 0, then perturbed configuration is accepted unconditionally
and we go back to previous step with Ei = Ei+1. If �E > 0, then
the new perturbed state is accepted or rejected on the basis of the
Metropolis algorithm. This means that a new state escapes from
local minima. This step is performed for 20–30 iterations at a par-
ticular temperature where every fracture is visited at every iteration.
Then the temperature parameter is changed using the exponential
cooling schedule T new = αT old where α = 0.97. Here, we take
a large number of temperature iterations, assuming the function
reaches an optimal minimum of the solution after a significantly
large number of iterations.

3.2 PBC implementation

To apply the SA algorithm, we choose a model of finite size having a
finite set of fractures. Since the model that we have chosen has a lim-
ited lateral dimension, the associated truncation at the boundaries of
the model can introduce artificial effects in the final configuration
of fractures from SA. So, an accurate understanding of the effects
of boundaries on the overall fracture configuration becomes very
important. This is because fractures close to the boundary experi-
ence different effective stress, hence energy, compared to fractures
in the centre of the model. Also, while changing the configuration
of fractures by perturbing their position some fractures close to
the boundary can moveout of the model, thus affecting the number
density of fractures. These limitations can affect our model of the
final configuration of the fracture system. So, to eliminate these
problems, PBC are applied to the original model area. In principle,
this would lead to an infinite number of pairs of fractures during
the application of SA using the sum in eq. (7). One of the major
concerns while applying the PBC is how to truncate calculations
without losing accuracy. Masihi & King (2007) also apply a PBC,
and, although they state that they used two repeated model areas,
they do not present results to explains their choice of parameters.
For the sake of completeness, we will show selected results to show
how to implement the PBC and to support our truncation parame-
ters selection. Specifically, we can establish criteria for determining
the maximum distance, and number of repeated model cells, which
must be considered in implementing the PBC in the SA code us-
ing a simple test model. This model includes 2500 fractures in a
square area 5000 m on each side, each fracture 50 m in length with
a random orientation between −30◦ and +30◦ (Fig. 1). This model
was used to estimate the maximum distance at which significant
fracture interaction occurs. In other words, we needed to determine
the distance up to which a slight change in fracture configurations
influence other fractures or affects the total energy value. The most
important factors are relative orientation of fractures and ratio of
length of fractures. For detailed analysis, an arbitrary fracture (the
first fracture of the test model) was taken and the total initial energy
was calculated using eq. (9).

Ei =
N∑

l>1
k=1

Aukul [η|cos(θk − θl )| + |cos(α − θl )cos(α − θk)|]/rkl .

(9)

The effect of the orientation of other fractures was then quantified
by recomputing the total energy value while rotating a single fracture
at r = (100,50), (200,50), (300,50). . .(4000,50), etc. one at a time,
changing the orientation by 15◦ (Fig. 2a). The influence of fracture
length as a function of the separation between fractures was tested in
the same way (Fig. 2b). The results confirm that fractures close to the
reference fracture have significantly larger influence than fractures
at a distance, which is not surprising given that energy is inversely
proportional to distance (eq. 9). In fact, fractures at distances larger
than r = 1200 m have negligible influence on total energy value. So,
for our modelling study the cut-off radius (r cut−off ), the distance up
to fractures influence each other, is 1200 m. Hence, the minimum
number of periodic images required for an accurate PBC can be
calculated as follows: if r cut−off > a then N = r cut−off/a, else N =
(r cut−off/a) + 1. Here a is the one side of square representative model
and N , the largest integer value, is the number of model images
required for the PBC. So the number of periodic images surrounding
the model cell will be equal to N in both side in x- and y-directions
to neutralize the effect of boundaries of the model cell. The PBC can
be implemented by copying enough images of the model to extend
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344 R. Shekhar and R. L. Gibson, Jr

Figure 1. The starting model used for testing the parameters affecting pe-
riodic boundary condition implementations. This model consists of 2500
fractures in a square area with each side 5000 m. (a) Complete fracture
distribution. (b) Detail view of fracture distribution.

to a distance of r cut−off in all directions. Shekhar (2008) presents
examples of model distortions arising when inadequate PBCs are
applied.

3.3 Parameter sensitivity and model constraints

The goal of this section to present examples of the modelling
scheme, to understand the sensitivity of results to model parameters,
and suggest methods for constraining models to field observations.
The most important model parameters in the objective energy func-
tion used for SA algorithm are length, orientation and position of
fractures. Any slight change in any of these parameters affects the
final configuration of fractures and the decrease in the energy func-
tion. Here, we show these effects by slightly changing either one
parameter or a combination of parameters in the SA algorithm. We
will also examine non-uniqueness in models. We started with an
initial model containing 100 fractures with lengths selected from
a Gaussian distribution (mean 50 m, SD 20 m) to study sensitivity
(Fig. 3a). The model parameters were then perturbed using eq. (8).
Fig. 3(b) shows the effect of perturbation of orientation only and of
simultaneous perturbation of orientation and length on the energy

Figure 2. (a) The effect of rotation (relative orientation) of a fracture on
total energy value. Here r is the x coordinate of the test fracture that is
rotated; the y coordinate of the test fracture was 50 m. (b) The effect of
relative fracture lengths on total energy value. Here, Li is the first fracture
and Lj is the fracture whose length is changed. See text for details of the test
procedure.

function. As is typical in SA applications, the energy function fluc-
tuates significantly for the first few iterations at high T , because a
large number of perturbations/realizations are accepted, but fluctua-
tions decrease at later iterations when many fracture configurations
are rejected. The energy function becomes stable at around 6000
iterations, suggesting that the energy function is close to minimum
(Fig. 3b).

Another aspect of the parameter perturbation procedure (eq. 8b)
is that successive iterations can eventually make a fracture length
negative, which is not possible. The energy function can also be min-
imized by reducing lengths to zero, which is an uninteresting, trivial
solution. It is therefore important to renormalize fracture lengths at
the end of each iteration so that the mean length of fractures remains
the same as values observed in any available field data or the initial
mean length of the starting model. Fig. 3(b) compares the change in
the energy function with the number of iterations for cases with and
without this renormalization to mean length. Both cases apply an
additional constraint forcing lengths to fall between specified mini-
mum and maximum values (30 m and 70 m in this case). The figure
clearly shows that if the fracture length is renormalized to the mean
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Spatially correlated fracture models 345

Figure 3. (a) Original model of 100 fractures with Gaussian distribution of
length of mean = 50 m and SD = 20 m (b) Comparison of energy value
for different cases after 14 000 iterations. Note that when fracture length
is renormalized, the energy level is essentially the same as for changes in
orientation only and the two curves are hard to distinguish.

value, the energy function coincides with the case of orientation per-
turbation only (Fig. 3b). This is because the energy can be greatly
reduced by minimizing fracture lengths, whereas constraining the
mean value to be unchanged keeps a higher energy level. Fig. 3(b)
also shows that for the case of orientation and length perturbation
without renormalization, the energy function continues decreasing
until all fractures reach the minimum length constraint. Hence, this
test shows that the length of fractures needs to be first constrained to
minimum and maximum values and then renormalized to the mean
length of fractures. Fig. 4 shows the final orientation and length
distribution of fractures for all three cases. For the case when the
length is renormalized, the energy function reaches a minimum with
a bimodal distribution of fracture lengths and orientations, whereas
for the case without renormalization, the energy is minimized when
fracture lengths are unimodal (minimum length). Note that for the
case of orientation updates only, the distribution of lengths reflects
the Gaussian distribution used to select the initial model configu-

Figure 4. Distributions of orientation and lengths of fractures after ap-
plication of simulated annealing algorithm to model in Fig. 3a. (a) Final
orientation of fractures. (b) Final length of fractures.

ration. In this demonstration, the constraints on fracture length are
very simple, but more complete applications could apply similar
constraints to more complex distributions. Note also that there are
two general sets of fractures separated by 90◦ in orientation. The
orthogonal pattern of fractures generated from this model is com-
monly observed during basin formation or subsidence (Belayneh
et al. 2007). More detailed analysis suggests surprisingly that the
fractures orientations can still change, though they remain orthogo-
nal. This is because the energy function (eq. 7) depends only on the
relative orientation of fracture pairs. The total system of fractures
can be rotated arbitrarily without changing the energy value.

A similar study was performed by perturbing the position of
fractures using the same initial model, using eq. (8c), to study how
fracture location influences the energy function. This will provide
insights into the maximum change in location of individual frac-
tures. This information is important as it can help in assigning the
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346 R. Shekhar and R. L. Gibson, Jr

Figure 5. Histograms showing (a) total fracture displacement (distance from initial position) after the first simulated annealing iteration, and (b) total fracture
displacement after 2000 iterations.

Figure 6. Histograms showing that (a) total fracture displacement (distance from initial position) after 8000 iterations is less than 75 m, and that (b) total
fracture displacement after 10 000 iterations is still less than 75 m.

most probable initial position of each fracture in the starting model.
In cases where background geological knowledge includes some es-
timates of lateral variations in fracture intensity, it will be easier to
define useful initial spatial distributions of fractures. In this test, we
calculated the total movement of fractures at each iteration by sum-
ming the distances corresponding to the change in locations of each
individual fracture relative to the location at the previous iteration.
The histogram of total fractures motion at several steps in the SA
minimization is shown in Figs 5 and 6. The histograms suggest that
the total motion of fractures is large at higher temperature, ranging
from 0.5 m to about 40 m for the first 2000 iterations. However,
as the temperature decreases, the increase in total movement also
decreases, ranging from approximately 0 m to 60 m around 4000
and 6000 iterations. As the system moves to equilibrium and tem-
perature decreases, there is less change in fracture position, as we
see that from iteration 8000 to 10 000, the positions are almost un-
changed. In general, the total displacement is constrained to fall in
the range 0–75 m as shown in Fig. 6, which is less than a simulation
cell size.

4 I N C O R P O R AT I N G F R A C T U R E
M O D E L S I N S E I S M I C A P P L I C AT I O N S

The method of generating physically meaningful fracture distribu-
tions discussed in the previous section can be implemented for any

realistic geological field, assuming the rock to be homogenous and
isotropic. Such a fracture model can in turn be utilized for various
applications, and Masihi & King (2007) considered an application
to fluid flow. In this section, we will instead show the application
of this modelling technique to seismic modelling at field scale. To
do so, we will consider a hypothetical field example that has a fixed
number of fractures. We will apply arbitrary values for the mean
fracture lengths, the regional trend of fracture orientation, and other
spatial distribution parameters. Future applications to specific sites
could easily obtain the relevant values using, for example, outcrop
studies, core samples, image logs, structural geology analyses and
seismic attributes. These are the same forms of data utilized in con-
ventional DFN schemes and applying such constraints is no more
difficult for the current approach (Angerer et al. 2003). The test ex-
ample will illustrate how the parameters can be used to constrain a
simulated fracture model generated from the SA algorithm to match
observations from a particular field.

4.1 Model description

The starting model is 920 m × 920 m, containing 3000 fractures.
The initial distribution of fractures had random orientation, showing
a preferential spatial trend along the diagonal as shown in Fig. 7(a).
We then applied the SA method, visiting each fracture 30 times
at a particular T value. At each iteration, orientation, length and
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Spatially correlated fracture models 347

Figure 7. (a) Starting model of 3000 fractures having random orientation, trending along NW–SE direction. (b) Energy versus number of iteration for
simulating 3000 fractures using energy method.

position of each fracture was changed using the same perturbation
algorithm as discussed previously (eq. 8). Here also we rescaled the
length of fractures at each iteration such that the mean length (40 m)
of the fracture system remains constant. Fig. 8(b) shows the final
orthogonal fracture model after 30 000 iterations (1000 reductions
in temperature T and 30 visits to each fracture at every temperature).
Fig. 7(b) shows the corresponding plot of energy versus iteration
number. As expected, the energy function shows a large number
of acceptances at the beginning (high temperature), and becomes
stable as the number of iterations increases (low temperature), thus
increasing the number of rejections. Recalling that minimization
constrains only relative orientation of fractures, we can rotate the
entire model arbitrarily as desired. In this hypothetical case, if we
assume a desired regional orientation of fractures of either 45◦ or

135◦, we can rotate the final fracture model by 45◦ to achieve the
desired configuration (shown in Fig. 8).

4.2 Seismic velocity model

Our goal is to utilize the fracture distribution in Fig. 8 for applica-
tions such as hydrocarbon reservoir characterization, assuming that
the axes in illustration represent the two horizontal coordinates x
and y. For meaningful applications, the reservoir will also have a
thickness in the third coordinate direction, depth. We will therefore
assume that the fractures extend from top to bottom of the layer
and that the figure represents a cross-section at an arbitrary depth
within that layer. The SA procedure determining the locations and

Figure 8. Simulated annealing results for the test model shown in Fig. 7. (a) Result generated directly by the simulated annealing. (b) Results rotated 45◦ to
match hypothetical field observations.
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348 R. Shekhar and R. L. Gibson, Jr

orientations of the fractures thus ignores this thickness, which in
principle could be taken into account with a significant increase
in computational time (Masihi et al. 2007). However, as long as
the reservoir thickness is relatively small compared to the lateral
distances in the model, variations in depth will not have a major
affect on the energy in eq. (7) and can be ignored. We will there-
fore assume that the reservoir layer thickness is relatively small in
designing our test model below, with a value of 10 m.

The next task in relating a discrete fracture representation such
as the result in Fig. 8 is to identify the theoretical basis for estimated
the change in elastic moduli caused by the presence of fractures.
Many solutions have been investigated over the last several decades,
with various levels of accuracy and complexity (Kachanov 1980;
Hudson 1981; Kachanov et al. 1994; Sayers & Kachanov 1995;
Liu et al. 2000; Pointer et al. 2000; Tod 2001; Chapman 2003;
Maultzsch et al. 2003; Agersborg et al. 2007). Furthermore, in
more recent years, numerical methods have been applied to bet-
ter determine the accuracy of many of the analytic solutions for
the material properties of media with fractures, studying the in-
fluence of crack density and the interactions of cracks in more
intensely fractured materials (Coates & Schoenberg 1995; Saenger
& Shapiro 2002; Vlastos et al. 2003, 2007; Grechka 2005; Grechka
& Kachanov 2006b). Here our primary goal is to illustrate a gen-
eral approach for relating the fracture model to seismic properties,
and there are several important issues. First, we note that the final
fracture distribution contains two orthogonal fracture sets, which
will in turn correspond to an anisotropic elastic medium (Bakulin
et al. 2002; Grechka & Kachanov 2006b). A convenient approach
for modelling the properties of these materials is that presented
by Kachanov (1980) and developed by numerous workers in recent
years (Sayers & Kachanov 1991; Sayers 2002; Schubnel & Guéguen
2003; Grechka & Kachanov 2006b; Hall et al. 2008; Guéguen &
Sarout 2009). This approach relates changes in the compliances of
the elastic medium to the orientations and densities of one or more
fractures sets in the material. Although fluids can have important
and interesting affects of propagating seismic waves (Pointer et al.
2000; Chapman 2003; Vlastos et al. 2006), we will assume they
are dry in our results below for the sake of simplicity. A convenient
presentation of the relevant expressions for the effective properties
of the fractured medium is given in Grechka & Kachanov (2006b),
who note that that material is almost always nearly orthorhombic,
with four unique elastic moduli when the fractures are empty. Sim-
ilar model configurations were examined by Saenger & Shapiro
(2002).

Writing the general form for the effective compliances se
ijkl of the

fractured rock material as the sum of the background compliance
s0

ijkl and perturbations �sijkl,

se
i jkl = s0

i jkl + �si jkl , (10)

for the dry fracture case, the perturbation terms for L sets of fractures
become (Grechka & Kachanov 2006b)

�si jkl = 8(1 − ν2)

3E(2 − ν)

(
αilδ jm + αimδ jl + α jlδim + α jmδil + 4βi jlm

)

αi j =
L∑

l=1

εl ni n j

βi jkl = −ν

2

L∑
l=1

elni n j nknl .
(11)

Here ν is the Poisson ratio of the host rock, δij is the Kronecker
delta symbol, E is Young’s modulus and ε l is the crack density of

crack set l. When a is the radius of these cracks, it is εl = Nla3/V ,
where V is the volume of the material and Nl is the number of
cracks of that orientation and radius (we assume constant radius for
the fractures). Given these compliances, the corresponding elastic
moduli cijkl are straightforwardly computed and used in simulation
of seismic wave propagation.

A key step for utilizing the fractures models provided by the SA
is to calculate the crack density ε, a value determined for penny-
shaped cracks in the results outlined above. However, the fractures
from the SA model are rectangular, with lengths determined in
the SA minimization procedure and a height assumed equal to the
layer thickness, 10 m. For this reason, we follow the conceptual
approach of Liu et al. (2000) and also replace the large, rectangular
fracture with a set of smaller, circular fractures of equal total area
for the purposes of estimating elastic properties of the formation.
The effects of the circular cracks are assumed to be essentially the
same as the original fracture model. To carry out this process, we
discretized the model into square cells 44 m on a side. We then
computed the effective crack radius for each grid, assuming that
total area occupied by rectangular fracture in each grid remains
same if they are replaced by same number of circular cracks. This
can be expressed as

n j∑
i=1

Arectangular, j = πa2 N j , (12)

where nj is the total number of rectangular fractures in the cell,
a is the radius for each crack, which we take to be 0.5 m for the
example here and nj is the total number of circular cracks in j th
cell. So, the crack density in the j th cell is εj= ν ja3 where ν j =
N j/V and V is volume of the cell. This calculation of crack den-
sity was carried out for each of the two sets of fractures (Fig. 9).
In our results, the final fracture distributions consist of two sets of
fractures that are orthogonal, and in any one location, the densities
are very similar (8). Waves travelling in the directions of the two
horizontal symmetry axes will have the similar velocities since they
will be propagating parallel to one fracture set and perpendicular
to the other, so that the material will be close to one that is trans-
versely isotropic with a vertical axis of symmetry. All modelling
correctly simulates reflections from the orthorhombic medium,
however.

There are potential difficulties that may arise in the application
of this approach. First, it is possible for large crack density values to
result. Theories that do not explicitly take interaction of individual
cracks or fractures into account may therefore have errors when
density increases, leading to poor estimates of effective properties
(Saenger & Shapiro 2002). On other hand, it is likely that in many
cases analytic and numerical results suggest that the interaction
effects can cancel out, minimizing errors (Kachanov 1992, 1993;
Grechka & Kachanov 2006a). In our case, we also note that the es-
timated crack densities depend on the chosen value of crack radius
a, so that the fitting predicted seismic response to field data would
require an estimate of this parameter as well. This is a consequence
of the conceptual step of relating the rectangular fractures to seismic
properties; selecting an appropriately small value of a will lead to
crack densities small enough to calculate reasonable results. Simi-
larly, though fracture maps such as that shown in Fig. 8 may appear
to exceed the critical threshold beyond which no solid continuum
exists, when considering each fracture as a set of circular cracks,
the solid regions surrounding each individual flaw can still maintain
continuity. This becomes more evident when choosing smaller radii
that lead to smaller crack densities.

C© 2011 The Authors, GJI, 185, 341–351

Geophysical Journal International C© 2011 RAS

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article-abstract/185/1/341/602969 by Texas A&M

 U
niversity user on 21 Septem

ber 2018



Spatially correlated fracture models 349

Figure 9. Maps of crack densities computed using eq. (12) for each set of
fractures in Fig. 8. (a) map for orientation 45◦; (b) map for fractures with
135◦ orientation.

The calculation of the effective properties also requires values
for the properties of the unfractured host rock. These values, along
with those for the layers above and below the fractured layer are
given in Table 1.

Approximate perturbation methods are convenient for comput-
ing synthetic seismograms in this case, where the reservoir model
is strongly 3-D and anisotropic. We therefore utilize a ray-Born
algorithm (Beydoun & Mendes 1989; Gibson et al. 1993). This
method applies the Born approximation to calculate the amplitudes
waves scattered by localized features in a smoothly varying back-
ground medium. In the Born approximation, all wave propagation
is modelled as taking place within that background, and it is there-
fore convenient and accurate to use fast ray methods for computing
Green’s tensors. More details on the implementation and applica-
tions of such methods can be found in several sources (Beydoun &
Mendes 1989; Gibson et al. 1993; Gibson & Thore 2009). In our
study, velocities and density of overburden layers are assumed to be
homogenous. Though the solution neglects traveltime variations as-

Table 1. P-wave velocity α, S-wave velocity β and density ρ

used for the seismic modelling. The host rock is the material
containing the fractures, and the isotropic material above and
below the reservoir has the properties of the background medium.

Property Host rock Background

α 4.25 km s−1 4 km s−1

β 2.35 km s−1 2.2 km s−1

ρ 2.2 g cm−3 2.2 g cm−3

Figure 10. Perturbations to (a) the elastic moduli C33 and (b) C22 for the
fracture model in Fig. 8.

sociated with velocity variations, it will still be accurate in this case
where the fractured reservoir model layer is thin and such effects
are negligible.

For simplicity, we simply parameterize the model such that the
10 m thick fractured layer is represented in terms of perturba-
tions obtained by subtracting properties of the background medium
(Table 1) from those of the fractured layer that are computed us-
ing the effective medium theory. Since the modelling results will
show amplitudes of reflected P-waves, we show here perturbations
to moduli C22 and C33 in the model (Fig. 10). Since the fractures are
vertical, the variations in C33 are relatively small, though the values
still increase in the regions with highest concentrations of fractures.
On the other hand, the perturbation to C22, which is the same as the
perturbation to C11, is large. Note that if no fractures were present,
the perturbation in both parameters would be a constant value of 8
GPa. The fractures reduce the contrast in C33, implying a weaker,
but still positive, change in that parameter from the background
medium to the fractured layer. However, the perturbation for C22

becomes negative, implying that horizontal P-wave velocity is less
than in the background medium.

We computed three sets of synthetic seismograms using the ray-
Born algorithm to illustrate the general behaviour of the model,
where the top of the orthorhombic, fractured layer was assigned to a
depth of 1000 m. In each case, there was a 37 by 37 horizontal grid of
source/receiver pairs with midpoints covering the entire range of the
model (25 m spacing in both x and y directions). The offset between
source and receiver was set to 0 m, 728 m and 1456 m for the three
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Figure 11. Seismic amplitudes for P-waves reflected from the fractured
reservoir at angles of incidence of 0◦, 20◦ and 36◦. All images are plotted
with the same colour scale to facilitate comparisons.

simulations, corresponding to angles of incidence of 0◦, 20◦ and 36◦.
A simple phase shift migration was then applied to each common-
offset synthetic result. Fig. 11 shows the reflection amplitude for
each angle of incidence, and the increase of amplitude with angle
is clear (note there are some artefacts along the boundaries because
of the finite extent of the model). In regions where fractures are
absent, toward the lower left corner of each figure, the reflection

amplitude is the most negative. In contrast, the fractures cause the
reflection amplitude to change sign at the largest angle of incidence.
This effect occurs because of the change in sign of the perturbation
in the moduli C11 and C22, which have greater influence at angles
closer to horizontal. At larger angles of incidence, there is also
less horizontal resolution in the image, which is why some features
appear larger in that case.

5 C O N C LU S I O N S

This paper describes a method of modelling fracture distributions
that relies on spatial correlation functions based on the elastic energy
in the fractured medium, a rigorous physical basis for estimating dis-
tributions. While this method has been explored previously (Masihi
& King 2007), we have extended the earlier work by presenting ex-
plicit tests of PBC implementations that help to reduce computation
time and by exploring the use of constraints on fracture properties to
match a priori values of orientation or length. Typical results show
that when subsurface reservoir formation is isotropic and homoge-
nous, then this method generates orthogonal sets of fractures, a
pattern that is commonly observed during basin formation or subsi-
dence. While the absolute orientation of the fractures is non-unique,
the final system can be rotated to match orientations desired in field-
scale models, and we also presented results for constraining fracture
lengths to match desired ranges of values. We also show how the
fracture models generated using the SA algorithm can be used for
seismic modelling by converting fracture models into crack density
models. Effective medium theories can then relate crack density to
reductions in seismic velocities caused by fracturing. Examples of
synthetic seismograms computed using a ray-Born method suitable
for the orthorhombic fracture models show amplitude variations
that indicate variations in fracture density.

While the results presented in this paper are developed for a hy-
pothetical field-scale model, it is important to note that it is straight-
forward to apply the same methods to field settings. While we chose
arbitrary values to constrain fracture lengths and orientations, con-
ventional field studies provide data that could be used to model a
specific fractured formation. For example, orientations can be con-
strained by cores, image logs or seismic measurements, and outcrop,
seismic or production data provide limits on fracture lengths. There-
fore, the method is not restricted to simulations and will be suitable
for field settings as well.
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