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APPROXIMATING INFINITY-DIMENSIONAL STOCHASTIC
DARCY’S EQUATIONS WITHOUT UNIFORM ELLIPTICITY∗

J. GALVIS† AND M. SARKIS‡

Abstract. We consider a stochastic Darcy’s pressure equation whose coefficient is generated by
a white noise process on a Hilbert space employing the ordinary (rather than the Wick) product. A
weak form of this equation involves different spaces for the solution and test functions and we establish
a continuous inf-sup condition and well-posedness of the problem. We generalize the numerical
approximations proposed in Benth and Theting [Stochastic Anal. Appl., 20 (2002), pp. 1191–1223]
for Wick stochastic partial differential equations to the ordinary product stochastic pressure equation.
We establish discrete inf-sup conditions and provide a priori error estimates for a wide class of norms.
The proposed numerical approximation is based on Wiener-Chaos finite element methods and yields a
positive definite symmetric linear system. We also improve and generalize the approximation results
of Benth and Gjerde [Stochastics Stochastics Rep., 63 (1998), pp. 313–326] and Cao [Stochastics, 78
(2006), pp. 179–187] when a (generalized) process is truncated by a finite Wiener-Chaos expansion.
Finally, we present numerical experiments to validate the results.

Key words. white noise analysis, Wiener-Chaos expansions, finite elements, stochastic partial
differential equations, stochastic elliptic equations

AMS subject classifications. 60H15, 60H30, 60H35, 60H40, 65M60, 65N12, 65N15, 65N30
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1. Introduction. A system of stochastic partial differential equations which
models the two-phase flow in a porous medium arises in the mathematical modeling
of transport of pollutants in groundwater and oil recovery processes. This system is
composed of a transport equation for the saturation (the relative volume of one of
the two fluids) coupled with an equation for the velocity field (given by Darcy’s law
and the incompressibility condition of the flow). The randomness enters the problem
through the unknown properties of the rocks, especially the permeability tensor. In
this paper we deal with one of the equations derived from this system; specifically, we
consider an equation of the form{ −∇x · (κ(x, ·)∇xu(x, ·))= f(x, ·) for all x ∈ D,

u(x, ·)= 0 for all x ∈ ∂D,
(1.1)

where log κ(x, ·) is a Gaussian field and f is a (possible random) forcing term; see
Ghanem and Spanos [18], Babuška, Tempone, and Zouraris [3], Babuška, Nobile,
and Tempone [2], Matthies and Keese [27], Furtado and Pereira [14], Roman and
Sarkis [32], Frauenfelder, Schwab, and Todor [13], Xiu and Karniadakis [38], and the
references therein. We emphasize that the assumption of the stochastic structure
of the permeability function κ(x, ·) is due to the lack of data and accuracy in the
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measurements of the media. One approach that has been studied when the parameters
in the equation are not completely known is the replacement of the true values of
these parameters by some kind of average. By replacing the stochastic coefficient
κ(x, ·) in the equations by the average κ̄(x), we obtain some information about the
solution, but usually this information is not enough to make more precise predictions
of nonlinear functionals of the solution or to know what effect the small fluctuations
in the parameter values actually have on the solution.

Another way to evaluate nonlinear functionals of the solution involves Monte
Carlo approximations. Briefly speaking, Monte Carlo approximations require knowing
the solution, or approximations of the solution, for many paths or realizations in
the space of outcomes. In principle, if we know the distribution of the processes
modeling the coefficients of the equation, we can simulate many trajectories of the
coefficients, and for each trajectory we can apply a finite element method (FEM) to
obtain an approximation of the solution for that particular realization. Then, Monte
Carlo approximations of a nonlinear functional g of the solution are of the form
E[g(û(x, ·))] ≈ 1

M

∑M
i=1 g(û

(a)(x, ωi)), where E denotes the expectation operator, M

is the number of realizations, and û(a)(x, ωi) is a finite element approximation of
the solution at x for the ith-trajectory ωi. This procedure is, however, very time
consuming as it involves assembling and solving large linear systems as many times
as trajectories are simulated.

As alternatives to the Monte Carlo approach there are the methods that some-
how “separate” the stochastic part from the deterministic part which have recently
attracted the attention of several researchers; see [1, 2, 3, 8, 13, 16, 17, 18, 22, 23, 26,
27, 29, 28, 33, 37, 38]. To illustrate the advantage of these methods, let us suppose
that the solution of (1.1)can be represented as

û(x, ω) =
∑
α∈I

ûα(x)Yα(ω),(1.2)

where I is a countable index set and {Yα}α∈I is a collection of random variables with
known probability distributions. Let us say we have an approximation of the solution
of the form

û(x, ω) ≈ û(a)(x, ω) =
∑
α∈Ĩ

û(a)α (x)Yα(ω),(1.3)

where Ĩ is a finite index set with Ĩ ⊂ I. Assume that we have computed and

stored the deterministic functions {û(a)α }α∈Ĩ . Then, in order to approximate nonlinear

functionals of the solution, we can either use the expression for û(a) in (1.3) directly or
use a Monte Carlo method based on (1.3). Note that when a simulation is required, all
we need to do is to generate values for the random variables {Yα}α∈Ĩ and assemble
the solution according to (1.3). In this way, we need to solve a very large linear

system only once in order to compute the deterministic coefficients {û(a)α }α∈Ĩ . The
effectiveness of this procedure depends mainly on the following:

1. The kind of expansion used in (1.2) and (1.3). Usually a Wiener-Chaos
expansion is considered.

2. The finite dimensional problem involved in the computation of the coefficients

{û(a)α }α∈J̃ in (1.3). Usually a Galerkin or Petrov–Galerkin type problem
that uses the original coefficient κ or an approximation of it, for instance, a
truncated Karhúnen–Loève or a Wiener-Chaos expansion, is considered.
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The Karhúnen–Loève (KL) expansion of a stochastic process with continuous
covariance function is well-used in many engineering applications as an efficient tool to
characterize and store the random process associated with the permeability or forcing
terms. Its usage comes from the fact that the truncated KL expansion is optimal in
the L2 sense since it minimizes the mean square error. An issue inherited in the KL
expansion is the possible excess of oscillations of the terms of the expansion near the
boundary ∂D. The KL expansion also requires the computation of the eigenvalues
and eigenfunctions of the covariance operator associated with κ or log κ; see [13, 33]
and the references therein.

The approximation of solutions of partial differential equations based on Wiener-
Chaos expansion and white noise analysis has been considered in the literature; see [11,
20, 21, 25] and the references therein. The Wiener-Chaos expansion is the orthogonal
expansion, in terms of Fourier–Hermite stochastic polynomials, of random processes
defined in the white noise space. The underlying white noise space can be constructed
based on convolution kernels on L2(Rd) or on KL expansions on L2(D). Using these
constructions, analytical and algebraic properties can be explored to define norms and
to improve the complexity of the algorithms; see section 7 for a unified description
of how to construct white noise spaces. The corresponding white noise analysis is
fundamental for establishing stochastic regularity results and approximation results.
We now refer to some of the works that have inspired this paper.

We mention Benth and Theting [5] and Theting [35], where they analyze the
stochastic pressure equation when the ordinary product is replaced by the Wick prod-
uct. These papers also consider other Wick stochastic partial differential equations.
They use the white noise calculus and propose an approximation by truncating the
Wiener-Chaos expansion of the solution. They present a priori error estimates based
on the work of Benth and Gjerde [4] on estimating errors when truncating a Wiener-
Chaos expansion. We also mention Cao [9], where the estimates in [4] are improved.
Roman and Sarkis [32] present and explain several features and advantages of using
white noise calculus as a natural framework for the study of the stochastic pres-
sure equation without replacing the ordinary product by the Wick product. They
consider a permeability process κ(x, ω;φ) = ρ0 + eWφ(x,ω), where Wφ(x, ω) is the 1-
dimensional smoothed white noise process defined on the 1-dimensional white noise
probability space

(S ′(Rd),B(S ′(Rd)), μ
)
; see section 7.1.1. The constant ρ0 > 0 is

added to guarantee uniform ellipticity and a priori error estimates are not provided.
In this paper, we consider ρ0 = 0 and the ordinary product in infinity dimensions.

We provide a priori error estimates for a class of smoothed white noise processes
Wφ(x, ω). We consider the white noise calculus constructed from a Hilbert space
and an operator in order to define adequate spaces for proving the existence and
uniqueness of the solution of the ordinary product stochastic pressure equation. When
formulating the weak version of the problem (1.1) we choose different spaces for the
solution and test functions in order to circumvent the uniform ellipticity. The norms
to define these spaces take into account the stochastic exponential decay (or growth)
of the functions and depend on the white noise probability space (which depends
on κ(x, ω)) and on the stochastic exponential behavior of the forcing term f(x, ω).
The well-posedness of the problem is then established via inf-sup techniques. For the
finite dimensional problem we also use different spaces for the solution and the test
functions, however, yielding a positive definite symmetric linear system. The well-
posedness of the discrete problem is also established via discrete inf-sup techniques.
To derive the discrete inf-sup condition and a priori error estimates, we consider
norms of Hida–Kuo–Kondratiev–Streit type which depend on the choice of sequence
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of weights; see Hida [19], Kuo [25], Holden et al. [21], Hida et al. [20], Da Prato
[11], and the references therein. For some particular choices, these norms measure
the regularity of the process in the white noise probability space just as the Sobolev
norms measure regularity of functions on spatial variable. We also point out that we
adopt a general setup which permits a unified analysis of several modeling choices of
smoothed white noise processes. For regularity results of the pressure equation for
these type of norms, we refer to Theting [35] and [15].

We mention that a different approach to ours is considered in Babuška, Nobile,
and Tempone [2]. By using Lp spaces for the probability space, they show the well-
posedness for problems where the permeability coefficient is, for instance, a finite
dimensional lognormal. They consider a coefficient of the form of κ(x, ω) = ρ0 +

e
∑K

j=1 aj(x)Yj(ω), where ρ0 is a positive constant, and assume that each deterministic
function aj is bounded in D. Their theoretical results depend on ρ0 and on the value

of
∑K

j=1 supx∈Daj(x)
2. Using our approach, we can consider the case ρ0 = 0 (without

uniform ellipticity) and the infinity number of KL terms and the assumption required
to show well-posedness is supx∈D

∑∞
j=1 λ

2θ
j aj(x)

2 < ∞. Here θ > 0 and {λj}∞j=1 is

any sequence with 1 < λ1 ≤ λ2 ≤ · · · and ∑∞
j=1 λ

−2θ
j <∞; see Theorem 3.1.

This paper is structured as follows. In section 2 we introduce the white noise
calculus framework to be used in the rest of the paper. In section 3 we introduce the
adequate spaces for the solution and test functions of the stochastic pressure equation
and establish its well-posedness. These spaces are characterized in section 4 where
additional norms are introduced in order to measure the regularity in the ω variable.
Two examples of such norms are presented. In section 5 we consider a Galerkin
approximation and deduce a priori error estimates. The resulting linear system is
studied in section 6. Section 7 discusses some modeling choices, and finally, in section
8 we present a 1-dimensional numerical experiment.

2. Framework: White noise analysis. Let H be a real separable Hilbert
space with inner product (·, ·)H and norm ‖ · ‖H . Let A be an operator on H such
that there exists an H-orthonormal basis {ηj}∞j=1 satisfying the following:

1) Aηj = λjηj , j = 1, 2, . . . .
2) 1 < λ1 ≤ λ2 ≤ · · · .
3)
∑∞

j=1 λ
−2θ
j <∞ for some constant θ > 0.

For p > 0 let Sp := {ξ ∈ H ; ‖ξ‖p <∞}, where

‖ξ‖2p := ‖Apξ‖2H =

∞∑
j=1

λ2pj (ξ, ηj)
2
H ,

and for p < 0 let Sp be defined as the dual space of S−p. It is easy to see that for

p < 0 we have ‖ · ‖p = ‖Ap · ‖H , i.e., ‖ξ‖2p =
∑∞

j=0 λ
2p
j 〈ξ, ηj〉2 for all p < 0 and ξ ∈ Sp,

and the duality pairing between Sp and S−p is an extension of the H inner product.
We also define

S := ∩p≥0Sp (with the projective limit topology),

and let S ′ be defined as the dual space of S, i.e., by considering the standard countably
Hilbert space constructed from (H,A); see Kuo [25] and Obata [30].

Let (S ′,B(S ′), μ) be the probability space with the sigma-field B(S ′) of Borel
subsets of S ′. The probability measure μ is given by the Bochner–Minlos theorem
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and characterized by

Eμe
i〈·,ξ〉 :=

∫
S′
ei〈ω,ξ〉dμ(ω) = e−

1
2‖ξ‖2

H for all ξ ∈ S.(2.1)

Here, the pairing 〈ω, ξ〉 = ω(ξ) is the action of ω ∈ S ′ on ξ ∈ S, and Eμ denotes the
expectation with respect to the measure μ; see Obata [30, Chapters 1–3], Holden et
al. [21, Chapter 2], Hida [19, Chapter 3], Hida et al. [20], Kuo [25], and Berezanskĭı
[6]. The measure μ is often called the (normalized) Gaussian measure on S ′ due to
the following remark.

Remark 2.1. Equation (2.1) says that for any test function ξ ∈ S, the random
variable 〈·, ξ〉 is normally distributed with zero mean and variance ‖ξ‖2H . If ξ1, . . . , ξj ∈
S are orthonormal in H , then the random variables 〈·, ξ1〉, . . . , 〈·, ξj〉 are independent
and normally distributed with mean zero and variance equal to one; see Holden et al.
[21], Kuo [25], and Obata [30].

The following particular case of Fernique’s theorem will be used throughout this
paper; see Shigekawa [34], Bogachev [7], Kuo [24], Da Prato [11], and Da Prato and
Zabczyk [12].

Lemma 2.2. We have∫
S′
es‖ω‖2

−θdμ(ω) =

⎧⎨⎩
∏∞

j=1

(
1− 2s

λ2θ
j

)− 1
2

, s <
λ2θ
1

2 ,

+∞, s ≥ λ2θ
1

2 .

Proof. Let s <
λ2θ
1

2 . Note that ‖ω‖2−θ =
∑∞

j=1 λ
−2θ
j 〈ω, ηj〉2. Using the monotone

convergence theorem when s > 0 or the dominated convergence theorem when s < 0,
we have∫

S′
es‖ω‖2

−θdμ(ω) = lim
J→∞

∫
S′
es

∑J
j=1 λ−2θ

j 〈ω,ηj〉2dμ(ω)

= lim
J→∞

J∏
j=1

1√
2π

∫
R

esλ
−2θ
j y2

e−
1
2y

2

dy

= lim
J→∞

J∏
j=1

1√
2π

∫
R

exp

(
−1

2

(
1− 2s

λ2θj

)
y2

)
dy =

∞∏
j=1

(
1− 2s

λ2θj

)− 1
2

.

In view of the assumption
∑∞

j=1 λ
−2θ
j <∞, the infinite product above converges when

s <
λ2θ
1

2 and goes to +∞ when s approaches
λ2θ
1

2 from below. Because the integral
above is monotonically increasing with respect to s, the lemma follows.

We note that if
∑∞

j=1 λ
−2θ
j < ∞, then Lemma 2.2 implies

∫
S′ ‖ω‖2−θdμ(ω) < ∞,

which in turn implies that μ(S−θ) = 1. To see this, note that S ′ \S−θ = {ω : ‖ω‖2−θ =
∞}, and then μ(S ′ \ S−θ) > 0 would imply that

∫
S′ ‖ω‖2−θdμ(ω) = ∞, which gives a

contradiction. Without further comments, we use that μ(S−θ) = 1 throughout this
paper.

We now define the generalized stochastic processes w(ξ, ω) ∈ R, ξ ∈ S, ω ∈ S ′.
Definition 2.3 (see Holden et al. [21]). The 1-dimensional or scalar white noise

associated with H and A is the map w : S × S ′ −→ R given by w(ξ, ω) = 〈ω, ξ〉 for
ω ∈ S ′, ξ ∈ S.

It is not difficult to prove that when ξ ∈ H and we choose any ξn ∈ S such that
ξn → ξ in H , then 〈ω, ξ〉 := limn→+∞〈ω, ξn〉 exists in L2(μ), and is independent of the
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choice of {ξn}∞n=1. Thus, the definition of white noise can be extended to functions
in H . In what follows we use the notation (L2) or (L2)0 for the space L2(μ). We
always interpret properties in the “almost everywhere” or “almost surely” or “almost
all” sense; therefore, we will sometimes omit this interpretation to make notation and
formula less cumbersome.

We restrict our considerations to the 1-dimensional smoothed white noise case.
Definition 2.4. Let D ⊂ R

d. Using the map w of Definition 2.3 we can
construct a stochastic process, called the smoothed white noise process Wφ(x, ω), as
follows:

Wφ(x, ω) := w(φx, ω) = 〈ω, φx〉, x ∈ D, ω ∈ S ′,

where φx ∈ H for all x ∈ D. Examples of φx are given in Examples 2.6 and 2.7
below, and in more detail in section 7. We point out that the smoothed white noise
formalism unifies the analysis of stochastic processes obtained via KL expansions (see
section 7.2.3) or via convolution methods (see section 7.2.1).

Remark 2.5. The terminology smoothed white noise comes from the fact that the
process {Wφ(x, ·)}x∈D has the following properties:

(i)For each x ∈ D, Wφ(x, ·) is normally distributed with zero mean and variance
‖φx‖2H .

(ii) For each x and x̂ ∈ D we have EμWφ(x, ·)Wφ(x̂, ·) = (φx, φx̂)H .

Example 2.6. We can take H = L2(R) and A = − d2

dx2 + x2 + 1. In this case the
eigenfunction ηj is the jth Hermite function and λj = 2j; see section 7.1 and (7.2).
Let D = [0, 1], and let φx(x̂) = φ(x̂ − x), x ∈ D, and x̂ ∈ R, where the window φ
can be chosen such that the diameter of suppφ is the maximum distance with which
Wφ(x, ·) and Wφ(x̂, ·) might be correlated; see Holden et al. [21].

Example 2.7. Let D ⊂ R
d and take H = L2(D) and A = Q−1, where Q :

L2(D) → L2(D) is the integral operator on (D × D) with kernel given by a covari-

ance C(x, x̂). In this case, for x, x̂ ∈ D, we define φx(x̂) =
∑∞

j=1 λj
−1/2ηj(x)ηj(x̂),

where λj and ηj are the eigenvalues and eigenfunctions of A. It is easy to see that
Eμ(Wφ(x, ·)Wφ(x̂, ·)) = C(x, x̂); see section 7.2.3.

3. The problem and variational formulation. Given φ : D → Sθ we consider
the following problem: For all ω ∈ S ′, find u(x, ω) such that{ −∇x · (κ(x, ω)∇xu(x, ω))= f(x, ω) for all x ∈ D,

u(x, ω)= 0 for all x ∈ ∂D,
(3.1)

where

κ(x, ω) := eWφ(x,ω) = e〈ω,φx〉, x ∈ D,(3.2)

and the exponent Wφ(x, ω) is the 1-dimensional smoothed white noise process of
Definition 2.4. Thus, κ is a lognormal random process. Observe that for different
families {φx ∈ Sθ}x∈D there exists a different permeability function κ(·, ·) associated
with it, and therefore, the solution u(·, ·) depends on φ.

To motivate the definition of the spaces for the solution of (3.1), observe that
since μ(S−θ) = 1 and φx ∈ Sθ for all x ∈ D, we can write

|〈ω, φx〉| ≤ ‖ω‖−θ sup
x∈D

‖φx‖θ, ω-a.s. in S ′.
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Denote Cθ = Cθ(φ) := supx∈D ‖φx‖θ. Then we have for all ε > 0

− ε

2
‖ω‖2−θ −

C2
θ

2ε
≤ −‖ω‖2−θCθ ≤ 〈ω, φx〉 ≤ ‖ω‖2−θCθ ≤ ε

2
‖ω‖2−θ +

C2
θ

2ε

and

κmin(ω) := e−
C2
θ

2ε e−
ε
2 |ω|2−θ ≤ κ(x, ω) ≤ e

C2
θ

2ε e
ε
2‖ω‖2

−θ =: κmax(ω).(3.3)

We now motivate the definitions of the solution and test function spaces. When
u(·, ω) is the weak solution of (3.1) for almost all ω ∈ S ′, then from the Lax–Milgram
lemma we have

|u(·, ω)|2H1
0 (D) ≤

1

κmin(ω)2
‖f(·, ω)‖2H−1(D) = e

C2
θ
ε eε‖ω‖2

−θ‖f(·, ω)‖2H−1(D).

Then for s ∈ R we can write

|u(·, ω)|2H1
0 (D)e

s‖ω‖2
−θ ≤ e

C2
θ
ε ‖f(·, ω)‖2H−1(D)e

(s+ε)|ω|2−θ a.s. in S ′,

and integrating both sides we obtain∫
S′

|u(·, ω)|2H1
0 (D)e

s‖ω‖2
−θdμ(ω) ≤ e

C2
θ
ε

∫
S′

‖f(·, ω)‖2H−1(D)e
(s+ε)‖ω‖2

−θdμ(ω).(3.4)

This last inequality gives us an idea of the spaces where we can seek the solution and
choose the test functions. For the solution space we use the left-hand-side norm given
in (3.4), while for the test function spaces we use the right-hand-side dual norm in
(3.4).

Define Um
s as the space of functions u : D × S ′ → R such that∫

S′
‖u(·, ω)‖2Hm(D)e

s‖ω‖2
−θdμ(ω) < +∞(3.5)

with norm ‖u‖2Um
s

:=
∫
S′ ‖u(·, ω)‖2Hm(D)e

s‖ω‖2
−θdμ(ω) and corresponding seminorm

|u|2Um
s

:=
∫
S′ |u(·, ω)|2Hm(D)e

s‖ω‖2
−θdμ(ω).

Note that U0
0 = L2(D) ⊗ (L2)0, where (L2)0 = L2(S ′, μ(ω)), and in general, we

have Um
s = Hm(D)⊗ (L2)s, where

(L2)s := L2(S ′, es‖ω‖2
−θdμ(ω))(3.6)

with norm ‖v‖2(L2)s
:=
∫
S′ |v(ω)|2es‖ω‖2

−θdμ(ω). We also define Û1
s := H1

0 (D)⊗(L2)s ⊂
U1
s , i.e., the functions in U1

s which vanish on ∂D a.s. in ω. By using a Poincaré

inequality, the seminorm | · |U1
s
is a norm equivalent to ‖ · ‖U1

s
in Û1

s . Since the space
(L2)s+ε is the dual of (L

2)−s−ε and the H−1(D) is the dual of H1
0 (D), we can identify

the dual space of Û1
−s−ε with U−1

s+ε, where the duality pairing is given by

〈f, v〉 :=
∫
S′
〈f(·, ω), v(·, ω)〉H−1,H1dμ(ω) for all v ∈ Û1

−s−ε, f ∈ U−1
s+ε.(3.7)

Here 〈·, ·〉H−1,H1 denotes the duality pairing between H−1(D) and H1
0 (D).
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We define the bilinear form a : Û1
s × Û1

−s+ε → R by

a(u, v) :=

∫
D×S′

κ(x, ω)∇u(x, ω)∇v(x, ω)dxdμ(ω),(3.8)

and let Ta : Û1
s → U−1

s−ε be the linear operator defined by

a(u, v) = 〈Tau, v〉 for all u ∈ Û1
s , v ∈ Û1

−s+ε.

We will show in the next theorem that Ta is a continuous operator. We also define
the domain D̂1

s ⊂ Û1
s by

D̂1
s :=

⎧⎨⎩u ∈ Û1
s : sup

v∈Û1
−s−ε\{0}

a(u, v)

|v|U1
−s−ε

<∞
⎫⎬⎭ ;

i.e., the u ∈ Û1
s such that Tau ∈ U−1

s+ε. We note that D̂1
s is not empty since we will

show in the next theorem that Û1
s+2ε ⊂ D̂1

s .
The weak formulation of problem (3.1) is introduced as follows:{

Find û ∈ D̂1
s ⊂ Û1

s such that a(û, v) = 〈f, v〉 for all v ∈ Û1
−s−ε,(3.9)

where the duality pairing between f ∈ U−1
s+ε and v ∈ Û−s−ε is given by

〈f, v〉 =
∫
D×S′

〈f(·, ω), v(·, ω)〉H−1,H1dμ(ω).

Theorem 3.1 (well-posedness). Let ε > 0 and φ : D → Sθ with Cθ :=
supx∈D ‖φx‖θ <∞. Then we have the following results:

(1) The bilinear form a : Û1
s × Û1

−s+ε → R is continuous and we have

a(u, v) ≤ e
C2
θ

2ε |u|U1
s
|v|U1

−s+ε
for all u ∈ Û1

s , v ∈ Û1
−s+ε.

(2) The bilinear form a satisfies the following inf-sup condition:

inf
u∈Û1

s\{0}
sup

v∈Û1
−s−ε\{0}

a(u, v)

|u|U1
s
|v|U1

−s−ε

≥ e−
C2
θ

2ε .(3.10)

(3) For any v ∈ Û1
−s−ε \ {0} there exists u(v) ∈ Û1

s+2ε such that a(u, v) �= 0.

(4) For any f ∈ U−1
s+ε ⊂ U−1

s−ε there exists a unique solution û ∈ D̂1
s ⊂ Û1

s of
problem (3.9) and

‖û‖U1
s
≤ Ce

C2
θ

2ε ‖f‖U−1
s+ε
,(3.11)

where C is the Poincaré inequality constant that is independent of ε, s, and
θ.

Proof of (1). From (3.3) we have

a(u, v) =

∫
D×S′

κ(x, ω)∇u(x, ω)∇v(x, ω)dxdμ(ω)

≤ e
C2
θ

2ε

∫
S′
e

ε
2 |ω|2−θ |u(·, ω)|H1

0 (D)|v(·, ω)|H1
0 (D)dμ(ω) ≤ e

C2
θ

2ε |u|U1
s
|v|U1

−s+ε
.
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Proof of (2). Given u ∈ Û1
s \ {0} define

vr(x, ω) :=

{
u(x, ω)e(s+

ε
2 )‖ω‖2

−θ if ‖ω‖−θ ≤ r,
0 if ‖ω‖−θ > r.

Denote B(r) := {ω ∈ S ′ : ‖ω‖−θ ≤ r}. From (3.3) we see that

a(u, vr) =

∫
D×B(r)

κ(x, ω)|∇u(x, ω)|2e(s+ ε
2 )‖ω‖2

−θdxdμ(ω)

≤ e
C2
θ

2ε

∫
D×B(r)

|∇u(x, ω)|2e(s+ε)‖ω‖2
−θdxdμ(ω)

≤ e
C2
θ

2ε eεr
2

∫
D×B(r)

|∇u(x, ω)|2es‖ω‖2
−θdxdμ(ω) ≤ e

C2
θ

2ε +εr2 |u|2U1
s
<∞,

and therefore, a(u, vr) is well defined for all r. We also have

|vr|2U1
−s−ε

=

∫
D×B(r)

|∇u(x, ω)|2e2(s+ ε
2 )‖ω‖2

−θe−(s+ε)‖ω‖2
−θdxdμ(ω)

=

∫
D×B(r)

|∇u(x, ω)|2es‖ω‖2
−θdxdμ(ω) ≤ |u|2U1

s
,

and using (3.3) we obtain

a(u, vr) =

∫
D×B(r)

κ(x, ω)|∇u(x, ω)|2e(s+ ε
2 )‖ω‖2

−θdxdμ(ω)

≥ e−
C2
θ

2ε

∫
D×B(r)

e−
ε
2‖ω‖2

−θ |∇u(x, ω)|2e(s+ ε
2 )‖ω‖2

−θdxdμ(ω)

= e−
C2
θ

2ε

∫
D×B(r)

|∇u(x, ω)|2es‖ω‖2
−θdxdμ(ω).

For any arbitrary small δ > 0, take rδ > 0 sufficiently large such that∫
D×B(rδ)

|∇u(x, ω)|2es‖ω‖2
−θdxdμ(ω) ≥ (1− δ)|u|2U1

s
.

We obtain a(u, vrδ ) ≥ (1− δ)e−
C2
θ

2ε |u|2U1
s
and then

sup
v∈U1

−s−ε

a(u, v)

|v|U1
−s−ε

≥ a(u, vrδ )

|vrδ |U1
−s−ε

≥ (1− δ)e−
C2
θ

2ε

|u|2U1
s

|u|U1
s

= (1 − δ)e−
C2
θ

2ε |u|U1
s
.

Because δ > 0 is arbitrary, we conclude that the inf-sup condition (3.10) holds.

Proof of (3). Given v ∈ Û1
−s−ε \ {0} we can take ur defined by

ur(x, ω) :=

{
v(x, ω)e(−s− ε

2 )‖ω‖2
−θ , ‖ω‖−θ ≤ r,

0, ‖ω‖−θ > r.

Note that

|ur|2U1
s+2ε

=

∫
D×B(r)

|∇v(x, ω)|2e2(−s− ε
2 )‖ω‖2

−θe(s+2ε)‖ω‖2
−θdxdμ(ω)

≤ e2εr
2

∫
D×B(r)

|∇v(x, ω)|2e(−s−ε)‖ω‖2
−θdxdμ(ω) ≤ e2εr

2|v|2U1
−s−ε

<∞.
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By taking r̄ large enough we obtain

a(ur̄, v) ≥ e−
C2
θ

2ε

∫
D×B(r̄)

e−
ε
2‖ω‖2

−θ |∇v(x, ω)|2e(−s− ε
2 )‖ω‖2

−θdxdμ(ω) > 0.(3.12)

Proof of (4). Let Ta : Û1
s → U−1

s−ε be the linear continuous operator defined by

a(u, v) = 〈Tau, v〉 for all u ∈ Û1
s , v ∈ Û1

−s+ε,

and let R(Ta) be the range of Ta. Now we show that the subspace R(Ta) ∩ U−1
s+ε

is closed in U−1
s+ε. Indeed, let {un} ⊂ Û1

s be a sequence such that the sequence

{Taun} ⊂ U−1
s+ε converges to f in U−1

s+ε. From the inf-sup (3.10), for all integers m and
n we have

|um − un|U1
s
≤ e

C2
θ

2ε sup
v∈Û1

−s−ε\{0}

a(um − un, v)

|v|U1
−s−ε

≤ e
C2
θ

2ε sup
v∈Û1

−s−ε\{0}

〈Ta(um − un), v〉
|v|U1

−s−ε

≤ e
C2
θ

2ε ‖Ta(um − un)‖U−1
s+ε
,

which implies that {un} is a Cauchy sequence in Û1
s and hence has a limit u ∈ Û1

s .
By continuity we have Tau = f , and hence f ∈ R(Ta). Since f ∈ U−1

s+ε we have

f ∈ R(Ta) ∩ U−1
s+ε. Hence, we have shown that R(Ta) ∩ U−1

s+ε is closed in U−1
s+ε.

Now we show R(Ta)∩U−1
s+ε = U−1

s+ε. Since R(Ta)∩U−1
s+ε is closed in U−1

s+ε, assume

by contradiction that there exists v ∈ (U−1
s+ε)

∗ = Û1
−s−ε such that v �= 0 and 〈f, v〉 = 0

for all f ∈ R(Ta) ∩ U−1
s+ε. With ur̄ introduced in (3), we have from (3.3)

〈Taur̄, z〉 = a(ur̄, z) ≤ e
C2
θ

2ε |ur̄|U1
s+2ε

|z|U1
−s−ε

for all z ∈ Û1
−s−ε,

which implies that Taur̄ ∈ (Û1−s−ε)
∗ = U−1

s+ε. Taking f = Taur̄ implies a(ur̂, v) =
〈Taur̄, v〉 = 0, and using (3.12) we conclude that v = 0, which gives a contradiction;

hence R(Ta) ∩ U−1
s+ε = U−1

s+ε. Thus, the problem (3.9) has a unique solution in Û1
s

when the right-hand side f ∈ U−1
s+ε, i.e., a unique solution in D̂1

s ⊂ Û1
s . Now (3.11)

follows directly from the inf-sup condition (3.10).
Remark 3.2. From Theorem 3.1, when f ∈ U−1

0 then for every s < 0 (take ε = −s)
the solution u ∈ Û1

s . In order for u ∈ Û1
0 we need f ∈ U−1

ε for some ε > 0. When the
right-hand side f is given by a finite sum of Fourier–Hermite polynomials we have

the solution u ∈ Û1
s for every s satisfying s <

λ2θ
1

2 ; see Definition 4.1 and Lemma 4.2.
We also note that for the case s = 0 the formulation (3.9) can be formalized with

û, v̂ ∈ Û1
0 , however, using the inner product (L2)ε.

Remark 3.3. It is easy to see that when κ(x, ω) =: ρ0 + eWφ(x,ω) and ρ0 > 0,
Theorem 3.1 can be slightly modified to establish the well-posedness of the following
problem: {

Find û ∈ D̂1
s ⊂ Û1

s such that a(û, v) = 〈f, v〉 for all v ∈ Û1
−s(3.13)

with the stabilty ‖û‖U1
s
≤ C

ρ ‖f‖U−1
s
. Here C is the Poincaré inequality constant which

is independent of s and θ, and D̂1
s is the subspace of u ∈ Û1

s such that Tau ∈ U−1
s .
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Additionally, the discrete formulation and the a priori error estimates that we establish
in the following sections can also be easily modified to avoid the dependence on ε.

Remark 3.4. If Ũ ⊂ Û1
s+ε ⊂ Û1

s for some ε > 0, then the pair of spaces Ũ and

Ṽ , where Ṽ :=
{
ue(s+

ε
2 )‖·‖2

−θ ;u ∈ Ũ
}
, also satisfies the inf-sup condition. This will

be useful when constructing finite element spaces in section 5; see Remark 5.1.

4. Characterization of the spaces (L2)s and Um
s . In the following we char-

acterize the space (L2)s defined in (3.6), and note that this is enough for characterizing
the tensor product space Um

s = Hm(D)⊗ (L2)s.
We need to consider multi-index of arbitrary length. To simplify the notation, we

regard multi-indices as elements of the space (NN
0 )c of all sequences α = (α1, α2, . . .)

with elements αj ∈ N0 = N ∪ {0} and with compact support, i.e., with only finitely
many αj �= 0. We write J = (NN

0 )c. Given α ∈ J define the order and length of α,
denoted by d(α) and |α|, respectively, by

d(α) := max {j : αj �= 0} and |α| := α1 + α2 + · · ·+ αd(α).(4.1)

We also introduce the r-Hermite polynomials, hr2,n, where r > 0 and n = 0, 1, 2, . . . .
These polynomials can be defined by the generating function identity

etx−
1
2 r

2t2 =

∞∑
n=0

tn

n!
hr2,n(x).(4.2)

When r2 = 1 we denote h1,n simply by hn. The r-Hermite polynomials hr2,n are an

orthogonal basis for L2(R, e−
1

2r2
x2

dx) and satisfy hr2,n(x) = rnh1,n(x/r).

For s <
λ2θ
1

2 define σj = σj(s) :=
(
1− 2s

λ2θ
j

)− 1
2 , j = 1, 2, . . . , and for α ∈ J let

σα = σα(s) :=

d(α)∏
j=1

σ
αj

j (s) and σ∗ = σ∗(s) :=
∫
S′
es‖ω‖2

−θdμ(ω).(4.3)

From Lemma 2.2, σ∗ =
∏∞

j=1 σj < ∞ when s <
λ2θ
1

2 . Now we define the σ(s)-
Fourier–Hermite polynomials.

Definition 4.1. Given s <
λ2θ
1

2 , α = (α1, α2, . . .) ∈ J , and σ = σ(s) =
(σ1, σ2, . . .), define

Hσ2,α(ω) :=
1√
σ∗

d(α)∏
j=1

hσ2
j ,αj

(〈ω, ηj〉) ω ∈ S ′.

We now state the Wiener-Chaos expansion lemma; see Da Prato [11], Hida [19],
Holden et al. [21], Hida et al. [20], and Obata [30]. For completeness we include the
proof of the orthogonality of the σ(s)-Fourier–Hermite polynomials.

Lemma 4.2. When s <
λ2θ
1

2 , the σ(s)-Fourier–Hermite polynomials are orthogonal
in (L2)s. Moreover,

‖Hσ2(s),α‖2(L2)s
= α!σ(s)2α.

In addition, every polynomial in ω belongs to (L2)s, and every u ∈ (L2)s can be
represented as a Wiener-Chaos expansion,

u =
∑
α∈J

uα,sHσ(s)2,α with ‖u‖2(L2)s
=
∑
α∈J

α!σ(s)2αu2α,s.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

FEM FOR INFINITY-DIMENSIONAL SPDE 3635

Proof. Take α,β ∈ J and let M = max{d(α), d(β)}. Note that the random
variables

M∏
j=1

hσ2
j ,αj

(〈·, ηj〉)hσ2
j ,βj

(〈·, ηj〉)esλ
−2θ
j 〈·,ηj〉 and

∞∏
j=M+1

esλ
−2θ
j 〈·,ηj〉

are independent (see Remark 2.1). Then

1

σ∗

∫
S′
Hσ2,α(ω)Hσ2β(ω)e

s‖ω‖2
−θdμ(ω)

=

∫
S′

M∏
j=1

hσ2
j ,αj

(〈·, ηj〉)hσ2
j ,βj

(〈·, ηj〉)e
sλ−2θ

j 〈·,ηj〉

σj(s)
dμ

∫
S′

∞∏
j=M+1

esλ
−2θ
j 〈·,ηj〉

σj(s)
dμ

=

M∏
j=1

σ
2αj

j αj !δαj ,βj = α!σ2αδα,β.

In (L2)s with s <
λ2θ
1

2 we introduce the system of Hilbert norms

||u||2p;ρ,s :=
∑
α∈J

ρ(α, p)2α!σ(s)2αu2α,s,(4.4)

where u =
∑

α∈J uα,sHσ(s)2,α. We assume that ρ(α, q) ≥ ρ(α, p) > 0 and ρ(α, 0) = 1
for all q > p ≥ 0 and α ∈ J . Usually, the weights ρ(α, s) are the eigenvalues of
some nonnegative operator in (L2)s with the σ(s)-Fourier–Hermite polynomials as
eigenfunctions; see Benth and Gjerde [4], Holden et al. [21], Hida et al. [20], Obata
[30], Kuo [25], Bogachev [7], Cochran, Kuo, and Sengupta [10], and Benth and Theting
[5].

For p > 0 define the spaces (Sp)ρ,s by

(Sp)ρ,s := {v ∈ (L2)s : ‖v‖p;ρ,s <∞}.(4.5)

For p < 0 define (Sp)ρ,s as the dual space of (S−p)ρ,s. We have (S0)ρ,s = (L2)s and
the inclusion (Sq)ρ,s ⊂ (Sp)ρ,s holds for all q > p.

Let N,K ∈ N0 and define

JN,K := {α ∈ J : d(α) ≤ K and |α| ≤ N}(4.6)

and PN,K := span
{
Hσ(s)2,α : α ∈ J N,K

}
= span

{∏d(α)
j=1 〈ω, ηj〉αj : α ∈ J N,K

}
;

i.e., PN,K consists of polynomials in 〈ω, η1〉, . . . , 〈ω, ηK〉 of total degree at most N .
Let QN,K

s be the orthogonal projection on PN,K in the (L2)s-norm. This projection
is equivalent to the procedure of truncating the expansion in terms of σ(s)-Fourier–
Hermite polynomials by eliminating the coefficients corresponding to multi-indices
outside J N,K . We also define the R

K approximation of (L2)s by

PK := span
{
Hσ(s)2,α : d(α) ≤ K

}
,

and denote by QK
s the orthogonal projection on PK in the (L2)s-norm.

We have the following approximation results.

Lemma 4.3. Assume that s <
λ2θ
1

2 . Then for all v ∈ (Sq)ρ,s and p < q we have

‖v −QN,K
s v‖2p;ρ,s ≤M2

1‖QK
s v −QN,K

s v‖2q;ρ,s +M2
2 ‖v −QK

s v‖2q;ρ,s
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with

M1 =M1(ρ, p, q) := max
d(α)≤K,|α|>N

ρ(α, p)

ρ(α, q)
(4.7)

and

M2 =M2(ρ, p, q) := max
d(α)>K

ρ(α, p)

ρ(α, q)
.(4.8)

Proof. Fix s <
λ2θ
1

2 and note that QN,K
s v =

∑
α∈JN,K vα,sHσ2,α. Then recalling

the definition of JN,K in (4.6) we see that

||v −QN,K
s v||2p;ρ,s =

∑
α∈JN,K

ρ(α, p)2α!σ(s)2αv2α,s

=
∑

α∈JN,K

ρ(α, q)2α!σ(s)2αv2α,s

ρ(α, p)2

ρ(α, q)2

=
∑

d(α)≤K,|α|>N

ρ(α, q)2α!σ(s)2αv2α,s

ρ(α, p)2

ρ(α, q)2
+

∑
d(α)>K

ρ(α, q)2α!σ(s)2αv2α,s

ρ(α, p)2

ρ(α, q)2

≤
(

max
d(α)≤K,|α|>N

ρ(α, p)2

ρ(α, q)2

)
‖QK

s v −QN,K
s v‖2q;ρ,s +

(
max

d(α)>K

ρ(α, p)2

ρ(α, q)2

)
‖v −QK

s v‖2q;ρ,s
≤M2

1 ‖QK
s v −QN,K

s v‖2q;ρ,s +M2
2 ‖v −QK

s v‖2q;ρ,s,

where M1 and M2 are defined in (4.7) and (4.8), respectively.

Corollary 4.4. Assume that s <
λ2θ
1

2 . For all v ∈ (Sq)ρ,s and p < q we have

‖v −QN,K
s v‖p;ρ,s ≤ max {M1,M2} ‖v‖q;ρ,s

with M1 and M2 defined in (4.7) and (4.8), respectively.
If v ∈ (Sq)ρ,s is of finite dimensional noise type, i.e., if v =

∑
d(α)≤K vα,sHσ(s)2,α(ω),

then for all p < q

‖v −QN,K
s v‖p;ρ,s ≤M1(ρ, p, q)‖v‖q;ρ,s.

Proof. From (4.4) and the definition of the (L2)s orthogonal projections QK
s and

QN,K
s , we see that

‖QK
s v −QN,K

s v‖2q;ρ,s + ‖v −QK
s v‖2q;ρ,s = ‖v −QN,K

s v‖2q;ρ,s ≤ ‖v‖2q;ρ,s,

which together with Lemma 4.3 give the first inequality. The second inequality follows
from Lemma 4.3 after noting that if v is of finite dimensional noise type, then QK

s v =
v.

Several examples of weights ρ(α, p) can be considered. We next mention two
examples.

Example 4.5 (see Cao [9], Benth and Gjerde [4], Holden et al. [21], Kuo [25], and
Obata [30]). Take ν ∈ [0, 1) and

ρ(α, p)2 = (α!)νλ2pα, α ∈ J .(4.9)
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Here we use the notation λβ =
∏d(β)

j=1 λ
βj

j for any β ∈ J . Note that we can write

||u||2p;ρ,s = ||Γ⊗,ν(A)
pu||2(L2)s

=

∫
S′

|Γ⊗,ν(A)
pu(ω)|2es‖ω‖2

−θdμ(ω),

where Γ⊗,ν(A) is the operator defined by Γ⊗,ν(A)Hσ2,α = (α!)νλαHσ2,α. Note also
that Γ⊗,0(A

p) = Γ⊗,0(A)
p. In the case of ν = 0 and s = 0, Γ⊗,0(A) is called the

Second Quantization of A; see Hida et al. [20].

Corollary 4.6. Assume that s <
λ2θ
1

2 and consider the weights ρ defined in
(4.9). Then for every p < q we have

‖v −QN,K
s v‖p;ρ,s ≤ max

{
1

λN+1
1

,
1

λK+1

}q−p

‖v‖q;ρ,s.

Proof. Recalling that 1 < λ1 ≤ λ2 ≤ · · · , we see that for all q > p

M1(ρ, p, q) = max
d(α)≤K,|α|>N

d(α)∏
i=1

1

λ
αi(q−p)
i

=
1

λ
(N+1)(q−p)
1

and

M2(ρ, p, q) = max
d(α)>K

d(α)∏
i=1

1

λ
αi(q−p)
i

=
1

λ
(q−p)
K+1

,

and the lemma follows.
Remark 4.7. We note that Corollary 4.6 is valid for any choice of the sequence

{λj}∞j=1 with 1 < λ1 ≤ λ2 ≤ · · · such that
∑∞

j=1 λ
−2θ
j < ∞; see section 7.1.1. For

instance, Corollary 4.6 applied to the sequence {λj = 2j}∞j=1 with θ = 1 (s < 2) gives
for all p ∈ R and t > 0,

‖v −QN,K
s v‖p;ρ,s ≤ 1

2t
max

{
1

2tN
,

1

(K + 1)t

}
‖v‖p+t;ρ,s.

Benth and Gjerde [4] and Cao [9] consider the norms of Example 4.5 with weights
ρ defined in (4.9) for the special case s = 0 and the sequence {λj = 2j}∞j=1. They
derive approximation estimates valid only for p < 0 and t > 1. Using our notation,
Theorem 2 in Cao [9], which substantially improves the result of Benth and Gjerde
[4], reads as follows: Let p < 0 and assume that t > 1. Then for any v ∈ (Sp+t)ρ,0

‖v −QN,K
s v‖p;ρ,0 ≤

√
B(t)

1

2tN
+A(t)

1

Kt−1
‖v‖p+t;ρ,0,(4.10)

where

A(t) = e
2

t−1
t

t− 1
and B(t) = e

1

2t−1(t−1)
1

2t(t− 1)
.

It is easy to see that

1

2t
max

{
1

2tN
,

1

(K + 1)t

}
≤ 1

2t
√
B(t)

√
B(t)

1

2tN
+A(t)

1

Kt−1
,
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and then our estimate is sharper than the one given in [9] and, moreover, is valid for
all p ∈ R and t > 0.

Example 4.8 (see Bogachev [7], Da Prato [11], Hida et al. [20], and Shigekawa

[34]). Given a multi-index α we denote 〈α, λ〉 :=
∑d(α)

i=1 αiλi. As an alternative to
the weights ρ introduced in Example 4.5 we can define

ρ(α, p)2 = 1 + 〈α, λ〉2p, p > 0, and ρ(α, 0) = 1, α ∈ J .(4.11)

In this case we can write

||u||2p;ρ,s = ||u||2(L2)s
+ ||Γ⊕(A)pu||2(L2)s

=

∫
S′

(|u(ω)|2 + |Γ⊕(A)pu(ω)|2
)
es‖ω‖2

−θdμ(ω),

where Γ⊕(A) is the operator defined by Γ⊕(A)Hσ2,α = 〈α, λ〉Hσ2,α. Note also that
in this case Γ(Ap) �= Γ(A)p. It is easy to see that ||Γ⊕(A)p · ||2(L2)s

is a norm in the

space of function in (L2)s with u0 = 0 in its σ(s)-Fourier–Hermite expansion. This
seminorm can be computed using directional derivatives in the ω variable; see Da
Prato [11].

The proof of the following result is similar to the proof of Corollary 4.6.

Corollary 4.9. Assume that s <
λ2θ
1

2 and consider ρ defined in (4.11). Then
for every p < q we have

‖v −QN,K
s v‖p;ρ,s ≤ max

{
1

1 + (N + 1)λ1
,

1

1 + λK+1

}q−p

‖v‖q;ρ,s.

In this section we have only considered results associated with (L2)s. The corre-

sponding tensor product norm for u ∈ Um
s := Hm(D) ⊗ (L2)s with s <

λ2θ
1

2 is given
by

‖u‖2Um
s

=
∑
α∈J

α!σ(s)2α‖uα,s‖2Hm(D),

where u =
∑

α∈J uα,sHσ(s)2,α with uα,s ∈ Hm(D) for all α ∈ J .

Norms ‖ · ‖p;ρ,s and spaces (Sp)ρ,s ⊂ (L2)s defined in (4.4) and (4.5) can also be
extended to tensor products. The corresponding norms for the tensor product spaces
Um
p;ρ,s := Hm(D)⊗ (Sp)ρ,s are defined by

||u||2Um
p;ρ,s

:=
∑
α∈J

ρ(α, p)2α!σ(s)2α‖uα,s‖2Hm(D),(4.12)

and the seminorm is

|u|2Um
p;ρ,s

:=
∑
α∈J

ρ(α, p)2α!σ(s)2α|uα,s|2Hm(D).(4.13)

We have the following important remark.

Remark 4.10. Lemma 4.3 and Corollaries 4.4, 4.6, and 4.9 extend trivially to the
tensor product norm and seminorm defined in (4.12) and (4.13).
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5. The Galerkin approximation and a priori error estimates. Recall that

when s <
λ2θ
1

2 , polynomials in ω belong to (L2)s. Let Xh
0 (D) ⊂ H1

0 (D) be the
finite element space of piecewise linear and continuous functions with respect to a
triangulation of D. For N,K ∈ N0, and h > 0 define the following discrete spaces:

XN,K,h
s := Xh

0 (D)⊗ PN,K ⊂ Û1
s ⊂ U1

s(5.1)

and

YN,K,h
s :=

{
v : v(x, ω) = ṽ(x, ω)e(s+

ε
2 )‖ΠKω‖2

−θ , ṽ ∈ XN,K,h
s

}
⊂ Û1

−(s+ε),(5.2)

where ΠK is the (H-orthogonal) projection on the span{η1, . . . , ηK} defined by

ΠKω :=

K∑
j=1

〈ωηj〉ηj for all ω ∈ S ′.(5.3)

Remark 5.1. Note that we have defined YN,K,h
s in (5.2) by multiplying ṽ(x, ω) by

the weight e(s+
ε
2 )‖ΠKω‖2

−θ rather than by e(s+
ε
2 )‖ω‖2

−θ (see Remark 3.4). This is done
in order to avoid computations of infinite series when assembling the resulting linear
system; see section 6. We note also that Remark 3.4 would require the assumption
s+ ε < λ2θ1 /2 in order to establish the discrete inf-sup condition.

The discrete version of problem (3.9) is introduced as follows:{
Find ûN,K,h

s ∈ XN,K,h
s such that a(ûN,K,h

s , v) = 〈f, v〉 for all v ∈ YN,K,h
s .(5.4)

Remark 5.2. Observe that the above Galerkin approximation ûN,K,h
s satisfies a

variational equation with the original permeability κ defined in (3.2).
Note that the functions in XN,K,h

s depend only on the 〈ω, ηj〉, j = 1, . . . ,K, and
not on the 〈ω, ηj〉, j = K + 1, . . . . Therefore, for all u ∈ XN,K,h

s and v ∈ YN,K,h
s , i.e.,

v(x, ω) = ṽ(x, ω)e(s+
ε
2 )‖ΠKω‖2

−θ with ṽ ∈ XN,K,h
s and ΠK defined in (5.3), we have

a(u, v) =

∫
D×S′

e〈ω,φx〉∇u(x, ω)∇ṽ(x, ω)e(s+ ε
2 )‖ΠKω‖2

−θdxdμ(ω)

=

∫
D×S′

e
∑∞

j=1(φx,ηj)〈ω,ηj〉∇u(x, ω)∇ṽ(x, ω)e(s+ ε
2 )‖ΠKω‖2

−θdxdμ(ω)

=

∫
D

e
1
2

∑∞
j=K+1 aj(x)

2

∫
S′
e
∑K

j=1 aj(x)〈·,ηj〉∇u∇ṽe(s+ ε
2
)‖ΠK ·‖2

−θdμ(ω)dx(5.5)

=

∫
D

e
1
2 (‖φx‖2

H−∑K
j=1 aj(x)

2)

∫
S′
e
∑K

j=1 aj(x)〈·,ηj〉∇u∇ṽe(s+ ε
2 )‖ΠK ·‖2

−θdμ(ω)dx,

where we have used the formula
∫
R
eaj(x)yj 1√

2π
e−

y2
j
2 dyj = e

aj(x)2

2 and the notation

aj(x) := (φx, ηj)H(5.6)

for j = 1, . . . . We have the following result.

Lemma 5.3. Let ε > 0 and s ∈ R such that s <
λ2θ
1

2 and −s − ε <
λ2θ
K+1

2 .
The bilinear form “a” and the spaces (XN,K,h

s ,YN,K,h
s ) satisfy the following discrete

inf-sup condition:

inf
u∈XN,K,h

s \{0}
sup

v∈YN,K,h
s \{0}

a(u, v)

|u|U1
s
|v|U1

−(s+ε)

≥ e−
C2
θ

2ε∏∞
j=K+1 σj(−s− ε)

.(5.7)
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Proof. Let u ∈ XN,K,h
s \ {0}. If v(x, ω) := u(x, ω)e(s+

ε
2 )‖ΠKω‖2

−θ , then v ∈ YN,K,h
s

and

|v|2U1
−(s+ε)

=

∫
D×S′

|∇u(x, ω)|2e2(s+ ε
2 )‖ΠKω‖2

−θe−(s+ε)‖ω‖2
−θdxdμ(ω)

=

∫
D×S′

|∇u(x, ω)|2e2(s+ ε
2 )‖ΠKω‖2

−θe−(s+ε)(‖ΠKω‖2
−θ+‖(I−ΠK)ω‖2

−θ)dxdμ(ω).

As in Lemma 2.2, for −(s+ ε) <
λ2θ
K+1

2 we have∫
S′
e−(s+ε)‖(I−ΠK)ω‖2

−θdμ(ω) =

∞∏
j=K+1

σj(−s− ε) <∞.

Analogous computation holds for
∫
S′ e

s‖(I−ΠK)ω‖2
−θdμ(ω) when s <

λ2θ
K+1

2 . Then,

|v|2U1
−(s+ε)

=

∞∏
j=K+1

σj(−s− ε)

∫
D×S′

|∇u(x, ω)|2es‖ΠKω‖2
−θdxdμ(ω)

=

∏∞
j=K+1 σj(−s− ε)∏∞

j=K+1 σj(s)

∫
D×S′

|∇u(x, ω)|2es‖ω‖2
−θdxdμ(ω)

=

∏∞
j=K+1 σj(−s− ε)∏∞

j=K+1 σj(s)
|u|2U1

s
,

and from (5.5) and the fact that e
1
2

∑∞
j=K+1 aj(x)

2 ≥ 1, we have

a(u, v) ≥
∫
D×S′

e
∑K

j=1 aj(x)〈ω,ηj〉|∇u(x, ω)|2e(s+ ε
2 )‖ΠKω‖2

−θdxdμ(ω)

≥ e−
C2
θ

2ε

∫
D×S′

e−
ε
2 |ΠKω|2−θ |∇u(x, ω)|2e(s+ ε

2 )‖ΠKω‖2
−θdxdμ(ω)

= e−
C2
θ

2ε

∫
D×S′

|∇u(x, ω)|2es‖ΠKω‖2
−θdxdμ(ω) =

1∏∞
j=K+1 σj(s)

e−
C2
θ

2ε |u|2U1
s
.

Hence,

a(u, v)

|v|U1
−(s+ε)

≥
1∏∞

j=K+1 σj(s)∏∞
j=K+1 σj(−s−ε)
∏∞

j=K+1 σj(s)

e−
C2
θ

2ε

|u|2U1
s

|u|U1
s

≥ e−
C2
θ

2ε∏∞
j=K+1 σj(−s− ε)

|u|U1
s
.

We conclude that the discrete inf-sup condition holds.
Lemma 5.4. For v =

∑
α∈J vα,sHσ2(s),α ∈ Û1

s∩Um
s , let vh =

∑
α∈J vhα,sHσ2(s),α,

where vhα,s is the Clement finite element interpolation of vα,s on the space Xh
0 (D).

Then

‖v − vh‖U1
s
≤ Ĉh�−1‖v‖U�

s
, � = 1, 2,

where the constant Ĉ is independent of s and h.
Using the tensor product norm (4.12) we can easily deduce the following a priori

error estimates.
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Lemma 5.5. Let s ∈ R and ε > 0 such that s + 2ε <
λ2θ
1

2 and −s − ε <
λ2θ
K+1

2 .
Then the following estimate holds:

|û− ûN,K,h
s |U1

s
≤
⎛⎝1 + e

C2
θ
ε

∞∏
j=K+1

σj(−s− ε)

⎞⎠ inf
z∈XN,K,h

s

|û− z|U1
s+2ε

.(5.8)

Moreover, for all q > 0

|û− ûN,K,h
s |U1

s
≤ C∗

{
max {M1(ρ, 0, q),M2(ρ, 0, q)} |û|U1

q;ρ,s+2ε
+ Ĉh�−1‖û‖U�

s+2ε

}
,

where C∗ = C∗(s, ε) = 1+e
C2
θ
ε

∏∞
j=K+1 σj(−s−ε),M1 andM2 are defined in Corollary

4.4, and Ĉ is the constant of Lemma 5.4.
Proof. First note that for all v ∈ YN,K,h

s and z ∈ XN,K,h
s

a(ûN,K,h
s − z, v) = a(û− z, v).

Using the continuity (2) in Theorem 3.1, with s+ 2ε instead of s, we obtain

a(ûN,K,h
s − z, v) ≤ e

C2
θ

2ε |û− z|U1
s+2ε

|v|U1
−s−ε

.

From the discrete inf-sup of Lemma 5.3 we have

|û− ûN,K,h
s |U1

s
≤ |û− z|U1

s
+ |ûN,K,h

s − z|U1
s

≤ |û− z|U1
s
+ e

C2
θ

2ε

∞∏
j=K+1

σj(−s− ε) sup
v∈YN,K,h

s \{0}

a(ûN,K,h
s − z, v)

|v|U1
−s−ε

≤ |û− z|U1
s
+ e

C2
θ

2ε e
C2
θ

2ε

∞∏
j=K+1

σj(−s− ε)|û− z|U1
s+2ε

≤
⎛⎝1 + e

C2
θ
ε

∞∏
j=K+1

σj(−s− ε)

⎞⎠ |û− z|U1
s+2ε

,

which gives (5.8). Now we bound the second term of (5.8). This can be done as

follows: take the polynomial z = ζhN,K ∈ XN,K,h
s , where ζN,K = (Id⊗QN,K

s+2ε)û. Note

that polynomials in ω are in (L2)s+2ε since s + 2ε <
λ2θ
1

2 ; therefore, ζN,K ∈ Û1
s+2ε is

well defined. We have

|û− ζhN,K |U1
s+2ε

≤ |û− ζN,K |U1
s+2ε

+ |ζN,K − ζhN,K |U1
s+2ε

.(5.9)

Apply Corollary 4.4 (see Remark 4.10) with p = 0 and q > 0 to obtain

|û− ζN,K |U1
s+2ε

= |û− ζN,K |U1
0;ρ,s+2ε

≤ max {M1(ρ, 0, q),M2(ρ, 0, q)} |û|U1
q;ρ,s+2ε

.(5.10)

From Lemma 5.4 we have

|ζN,K − ζhN,K |U1
s+2ε

≤ Ch�−1‖û‖U�
s+2ε

.(5.11)
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Inserting (5.10) and (5.11) into (5.9) the lemma follows.
The following result follows from Corollary 4.6.
Theorem 5.6. Consider the weights ρ defined in (4.9). Under the assumptions

of Lemma 5.5 we have for all q > 0 that

|û− ûN,K,h
s |U1

s
≤ C∗

{
max

{
1

λN+1
1

,
1

λK+1

}q

|û|U1
q;ρ,s+2ε

+ Ĉh�−1‖û‖U�
s+2ε

}
,

where C∗ = C∗(s, ε) = 1 + e
C2
θ
ε

∏∞
j=K+1 σj(−s − ε) and Ĉ is the constant of Lemma

5.4.
From Corollary 4.9 we have the following a priori error estimate.
Theorem 5.7. Consider the weights ρ defined in (4.11). Under the assumptions

of Lemma 5.5 we have for all q > 0 that

|û− ûN,K,h
s |U1

s
≤ C∗

{
max

{
1

1+(N+1)λ1
, 1
1+λK+1

}q

|û|U1
q;ρ,s+2ε

+ Ĉh�−1‖û‖U�
s+2ε

}
,

where C∗ = C∗(s, ε) = 1 + e
C2
θ
ε

∏∞
j=K+1 σj(−s − ε) and Ĉ is the constant of Lemma

5.4.

6. The resulting linear system. We now analyze the properties of the result-
ing linear system for the discrete spaces XN,K,h

s ⊂ Û1
s and YN,K,h

s ⊂ Û1
−(s+ε), defined

in (5.1) and (5.2), respectively.
From (5.5), we see that for all functions u ∈ XN,K,h

s and v ∈ YN,K,h
s , i.e., v(x, ω) =

ṽ(x, ω)e(s+
ε
2 )‖ΠKω‖2

−θ with ṽ ∈ XN,K,h
s and ΠK defined in (5.3), we have

a(u, v) =

∫
D

κ̂K(x)

∫
S′
e
∑K

j=1 aj(x)〈ω,ηj〉∇u(x, ω)∇ṽ(x, ω)e(s+ ε
2 )‖ΠKω‖2

−θdμ(ω)dx,(6.1)

where

κ̂K(x) := e
1
2 (‖φx‖2

H−∑K
j=1 aj(x)

2).(6.2)

For every u ∈ XN,K,h
s we introduce the function u : D × R

K → R such that

u(x, 〈ω, η1〉, . . . , 〈ω, ηj〉) := u(x, ω) for all ω ∈ S ′,

and denote XN,K,h
s := {u : u ∈ XN,K,h

s }. We also introduce

κK(x, y) := e
∑K

j=1 aj(x)yj , DK := diag(λ−θ
1 , . . . , λ−θ

K )

and define the bilinear form a by

a(u, ṽ) := a(u, v) for all u, ṽ ∈ XN,K,h
s .(6.3)

Here v(x, ω) = ṽ(x, ω)e(s+
ε
2 )‖ΠKω‖2

−θ . With this notation and using (6.1) we have

a(u, ṽ) =

∫
D

κ̂K(x)

∫
RK

κK(x, y)∇xu(x, y)∇xṽ(x, y)e
(s+ ε

2 )|DKy|2dμK(y)dx,(6.4)

where μK denotes the standard Gaussian measure in R
K .
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To simplify notation we set σ̌ = σ(s + ε
2 ), i.e., let σ̌j = σj(s +

ε
2 ), j = 1, 2, . . . .

Let {ψ�}L�=1 be the standard hat basis functions for Xh
0 (D); then the collection{

Ψ�,σ̌2,α : Ψ�,σ̌2,α(x, y) = ψ�(x)H σ̌2,α(y), � = 1, . . . , L; α ∈ JN,K
}

is a basis of XN,K,h
s .

Denote by {A(�,α),(m,β)} the matrix associated with the bilinear form a defined
in (6.3). From (6.4) we have

A(�,α),(m,β)

=

∫
D

κ̂K(x)

∫
RK

κK(x, y)Ψ�,σ̌2,α(x, y)Ψm,σ̌2,β(x, y)e
(s+ ε

2 )|DKy|2dμK(y)dx(6.5)

=

∫
D

κ̂K(x)κ�K,α,β(x)∇ψ�(x)∇ψk(x)dx,(6.6)

where we have defined

κ�K,α,β(x) :=

∫
RK

κK(x, y)H σ̌2,α(y)H σ̌2,β(y)e
(s+ ε

2 )|DKy|2dμK(y).(6.7)

Now we compute the integral in (6.7). From the definition of the σ̌-Fourier–Hermite
polynomials we see that

κ�K,α,β(x) =

K∏
j=1

∫
R

hσ̌2
j ,αj

(yj)hσ̌2
j ,βj

(yj)e
aj(x)yje(s+

ε
2 )λ

−2θ
j y2

j dμ1

=

K∏
j=1

σ̌j

∫
R

hσ̌2
j ,αj

(yj)hσ̌2
j ,βj

(yj)e
aj(x)yj

e
− 1

2σ̌2
j

y2
j

√
2πσ̌j

dyj =

K∏
j=1

σ̌jκ
�(x;αj , βj),(6.8)

where

κ�(x;αj , βj) :=

∫
R

hσ̌2
j ,αj

(yj)hσ̌2
j ,βj

(yj)e
aj(x)yj

e
− 1

2σ̌2
j

y2
j

√
2πσ̌j

dyj .

From the generating function identity (4.2) one can easily deduce

hσ̌2
j ,αj

(t)hσ̌2
j ,βj

(t) =

min{αj ,βj}∑
m=0

m!

(
αj

m

)(
βj
m

)
σ̌2m
j hσ̌2

j ,αj+βj−2m(t)

and

eaj(x)t = e
1
2 σ̌

2
jaj(x)

2
∞∑

m=0

1

m!
aj(x)

mhσ̌2
j ,m

(t).

Then, we have

κ�(x;αj , βj) = e
1
2 σ̌

2
jaj(x)

2

min{αj ,βj}∑
m=0

m!

(
αj

m

)(
βj
m

)
aj(x)

αj+βj−2mσ̌
2(αj+βj−m)
j .(6.9)
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Summarizing, the A(�,α),(m,β) defined in (6.5) can be easily computed using (6.6),
(6.2), and (6.7). This computation is reduced to the finite product in (6.8) where
each factor is given by (6.9). For the proper computation of ‖φx‖H , see section 7.2.

Denote by {g�,α} the load vector. Each entry is given by

g�,α =

∫
D×S′

f(x, ω)ψ�(x)

d(α)∏
j=1

hσ̌2
j ,αj

(〈ω, ηj〉)e(s+ ε
2 )‖ΠKω‖2

−θdxdμ(ω).

The integral with respect the ω variable is exactly the computation of the αth coef-
ficient of the expansion of f(x, ·) in terms of σ(s + ε

2 )-Fourier–Hermite polynomials.
In particular if f does not depend on ω, then we have g�,α = 0 when α �= 0.

Remark 6.1. It is easy to see that the matrix {A(�,α),(m,β)} associated with the
bilinear form a is symmetric and positive definite. It is a square block matrix of
dimension

(
K+N
K

)
, where each block (α,β) is the usual finite element matrix of the

discretization of a second order equation with the coefficient given by κ̂(x)κ�K(x;α,β),
where bK is defined in (6.2) and κ�K is defined in (6.7) and computed using (6.8) and
(6.9). This corresponds to a discretization of a coupled system of second order equa-
tions. The resulting system is a very large sparse linear system of total dimension
being

(
K+N
K

)
times the dimension of a deterministic finite element problem. In the

numerical experiment of section 8 we solve this system using a preconditioned con-
jugate gradient method with a block diagonal preconditioner. More efficient ways of
solving this huge linear system will be the object of study in a future work.

Remark 6.2. Recall that we have set σ̌j = σj(s +
ε
2 ). The coefficients obtained

from solving the resulting linear system are the coefficients of the numerical solution in
terms of σ(s + ε

2 )-Fourier–Hermite polynomial basis. We can represent this solution
in terms of the σ(s)-Fourier–Hermite polynomial basis using the following formula
easily deduced from the generating function identity (4.2):

Ĥσ̌2,α(ω) =
∑

γ≤α/2

α!

γ!(α− 2γ)!

(
σ2 − σ̌2

2

)γ

Ĥσ2,α−2γ(ω),

where Ĥσ2,α(ω) :=
∏d(α)

j=1 hσ2
j ,αj

(〈ω, ηj〉) ω ∈ S ′. Note that this formula can also

be used to deduce the expansion of the right-hand-side term f in σ(s + ε
2 )-Fourier–

Hermite polynomials when f is given in terms of another Fourier–Hermite polynomial
basis.

7. On the choice of H, A, and φx. Several choices for the Hilbert space H
and the operator A are possible. We mention three possible choices of (H,A, φx). We
will first review some known results.

7.1. Known results.

7.1.1. The Schwartz space and the operator − d2

dx2 +x2+1. Consider the
densely defined differential operator

A1 = − d2

dx2
+ x2 + 1.(7.1)

We have an L2(R) orthonormal system of eigenfunctions of A1, which are the Hermite
functions

en(x) :=
1√√

π(n− 1)!
e−

1
2x

2

hn−1(
√
2x), n = 1, 2, . . . ,(7.2)
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where hn is the nth degree Hermite polynomial. We have A1en = (2n)en, n = 1, 2, . . . .
The family of tensors products

en := e(n1,···,nd) := en1 ⊗ · · · ⊗ end
, n = (n1, . . . , nd) ∈ N

d,

forms an orthonormal basis for L2(Rd). Let n(j) = (n
(j)
1 , . . . , n

(j)
d ) be the jth multi-

index in some fixed ordering of all d-dimensional multi-indices n = (n1, . . . , nd) ∈ N
d.

We assume this ordering has the property that

i < j =⇒
d∏

k=1

(2n
(i)
k ) ≤

d∏
k=1

(2n
(j)
k ).(7.3)

Now define

ηj := en(j) = e
n
(j)
1

⊗ · · · ⊗ e
n
(j)
d

, j = 1, 2, . . . .(7.4)

We have A⊗d
1 ηj = λjηj , where

λj :=

d∏
k=1

(2n
(j)
k ), j = 1, 2, . . . .(7.5)

Note that n(1) = (1, . . . , 1) ∈ R
d, λ1 = 2d, and 1 < λ1 ≤ λ2 ≤ . . . .

For the next result, see Holden et al. [21, Lemma 2.3.3].

Lemma 7.1 (Zhang). With d(α) defined in (4.1),
∑

α∈J
∏d(α)

k=1 (2k)
−qαk <∞ if

and only if q > 1.
Corollary 7.2. For {λj}∞j=1 defined in (7.5) we have that

∑∞
j=1 λ

−q
j < ∞ for

all q > 1.
Proof. For α ∈ J define NZ(α) := #{j : αj �= 0}. Observe that

∞∑
j=1

λ−q
j =

∑
n∈Nd

d∏
k=1

(2nk)
−q =

∑
NZ(α)≤d

d(α)∏
k=1

(2k)−qαk <
∑
α∈J

d(α)∏
k=1

(2k)−qαk <∞,

where d(α) is defined in (4.1) and d is the dimension of Rd.

7.1.2. The covariance integral operator on L2(D) and Mercer’s theo-
rem. Consider the covariance operator Q : L2(D) → L2(D) associated withW (x, ω),
i.e., the integral operator with the symmetric positive kernel function C(x, x̂) =
EμW (x, ·)W (x̂, ·). Let us assume that this kernel is square integrable and symmetric.
Then the operator Q is a compact operator in L2(D) and we let {μj}∞j=1 and {ζj}∞j=1

denote its eigenvalues and eigenfunctions. We have
∑

j μ
2
j <∞.

We recall that from Mercer’s theorem (see Riesz and Sz.-Nagy [31]) we can write

C(x, x̂) =

∞∑
j=1

μjζj(x)ζj(x̂).(7.6)

For results on the decay of the eigenvalues, see Frauenfelder, Schwab, and Todor [13,
Propositions 2.3, 2.5, and 2.6].

7.2. Three modeling choices. With the notation and review of section 7.1 we
now mention three modeling choices.
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7.2.1. First choice. The first modeling choice we propose is as follows:

(1) The Hilbert space H = L2(Rd).
(2) The operator A = A⊗d

1 with the sequence {λj}∞j=1 in (7.5) and the eigenfunc-
tions {ηj}∞j=1 in (7.4).

(3) For all x ∈ D we define φx(x̂) := φ(x̂ − x), x̂ ∈ R
d, where φ ∈ L2(Rd).

From Corollary 7.2 we can take any θ > 1
2 (independent of the dimension d). We

have that ‖φx‖H = ‖φ(· − x)‖L2(Rd) = ‖φ‖L2(Rd). In order to verify the assumption
of Theorem 3.1 it is enough to take φ ∈ Sθ. The functions aj defined in (5.6) are
aj(x) = (φ(· − x), ηj) and, in general, can be computed using numerical integration.
Typically, we need only compute aj(x) for some chosen quadrature points on each
triangle of a triangulation of D. In explicit applications the test function or window
φ can be chosen such that the diameter of the support of φ is the maximal distance
within which Wφ(x1, ·) and Wφ(x2, ·) are correlated; see Holden et al. [21]. We also
recall that the map x �→ φx may be chosen to match covariance function; see Roman
and Sarkis [32].

It is easy to see that this choice implies that S = S(Rd) is the Schwartz space
of rapidly decreasing functions and then S ′ = S ′(Rd) is the space of tempered distri-
butions. The triplet (S ′(Rd),B(S ′(Rd)), μ) is called 1-dimensional white noise prob-
ability space. The smoothed white noise of Definition 2.3 is called the 1-dimensional
d-parameter smoothed white noise. In section 8 we present numerical experiments
using this setup for the case d = 1.

7.2.2. Second choice. The second modeling choice we propose is as follows:

(1) The Hilbert space H = L2(Rd).
(2) The operator A = A⊗d

1 with the sequence {λj}∞j=1 in (7.5) and the eigenfunc-
tions {ηj}∞j=1 in (7.4).

(3) For all x ∈ D and x̂ ∈ R
d, φx(x̂) =

∑∞
j=1 aj(x)ηj(x̂) and aj(x) :=

√
μjζj(x),

where {μj}∞j=1 and {ζj}∞j=1 are the eigenvalues and eigenfunctions of the
operator Q introduced in section 7.1.2.

From (7.6) we see that C(x, x̂) =
∑∞

j=1 aj(x)aj(x̂) = (φx, φx̂)H , x, x̂ ∈ D. Note

also that ‖φx‖2H = ‖φx‖2L2(Rd) = C(x, x) and

‖φx‖2θ =

∞∑
j=1

λ2θj μjζj(x)
2 for all x ∈ D.

The assumption φx ∈ Sθ for all x ∈ D must be checked in each case, and the conver-
gence of the series depends on the decay of the eigenvalues and on the L∞(D)-norm of
the eigenfunctions, which in turn depend on the regularity of the function C(x, x̂); see
Frauenfelder, Schwab, and Todor [13, Propositions 2.3, 2.5, and 2.6]. For the numer-
ical computation of the eigenfunctions and eigenvalues of Q, see Todor [36] and also
Frauenfelder, Schwab, and Todor [13]. We also note that φx defined in (3) above can
be used with any choice of Hilbert space H and operator A. A possible choice is the
one described next and which can be viewed as a generalization of the KL expansion.

7.2.3. Third choice. The third modeling choice we propose is as follows:

(1) The Hilbert space H = L2(D).
(2) A = Q−1 with λj := 1

μj
, j = 1, 2, . . . , and ηj := ζj , j = 1, 2, . . . , where the

μj and ζj are the eigenvalues and eigenfunctions of the integral operator Q.
(3) For all x, x̂ ∈ D, φx(x̂) =

∑∞
j=1 aj(x)ηj(x̂), where aj(x) :=

√
μjζj(x).



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

FEM FOR INFINITY-DIMENSIONAL SPDE 3647

According to section 7.1.2 we can take any θ ≥ 1. In this case the expansion ofW (x, ω)
in terms of σ(s)-Fourier–Hermite polynomials coincides with its KL expansion for
the case s = 0. We mention that in order to make calculations, such as writing the
expansion of the right-hand side f(x, ω) in terms of σ(s)-Fourier–Hermite polynomials,
we need to know the eigenfunctions of Q. We have ‖φx‖2H = ‖φx‖2L2(D) = C(x, x) and
the assumption φx ∈ Sθ for all x ∈ D must be checked for each particular problem.
Observe also that ‖φx‖2θ =

∑∞
j=1

1

μ2θ−1
j

ζj(x)
2 for all x ∈ D.

8. Numerical experiments. In this section we present numerical experiments
with D = [0, 1], H = L2(R), and A = A1 defined in (7.1) and we take θ = 1. In this
case the eigenfunctions of A correspond to the Hermite functions

ηj(x) =
1√√

π(j − 1)!
e−

1
2x

2

hj−1(
√
2x), j = 1, 2, . . . ,

where hj is the jth degree Hermite polynomial. Also, since λ2θ1 = 2 for θ = 1, Lemma
2.2 becomes

∫
S′
es‖ω‖2

−θdμ(ω) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

( √
2

π
√−s

sinh
(

π
√−s√

2

))− 1
2

, s < 0,

1, s = 0,( √
2

π
√
s
sin
(

π
√
s√
2

))− 1
2

, 0 < s < 2,

+∞, s ≥ 2.

Therefore, we can construct the general σ(s)-Fourier–Hermite polynomials for s < 2;
see Lemma 4.2. We consider the modeling choice described in section 7.2.1, i.e.,
φx(·) = φ(· − x). To avoid numerical integration errors in the computation of the
functions aj(x) in (5.6), we choose the function φ as

φ(x) = e−
1
2x

2

(8.1)

since explicit calculations can be performed, and therefore, the norm of the discrete
errors can be calculated.

In order to compute the discretization errors, let û and f be given by

û(x, ω) =
x(1 − x)

2
e−〈ω,φx〉 and f(x, ω) = 1 +

∞∑
j=0

(
x(1− x)

2
a′j(x)

)′
〈ω, ηj〉.(8.2)

It is easy to see that û in (8.2) is the exact solution of the problem (3.1) or (3.9) with
the right-hand side f given also in (8.2). By using the generating function identity
(4.2) and direct calculations, the following results hold.

Lemma 8.1. For φ, û, and f defined in (8.1) and (8.2), we have the following:

(1) ‖φ‖2L2(R) =
√
π and ‖φ′‖2L2(R) =

√
π
2 .

(2) aj(x) := (φx, ηj) =
√ √

π
2j−1(j−1)!x

j−1e−
1
4x

2

.

(3) The process f belongs to U−1
s for all s < 2.

(4) û(x, ω) =
∑

α∈J ûα(x)Hα(ω) ∈ Û1
s for all s < 2, where

ûα(x) = e
1
2‖φ‖2

L2(R)
(−1)|α|x(1− x)aα(x)

α!
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with

aα(x) =

d(α)∏
j=1

aj(x)
αj =

⎛⎝d(α)∏
j=1

√
cj

⎞⎠ x
∑d(α)

j=1 (j−1)αj e−
1
4 |α|x2

,(8.3)

where cj =
√
π

2j−1(j−1)! for j = 1, . . . .

(5) û(x, ω) =
∑

α∈J ûα,s(x)Hσ(s)2,α, where

ûα,s(x) = e
1
2

∑∞
j=1 σj(s)

2aj(x)
2 (−1)|α|x(1 − x)aα(x)

α!
.

(6) |û|2U1
0
=
(

1
12 +

‖φ′‖2
L2(R)

120

)
e
2‖φ‖2

L2(R) .

(7) C(x, x̂) = Eμ〈·, φx〉〈·, φx̂〉 = √
πe−

1
4 (x−x̂)2 .

Remark 8.2. It can be verified that the norm ‖û‖U1
q;ρ,s

is finite if we use the

weight of Example 4.5 with ν = 0.
Throughout this section, we solve the discrete problem (5.4) with s = 0 to obtain

ûN,K,h(x, ω) =
∑

α∈JN,K

ûN,K,h
α (x)Hα(ω).

In Table 8.1 we show the seminorm error |û− ûN,K,h|U1
0
for ε = 1/2 and h = 1/32.

Note that the condition s+ 2ε < λ2θ1 /2 of Lemma 5.5 is satisfied. We recall that this
seminorm involves the computation of |ûα − ûN,K,h

α |2H1(D) for all α ∈ JN,K , and the

computation of |ûα|2H1(D) for all α ∈ J \JN,K . In this table we see clearly the decay
of the errors with respect to N and K.

We now analyze further the previous decay. Define the a-energy norm

|û− ûN,K,h|a := a(û− ûN,K,h, û− ûN,K,h)
1
2 .

In Table 8.2, we present errors in the seminorm | · |U1
0
and in the a-energy norm | · |a.

Here h = 1/16, 1/32, ε = 1/2, and K = N = k for several values of k. The second
row of Table 8.2 shows the number of Wiener-Chaos terms. The third row shows the
U1
0 -interpolation error and the rate of convergence (in parentheses) when we truncate

the degree and the length of the polynomials. We can see a faster convergence rate
when we increase k. This is somehow expected since q can be taken as large as we
wish in Theorem 5.6; see Remark 8.2. The fourth row shows the error between the
discrete and the exact solutions in the U1

0 seminorm for h = 1/16 and a line below
for h = 1/32; we also show the rate of convergence (in parentheses) for h = 1/16.
The decay now is not as fast as in the third row. This deterioration is due to the
large value of eCθ/ε that appears in the a priori error estimate in Lemma 5.5. The
larger this constant is, the larger k must be for observing a fast decay behavior. In
order to minimize the effect of this constant, in the fifth row we measure the error in
the a-energy norm and observe the fast decay. It was observed that the case ε = 1/2
shows a slightly better approximation, also in the U1

0 seminorm, than ε = 0 for small
values of k. Finally, in Figure 8.1 we show the approximations of the mean value of
the solution for different values of ε. We observe that for larger ε values we obtain a
better approximation of the mean value of the solution. Here we note, however, that
when ε increases above ε = 1

2 the error in the | · |U1
0
norm deteriorates. Recall that

the error in the | · |U1
0
norm includes the H1

0 (0, 1) error on the approximation of all
coefficients ûα, α ∈ J .
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Table 8.1

Total error in the seminorm | · |U1
0
. Here h = 1/32, ε = 1

2
.

K ↓ N → 1 2 3 4 5 6
1 1.6153 1.4358 1.2512 1.1108 1.0293 0.9918
2 1.5970 1.3575 1.0672 0.7948 0.5896 0.4670
3 1.5942 1.3446 1.0340 0.7299 0.4814 0.3084
4 1.5938 1.3429 1.0296 0.7214 0.4669 0.2849
5 1.5938 1.3426 1.0291 0.7206 0.4659 *

Table 8.2

Errors for K = N = k, h = 1/16, 1/32, and ε = 1
2
. For h = 1/32 we have added in parentheses

the reduction factor, when passing to the next value of k, corresponding to the projection and finite
element error in the seminorm | · |U1

0
and the finite element error in the a-energy norm.

k 0 1 2 3 4 5
(K+N

K

)
1 2 6 20 70 252

|û−QN,K û|U1
0

1.6284 1.3761 0.9767 0.6162 0.3570 0.1920

(1.18) (1.41) (1.59) (1.73) (1.86)

|û− ûN,K,h|U1
0

1.7292 1.6157 1.3590 1.0375 0.7281 0.4626

1.7291 1.6153 1.3575 1.0340 0.7214 0.4659
(1.07) (1.18) (1.31) (1.43) (1.55)

|û− ûN,K,h|a 0.4319 0.3691 0.2598 0.1573 0.0836 0.0454
0.4318 0.3688 0.2589 0.1552 0.0790 0.0279

(1.17) (1.42) (1.67) (1.96) (2.83)

Fig. 8.1. Approximation of the coefficient u(0,0,0,...) for K = N = 3, h = 1
10

, and ε = 0, 1, 2.

9. Conclusions and final comments. We consider the white noise calculus
constructed from a Hilbert space and an operator in order to describe the white noise
probability space and to study the pressure equation with stochastic coefficients and
forcing terms. By introducing appropriate spaces for the solution and test functions
for the weak formulation of the problem, we prove the continuous inf-sup condition
and establish existence and uniqueness of the solution of the problem. Finite di-
mensional discretizations are introduced for this problem, which are based on finite
element methods, truncated Wiener-Chaos expansions, and exponential stochastic
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functions. By introducing appropriate discrete spaces and norms (Sobolev for the
spatial component and Hida–Kuo–Kondratiev–Streit type for the stochastic compo-
nents) we establish existence and uniqueness of the solution and provide a priori error
estimates. Finally, we choose a particular model to numerically validate the proposed
discretizations.

Acknowledgment. We would like to thank the referees for their useful com-
ments, which helped to improve the presentation of this paper.
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