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Abstract

Background

Detailed spatial location information is important in accurately estimating personal exposure

to air pollution. Global Position System (GPS) has been widely used in tracking personal

paths and activities. Previous researchers have developed time-activity classification mod-

els based on GPS data, most of them were developed for specific regions. An adaptive

model for time-location classification can be widely applied to air pollution studies that use

GPS to track individual level time-activity patterns.

Methods

Time-activity data were collected for seven days using GPS loggers and accelerometers

from thirteen adult participants from Southern California under free living conditions. We

developed an automated model based on random forests to classify major time-activity pat-

terns (i.e. indoor, outdoor-static, outdoor-walking, and in-vehicle travel). Sensitivity analysis

was conducted to examine the contribution of the accelerometer data and the supplemental

spatial data (i.e. roadway and tax parcel data) to the accuracy of time-activity classification.

Our model was evaluated using both leave-one-fold-out and leave-one-subject-out

methods.

Results

Maximum speeds in averaging time intervals of 7 and 5 minutes, and distance to primary

highways with limited access were found to be the three most important variables in the

classification model. Leave-one-fold-out cross-validation showed an overall accuracy of

99.71%. Sensitivities varied from 84.62% (outdoor walking) to 99.90% (indoor). Specificities

varied from 96.33% (indoor) to 99.98% (outdoor static). The exclusion of accelerometer and

ambient light sensor variables caused a slight loss in sensitivity for outdoor walking, but little
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loss in overall accuracy. However, leave-one-subject-out cross-validation showed consider-

able loss in sensitivity for outdoor static and outdoor walking conditions.

Conclusions

The random forests classification model can achieve high accuracy for the four major time-

activity categories. The model also performed well with just GPS, road and tax parcel data.

However, caution is warranted when generalizing the model developed from a small num-

ber of subjects to other populations.

Background
Environmental air pollution has been associated with a variety of adverse health outcomes,
including respiratory illness, cardiovascular diseases, pregnancy outcomes, and morbidity [1–
5]. The knowledge of where individuals spend time is essential for human exposure assessment
of air pollution because air pollutant concentrations may vary significantly by location. Studies
have shown that traffic-generated air pollutants such as ultrafine particles can be up to ten
times higher inside a vehicle compared to ambient outdoor concentrations because of proxim-
ity to vehicle exhaust [6–8]. Outdoor walking and cycling are often associated with lower con-
centrations of traffic-related pollutants than in-vehicle commuting [9], but likely correspond
with increased inhalation rates and longer travel durations, which can result in a higher dose of
air pollutant inhalation [10, 11]. In addition, air pollutant concentrations can be much higher
indoors than outdoors for pollutants with predominant indoor sources (e.g. environmental
tobacco smoke) and vice versa for pollutants with predominant outdoor sources (e.g. ozone)
[12, 13]. Our previous personal exposure measurement study reported that in-vehicles travel
time explained approximately 40% of the variance in daily personal exposure to particle-bound
polycyclic aromatic hydrocarbon [14]. Accurate characterization of people’s time-activity pat-
terns can significantly reduce errors in exposure estimates in environmental epidemiological
studies in which personal exposure is not measured directly and has to be estimated.

Global Positioning System (GPS) techniques have been increasingly used to track people’s
time-activity or commuting patterns [15–20]. Compared to the conventional methods for
time-activity collections (e.g. self-reported paper diary and telephone interview), GPS tracking
has the advantages of continuous recording, high temporal resolution, and minimum reporting
burden for participants [21]. However, barriers exist for accurately extracting time-activity pat-
terns for human subjects from raw GPS data because they are not consistently reliable due to
errors caused by satellite or receiver issues, atmospheric and ionospheric disturbances, multi-
path signal reflection, or signal loss or blocking [22]. The multipath problem occurs mainly in
urban areas where tall buildings and structures reflect satellite signals many times before they
reach a GPS device, leading to GPS coordinate errors [23]. In fact, few air pollution epidemio-
logical studies have effectively used GPS data to classify time-activity patterns, likely due to
issues including the quality of GPS data, the compliance of human subjects, and the lack of reli-
able methods to mine raw GPS data [24]. GPS data classification techniques have been largely
documented in the travel behavior and physical activity research fields. Travel modes, activity
places, and trip-end detection were the main application of GPS classification algorithms [25,
26]. A number of studies have developed methods to classify travel activity using GPS data or
the combination of GPS and body-worn sensors [27–35]. Ellis et al. (2013, 2014) adopted
body-worn sensors, e.g. accelerometer and SenseCam camera, to classify the physical activities
into five modes (bicycling, riding in a vehicle, sitting, standing, and walking/running) with a
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random forest classification model [36, 37]. Based on multinomial logistic regression model,
Kohla et al. (2014) used both GPS and acceleration data to predict eight modes of transport
[38]. Combining GPS, geographical information system, and accelerometer data, Brondeel
et al. (2015) developed a trip-level transportation mode prediction model based on the random
forest method, and obtained 90% correct prediction [39]. However, the reliability of accelerom-
eter data can be negatively affected by external factors, such as clothing and weather change
[40, 41]. Spatial data (e.g. roads and building rooftop) have also been used to improve the accu-
racy of time-activity classification. Wu et al. (2011) used roadway data to build decision rules
to classify GPS points [42]. Nethery et al. (2014) manually plotted the boundary of participants’
home and school buildings to help detect specific locations [43]. The method was also used by
Breen et al. (2014) and proved to be efficient in estimating time-activities of individuals [44].

This paper aims to develop an adaptive time-activity classification methodology with raw
GPS data and publicly-available spatial data, and to evaluate the effectiveness of incorporating
accelerometer data in the model. With this methodology, researchers can generate time-activity
patterns based on data collected from different geographical regions and study settings. We
focused on four major time-activity categories (i.e. indoor, outdoor static, outdoor walking,
and in-vehicle travel), which are important in determining air pollutant exposure in urban
populations.

Method

Study Participants
A convenience sample of thirteen students and staff from the University of California, Irvine
participated in this study from May to July, 2012. The subjects were informed that the partici-
pation was voluntary; they were aware that their GPS traces and physical activity levels would
be recorded and analyzed, and their confidentiality would be strictly protected. They submitted
a written informed consent form before data collection started. The study protocol and materi-
als were approved by the University of California, Irvine Institutional Review Board for social/
behavioral research.

Data Collection
Time-stamped location data were recorded with two GPS devices, BT-Q1000XT (QSTARZTM;
approximately 65 g) and VGPS-900 (VisiontacTM; approximately 55 g). These two GPS devices
were used because of their complementary features. VGPS-900 was capable of voice tagging
points of interest and activity changes, but it had a relatively short battery life of about 18 hours
[45]. BT-Q1000XT had a longer battery life up to 48 hours, but had no voice recording capabil-
ity [45]. Physical activity level was monitored using an Actigraph GT3X+ accelerometer (Acti-
LifeTM; 19 grams), in which a light sensor was built. The light sensor detects ambient light in
lumens per square meter (lux), a measure of light intensity. Indoor lighting typically ranges
from 50 to 500 lux and outdoor light ranges from 1000 lux on an overcast day to 130,000 lux in
direct sunlight [46]. The study participants were instructed to wear the two GPS units and the
accelerometer continuously for 5 weekdays and 2 weekend days. They were asked to take the
devices off right before going to bed and put them on first thing every morning. The GPS
devices needed to be charged every night, while no battery charge was required for the acceler-
ometer since it had a battery life of approximately 20 days. We asked the participants to attach
the accelerometer to the belt around the waist just above the right hipbone and carry the GPS
devices in his/her pocket or bag/purse. Instead of taking time-activity diaries, we asked the sub-
jects to record any changes in activity, mode of transportation, and/or activity levels in real
time using the voice recording function on the VGPS-900 device. For example, a recorded
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sentence could be “exiting building, start walking, and moderate activity” or “stop walking,
entering vehicle, start driving, sedentary.” The GPS devices were initialized using the QTravel
software and set to record data at 15-second intervals, while the accelerometers were initialized
using ActiLife at 30-second epochs and after the computer clock was synchronized to coordi-
nated universal time used by the GPS.

Besides the GPS and accelerometer data, we also collected land-use and roadway data for
the study area. The typical surroundings of these participants were multifamily housing com-
plexes, office buildings, suburban shopping plazas and the roadways connecting the above loca-
tions. Parcel-level land-use data in 2008 were obtained from the Southern California
Association of Government. There were four major land-use categories with 25 sub-categories,
from which we extracted residential and commercial/services sub-categories from the urban or
built-up category. The roadway data were obtained from the ESRI StreetMapTM North Amer-
ica bundled with ArcGIS 10.1 software.

Data quality checking and preprocessing
Each subject submitted a diary transcribed from time-stamped VGPS-900 voice logs in Excel
spreadsheet when returning the GPS and accelerometer devices to the research staff. Problems
encountered during the sampling period were also recorded in the spreadsheet. Typical prob-
lems included (1) GPS device ran out of battery; (2) GPS device was left inside car; and (3)
omitted or delayed voice recording when activity and/or location changed. Subjects were
instructed to recall and correct the time of location/activity changes in the spreadsheet when
these problems occurred.

The GPS data points and voice records were linked for each subject according to the GPS
data time stamp in SAS 9.2 (SAS Institute Inc., Cary, NC). All GPS points with voice-logged
activity were then displayed in ArcGIS (ESRI, Redlands, CA) for additional data quality checks.
Consistent with the previous studies, we identified and removed 307 erroneous GPS points
with abrupt position change that resulted in a speed of more than 200 km/h in 15 seconds [42,
43]. We then identified GPS points (e.g. about 3%) that were implausibly labeled, which were
likely caused by missing voice logs. For these points, we analyzed their speed and distances to
roadways and parcels with land-use information, and the time-activity patterns immediately
before and after these points in time. For example, GPS points within a parcel with low speed
(less than 3 km/h) were assumed to be indoors. Points on roads with a speed faster than 15
km/h were assumed to be in-vehicle travel. Points that were outside a parcel, did not move or
moved slowly (speed less than 0.5 km/h), and lasted longer than 2 minutes were treated as out-
door static. Otherwise, the points were assumed to be outdoor walking. Two out of the thirteen
participants biked and two traveled by bus and light rail, respectively. We excluded those non-
vehicle travel points from the four participants because of the limited sample size for these
travel modes. Finally, based on the voice records and the interactive visualization and analysis
in ArcGIS, each GPS point was manually labeled as one of the four major time-activity catego-
ries: indoor (including home and other indoor locations), outdoor static, outdoor walking, and
in-vehicle travel.

Random forests model
The random forests model is a classification and regression method based on decision trees
[47]. It is one of the most efficient algorithms in machine learning, and has been widely used in
many domains, including environment [48, 49], ecology [50], bioinformatics [51, 52] and
remote sensing [53, 54]. The random forests model has also been used in physical time-activity
classification in previous studies. Ellis et al. (2013) predicted five physical activity classes
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(bicycling, riding, sitting, standing, and walking/running) based on the random forests model
[36]. Ellis et al. (2014) developed a random forests model to predict four physical activities clas-
ses (household, stairs, walking, and running) with hip accelerometer, and achieved an average
accuracy of 92.3% [37]. Random forests is different from the traditional decision tree classifica-
tion in two main aspects, i.e. (1) it consists of an ensemble of decision trees; (2) each tree is
trained separately by a collection of randomly selected samples from the data [47]. Generally,
random forests classification contains two main steps (Fig 1): (1) training step: for a given
number of trees N, N bootstrap samples are generated independently from the input data; for
each bootstrap sample set a decision tree is trained by a subset of randomly selected predictor
variables and fully grown with no pruning; (2) predicting step: prediction of new data other
than the input data with the trained trees. Each record in the new data gets a class from each
tree, while the most voted class is selected as the final class of the record. In the training step, a
typical bootstrap sample contains about 63% (1—e-1 � 63%) of the input dataset; the remain-
ing 37% of the data, called out-of-bag, are used to calculate the error rate [55, 56]. In addition
to high prediction accuracy, random forests model is robust to outliers and noise, runs effi-
ciently on large data, and can capture non-linear associations without specifying the underlying

Fig 1. Random forests classification.

doi:10.1371/journal.pone.0148875.g001
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model. However, it is not straightforward to interpret the decision rules, which might be one of
the biggest shortcomings. Temporal autocorrelation between points was not considered in the
model. Furthermore, the decision tree models are primarily data driven, thus the quality of
training data is critical for the development of reliable and stable models. Although we strive to
procure the data with the highest quality, misclassifications were inherited in the data because
of the imperfect data collection method. In this study, random forests was used to classify
major time- activity patterns. We ran the model using the package randomForest in R [55, 57].

Predictor variables
Roadway-related variables. Four categories of roads were extracted: primary highway

with limited access (Census Feature Class Codes (FCC) = A1), primary highways without lim-
ited access (FCC = A2), secondary and connecting road (FCC = A3), and local, neighbor, and
rural road (FCC = A4).

Distance from road and parcel data. GPS points from BT-Q1000XT were used to calcu-
late the distance, speed and direction variables. For each GPS point, Euclidean distances were
calculated to the nearest residential and commercial/services parcels, as well as highways and
local roads.

Speed and direction from GPS data. To account for potential errors in GPS data caused
by poor satellite signal reception (particularly in or near buildings) [22, 23], two types of speed
variables were calculated by four averaging time intervals (i.e. 1, 3, 5 and 7 minutes). Speed
based on accumulated distance (type-I speed) was estimated for each GPS point by consecu-
tively summing the distance of every 15 seconds GPS point pairs within a specific averaging
time window prior to this point, and dividing the total distance by the average time. A second
measure of speed (type-II speed) was also calculated for the GPS point by dividing the straight
line distance between the first and the last point by the specific averaging time. Besides the two
types of speed, maximum speed, minimum speed, and the variance of speed during the specific
time intervals were also calculated.

Direction of GPS points: For each 15 seconds GPS data pair, we calculated a direction vector
with the counter-clock angle relative to the east. The difference of directions was the direction
change between two contiguous 15 seconds GPS data pairs (two pairs were shown in Fig 2:
P1P2—P2P3, and P2P3—P3P4). Similar to speed, two types of direction changes were calculated

Fig 2. Direction and direction change of GPS data pairs.

doi:10.1371/journal.pone.0148875.g002
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for the four averaging times. An average direction change was estimated by consecutively sum-
ming direction changes within a specific averaging time prior to the specific GPS point. Direction
can be strongly influenced by the drifting of GPS points, which is more serious under relatively
poor satellite signals (e.g. indoor environment). We calculated a second measure of direction by
assuming that if the distance between two contiguous GPS points was less than 2.5 m (the spatial
accuracy specified by the GPS device manufacture), the two points were identical thus the direc-
tion change was zero. Sensitivity analysis showed that the second direction measure was better
than the first direction measure in decreasing the classification error of GPS points.

Physical activity from accelerometer data. The accelerometer data included six key vari-
ables: acceleration in three axes (vertical, horizontal and perpendicular respectively), step
counts, ambient light intensity and orientation of the device. The step counts were calculated
based on the data collected on the vertical axis. The inclination of the device included subject
standing, subject lying horizontal and subject sitting.

Variable selection. Including a limited number of key variables not only decreases the bur-
den of variable preparation but also reduces the calculation time, especially for large memory-
required algorithms [58, 59]. Variable importance is a special characteristic of random forests
that distinguishes it from the other decision tree models. Variable importance can be measured
by the mean decrease in accuracy (MDA), a permutation-based accuracy measurement method.
After the random forests model was trained with all variables, two out-of-bag errors were calcu-
lated and compared to measure the importance of a variable. The first out-of-bag error was
obtained by comparing the predicted classification of the out-of-bag samples with the random
forests model and the real classification of the out-of-bag samples. Afterwards, data of the
selected variable of the out-of-bag samples were permuted. Then, a second out-of-bag error was
calculated with the permuted out-of-bag data and the same random forests model. Next, the dif-
ference of the two errors was calculated as the MDA of the variable and averaged from all trees.
In this study, the process was repeated 200 times for each variable to obtain stable results. Finally,
the relative importance of all the variables was obtained by ranking the MDAs.

Model parameter tuning
The random forests model requires two major parameter inputs, namely the number of trees
and the number of candidate variables randomly selected at each split. Although a higher num-
ber of trees will likely improve model performance, it is computationally intensive for the large
number of GPS points. We conducted sensitive analysis and identified the optimal number of
trees when the classification error became small and stable.

The default value of the number of candidate predictors is the square root of the number of
input predictors. We increased the number of candidate predictors gradually to find the lowest
number when the classification error was small and stable.

Sensitivity analysis
Sensitivity analysis was conducted by excluding accelerometer variables to assess whether the
incorporation of accelerometer variables significantly improved the model performance. Simi-
larly, we examined the effectiveness of supplemental spatial variables (i.e. distance to road and
residential and commercial/services parcels).

Model validation
Model evaluation was conducted based on two validation methods, leave-one-fold-out and
leave-one-subject-out [60]. The leave-one-fold out method randomly splits input data into 10
equal-sized subsets. Each time, 9 subsets were used to train the model and the remaining subset
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was used for model evaluation. The process was iterated 10 times until each sample has been
used for model evaluation. For each iteration of the leave-one-subject-out approach, we
excluded data from one participant completely for model evaluation, and use data from the
remaining participants to train the model. The process was iterated 13 times until data for
every participant have been used for model evaluation. For each method, the results from all
iterations were grouped together to calculate the mean validation results. Model performance
was quantified by three measures. The first is sensitivity, indicating the ability of the model to
identify specific cases. It is calculated as the number of “true positive” divided by the sum of
the number of “true positive” and the number of “false negative”, where true positive means
the specific cases are correctly predicted by the model; false negative means the specific cases
are incorrectly predicted as non-cases). The second is specificity, indicating the ability of the
model to identify non-cases. It is calculated as the number of “true negative” divided by the
number “true negative” and the number of “false positive”, where the true negative means non-
cases are correctly predicted as non-cases; false positive means non-cases are incorrectly pre-
dicted as the special cases). The third is accuracy, indicating the proportion of predicted cases
correctly classified. It is calculated as the sum of the number of “true positive” and the number
of “true negative” divided by the number of all estimation. The out-of-bag error rate output
from the randomForest package in R is an overall measure in optimizing the model, which is
defined as the sum of the number of “false positive” and the number of “false negative” divided
by the number of all estimation.

Results
We obtained 82 person-days of data out of the expected 91 person-days. Of the 82 person-days,
valid GPS data covered about 81.4% of the intended observation time. The main reason for the
missing GPS points was the limited battery run time. We did not consider the missing data when
developing the model. The missing data were expected to be proportionally distributed for each
time-activity category and have little impact on the model performance; however, it was hard to
obtain the exact distribution of the missing data. Overall we obtained 338,497 GPS points at the
15 seconds interval after removing erroneous points. On average, the study participants spent
88.3%, 1.1%, 2.5%, and 6.9% of time under the indoor, outdoor static, outdoor walking, and in-
vehicle travel conditions, respectively. The study subjects spent 1.2% of time for other activities
(e.g. traveling by bicycle, bus), which were excluded frommodel development.

Model parameter tuning
The out-of-bag error decreased rapidly with the increase in the number of trees, but became
stable when the tree number reached about 40. Considering the negligible gain in further
increasing the number of trees, we selected 100 trees in the model which was assumed to a
good tradeoff between the model precision and the computational time.

The out-of-bag errors dropped when the number of candidate predictors increased for out-
door static, outdoor walking, and in-vehicle travel conditions, but rose slightly for indoor con-
ditions. Five to seven candidate predictors on each node of a decision tree seemed to reach a
good balance of precision for all time-activity categories.

Variables selection
Fig 3 shows the descending order of variables by their MDA values from top to bottom. A high
MDA value indicates high importance of the variable or a large accuracy loss when the variable
is excluded from the model. The most important variable was found to be maximum speeds [in
7 and 5 minutes], followed by average speeds [in 3 minutes (type-II speed), 5 minutes (type-II
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speed), distance to the local roads, average speeds in 7 minutes (type-II speed), distance to pri-
mary highway with limited access, maximum speed in 3 minutes, and so on.

According to the importance ranking, variables were entered into the random forests mod-
els one by one from the most important to the least important. The overall and individual out-
of-bag errors for each of the four time-activity category were calculated (Fig 4). The overall
out-of-bag error decreased with added variables. Outdoor walking and indoor condition had
the highest and lowest errors, respectively. Out of the 37 variables, we selected 15 variables that

Fig 3. Mean decrease in accuracy for candidate variables.

doi:10.1371/journal.pone.0148875.g003
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apparently decreased the overall out-of-bag error to build the random forests models: maxi-
mum speed in 1, 3, 5 and 7 minutes, average speed in 5 and 7 minutes based on accumulated
distance during the average time, speed variance in 5 and 7 minutes, direction changes in 7
minutes, distance to primary highways, secondary and connecting roads, distance to residential
and commercial/services, and ambient light intensity. Although the average speed (type II) in
3, 5 and 7 minutes, and distance to local roads decreased the out-of-bag error for indoor

Fig 4. Out-of-bag error variation with different variables (from left to right the variables on the X axis were sequentially entered into the random
forests model).

doi:10.1371/journal.pone.0148875.g004
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classification, they increased error for the other categories. So they were excluded from the
final model. Among the six accelerometer variables, only ambient light intensity entered into
the model. Besides distances to highways and local roads (FCC = A1-A4), we also analyzed dis-
tance to lower class roads (FCC = A5-A7). When the above ten variables were selected, distance
to lower class roads improved the overall sensitivity and specificity by 0.2% and 0.1%, respec-
tively. The sensitivity for outdoor static and outdoor walking improved by 1% and 2%, respec-
tively, while the sensitivity and specificity for other categories changed to a much smaller
extent. Therefore, we did not include distances to lower class roads in the final model.

Model validation results
Table 1 shows the model validation results. With all the 15 variables and the leave-one-fold-
out validation, we observed>99.00% accuracy and 96.33–99.98% specificity for all the four
time-activity categories, and�97.55% sensitivity for all categories except outdoor walking
(84.62%). The overall accuracy for all the categories was 99.71%. When ambient light intensity

Table 1. Model validation of time-activity classification by leave-one-fold-out and leave-one-subject-out

Method Predictor
variables

Predicted vs.
Actual

Indoor Outdoor
static

Outdoor
walking

In-vehicle
travel

Sensitivity Specificity Accuracy

Leave one fold
out

With all 15
predictors

Indoor 283098 8 201 64 99.90% 96.33% 99.56%

Outdoor static 94 5167 25 11 97.55% 99.98% 99.94%

Outdoor walking 767 34 5643 225 84.62% 99.87% 99.55%

In-vehicle travel 228 5 160 17288 97.78% 99.90% 99.78%

Excluding lux
variable

Indoor 283096 8 214 53 99.90% 95.79% 99.51%

Outdoor static 92 5173 19 13 97.66% 99.99% 99.95%

Outdoor walking 983 23 5398 265 80.94% 99.87% 99.47%

In-vehicle travel 174 6 161 17340 98.07% 99.89% 99.79%

Excluding more
variables a

Indoor 282902 23 312 134 99.83% 90.12% 98.91%

Outdoor static 904 4350 23 20 82.12% 99.99% 99.69%

Outdoor walking 1528 11 4792 338 71.85% 99.83% 99.23%

In-vehicle travel 496 4 201 16980 96.04% 99.83% 99.62%

Leave one
subject out

With all 15
predictors

Indoor 281745 968 1666 1158 98.67% 81.15% 96.90%

Outdoor static 2359 1133 411 30 28.81% 99.64% 98.76%

Outdoor walking 2534 162 3772 500 54.13% 99.23% 98.24%

In-vehicle travel 1173 2 331 19766 92.92% 99.43% 98.99%

Excluding lux
variable

Indoor 277003 1302 1471 5761 97.01% 76.46% 94.93%

Outdoor static 2564 1223 106 40 31.10% 99.58% 98.73%

Outdoor walking 3844 21 2554 549 36.65% 99.38% 98.01%

In-vehicle travel 1166 3 344 19759 92.89% 97.86% 97.53%

Excluding more
variables a

Indoor 281267 2407 1146 717 98.50% 73.32% 95.95%

Outdoor static 3546 239 59 89 6.08% 99.21% 98.06%

Outdoor walking 3769 29 2560 610 36.74% 99.50% 98.12%

In-vehicle travel 1270 33 357 19612 92.20% 99.52% 99.03%

a excluding lux and supplemental spatial variables, i.e. distance to roadways and residential/commercial parcels.

doi:10.1371/journal.pone.0148875.t001
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was excluded, sensitivity, specificity, and accuracy only dropped slightly for all the four time-
activity categories except outdoor walking (sensitivity decreased from 84.62% to 80.94%).
When both ambient light intensity and supplemental spatial variables (including distances to
local roads and highways, and distances to residential and commercial/services parcels) were
excluded, sensitivity dropped greatly for outdoor walking from 84.62% to 71.85%. Specificity
for indoor time-activity also decreased moderately from 96.33% to 90.12%.

Leave-one-subject-out validation showed worse model performance than the leave-one-fold
out results. With all the 15 variables, we obtained 96.90%-98.99% accuracy, 28.81%-98.67% sen-
sitivity, and 81.15%-99.64% specificity for the four time-activity categories using the leave-one-
subject-out validation. The lowest sensitivity of 28.81% was observed for the outdoor static condi-
tion. The indoor condition had the highest sensitivity of 98.67%, but the lowest specificity of
81.15%. The overall accuracy for the four time-activity categories was 98.22%.When ambient
light intensity was excluded, there was about 5% decrease in specificity for indoor condition. The
sensitivity decreased as much as 17.48% for outdoor walking, but this was less severe for outdoor
static condition. When both ambient light intensity and supplemental spatial variables were
excluded, sensitivity for outdoor static condition dropped greatly from 28.81% to 6.08%. Sensitiv-
ity for outdoor walking and specificity for indoor condition also decreased largely.

Discussion
We developed an automated time-activity classification method based on raw GPS data from
participants under free living conditions and publicly-available roadway and land-use data.
Our classification method used the random forests model with no user-defined rules, which
makes it potentially adaptive to different study regions or populations. GPS path direction and
distance to land-use data were included in the model, which to our knowledge has rarely been
considered in previous studies.

GPS has been increasingly used in air pollution epidemiological research to track subjects’
time activities in different microenvironments where pollutant levels might vary greatly. User-
defined rules based on physical principles and summary statistics have been used to classify
major microenvironments [42–44, 61, 62]. These rules are usually interpretable, easily under-
stood, and flexible in incorporating new knowledge, but a large challenge to the rule-based
approach is the difficulty in determining threshold values for each rule. The threshold values
may be influenced by local environment (e.g. building structure, density of high buildings, and
land surface). For example, Oreskovic et al. (2012) classified the GPS points within 25 m of the
center of the residence boundary as home [61], while Breen et al. (2014) defined home as the
area within a 5 m buffer of the residence boundary [44]. A single threshold value may be effi-
cient conceptually for a homogeneous environment in terms of buildings, facilities, and other
spatial features, but is often not the case under the complex real-world situations. But the lim-
ited number of thresholds in few rules are usually not enough to represent the real-world con-
ditions. The random forests model defines a large number of rules and threshold values in
hundreds of trees. Thus the random forests model is not constrained by a few user-defined
threshold values because of the large number of trees and the two levels of random selection
process, which include random subset of input data for building trees and random selection of
variables at split nodes. The model can be dynamically built and adapted for various research
areas and populations.

Maximum speed, average speed, and distance to highways were the most important vari-
ables in the classification model. Among all the candidate variables, some of them were moder-
ate or highly correlated (such as average speed in different time intervals). Thus the index of
the mean decrease in accuracy might not reflect the real importance for some variables.

GPS Based Time-Activity Classification

PLOS ONE | DOI:10.1371/journal.pone.0148875 February 26, 2016 12 / 18



However, the selected variables with high importance output from the model should contain
the most necessary information to improve the model performance. Maximum and average
speeds with different averaging times are helpful in distinguishing in-vehicle travel versus out-
door static or outdoor walking under different situations. For instance, speed averaged over a
longer time (e.g. 7 minutes) is helpful in classifying GPS points near street intersections with
stop sign or traffic light since usually a long-term average speed for in-vehicle travel would be
higher than that of outdoor static and outdoor walking conditions. Whereas, the speed aver-
aged over a shorter time (e.g. 3 minutes) is helpful in separating outdoor static or walking from
in-vehicle travel for GPS points in a parking lot. Distance to highways can separate a large por-
tion of indoor GPS points from in-vehicle travel points for houses far away from the roads.
Direction change can capture scattered GPS points in or around a building [44]. Average direc-
tion changes can be viewed as a proxy measure of GPS accuracy due to multipath reflection
and the quality of satellite signals. A large value in the average direction change likely indicates
an indoor environment where GPS points drift frequently due to relatively poor satellite signal,
while the direction change is usually small for in vehicle or walking activities. The scattered
GPS points from low quality of satellite signals can also be captured by a spatial buffer. Nethery
et al. (2014) assigned GPS points within 25 m and 5 m of subject’s home as “Home” for flat
zone where the temperature changed by more than 0.1°C/minute and transition zone where
the temperature was constant or changed slowly, respectively [43]. Besides the spatial buffer,
Breen et al. (2014) used a 15 seconds temporal buffer to determine whether a GPS point within
15 seconds fell inside a spatially-buffered building boundary.

We used parcel-level land-use data instead of user-provided addresses or locations of resi-
dences, schools and working places [43, 44, 61]. With the user-provided addresses and the use
of Google Earth, Breen et al. (2014) manually drew the rooftops for nine participants’ homes,
workplaces and schools [44]. They obtained a high overall accuracy of 99.5%, a sensitivity from
60.4% to 100.0%, and>99.0% specificity when predicting eight categories of time-activity (e.g.
indoors and outdoors at home, work, school; in-vehicle; other). Our model almost achieved
comparable accuracy, sensitivity, and specificity without detailed individual-level address and
building rooftop information. In addition, the number of our GPS points were about two times
more than the number of their points, while we classified the points into four major time-activ-
ity categories. Without accelerometer variables, the performance of our model using GPS,
roadway, and parcel land-use data did not decline greatly except for the decreased sensitivity
for walking outside. When both addresses (e.g. home, school, work) and parcel data are avail-
able in the time-activity classification, we will likely be able to obtain more detailed time-activ-
ity categories and at a higher precision. Roadway data are usually publically available in urban
areas. Currently, parcel-level data may not be widely available. But with the development in
remote sensing and image processing technologies, high resolution land-use data will become
more available globally [63].

Accelerometers have been widely used to study physical activity [62, 64, 65]. However, the
importance of accelerometer measures (e.g. axis 1–3, step number, and inclination) by the
mean decrease in accuracy was lower than that of the other GPS and spatial variables in the
research (Fig 3). This was because some of the information provided by the accelerometer data
may already be reflected in the GPS and/or other spatial variables. For instance, walking can be
reflected by GPS speed. Average direction may reflect indoor environment where accelerome-
ter-based physical activity level is low. Ambient light intensity had a moderate effect among all
included variables in the model. We compared the model results with and without light sensor
variables. With the other GPS and spatial variables in the model, light sensor variables only
slightly improved the model performance (about 4.0% increase for the sensitivity of outdoor
walking, whereas about 0.0% to 0.5% of improvement for other time-activity categories and
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other model performance measures). On the other hand, light sensor data are associated with
uncertainties and errors because the device can be easily affected by outdoor environments (e.g.
weather) and subjects may not wear it properly or follow protocols strictly [40, 41]. Therefore,
the use of accelerometer might not be cost-effective for tracking only time-activity patterns for a
large number of participants when high quality GPS and other spatial variables are available.

Without the light sensor variable, the other fourteen variables in the model can be easily com-
puted from raw GPS points, roadway, and land-use data. GPS tracking and recording capabilities
are currently available in most smartphones. By the end of 2014, about 25% of the world’s total
population use smartphones, and the percentage may reach about 34% by 2017 [66]. It is esti-
mated that 15 countries worldwide will have more than 50% their population use smartphones
[66]. Smartphone might be the best choice for tracking time-activity patterns of a large population.
At the same time, the latest smartphones by themselves have many sensors, such as accelerometer
and light sensors, which are useful to record more environmental and behavioral information.
Currently, battery life may be one of the biggest problems of smartphone use [45, 67]. Wu et al.
(2010) reported less than 9 hours of battery life of a smartphone when it was turned on to record
GPS data [45]. We expect the battery life of smartphones will improve in the near future.

Since the number of four categories were unbalanced in the data, the reliability of measures
for each category might be different [68]. However, in this study we did not consider the influ-
ence of the respective sizes of individual time-activity categories. The leave-one-subject-out
model validation showed different results compared to the commonly-used leave-one-fold-out
model validation (Table 1). The largest difference between the two validation methods was
observed for the sensitivity for outdoor static and outside walking conditions. The possible rea-
son might be that the activity patterns of some subjects were significantly different from those
of the other subjects. When a subject was left out, the model trained by the other subjects could
not capture the particular activity patterns of this subject. The problem can be minimized by
including a diverse population of subjects who conduct as many types of activities as possible.
Caution is warranted when using the model trained from a limited number of subjects or
unrepresentative sample to a large population.

There are three limitations in this study. First, the participants were convenient samples of
students and staff from University of California, Irvine, and the sample size was small.
Although the GPS points almost covered the whole study area, the student participants may
have relatively simple life style on campus. A more general population with diverse socio-
demographic characteristics can be involved in the future to collect more comprehensive time-
activity data. Since several other activity modes, such as bicycle and bus, were not included in
the study, our data might just represent a limited number of people with similar environment
and life style. More subjects and activity modes need to be considered in future research. Fur-
thermore, we believe that the method of machine learning is generalizable to different types of
data, including the data with bicycle, bus, and light rail travels. The second limitation is the
missing GPS data due to some incidents during data collection (e.g. the device ran out of bat-
tery). The missing data might not be proportionally distributed among the four considered cat-
egories. The third limitation is that the study area was mainly in Southern California. Results
from this region might not be generalizable to other regions. Nevertheless, researches from
other regions can adapt our modeling approach and develop their own models using locally-
collected GPS time-activity tracking data.

Conclusion
We successfully developed an adaptive time-activity classification model based on a decision
tree approach and GPS tracking data from free living subjects. The model was able to classify
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four major time-activity categories (i.e. indoor, outdoor static, outdoor walking and in-vehicle)
to a satisfactory accuracy level. The sensitivity of the model in identifying outdoor walking was
lower than the other categories. High classification accuracy can be obtained by using just raw
GPS data and publicly-available spatial data (i.e. roadway and land-use data). However, we
should be cautious when generalizing the model developed from a small number of subjects to
other population. The methodology we developed can be utilized in other studies to classify
time-activity categories based on GPS data.
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