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We extend the three-dimensional SIR model to four-dimensional case and then analyze its dynamical behavior including stability
and bifurcation. It is shown that the newmodelmakes a significant improvement to the epidemicmodel for computer viruses, which
is more reasonable than the most existing SIR models. Furthermore, we investigate the stability of the possible equilibrium point
and the existence of the Hopf bifurcation with respect to the delay. By analyzing the associated characteristic equation, it is found
that Hopf bifurcation occurs when the delay passes through a sequence of critical values. An analytical condition for determining
the direction, stability, and other properties of bifurcating periodic solutions is obtained by using the normal form theory and center
manifold argument. The obtained results may provide a theoretical foundation to understand the spread of computer viruses and
then to minimize virus risks.

1. Introduction

Computer viruses arose in the 1980s with the widespread
use of Internet in a variety of fields, such as communication,
Internet business, and commercial system [1, 2]. With the
development of hardware and software technology, computer
viruses started to be a major threat to the information
security. Usually, computer viruses can cause severe damage
to the individuals and the corporations by different ways,
including acquiring confidential data from network users,
attacking the whole system, and even causing fatal damage to
the hardware [3]. So the behaviors of computer viruses have
attracted much attention from the fundamental researchers
to the network security professional.

It is well-known that computer virus is a malicious
mobile code including virus, worm, Trojan horses, and logic
bomb [4, 5]. Though different computer viruses vary in
many respects, they all have many similar characteristics
including infectivity, invisibility, latent, destructibility, and
unpredictability [6].The word “latent” means that the viruses

hide themselves in the computers and spread them in
the Internet through a period of time. Thus, in the construc-
tion of the system, the latent period should not be ignored
[7–9].

Because of a lot of similarities between the computer
viruses and the infectious diseases, many researchers choose
the epidemic models to find out the rule in the computer
viruses [10, 11] and much attention is now paid to the effect
of topological structure of the network on the spread of the
viruses. Among the epidemic models, the SIR, SEI, and SEIR
epidemic models are some of the most famous ones. Inspired
by these epidemic models, the models of the computer virus
have been proposed in recent years [12, 13].

However, some shortcomings of such models arose due
to the inevitable difference between computer viruses and
infectious diseases. Consequently, the results obtained from
the infectious diseases models cannot be carried over to
computer viruses completely. As a result, we need to make
some modifications in order to model the computer viruses.
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From the discussion above, we will propose a modi-
fied epidemic model for computer viruses and make some
dynamic analysis on it. Specifically, we will extend the three-
dimensional SIR model to four-dimensional SIRA model.
However, because of the increased dimension, the complexity
of the proposed model increases highly. We will present
several theoretical results for its stability property and bifur-
cation dynamics by the rigorous mathematical analysis.

2. Model Description and Preliminaries

The present model is a modification of the original compart-
mentalmodel [14].Here, we assume that each node is denoted
as one computer and the total population 𝑇 can be divided
into the following four groups by the state of each node:

(1) 𝑆(𝑡) is the number of noninfected computers sub-
jected to possible infection;

(2) 𝐼(𝑡) is the number of infected computers;

(3) 𝑅(𝑡) is the number of removed ones due to infection
or not;

(4) 𝐴(𝑡) is the antidotal population representing comput-
ers equipped with fully effective antivirus programs
[15].

In the present paper, we use the antivirus distribution
strategy; namely, we convert the susceptible into antidotal,
which is proportional to the product 𝑆𝐼 and with a controlled
parameter 𝑎

𝑆𝐴
. In addition, the infected computers can be

fixed by using antivirus programs, by which the infected
computers can be converted into antidotal ones with a rate
proportional to 𝐴𝐼 and a proportion factor given by 𝑎

𝐼𝐴
, or

we let the infected ones become useless and be removed with
a rate controlled by 𝛿 because of the antivirus cost. Usually,
the removed computers can be restored and converted into
susceptible with a proportional factor 𝜎. It is noticed that
all the compartments have the mortality rate not due to the
viruses. Here we assume all of them are the same and are
denoted by the proportion coefficient 𝜇. We further suppose
that the influx rate 𝑁 represents the incorporation of new
computers to the network.

It should be pointed out that the rate of the conversion
from susceptible into infected ones is called incidence rate.
It has been suggested by several authors that the viruses’
transmission process may have a nonlinear incidence rate.
This allows one to include behavioral changes and prevent
unbounded contact rates (e.g., [16]). In many epidemic mod-
els, the bilinear incidence rate𝛽𝑆𝐼 and the standard incidence
rate 𝛽𝑆𝐼/𝑁 are frequently used. The bilinear incidence rate
is based on the law of mass action. This contact law is more
appropriate for communicable diseases such as influenza
but not for point-to-point computer viruses. In the paper,

we introduce the following saturated incidence rate 𝑔(𝐼)𝑆

into models, where 𝑔(𝐼) tends to a saturation level when 𝐼

becomes large:

𝑔 (𝐼) =
𝛽𝐼 (𝑡 − 𝜏)

1 + 𝛼𝐼 (𝑡 − 𝜏)
, (1)

where 𝛽𝐼(𝑡 − 𝜏) measures the infection force of the viruses
and 1/1 + 𝛼𝐼(𝑡 − 𝜏) measures the inhibition effect from the
behavioral change of the susceptible ones when their number
increases or from the crowding effect of the infected ones.
It is noticed that 𝜏 represents the latent period; it means a
fixed time duringwhich some viruses develop in a susceptible
computer and it is only after that time the susceptible one is
converted to an infected one.

Considering all these facts above, we can propose a new
model with an economical use of the antivirus programs:

̇𝑆 = 𝑁 − 𝑎
𝑆𝐴
𝑆𝐴 −

𝛽𝑆 (𝑡 − 𝜏) 𝐼 (𝑡 − 𝜏)

1 + 𝛼𝐼 (𝑡 − 𝜏)
− 𝜇𝑆 + 𝜎𝑅,

̇𝐼 =
𝛽𝑆 (𝑡 − 𝜏) 𝐼 (𝑡 − 𝜏)

1 + 𝛼𝐼 (𝑡 − 𝜏)
− 𝑎

𝐼𝐴
𝐴𝐼 − 𝛿𝐼 − 𝜇𝐼,

�̇� = 𝛿𝐼 − 𝜎𝑅 − 𝜇𝑅,

�̇� = 𝑎
𝑆𝐴
𝑆𝐴 + 𝑎

𝐼𝐴
𝐴𝐼 − 𝜇𝐴.

(2)

For simplicity, let 𝑎
𝑆𝐴

= 𝑎
1
, 𝑎

𝐼𝐴
= 𝑎

2
, and 𝑎

𝑆𝐴
+ 𝑎

𝐼𝐴
= 𝑎

𝐴
.

3. Mathematical Analysis

3.1. Virus-Free Equilibrium Point. Under the condition of
virus-free, namely, we assume 𝐼 = 0, there is no need to equip
the computers with the antivirus programs, whichmeans𝐴 =

0. Then, bringing the equilibrium point 𝐸∗
= [𝑆

∗
, 𝐼

∗
, 𝑅

∗
, 𝐴

∗
]

into (2), we get

𝑁 − 𝑎
1
𝑆
∗
𝐴
∗
−

𝛽𝑆
∗
𝐼
∗

1 + 𝛼𝐼∗
− 𝜇𝑆

∗
+ 𝜎𝑅

∗
= 0,

𝛽𝑆
∗
𝐼
∗

1 + 𝛼𝐼∗
− 𝑎2𝐴

∗
𝐼
∗
− 𝛿𝐼

∗
− 𝜇𝐼

∗
= 0,

𝛿𝐼
∗
− 𝜎𝑅

∗
− 𝜇𝑅

∗
= 0,

𝑎
1
𝑆
∗
𝐴
∗
+ 𝑎

2
𝐴
∗
𝐼
∗
− 𝜇𝐴

∗
= 0.

(3)

Based on (3), the virus-free equilibrium point can be
calculated:

𝐸
1
= (𝑆

1
, 𝐼

1
, 𝑅

1
, 𝐴

1) = (
𝑁

𝜇
, 0, 0, 0) . (4)

The characteristic equation of (2) at 𝐸
1
is given by the

following:
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det
(
(
(

(

𝜆 + 𝜇
𝑁

𝜇
𝛽𝑒

−𝜆𝜏
−𝜎 𝑎

1

𝑁

𝜇

0 𝜆 −
𝑁

𝜇
𝛽𝑒

−𝜆𝜏
+ (𝛿 + 𝜇) 0 0

0 −𝛿 𝜆 + 𝜎 + 𝜇 0

0 0 0 𝜆 −
𝑁

𝜇
𝑎
1
+ 𝜇

)
)
)

)

= 0, (5)

which equals

(𝜆 + 𝜇) (𝜆 −
𝑁

𝜇
𝛽𝑒

−𝜆𝜏
+ (𝛿 + 𝜇))

× (𝜆 + 𝜎 + 𝜇) (𝜆 −
𝑁

𝜇
𝑎
1
+ 𝜇)

= (𝜆 + 𝜇) (𝜆 + 𝜎 + 𝜇) (𝜆 −
𝑁

𝜇
𝑎
1
+ 𝜇)

× [𝜆 + (𝛿 + 𝜇) (1 − 𝐾
0𝑒

−𝜆𝜏
)]

= 0,

(6)

where𝐾
0 = 𝛽𝑁/𝜇(𝛿 + 𝜇).

Clearly, (6) always has two negative eigenvalues 𝜆1 = −𝜇,
𝜆2 = −𝜎−𝜇 and two indefinite eigenvalues 𝜆3 = (𝑁/𝜇)𝑎1 −𝜇

and 𝜆
4 = −(𝛿 + 𝜇)(1 − 𝐾0𝑒

−𝜆𝜏
). We let 𝐾1 = 𝑎1𝑁/𝜇

2.
It is clear to see that if 𝐾1 < 1 and 𝐾0 < 1, the other two

eigenvalues must be negative too. So, the following theorem
can be acquired.

Theorem 1. For the system (2), if 𝐾0 = 𝛽𝑁/𝜇(𝛿 + 𝜇) < 1

and 𝐾
1

= 𝑎
1
𝑁/𝜇

2
< 1 are satisfied, then the virus-free

equilibrium point 𝐸
1
= (𝑁/𝜇, 0, 0, 0) is locally asymptotically

stable. Besides, if𝐾
1
> 1, the equilibrium point 𝐸

1
is unstable.

Remark 2. Theorem 1 investigates the local stability of the
virus-free equilibrium point by analyzing the eigenvalues of
the corresponding characteristic equation. We can see that
when viruses do not appear, all computers in the network are
subjected to possible infection.

3.2. Endemic Equilibrium Points. Endemic equilibrium
points are characterized by the existence of infected ones in
the network; that is, 𝐼 ̸= 0. First, we consider the case when
the network has no antidotal node; namely, 𝐴 = 0. Then, it is
not difficult to solve (3) when 𝐴 = 0, 𝐼 ̸= 0 and the solution is

𝐸
2
= 𝑆

2
, 𝐼

2
, 𝑅

2
, 𝐴

2
= 𝑆

2
, 𝐼

2
, 𝑅

2
, 0, (7)

where

𝐼
2
=

(𝜎 + 𝜇) [𝛽𝑁 − 𝜇 (𝛿 + 𝜇)]

(𝜎 + 𝜇) (𝛿 + 𝜇) (𝛽 + 𝜇𝛼) − 𝛽𝜎𝛿
,

𝑆
2
=

(𝛿 + 𝜇) (1 + 𝛼𝐼
2
)

𝛽
,

𝑅
2
=

𝛿𝐼2

𝜎 + 𝜇
.

(8)

It indicates that when 𝐾
0
< 1, 𝐼

2
< 0. Consequently, the

condition 𝐾
0
< 1 can avoid the existence of the equilibrium

point 𝐸
2
.

Another more important case is 𝐴 ̸= 0 when 𝐼 ̸= 0. Again,
calculating (3) and the endemic point is given by

𝐸
3
= (𝑆

3
, 𝐼

3
, 𝑅

3
, 𝐴

3
)

= (
𝜇 − 𝑎2𝐼3

𝑎
1

, 𝐼
3
,

𝛿𝐼
3

𝜎 + 𝜇
,

𝛽 (𝜇 − 𝑎2𝐼3)

𝑎
1
𝑎
2
(1 + 𝛼𝐼

3
)
−

𝛿 + 𝜇

𝑎
2

) .

(9)

Bringing the 𝐸
3
point into the first equation of (3), this

leads to

𝑁 − 𝑎
1
𝑆
3
𝐴

3
−

𝛽𝑆
3
𝐼
3

1 + 𝛼𝐼3

− 𝜇𝑆
3
+ 𝜎𝑅

3

= 𝑁 − 𝑎
1

𝜇 − 𝑎2𝐼3

𝑎
1

(
𝛽 (𝜇 − 𝑎

2
𝐼
3
)

𝑎
1
𝑎
2
(1 + 𝛼𝐼

3
)
−

𝛿 + 𝜇

𝑎
2

)

−
𝛽𝐼

3

1 + 𝛼𝐼
3

⋅
𝜇 − 𝑎

2
𝐼
3

𝑎
1

− 𝜇
𝜇 − 𝑎

2
𝐼
3

𝑎
1

+ 𝜎
𝛿𝐼3

𝜎 + 𝜇

= 0.

(10)

Then, we expand (10) and merge the similar terms; we let
𝐼 = 𝐼

3
without confusion:

𝑝
1 (1 + 𝛼𝐼) + 𝑝

2
𝐼 (1 + 𝛼𝐼) + 𝑝

3
(𝜇 − 𝑎

2
𝐼)

+ 𝑝4 (𝜇 − 𝑎2𝐼) (1 + 𝛼𝐼) = 0,

(11)

where

𝑝
1 = 𝑎1𝑎2𝑁(𝜎 + 𝜇) , 𝑝2 = 𝑎1𝑎2𝜎𝛿,

𝑝
3
= −𝜇𝛽 (𝜎 + 𝜇) , 𝑝

4
= (𝜎 + 𝜇) (𝜇𝑎

1
+ 𝛿𝑎

1
− 𝜇𝑎

2
) .

(12)
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Furthermore, a quadratic equation of the variable 𝐼 is
obtained:

𝑏
1𝐼

2
+ 𝑏2𝐼 + 𝑏3 = 0, (13)

where

𝑏
1
= 𝑝

2
𝛼 − 𝑝

4
𝛼𝑎

2
,

𝑏2 = 𝑝1𝛼 + 𝑝2 − 𝑝3𝑎2 + 𝑝4𝛼𝜇 − 𝑝4𝑎2,

𝑏
3
= 𝑝

1
+ 𝑝

3
𝜇 + 𝑝

4
𝜇.

(14)

From (13), we have the following result.

Theorem3. Suppose that 𝑆, 𝐼,𝑅,𝐴 are all positive, and𝐾2 > 1,
𝐾3 > 1. Then

(1) if 𝑏
1 = 0 and 𝑏3/𝑏2 < 0 hold, there exists unique positive

solution (9) for (3), and 𝐼3 = −𝑏3/𝑏2;

(2) when Δ > 0 always holds, then if 𝑏
2
/𝑏

1
< 0 and 𝑏

3
/𝑏

1
>

0, there exist two positive solutions, where 𝐼(1)
3

= 𝐼+ and
𝐼
(2)

3
= 𝐼

−
; if 𝑏

3
/𝑏

1
< 0, there is only one positive solution

𝐼
3
= 𝐼

+
with 𝑏

1
> 0 or 𝐼

3
= 𝐼

−
with 𝑏

1
< 0; if 𝑏

3
= 0

and 𝑏
2
/𝑏

1
< 0, there is only one positive solution 𝐼

3
=

−𝑏
2
/𝑏

1
;

(3) if Δ = 0 and 𝑏
2
/𝑏

1
< 0, there is only one positive

solution 𝐼
3
= −𝑏

2
/2𝑏

1
,

where 𝐾2 = (𝛽(𝜇 − 𝑎2𝐼))/(𝑎1(1 + 𝛼𝐼)(𝛿 + 𝜇)), 𝐾3 = 𝜇/𝑎2𝐼,
Δ = 𝑏

2

2
− 4𝑏

1
𝑏
3
, 𝐼

+
= (−𝑏

2
+√𝑏

2

2
− 4𝑏

1
𝑏
3
)/2𝑏

1
, and 𝐼

−
= (−𝑏

2
−

√𝑏
2

2
− 4𝑏

1
𝑏
3
)/2𝑏

1
.

Remark 4. Theorem 3 mainly focuses on the existence of the
positive equilibrium point of the system. We can see that all
conditions in the theorem are easily verified.

When the equilibrium point 𝐸
3
exists, the characteristic

equation of (2) at the point is

det((

(

𝜆 + 𝑎
1
𝐴

3
+

𝛽𝐼
3𝑒

−𝜆𝜏

1 + 𝛼𝐼
3

+ 𝜇
𝛽𝑆

3𝑒
−𝜆𝜏

(1 + 𝛼𝐼
3
)
2

−𝜎 𝑎
1
𝑆
3

−
𝛽𝐼

3𝑒
−𝜆𝜏

1 + 𝛼𝐼
3

𝜆 −
𝛽𝑆

3𝑒
−𝜆𝜏

(1 + 𝛼𝐼
3
)
2
+ 𝑎

2
𝐴

3
+ 𝛿 + 𝜇 0 𝑎

2
𝐼
3

0 −𝛿 𝜆 + 𝜎 + 𝜇 0

−𝑎
1
𝐴

3
−𝑎

2
𝐴

3
0 𝜆

)
)

)

= 0. (15)

We set 𝑐
1
= 𝛽𝐼

3
/(1+𝛼𝐼

3
), 𝑐

2
= 𝛽𝑆

3
/(1 + 𝛼𝐼

3
)
2, 𝑐

3
= 𝑎

1
𝐴

3
+

𝜇, and 𝑐
4
= 𝑎

2
𝐴

3
+ 𝛿 + 𝜇. For notational simplicity, we use

the (𝑆, 𝐼, 𝑅, 𝐴) in place of 𝐸
3
. Then, the following four-degree

exponential polynomial equation is obtained:

𝜆
4
+ 𝑑

1
𝜆
3
+ 𝑑

2
𝜆
2
+ 𝑑

3
𝜆 + 𝑑

4

+ 𝑒
−𝜆𝜏

(𝑑
5
𝜆
3
+ 𝑑

6
𝜆
2
+ 𝑑

7
𝜆 + 𝑑

8
) = 0,

(16)

where

𝑑
1 = 𝑐3 + 𝑐4 + 𝜎 + 𝜇,

𝑑
2
= 𝑎

2

1
𝐴𝑆 + 𝑎

2

2
𝐴𝐼 + 𝑐

3
𝑐
4
+ (𝜎 + 𝜇) (𝑐

3
+ 𝑐

4
) ,

𝑑
3
= 𝑎

2

1
𝐴𝑆 (𝑐

4
+ 𝜎 + 𝜇) + 𝑎

2

2
𝐴𝐼 (𝑐

3
+ 𝜎 + 𝜇) + 𝑐

3
𝑐
4
(𝜎 + 𝜇) ,

𝑑
4
= (𝜎 + 𝜇) (𝑎

2

1
𝑐
4
𝐴𝑆 + 𝑎

2

2
𝑐
3
𝐴𝐼) + 𝑎

1
𝑎
2
𝜎𝛿𝐴𝐼,

𝑑
5 = 𝑐1 − 𝑐2,

𝑑
6
= 𝑐

1
(𝑐
4
+ 𝜎 + 𝜇) − 𝑐

2
(𝑐
3
+ 𝜎 + 𝜇) ,

𝑑
7
= 𝐴 (𝑎

2
𝐼 + 𝑎

1
𝑆) (𝑐

1
𝑎
2
− 𝑐

2
𝑎
1
)

− 𝑐1𝜎𝛿 + (𝑐1𝑐4 − 𝑐2𝑐3) (𝜎 + 𝜇) ,

𝑑
8
= 𝐴 (𝑎

2
𝐼 + 𝑎

1
𝑆) (𝑐

1
𝑎
2
− 𝑐

2
𝑎
1
) (𝜎 + 𝜇) .

(17)

Multiplying 𝑒
𝜆𝜏 on both sides of (16), it is obvious to get

𝐽 = (𝜆
4
+ 𝑑

1
𝜆
3
+ 𝑑

2
𝜆
2
+ 𝑑

3
𝜆 + 𝑑

4
) 𝑒

𝜆𝜏

+ (𝑑
5
𝜆
3
+ 𝑑

6
𝜆
2
+ 𝑑

7
𝜆 + 𝑑

8
) = 0.

(18)

Let 𝜆 = 𝑖𝜔0, 𝜏 = 𝜏0, and substituting this into (18), for the
sake of simplicity, denote 𝜔

0
and 𝜏

0
by 𝜔, 𝜏, respectively; then

(18) becomes

(𝜔
4
− 𝑖𝑑1𝜔

3
− 𝑑2𝜔

2
+ 𝑖𝑑3𝜔 + 𝑑4) (cos𝜔𝜏 + 𝑖 sin𝜔𝜏)

+ (−𝑖𝑑
5
𝜔
3
− 𝑑

6
𝜔
2
+ 𝑖𝑑

7
𝜔 + 𝑑

8
) = 0.

(19)

Separating the real and imaginary parts, we have

(𝜔
4
− 𝑑2𝜔

2
+ 𝑑4) cos𝜔𝜏

+ (𝑑
1
𝜔
3
− 𝑑

3
𝜔) sin𝜔𝜏 = 𝑑

6
𝜔
2
− 𝑑

8
,

(−𝑑
1
𝜔
3
+ 𝑑

3
𝜔) cos𝜔𝜏

+ (𝜔
4
− 𝑑

2
𝜔
2
+ 𝑑

4
) sin𝜔𝜏 = 𝑑

5
𝜔
3
− 𝑑

7
𝜔.

(20)



Mathematical Problems in Engineering 5

By simple calculation, the following equations are
obtained:

cos𝜔𝜏 =
𝑒
5
𝜔
6
+ 𝑒

6
𝜔
4
+ 𝑒

7
𝜔
2
+ 𝑒

8

𝜔8 + 𝑒
1
𝜔6 + 𝑒

2
𝜔4 + 𝑒

3
𝜔2 + 𝑒

4

, (21)

sin𝜔𝜏 =
𝑒
9
𝜔
7
+ 𝑒

10
𝜔
5
+ 𝑒

11
𝜔
3
+ 𝑒

12
𝜔

𝜔8 + 𝑒1𝜔
6 + 𝑒2𝜔

4 + 𝑒3𝜔
2 + 𝑒4

, (22)

where

𝑒
1
= 𝑑

2

1
− 2𝑑

2
, 𝑒

2
= −2𝑑

1
𝑑
3
+ 𝑑

2

2
+ 2𝑑

4
,

𝑒
3 = −2𝑑2𝑑4 + 𝑑

2

3
, 𝑒4 = 𝑑

2

4
,

𝑒
5
= 𝑑

6
− 𝑑

1
𝑑
5
, 𝑒

6
= 𝑑

1
𝑑
7
− 𝑑

2
𝑑
6
+ 𝑑

3
𝑑
5
− 𝑑

8
,

𝑒
7
= 𝑑

2
𝑑
8
− 𝑑

3
𝑑
7
+ 𝑑

4
𝑑
6
, 𝑒

8
= −𝑑

4
𝑑
8
,

𝑒9 = 𝑑5, 𝑒10 = 𝑑1𝑑6 − 𝑑2𝑑5 − 𝑑7,

𝑒
11

= −𝑑
1
𝑑
8
+ 𝑑

2
𝑑
7
− 𝑑

3
𝑑
6
+ 𝑑

4
𝑑
5
,

𝑒12 = 𝑑3𝑑8 − 𝑑4𝑑7.

(23)

As is known to all that sin2𝜔𝜏 + cos2𝜔𝜏 = 1, we get

𝜔
16

+ 𝑓
7
𝜔
14

+ 𝑓
6
𝜔
12

+ 𝑓
5
𝜔
10

+ 𝑓
4
𝜔
8
+ 𝑓

3
𝜔
6

+ 𝑓2𝜔
4
+ 𝑓1𝜔

2
+ 𝑓0 = 0,

(24)

where

𝑓
7
= 2𝑒

1
− 𝑒

2

9
, 𝑓

6
= 𝑒

2

1
+ 2𝑒

2
− 𝑒

2

5
− 2𝑒

9
𝑒
10
,

𝑓5 = 2𝑒1𝑒2 + 2𝑒3 − 2𝑒5𝑒6 − 2𝑒9𝑒11 − 𝑒
2

10
,

𝑓
4
= 2𝑒

1
𝑒
3
+ 𝑒

2

2
+ 2𝑒

4
− 2𝑒

5
𝑒
7
− 𝑒

2

6
− 2𝑒

9
𝑒
12

− 2𝑒
10
𝑒
11
,

𝑓
3 = 2𝑒1𝑒4 + 2𝑒2𝑒3 − 2𝑒5𝑒8 − 2𝑒6𝑒7 − 2𝑒10𝑒12 − 𝑒

2

11
,

𝑓
2
= 2𝑒

2
𝑒
4
+ 𝑒

2

3
− 2𝑒

6
𝑒
8
− 𝑒

2

7
− 2𝑒

11
𝑒
12
,

𝑓
1
= 2𝑒

3
𝑒
4
− 2𝑒

7
𝑒
8
− 𝑒

2

12
,

𝑓
0
= 𝑒

2

4
− 𝑒

2

8
.

(25)

Denote 𝑧 = 𝜔
2; (24) can be rewritten as

𝑧
8
+ 𝑓

7
𝑧
7
+ 𝑓

6
𝑧
6
+ 𝑓

5
𝑧
5
+ 𝑓

4
𝑧
4

+ 𝑓
3
𝑧
3
+ 𝑓

2
𝑧
2
+ 𝑓

1
𝑧 + 𝑓

0
= 0.

(26)

We suppose that
(H

1
) (26) has at least one positive real root.

Without loss of generality, we can assume the equation
has 𝑙 (1 ≤ 𝑙 ≤ 8) positive real roots, which are represented as
𝑧
𝑖
(1 ≤ 𝑖 ≤ 𝑙); then 𝜔

𝑖
= √𝑧

𝑖
.

By (21), we get

𝜏
𝑗

𝑘
=

1

𝜔
𝑘

{arccos(
𝑒5𝜔

6

𝑘
+ 𝑒

6
𝜔
4

𝑘
+ 𝑒

7
𝜔
2

𝑘
+ 𝑒

8

𝜔
8

𝑘
+ 𝑒1𝜔

6

𝑘
+ 𝑒2𝜔

4

𝑘
+ 𝑒3𝜔

2

𝑘
+ 𝑒4

) + 2𝑗𝜋} ,

𝑗 = 0, 1, . . . .

(27)

From the early discussions, we know that the ±𝑖𝜔
𝑘
are a

pair of purely imaginary roots of (16) with 𝜏
𝑗

𝑘
. Define

𝜏0 = 𝜏
0

𝑘0
= min

𝑘∈{1,...,𝑙}

{𝜏
0

𝑘
} , 𝜔0 = 𝜔𝑘0

. (28)

It is noted that when 𝜏 = 0, (16) becomes

𝜆
4
+ 𝑑1𝜆

3
+ 𝑑2𝜆

2
+ 𝑑3𝜆 + 𝑑4 + (𝑑5𝜆

3
+ 𝑑6𝜆

2
+ 𝑑7𝜆 + 𝑑8)

= 𝜆
4
+ (𝑑1 + 𝑑5) 𝜆

3
+ (𝑑2 + 𝑑6) 𝜆

2

+ (𝑑
3
+ 𝑑

7
) 𝜆 + (𝑑

4
+ 𝑑

8
) = 0.

(29)

By virtue of the well-known Routh-Hurwitz criteria, a set
of necessary and sufficient conditions for all roots of (29) to
have the negative real part is given in the following form:

𝐷
1
= 𝑑

1
+ 𝑑

5
> 0, (30)

𝐷
2
=



𝑑
1 + 𝑑5 𝑑3 + 𝑑7

1 𝑑2 + 𝑑6



= (𝑑
1
+ 𝑑

5
) (𝑑

2
+ 𝑑

6
) − (𝑑

3
+ 𝑑

7
) > 0,

(31)

𝐷
3
=



𝑑
1 + 𝑑5 𝑑3 + 𝑑7 0

1 𝑑2 + 𝑑6 𝑑4 + 𝑑8

0 𝑑1 + 𝑑5 𝑑3 + 𝑑7



= (𝑑
1
+ 𝑑

5
) [(𝑑

2
+ 𝑑

6
) (𝑑

3
+ 𝑑

7
) − (𝑑

1
+ 𝑑

5
) (𝑑

4
+ 𝑑

8
)]

− (𝑑
3
+ 𝑑

7
)
2
> 0,

(32)

𝐷
4
=



𝑑
1
+ 𝑑

5
𝑑
3
+ 𝑑

7
0 0

1 𝑑
2
+ 𝑑

6
𝑑
4
+ 𝑑

8
0

0 𝑑
1
+ 𝑑

5
𝑑
3
+ 𝑑

7
0

0 1 𝑑
2
+ 𝑑

6
𝑑
4
+ 𝑑

8



= (𝑑
4
+ 𝑑

8
)𝐷

3
> 0.

(33)

If (30)–(33) hold, (29) has four roots with negative real
parts, and therefore when 𝜏 = 0, system (2) is stable near the
equilibrium point 𝐸

3
.

In order to give the main results, it is necessary to make
the following assumption:

(H
2
) Re(𝑑𝜆

𝑑𝜏
)

𝜏=𝜏0

̸= 0.

In order to calculate the derivative of 𝜆 with respect to 𝜏

in (18), it is followed by

𝑑𝜆

𝑑𝜏
= −

𝜕𝐽/𝜕𝜏

𝜕𝐽/𝜕𝜆

= − (𝜆 (𝜆
4
+ 𝑑

1
𝜆
3
+ 𝑑

2
𝜆
2
+ 𝑑

3
𝜆 + 𝑑

4
) 𝑒

𝜆𝜏
)

× ((4𝜆
3
+ 3𝑑

1
𝜆
2
+ 2𝑑

2
𝜆 + 𝑑

3
) 𝑒

𝜆𝜏
+ 𝜏𝑒

𝜆𝜏

× (𝜆
4
+ 𝑑

1
𝜆
3
+ 𝑑

2
𝜆
2
+ 𝑑

3
𝜆 + 𝑑

4
)

+ (3𝑑
5𝜆

2
+ 2𝑑6𝜆 + 𝑑7) )

−1

;

(34)
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thus

(
𝑑𝜆

𝑑𝜏
)

−1

= ((4𝜆
3
+ 3𝑑

1
𝜆
2
+ 2𝑑

2
𝜆 + 𝑑

3
) 𝑒

𝜆𝜏
+ (3𝑑

5
𝜆
2
+ 2𝑑

6
𝜆 + 𝑑

7
))

× (−𝜆𝑒
𝜆𝜏

(𝜆
4
+ 𝑑1𝜆

3
+ 𝑑2𝜆

2
+ 𝑑3𝜆 + 𝑑4))

−1

−
𝜏

𝜆

= ((4𝜆
3
+ 3𝑑

1
𝜆
2
+ 2𝑑

2
𝜆 + 𝑑

3
) 𝑒

𝜆𝜏

+ (3𝑑
5
𝜆
2
+ 2𝑑

6
𝜆 + 𝑑

7
))

× (𝑑
5
𝜆
4
+ 𝑑

6
𝜆
3
+ 𝑑

7
𝜆
2
+ 𝑑

8
𝜆)

−1

−
𝜏

𝜆
.

(35)

When 𝜏 = 𝜏
0
, ±𝑖𝜔

0
are a pair of purely imaginary roots of

(16). Substituting the 𝜏
0
, 𝑖𝜔

0
into (35) and denoting 𝜏

0
and 𝜔

0

by 𝜏, 𝜔 for simplicity, then

(
𝑑𝜆

𝑑𝜏
)

−1𝜆=𝑖𝜔0 ,𝜏=𝜏0

= ((−3𝑑1𝜔
2
+ 𝑑3) cos𝜔𝜏

+ (4𝜔
3
− 2𝑑

2
𝜔) sin𝜔𝜏 − 3𝑑

5
𝜔
2
+ 𝑑

7
)

× ((𝑑
5𝜔

4
− 𝑑7𝜔

2
) + 𝑖 (−𝑑6𝜔

3
+ 𝑑8𝜔))

−1

+ 𝑖 ((−4𝜔
3
+ 2𝑑

2
𝜔) cos𝜔𝜏

+ (−3𝑑
1
𝜔
2
+ 𝑑

3
) sin𝜔𝜏 + 2𝑑

6
𝜔)

× ((𝑑
5
𝜔
4
− 𝑑

7
𝜔
2
) + 𝑖 (−𝑑

6
𝜔
3
+ 𝑑

8
𝜔))

−1

−
𝜏

𝑖𝜔
.

(36)

We set 𝑄 = (𝑑
5
𝜔
4
− 𝑑

7
𝜔
2
)
2

+ (−𝑑
6
𝜔
3
+ 𝑑

8
𝜔)

2,

𝑄 ⋅ Re(𝑑𝜆

𝑑𝜏
)

−1𝜏=𝜏0

= [(−3𝑑
1
𝜔
2
+ 𝑑

3
) cos𝜔𝜏

+ (4𝜔
3
− 2𝑑2𝜔) sin𝜔𝜏 − 3𝑑5𝜔

2
+ 𝑑7]

× (𝑑
5
𝜔
4
− 𝑑

7
𝜔
2
)

+ [(−4𝜔
3
+ 2𝑑

2
𝜔) cos𝜔𝜏

+ (−3𝑑
1
𝜔
2
+ 𝑑

3
) sin𝜔𝜏 + 2𝑑

6
𝜔]

× (−𝑑
6
𝜔
3
+ 𝑑

8
𝜔) ,

sgn{Re(𝑑𝜆

𝑑𝜏
)

𝜏=𝜏0

} = sgn{𝑄 ⋅ Re(𝑑𝜆

𝑑𝜏
)

−1𝜏=𝜏0

} .

(37)

On the basis of (H
2
), we can know that the roots of

characteristic equation (16) cross the imaginary axis as 𝜏

continuously varies from a number less than 𝜏
0
to one greater

than 𝜏
0
byRouche’s theorem [17].Therefore, the transversality

condition holds and the conditions for Hopf bifurcation are
then satisfied at 𝜏 = 𝜏

0
.

Lemma 5 (see [18]). Consider the exponential polynomial

𝑃 (𝜆, 𝑒
−𝜆𝜏1 , . . . , 𝑒

−𝜆𝜏𝑚)

= 𝜆
𝑛
+ 𝑝

(0)

1
𝜆
𝑛−1

+ ⋅ ⋅ ⋅ + 𝑝
(0)

𝑛−1
𝜆 + 𝑝

(0)

𝑛

+ [𝑝
(1)

1
𝜆
𝑛−1

+ ⋅ ⋅ ⋅ + 𝑝
(1)

𝑛−1
𝜆 + 𝑝

(1)

𝑛
] 𝑒

−𝜆𝜏1

+ ⋅ ⋅ ⋅ + [𝑝
(𝑚)

1
𝜆
𝑛−1

+ ⋅ ⋅ ⋅ + 𝑝
(𝑚)

𝑛−1
𝜆 + 𝑝

(𝑚)

𝑛
] 𝑒

−𝜆𝜏𝑚 ,

(38)

where 𝜏𝑖 ≥ 0 (𝑖 = 1, 2, . . . , 𝑚) and 𝑝
(𝑖)

𝑗
(𝑖 = 0, 1, . . . , 𝑚; 𝑗 =

1, 2, . . . , 𝑛) are constants. As (𝜏
1
, 𝜏

2
, . . . , 𝜏

𝑚
) vary, the sum of

the order of the zeros of 𝑃(𝜆, 𝑒
−𝜆𝜏1 , . . . , 𝑒

−𝜆𝜏𝑚) on the open
right plane can change only if a zero appears on or crosses the
imaginary axis.

From Lemma 5, it is easy to get the theorem.

Theorem 6. Suppose that (H
1
) and (H

2
) hold; then

(1) for system (2), the equilibrium point 𝐸
3
is asymptoti-

cally stable for 𝜏 ∈ [0, 𝜏
0
);

(2) system (2) undergoes a Hopf bifurcation at the 𝐸3 when
𝜏 = 𝜏0. That is to say, it has a branch of periodic
solutions bifurcating from the 𝐸3 near 𝜏 = 𝜏0, where
𝜏0 can be calculated by (28).

Furthermore, we can investigate the stability and direction
of bifurcating periodic solutions by analyzing higher order
terms according to Hassard et al. [19].

Remark 7. The analyses above study the existence of the Hopf
bifurcation and obtain the critical value of the parameter 𝜏.
We can apply the theorem into the system; thus, through
changing some parameters, some bad performances of the
model can be avoided.

Remark 8. When we set 𝑁 = 0, 𝜇 = 0, 𝛼 = 0, and 𝜏 =

0, the present model can be transformed to the model in
[14]. However, [14] only calculated the disease-free/endemic
equilibrium points and analyzed the stability. This paper
expands the model and makes a detailed analysis about the
bifurcations.

Remark 9. In this paper, we propose a new group called
antidotal population, that is, 𝐴(𝑡), which is more reasonable
when we study the computer viruses. It is well known
that when dealing with Hopf bifurcation, the complexity
of computation increases significantly as the dimension of
system increases. Sometimes, it even cannot be calculated,
especially when nonlinear terms 𝛽𝑆(𝑡 − 𝜏)𝐼(𝑡 − 𝜏)/(1 + 𝛼𝐼(𝑡 −

𝜏)) exist in our system. Partly because of this, the majority
of the literatures published use the traditional SIR three-
dimensional model to study the epidemic model or virus
[7, 10, 20], which has some limitations.
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3.3. Stability and Direction of the Hopf Bifurcation. We have
obtained the conditions under which a family of periodic
solutions bifurcate from the positive equilibrium 𝐸

3
at the

critical value of 𝜏
0
. In this subsection, the formulae for

determining the direction of Hopf bifurcation and stability
of bifurcating periodic solutions of system at 𝜏

0
will be

presented by employing the normal form theory and the
center manifold reduction [19, 21–24].

For convenience, let 𝑥1 = 𝑆 − 𝑆3, 𝑥2 = 𝐼 − 𝐼3, 𝑥3 = 𝑅 − 𝑅3,
𝑥4 = 𝐴 − 𝐴3, 𝑥𝑖(𝑡) = 𝑥𝑖(𝜏𝑡), and 𝜏 = 𝜏0 + 𝑢; we drop the
bars for simplification of notations. In the light ofmultivariate
Taylor expansion, system (2) can be transformed into an FDE
in 𝐶 = 𝐶([−1, 0], 𝑅

3
) as

�̇� (𝑡) = 𝐿
𝑢
(𝑥

𝑡
) + 𝑓 (𝑢, 𝑥

𝑡
) , (39)

where 𝑥(𝑡) = (𝑥
1
(𝑡), 𝑥

2
(𝑡), 𝑥

3
(𝑡), 𝑥

4
(𝑡))

𝑇
∈ 𝑅

4, and 𝐿
𝑢
: 𝐶 →

𝑅, 𝑓 : 𝑅 × 𝐶 → 𝑅 are given, respectively, by

𝐿
𝑢
(𝜙)

= (𝜏
0 + 𝑢)(

−𝑐
3

0 𝜎 −𝑎
1
𝑆

0 −𝑐
4

0 −𝑎
2
𝐼

0 𝛿 −𝜎 − 𝜇 0

𝑎
1
𝐴 𝑎

2
𝐴 0 0

)(

𝜙
1 (0)

𝜙
2 (0)

𝜙
3 (0)

𝜙
4 (0)

)

+ (𝜏
0
+ 𝑢)(

−𝑐
1

−𝑐
2

0 0

𝑐
1

𝑐
2

0 0

0 0 0 0

0 0 0 0

)(

𝜙
1 (−1)

𝜙
2 (−1)

𝜙
3 (−1)

𝜙
4 (−1)

)

= (𝜏
0
+ 𝑢) 𝐵

1
𝜙 (0) + (𝜏

0
+ 𝑢) 𝐵

2
𝜙 (−1) ,

𝑓 (𝑢, 𝜙)

= (𝜏
0
+ 𝑢)

×(

𝑙1𝜙
2

2
(−1) − 𝑙2𝜙1 (−1) 𝜙2 (−1) − 𝑎1𝜙1 (0) 𝜙4 (0) + ℎ.𝑜.𝑡

−𝑙1𝜙
2

2
(−1) + 𝑙2𝜙1 (−1) 𝜙2 (−1) − 𝑎2𝜙2 (0) 𝜙4 (0) + ℎ.𝑜.𝑡

0

𝑎1𝜙1 (0) 𝜙4 (0) + 𝑎2𝜙2 (0) 𝜙4 (0)

) ,

(40)

where 𝑙
1 = 𝛼𝑐2/(1 + 𝛼𝐼), 𝑙2 = 𝑐2/𝑆, and 𝐿𝑢 is a one-parameter

family of bounded linear operators in 𝐶[−1, 0] → 𝑅
4.

By the Riesz representation theorem, there exists a func-
tion 𝜂(𝜃, 𝑢) of bounded variation for 𝜃 ∈ [−1, 0], such that

𝐿𝑢𝜙 = ∫

0

−1

𝑑𝜂 (𝜃, 𝑢) 𝜙 (𝜃) for 𝜙 ∈ 𝐶
1
([−1, 0] , 𝑅

4
) . (41)

In fact, we can choose

𝜂 (𝜃, 𝑢) = (𝜏
0
+ 𝑢) 𝐵

1
𝛿 (𝜃) − (𝜏

0
+ 𝑢) 𝐵

2
𝛿 (𝜃 + 1) , (42)

where 𝛿(𝜃) is the Dirac delta function.

For 𝜙 ∈ 𝐶
1
([−1, 0], 𝑅

4
), define

𝐴 (𝑢) 𝜙 =

{{{{

{{{{

{

𝑑𝜙 (𝜃)

𝑑𝜃
, −1 ≤ 𝜃 < 0,

∫

0

−1

𝑑𝜂 (𝜃, 𝑢) 𝜙 (𝜃) , 𝜃 = 0,

𝑅 (𝑢) 𝜙 = {
0, 𝜃 ∈ [−1, 0) ,

𝑓 (𝑢, 𝜙) , 𝜃 = 0.

(43)

Then, system (39) is equivalent to
�̇�
𝑡
= 𝐴 (𝑢) 𝑥𝑡

+ 𝑅 (𝑢) 𝑥𝑡
, (44)

where 𝑥𝑡
(𝜃) = 𝑥(𝑡 + 𝜃), for 𝜃 ∈ [−1, 0), and 𝑥 = (𝑥

1
, 𝑥

2
,

𝑥
3
, 𝑥

4
)
𝑇.

For 𝜓 ∈ 𝐶
1
([0, 1], (𝑅

4
)
∗

), define

𝐴
∗
(𝑢) 𝜓 =

{{

{{

{

−
𝑑𝜓 (𝑠)

𝑑𝑠
, 0 < 𝑠 ≤ 1,

∫

0

−1

𝑑𝜂
𝑇
(𝑡, 𝑢) 𝜙 (−𝑡) , 𝑠 = 0.

(45)

In order to normalize the eigenvectors of operator 𝐴 and
adjoint operator 𝐴∗, the following bilinear inner product is
needed to introduce

⟨𝜓 (𝑠) , 𝜙 (𝜃)⟩

= 𝜓 (0) 𝜙 (0) − ∫

0

−1

∫

𝜃

𝜉=0

𝜓 (𝜉 − 𝜃) 𝑑𝜂 (𝜃) 𝜙 (𝜉) 𝑑𝜉,

(46)

where 𝜂(𝜃) = 𝜂(𝜃, 0).
From the early discussions, we know that ±𝑖𝜏

0
𝜔
0
are

eigenvalues of 𝐴(0) and other eigenvalues have strictly neg-
ative real parts; thus, they are also eigenvalues of 𝐴∗. Define
that

𝑞 (𝜃) = (1, 𝑞
2
, 𝑞

3
, 𝑞

4)
𝑇
𝑒
𝑖𝜏0𝜔0𝜃, −1 < 𝜃 ≤ 0, (47)

which is the eigenvector of 𝐴(0) belonging to the eigenvalue
𝑖𝜏
0𝜔0; namely, 𝐴(0)𝑞(𝜃) = 𝑖𝜏0𝜔0𝑞(𝜃). Then, we can easily

obtain

𝜏
0
(

𝑖𝜔0 + 𝑐3 + 𝑐1𝑒
−𝑖𝜏0𝜔0 𝑐2𝑒

−𝑖𝜏0𝜔0 −𝜎 𝑎1𝑆

−𝑐1𝑒
−𝑖𝜏0𝜔0 𝑖𝜔0 + 𝑐4 − 𝑐2𝑒

−𝑖𝜏0𝜔0 0 𝑎2𝐼

0 −𝛿 𝑖𝜔0 + 𝜎 + 𝜇 0

−𝑎1𝐴 −𝑎2𝐴 0 𝑖𝜔0

)

× 𝑞 (0) = (

0

0

0

0

) .

(48)
Hence, we obtain

𝑞
2
=

𝑖𝜔
0
𝑐
1
𝑒
−𝑖𝜏0𝜔0 − 𝑎

1
𝑎
2
𝐼𝐴

𝑖𝜔0 (𝑖𝜔0 + 𝑐4 − 𝑐2𝑒
−𝑖𝜏0𝜔0) + 𝑎

2

2
𝐼𝐴

,

𝑞
3
=

𝛿 (𝑖𝜔
0
𝑐
1
𝑒
−𝑖𝜏0𝜔0 − 𝑎

1
𝑎
2
𝐼𝐴)

(𝑖𝜔
0
+ 𝜎 + 𝜇) [𝑖𝜔

0
(𝑖𝜔

0
+ 𝑐

4
− 𝑐

2
𝑒−𝑖𝜏0𝜔0) + 𝑎

2

2
𝐼𝐴]

,

𝑞4 =
𝑎
1
𝐴

𝑖𝜔
0

+

𝑎
2
𝐴(𝑖𝜔

0
𝑐
1
𝑒
−𝑖𝜏0𝜔0 − 𝑎

1
𝑎
2
𝐼𝐴)

−𝜔
2

0
(𝑖𝜔

0
+ 𝑐

4
− 𝑐

2
𝑒−𝑖𝜏0𝜔0) + 𝑖𝜔

0
𝑎
2

2
𝐼𝐴

.

(49)
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Suppose that the eigenvector 𝑞
∗ of 𝐴

∗ belonging to the
eigenvalue −𝑖𝜏

0
𝜔
0
is

𝑞
∗
(𝑠) =

1

𝜌
(1, 𝑞

∗

2
, 𝑞

∗

3
, 𝑞

∗

4
) 𝑒

𝑖𝜏0𝜔0𝑠, 0 ≤ 𝑠 < 1. (50)

Similar to the calculation of (49), we can get

𝑞
∗

2
=

𝑖𝜔
0
(𝑖𝜔

0
− 𝑐

3
− 𝑐

1
𝑒
𝑖𝜏0𝜔0) + 𝑎

2

1
𝐴𝑆

−𝑖𝜔0𝑐1𝑒
𝑖𝜏0𝜔0 − 𝑎1𝑎2𝐼𝐴

,

𝑞
∗

3
=

𝜎

−𝑖𝜔
0
+ 𝜎 + 𝜇

,

𝑞
∗

4
=

𝑎
1
𝑆

𝑖𝜔
0

+

𝑎
2
𝐼𝑖𝜔

0
(𝑖𝜔

0
− 𝑐

3
− 𝑐

1
𝑒
𝑖𝜏0𝜔0) + 𝑎

2

1
𝑎
2
𝐼𝐴𝑆

𝜔
2

0
𝑐
1
𝑒𝑖𝜏0𝜔0 − 𝑖𝜔

0
𝑎
1
𝑎
2
𝐼𝐴

.

(51)

Let ⟨𝑞∗, 𝑞⟩ = 1; then

⟨𝑞
∗
(𝑠) , 𝑞 (𝜃)⟩

=
1

𝜌
(1 + 𝑞2𝑞

∗

2
+ 𝑞3𝑞

∗

3
+ 𝑞4𝑞

∗

4
)

− ∫

0

𝜃=−1

∫

𝜃

𝜉=0

1

𝜌
(1, 𝑞

∗

2
, 𝑞

∗

3
, 𝑞

∗

4
) 𝑒

−𝑖𝜏0𝜔0(𝜉−𝜃)𝑑𝜂 (𝜃)

× (

1

𝑞
2

𝑞
3

𝑞
4

)𝑒
𝑖𝜏0𝜔0𝜉𝑑𝜉

=
1

𝜌
(1 + 𝑞2𝑞

∗

2
+ 𝑞3𝑞

∗

3
+ 𝑞4𝑞

∗

4
)

− ∫

0

−1

1

𝜌
(1, 𝑞

∗

2
, 𝑞

∗

3
, 𝑞

∗

4
) 𝜃𝑒

𝑖𝜏0𝜔0𝜃𝑑𝜂 (𝜃)(

1

𝑞2

𝑞3

𝑞4

)

=
1

𝜌
{ (1 + 𝑞2𝑞

∗

2
+ 𝑞3𝑞

∗

3
+ 𝑞4𝑞

∗

4
)

+𝜏
0
𝑒
−𝑖𝜏0𝜔0 [(𝑞

∗

2
− 1) (𝑐

1
+ 𝛼𝑐

2
)]} ,

(52)

which leads to

𝜌 = (1 + 𝑞2𝑞
∗

2
+ 𝑞3𝑞

∗

3
+ 𝑞4𝑞

∗

4
)

+ 𝜏
0
𝑒
−𝑖𝜏0𝜔0 [(𝑞

∗

2
− 1) (𝑐

1
+ 𝛼𝑐

2
)] .

(53)

In the following, we apply the method in [19] to compute
the coordinates describing the centermanifoldΩ0 near 𝑢 = 0.
Let 𝑥𝑡 be the solution of (39) when 𝑢 = 0. We define

𝑧 (𝑡) = ⟨𝑞
∗
, 𝑥𝑡⟩ , 𝑊 (𝑡, 𝜃) = 𝑥𝑡 (𝜃) − 2Re [𝑧 (𝑡) 𝑞 (𝜃)] .

(54)

On the center manifold Ω
0
, we have 𝑊(𝑡, 𝜃) = 𝑊(𝑧(𝑡),

𝑧(𝑡), 𝜃), where

𝑊(𝑧 (𝑡) , 𝑧 (𝑡) , 𝜃)

= 𝑊
20 (𝜃)

𝑧
2

2
+ 𝑊

11 (𝜃) 𝑧𝑧 + 𝑊
02 (𝜃)

𝑧
2

2
+ 𝑊

30 (𝜃)
𝑧
3

6
+ ⋅ ⋅ ⋅ .

(55)

In fact, 𝑧 and 𝑧 are local coordinates of centermanifoldΩ
0

in the direction of 𝑞 and 𝑞
∗, respectively. For solution 𝑥

𝑡
∈ Ω

0

of (44), since 𝑢 = 0, we get

�̇� (𝑡) = ⟨𝑞
∗
, �̇�

𝑡
⟩

= 𝑖𝜏
0
𝜔
0
𝑧 (𝑡) + 𝑞

∗
(0)

× 𝑓 (0,𝑊 (𝑡, 0) + 2Re [𝑧 (𝑡) 𝑞 (0)])

= 𝑖𝜏
0
𝜔
0
𝑧 (𝑡) + 𝑞

∗
(0) 𝑓0 (𝑧, 𝑧)

≜ 𝑖𝜏
0
𝜔
0
𝑧 (𝑡) + 𝑔 (𝑧, 𝑧) .

(56)

It is noted that

𝑔 (𝑧, 𝑧) = 𝑞
∗
(0) 𝑓0 (𝑧, 𝑧)

= 𝑔
20

𝑧
2

2
+ 𝑔

11
𝑧𝑧 + 𝑔

02

𝑧
2

2
+ 𝑔

21

𝑧
2
𝑧

2
+ ⋅ ⋅ ⋅ .

(57)

By (54), we know that

𝑥𝑡 (𝜃) = (𝑥
1𝑡 (𝜃) , 𝑥2𝑡 (𝜃) , 𝑥3𝑡 (𝜃) , 𝑥4𝑡 (𝜃))

= 𝑊 (𝑡, 𝜃) + 𝑧𝑞 (𝜃) + 𝑧 ⋅ 𝑞 (𝜃) .

(58)

Considering (47) and (55), we have

𝑥
1𝑡 (0) = 𝑧 + 𝑧 + 𝑊

(1)

20
(0)

𝑧
2

2

+ 𝑊
(1)

11
(0) 𝑧𝑧 + 𝑊

(1)

02
(0)

𝑧
2

2
+ 𝑜 (|(𝑧, 𝑧)|

3
) ,

𝑥
2𝑡 (0) = 𝑞

2
𝑧 + 𝑞

2
𝑧 + 𝑊

(2)

20
(0)

𝑧
2

2

+ 𝑊
(2)

11
(0) 𝑧𝑧 + 𝑊

(2)

02
(0)

𝑧
2

2
+ 𝑜 (|(𝑧, 𝑧)|

3
) ,

𝑥
4𝑡 (0) = 𝑞

4
𝑧 + 𝑞

4
𝑧 + 𝑊

(4)

20
(0)

𝑧
2

2

+ 𝑊
(4)

11
(0) 𝑧𝑧 + 𝑊

(4)

02
(0)

𝑧
2

2
+ 𝑜 (|(𝑧, 𝑧)|

3
) ,

𝑥
1𝑡 (−1) = 𝑧𝑒

−𝑖𝜏0𝜔0 + 𝑧𝑒
𝑖𝜏0𝜔0 + 𝑊

(1)

20
(−1)

𝑧
2

2

+ 𝑊
(1)

11
(−1) 𝑧𝑧 + 𝑊

(1)

02
(−1)

𝑧
2

2
+ 𝑜 (|(𝑧, 𝑧)|

3
) ,
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𝑥
2𝑡 (−1) = 𝑧𝑞

2
𝑒
−𝑖𝜏0𝜔0 + 𝑧 ⋅ 𝑞

2
𝑒
𝑖𝜏0𝜔0 + 𝑊

(2)

20
(−1)

𝑧
2

2

+ 𝑊
(2)

11
(−1) 𝑧𝑧 + 𝑊

(2)

02
(−1)

𝑧
2

2
+ 𝑜 (|(𝑧, 𝑧)|

3
) .

(59)

It follows that

𝑔 (𝑧, 𝑧)

= 𝑞
∗
(0) 𝑓0 (𝑧, 𝑧)

=
𝜏0

𝜌
(1, 𝑞

∗

2
, 𝑞

∗

3
, 𝑞

∗

4
)

×(

𝑙1𝑥
2

2𝑡
(−1) − 𝑙2𝑥1𝑡 (−1) 𝑥2𝑡 (−1) − 𝑎1𝑥1𝑡 (0) 𝑥4𝑡 (0) + ℎ.𝑜.𝑡

−𝑙1𝑥
2

2𝑡
(−1) + 𝑙2𝑥1𝑡 (−1) 𝑥2𝑡 (−1) − 𝑎2𝑥2𝑡 (0) 𝑥4𝑡 (0) + ℎ.𝑜.𝑡

0

𝑎1𝑥1𝑡 (0) 𝑥4𝑡 (0) + 𝑎2𝑥2𝑡 (0) 𝑥4𝑡 (0)

)

=
𝜏
0

𝜌
{ [𝑙

1
(1 − 𝑞

∗

2
) 𝑞

2

2
𝑒
−2𝑖𝜏0𝜔0 + 𝑙

2
(𝑞

∗

2
− 1) 𝑞

2
𝑒
−2𝑖𝜏0𝜔0

+𝑎
1
(𝑞

∗

4
− 1) 𝑞

4
+ 𝑎

2
(𝑞

∗

4
− 𝑞

∗

2
) 𝑞

2
𝑞
4
] 𝑧

2

+ [𝑙1 (1 − 𝑞
∗

2
) 𝑞

2

2
𝑒
2𝑖𝜏0𝜔0 + 𝑙2 (𝑞

∗

2
− 1) 𝑞

2
𝑒
2𝑖𝜏0𝜔0

+𝑎
1
(𝑞

∗

4
− 1) 𝑞

4
+ 𝑎

2
(𝑞

∗

4
− 𝑞

∗

2
) 𝑞

2
𝑞
4
] 𝑧

2

+ [𝑙
1
(1 − 𝑞

∗

2
) 2𝑞

2
𝑞
2
+ 𝑙

2
(𝑞

∗

2
− 1) (𝑞

2
+ 𝑞

2
)

+ 𝑎
1
(𝑞

∗

4
− 1) (𝑞

4
+ 𝑞

4
)

+𝑎
2
(𝑞

∗

4
− 𝑞

∗

2
) (𝑞

2
𝑞
4
+ 𝑞

2
𝑞
4
)] 𝑧𝑧

+ [𝑙1 (1 − 𝑞
∗

2
)

× (2𝑞
2
𝑊

(2)

11
(−1) 𝑒

−𝑖𝜏0𝜔0 + 𝑞
2
𝑊

(2)

20
(−1) 𝑒

𝑖𝜏0𝜔0)

+ 𝑙
2
(𝑞

∗

2
− 1)

× (𝑊
(2)

11
(−1) 𝑒

−𝑖𝜏0𝜔0 +
1

2
𝑊

(2)

20
(−1) 𝑒

𝑖𝜏0𝜔0

+
1

2
𝑞
2
𝑊

(1)

20
(−1) 𝑒

𝑖𝜏0𝜔0

+𝑞
2
𝑊

(1)

11
(−1) 𝑒

−𝑖𝜏0𝜔0)

+ 𝑎
1 (𝑞

∗

4
− 1)

× (𝑊
(4)

11
(0) +

1

2
𝑊

(4)

20
(0)

+
1

2
𝑞
4
𝑊

(1)

20
(0) + 𝑞

4
𝑊

(1)

11
(0))

+ 𝑎2 (𝑞
∗

4
− 𝑞

∗

2
)

× (𝑞2𝑊
(4)

11
(0) +

1

2
𝑞
2
𝑊

(4)

20
(0)

+
1

2
𝑞
4
𝑊

(2)

20
(0) + 𝑞

4
𝑊

(2)

11
(0))]

× 𝑧
2
𝑧 + ⋅ ⋅ ⋅ } .

(60)

Comparing the coefficients in (57) with those in (60), it
follows that

𝑔20 =
2𝜏0

𝜌
[𝑙1 (1 − 𝑞

∗

2
) 𝑞

2

2
𝑒
−2𝑖𝜏0𝜔0

+ 𝑙
2
(𝑞

∗

2
− 1) 𝑞

2
𝑒
−2𝑖𝜏0𝜔0 + 𝑎

1
(𝑞

∗

4
− 1) 𝑞

4

+𝑎
2
(𝑞

∗

4
− 𝑞

∗

2
) 𝑞

2
𝑞
4
] ,

𝑔
02 =

2𝜏0

𝜌
[𝑙1 (1 − 𝑞

∗

2
) 𝑞

2

2
𝑒
2𝑖𝜏0𝜔0

+ 𝑙
2
(𝑞

∗

2
− 1) 𝑞

2
𝑒
2𝑖𝜏0𝜔0

+𝑎
1
(𝑞

∗

4
− 1) 𝑞

4
+ 𝑎

2
(𝑞

∗

4
− 𝑞

∗

2
) 𝑞

2
𝑞
4
] ,

𝑔
11

=
𝜏
0

𝜌
[𝑙
1
(1 − 𝑞

∗

2
) 2𝑞

2
𝑞
2
+ 𝑙

2
(𝑞

∗

2
− 1) (𝑞

2
+ 𝑞

2
)

+ 𝑎
1
(𝑞

∗

4
− 1) (𝑞

4
+ 𝑞

4
)

+𝑎
2
(𝑞

∗

4
− 𝑞

∗

2
) (𝑞

2
𝑞
4
+ 𝑞

2
𝑞
4
)] ,

𝑔
21

=
2𝜏0

𝜌
[𝑙

1
(1 − 𝑞

∗

2
)

× (2𝑞
2
𝑊

(2)

11
(−1) 𝑒

−𝑖𝜏0𝜔0 + 𝑞
2
𝑊

(2)

20
(−1) 𝑒

𝑖𝜏0𝜔0)

+ 𝑙
2
(𝑞

∗

2
− 1)

× (𝑊
(2)

11
(−1) 𝑒

−𝑖𝜏0𝜔0 +
1

2
𝑊

(2)

20
(−1) 𝑒

𝑖𝜏0𝜔0

+
1

2
𝑞
2
𝑊

(1)

20
(−1) 𝑒

𝑖𝜏0𝜔0 + 𝑞
2
𝑊

(1)

11
(−1) 𝑒

−𝑖𝜏0𝜔0)

+ 𝑎
1
(𝑞

∗

4
− 1)

× (𝑊
(4)

11
(0) +

1

2
𝑊

(4)

20
(0)

+
1

2
𝑞
4
𝑊

(1)

20
(0) + 𝑞

4
𝑊

(1)

11
(0))

+ 𝑎
2
(𝑞

∗

4
− 𝑞

∗

2
)

× (𝑞
2
𝑊

(4)

11
(0) +

1

2
𝑞
2
𝑊

(4)

20
(0)

+
1

2
𝑞
4
𝑊

(2)

20
(0) + 𝑞

4
𝑊

(2)

11
(0))] .

(61)

Since the 𝑊
20
(𝜃) and 𝑊

11
(𝜃) exist in (61), we need to

compute them. From (44) and (54), we have

�̇� = �̇�
𝑡 − �̇�𝑞 − �̇� ⋅ 𝑞

= 𝐴𝑥𝑡 + 𝑅𝑥𝑡 − [𝑖𝜏0𝜔0𝑧 + 𝑞
∗
(0) 𝑓0 (𝑧, 𝑧)] 𝑞

− [−𝑖𝜏
0
𝜔
0
𝑧 + 𝑞

∗
(0) 𝑓

0
(𝑧, 𝑧)] 𝑞
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= 𝐴 (𝑊 + 2Re (𝑧𝑞)) + 𝑅𝑥
𝑡

− 2Re [𝑞∗ (0) 𝑓0 (𝑧, 𝑧) 𝑞] − 2Re [𝑖𝜏0𝜔0𝑧𝑞]

= {
𝐴𝑊 − 2Re [𝑞∗ (0) 𝑓0 (𝑧, 𝑧) 𝑞 (𝜃)] , −1 ≤ 𝜃 < 0,

𝐴𝑊 − 2Re [𝑞∗ (0) 𝑓0 (𝑧, 𝑧) 𝑞 (𝜃)] + 𝑓, 𝜃 = 0,

≜ 𝐴𝑊 + 𝐻 (𝑧, 𝑧, 𝜃) ,

(62)

where

𝐻(𝑧, 𝑧, 𝜃) = 𝐻20 (𝜃)
𝑧
2

2
+ 𝐻11 (𝜃) 𝑧𝑧 + 𝐻02 (𝜃)

𝑧
2

2
+ ⋅ ⋅ ⋅ .

(63)

Substituting (55) and (63) into (62), we get

�̇� = (𝐴𝑊
20

+ 𝐻
20
)
𝑧
2

2

+ (𝐴𝑊
11

+ 𝐻
11
) 𝑧𝑧 + (𝐴𝑊

02
+ 𝐻

02
)
𝑧
2

2
+ ⋅ ⋅ ⋅ .

(64)

Taking the derivate of𝑊 with respect to 𝑡 in (55), we have

�̇� = 𝑊
𝑧
�̇� + 𝑊

𝑧�̇�

= (𝑊20𝑧 + 𝑊11𝑧 + 𝑊30

𝑧
2

2
+ ⋅ ⋅ ⋅ ) (𝑖𝜏0𝜔0𝑧 + 𝑔)

+ (𝑊
11
𝑧 + 𝑊

02
𝑧 + ⋅ ⋅ ⋅ ) (−𝑖𝜏

0
𝜔
0
𝑧 + 𝑔)

= 𝑖𝜏
0
𝜔
0
𝑊

20
𝑧
2
+ 𝑧𝑧 (𝑖𝜏

0
𝜔
0
𝑊

11
− 𝑖𝜏

0
𝜔
0
𝑊

11
)

− 𝑖𝜏
0
𝜔
0
𝑊

02
𝑧
2
+ ⋅ ⋅ ⋅ .

(65)

Then, together with the two above equations, we obtain

𝐴𝑊
20

+ 𝐻
20

= 2𝑖𝜏
0
𝜔
0
𝑊

20
, 𝐴𝑊

11
+ 𝐻

11
= 0. (66)

By (62), we know that

𝐻(𝑧, 𝑧, 𝜃) = −𝑔𝑞 (𝜃) − 𝑔 ⋅ 𝑞 (𝜃) + 𝑅𝑥
𝑡

= −(𝑔20

𝑧
2

2
+ 𝑔11𝑧𝑧 + 𝑔02

𝑧
2

2
+ ⋅ ⋅ ⋅ ) 𝑞 (𝜃)

− (𝑔
20

𝑧
2

2
+ 𝑔

11
𝑧𝑧 + 𝑔

02

𝑧
2

2
+ ⋅ ⋅ ⋅ ) 𝑞 (𝜃) + 𝑅𝑥

𝑡
.

(67)

We know that when −1 ≤ 𝜃 < 0 𝑅𝑥𝑡 = 0, comparing the
coefficients of the 𝑧2, 𝑧𝑧 in (63) and (67), respectively, we can
find

𝐻
20 (𝜃) = −𝑔

20
𝑞 (𝜃) − 𝑔

02
𝑞 (𝜃) ,

𝐻
11 (𝜃) = −𝑔

11
𝑞 (𝜃) − 𝑔

11
𝑞 (𝜃) .

(68)

Combining (66) with (68), it follows that

�̇�20 (𝜃) = 2𝑖𝜏0𝜔0𝑊20 (𝜃) + 𝑔20𝑞 (𝜃) + 𝑔
02
𝑞 (𝜃) ,

�̇�
11 (𝜃) = 𝑔

11
𝑞 (𝜃) + 𝑔

11
𝑞 (𝜃) ,

− 1 ≤ 𝜃 < 0.

(69)

We solve (69) and get the solutions in the following form:

𝑊
20 (𝜃) =

𝑖𝑔
20

𝜏
0
𝜔
0

𝑞 (0) 𝑒
𝑖𝜏0𝜔0𝜃

−
𝑔
02

3𝑖𝜏
0
𝜔
0

𝑞 (0) 𝑒
−𝑖𝜏0𝜔0𝜃 + 𝐸

1
𝑒
2𝑖𝜏0𝜔0𝜃,

𝑊
11 (𝜃) =

𝑔11

𝑖𝜏
0
𝜔
0

𝑞 (0) 𝑒
𝑖𝜏0𝜔0𝜃

−
𝑔
11

𝑖𝜏0𝜔0

𝑞 (0) 𝑒
−𝑖𝜏0𝜔0𝜃 + 𝐸

2
.

(70)

Next, we consider (66) again when 𝜃 = 0; we can see that

𝐴𝑊
20 (0) = ∫

0

−1

𝑑𝜂 (𝜃)𝑊20 (𝜃) = 2𝑖𝜏0𝜔0𝑊20 (0) − 𝐻20 (0) ,

𝐴𝑊
11 (0) = ∫

0

−1

𝑑𝜂 (𝜃)𝑊11 (𝜃) = −𝐻
11 (0) .

(71)

Furthermore, from (62) and (63), we have

𝐻
20 (0) = −𝑔

20
𝑞 (0) − 𝑔

02
𝑞 (0)

+2𝜏
0
(

𝑙
1
𝑞
2

2
𝑒
−2𝑖𝜏0𝜔0 − 𝑙

2
𝑞
2
𝑒
−2𝑖𝜏0𝜔0 − 𝑎

1
𝑞
4

−𝑙
1
𝑞
2

2
𝑒
−2𝑖𝜏0𝜔0 + 𝑙

2
𝑞
2
𝑒
−2𝑖𝜏0𝜔0 − 𝑎

2
𝑞
2
𝑞
4

0

𝑎
1
𝑞
4
+ 𝑎
2
𝑞
2
𝑞
4

),

(72)

𝐻
11 (0)

= −𝑔
11𝑞 (0) − 𝑔

11
𝑞 (0)

+𝜏
0 (

2𝑙1
𝑞2


2
− 𝑙2 (𝑞2 + 𝑞

2
) − 𝑎1 (𝑞4 + 𝑞

4
)

−2𝑙1
𝑞2


2
+ 𝑙2 (𝑞2 + 𝑞

2
) − 𝑎2 (𝑞2𝑞4 + 𝑞

2
𝑞4)

0

𝑎1 (𝑞4 + 𝑞
4
) + 𝑎2 (𝑞2𝑞4 + 𝑞

2
𝑞4)

).

(73)
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Substitute (70) and (72) into (71) and notice that

(𝑖𝜏0𝜔0𝐼 − ∫

0

−1

𝑒
𝑖𝜏0𝜔0𝜃𝑑𝜂 (𝜃)) 𝑞 (0) = 0,

(−𝑖𝜏
0
𝜔
0
𝐼 − ∫

0

−1

𝑒
−𝑖𝜏0𝜔0𝜃𝑑𝜂 (𝜃)) 𝑞 (0) = 0.

(74)

It is easy to yield

∫

0

−1

𝑑𝜂 (𝜃) 𝐸1
𝑒
2𝑖𝜏0𝜔0𝜃

= 2𝑖𝜏
0
𝜔
0
𝐸
1

− 2𝜏
0
(

𝑙
1
𝑞
2

2
𝑒
−2𝑖𝜏0𝜔0 − 𝑙

2
𝑞
2
𝑒
−2𝑖𝜏0𝜔0 − 𝑎

1
𝑞
4

−𝑙1𝑞
2

2
𝑒
−2𝑖𝜏0𝜔0 + 𝑙2𝑞2𝑒

−2𝑖𝜏0𝜔0 − 𝑎2𝑞2𝑞4

0

𝑎1𝑞4 + 𝑎2𝑞2𝑞4

),

(75)

which leads to

𝐸
1
= 2(

2𝑖𝜔0 + 𝑐3 + 𝑐1𝑒
−2𝑖𝜏0𝜔0 𝑐2𝑒

−2𝑖𝜏0𝜔0 −𝜎 𝑎1𝑆

−𝑐
1
𝑒
−2𝑖𝜏0𝜔0 2𝑖𝜔

0
+ 𝑐

4
− 𝑐

2
𝑒
−2𝑖𝜏0𝜔0 0 𝑎

2
𝐼

0 −𝛿 2𝑖𝜔
0
+ 𝜎 + 𝜇 0

−𝑎
1
𝐴 −𝑎

2
𝐴 0 2𝑖𝜔

0

)

−1

⋅ (

𝑙
1
𝑞
2

2
𝑒
−2𝑖𝜏0𝜔0 − 𝑙

2
𝑞
2
𝑒
−2𝑖𝜏0𝜔0 − 𝑎

1
𝑞
4

−𝑙1𝑞
2

2
𝑒
−2𝑖𝜏0𝜔0 + 𝑙2𝑞2𝑒

−2𝑖𝜏0𝜔0 − 𝑎2𝑞2𝑞4

0

𝑎1𝑞4 + 𝑎2𝑞2𝑞4

) ≜ 2𝑀
−1

1
𝑀

2
.

(76)

By the similar way we can get the 𝐸
2
as in the following:

𝐸
2
= (

𝑐
3
+ 𝑐

1
𝑐
2

−𝜎 𝑎
1
𝑆

−𝑐
1

𝑐
4
− 𝑐

2
0 𝑎

2
𝐼

0 −𝛿 𝜎 + 𝜇 0

−𝑎
1
𝐴 −𝑎

2
𝐴 0 0

)

−1

× (

2𝑙1
𝑞2



2
− 𝑙2 (𝑞2 + 𝑞

2
) − 𝑎1 (𝑞4 + 𝑞

4
)

−2𝑙
1

𝑞2


2
+ 𝑙

2
(𝑞

2
+ 𝑞

2
) − 𝑎

2
(𝑞

2
𝑞
4
+ 𝑞

2
𝑞
4
)

0

𝑎
1
(𝑞

4
+ 𝑞

4
) + 𝑎

2
(𝑞

2
𝑞
4
+ 𝑞

2
𝑞
4
)

) .

(77)

Thus, we can calculate the 𝑊
20
(𝜃) and 𝑊

11
(𝜃) from (70).

Consequently, 𝑔
21

in (61) can be received. Then, we need to
compute the following parameters [19]:

𝐶1 (0) =
𝑖

2𝜏
0
𝜔
0

(𝑔20𝑔11 − 2
𝑔11



2
−

𝑔02


2

3
) +

𝑔
21

2
, (78)

𝜇
2
= −

Re {𝐶
1 (0)}

Re {𝜆 (𝜏
0
)}

, 𝛽
2
= 2Re {𝐶

1 (0)} ,

𝑇
2 = −

Im {𝐶
1 (0)} + 𝜇

2
Im {𝜆


(𝜏

0
)}

𝜏
0
𝜔
0

,

(79)

which determine the characteristic of bifurcating periodic
solutions in the center manifold at the critical value 𝜏0. More
details are given in the following theorem.

Theorem 10. Under the conditions of Theorem 6 one has the
following.

(1) 𝑢 = 0 is Hopf bifurcation value of system (39).

(2) The direction of Hopf bifurcation is determined by
the sign of 𝜇

2
: if 𝜇

2
> 0, the Hopf bifurcation

is supercritical; if 𝜇
2

< 0, the Hopf bifurcation is
subcritical.

(3) The stability of bifurcating periodic solutions is deter-
mined by 𝛽

2
: if 𝛽

2
< 0, the periodic solutions are stable;

if 𝛽
2
> 0, they are unstable.

(4) The sign of 𝑇
2
determines the period of the bifurcating

periodic solutions: if 𝑇
2

> 0, the period increases; if
𝑇
2
< 0, the period decreases.

4. Numerical Example

In this section, we will present some numerical simulations
for verifying our theoretical analysis. Our example involves 9
parameters, including the delay 𝜏.

Case 1. Consider 𝑎
1

= 0.025, 𝑎
2

= 0.25, 𝜎 = 0.8, 𝛼 =

0.5, 𝛽 = 0.5, 𝛿 = 0.4, 𝜇 = 0.2, and 𝑁 = 0.2. In this
example, according toTheorems 1 and 3, the system in Case 1
only has one reasonable equilibrium point [1, 0, 0, 0] and this
equilibrium is locally asymptotically stable with arbitrarily 𝜏,
because 𝐾0

= 0.8333 < 1, 𝐾
1
= 0.1250 < 1, 𝐾

2
= 0.6009 < 1,

and𝐾3 = 0.5621 < 1.Whenwe let 𝜏 = 0.5, with the randomly
chosen initial value [0.6145 0.5077 1.6924 0.5913], the
time response curves are shown in Figures 1 and 2.

Case 2. Consider 𝑎1 = 0.025, 𝑎2 = 0.25, 𝜎 = 0.8, 𝛼 = 1,
𝛽 = 4, 𝛿 = 0.3, 𝜇 = 0.1, and 𝑁 = 0.2. We can calculate
that 𝐾

2
= 1.7838 > 1, 𝐾

3
= 1.0653 > 1, 𝐷

1
= 2.3180 > 0,

𝐷
2
= 4.3667 > 0, 𝐷

3
= 2.1135 > 0, 𝐷

4
= 0.0711 > 0, and

𝜏
0
= 2.3581; we can see that all conditions of Theorem 6 are

satisfied; thus, it is easy to obtain the following results.
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Figure 1: All components of the system converge to the equilibrium.
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Figure 2: The first component of the system converges to 1.

When 𝜏 ∈ [0, 𝜏
0
), there is only one positive

equilibrium point [0.2454 0.3755 0.1252 1.2540],
which is asymptotically stable. In simulation, we choose
[0.255 0.38 0.11 1.24] as initial values; when 𝜏 = 2 < 𝜏0,
the simulation results are Figures 3 and 4; the system in Case
2 undergoes a Hopf bifurcation at the equilibrium point
when 𝜏 = 2.3581 = 𝜏0, as shown in Figures 5 and 6.

Furthermore, when adopting Theorem 10, it is easy to
acquire more details about the bifurcating periodic solutions.
By (79), we can compute that 𝐶1(0) = −4.1125 − 4.2861𝑖,
𝜇2 = 43.8461 > 0, 𝛽2 = −8.2251 < 0, and 𝑇2 = 7.8990 > 0.
Hence, by Theorem 10, we know that the bifurcating point is
supercritical, the periodic solutions are stable, and the period
increases.
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Figure 3: The first component of the system converges to 0.2454.
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Figure 4: Other three components of the system converge to
[0.3755 0.1252 1.2540].

5. Conclusions

In this paper, a modified SIRA model with time delay
and nonlinear terms has been proposed, and sufficient
conditions on the existence of the virus-free and endemic
equilibrium points have been derived. We also obtained
several results guaranteeing the stability of the equilibrium
and the occurrence of the Hopf bifurcation at the critical
value. By using normal form and center manifold theory,
the explicit formulae which determine the stability, direction,
and other properties of bifurcating periodic solutions have
been established. Numerical simulations have been presented
to verify the accuracy of our results. The present model
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Figure 5: The first component oscillates as a periodic solution.
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Figure 6: The system undergoes a Hopf bifurcation.

can be extended to formulate the more general network for
computer virus spread.
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