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Abstract

We investigate the relationship between circuit bottom fan-in and
circuit size when circuit depth is �xed. We show that in order to com-
pute certain functions, a moderate reduction in circuit bottom fan-in
will cause signi�cant increase in circuit size. In particular, we prove
that there are functions that are computable by circuits of linear size
and depth k with bottom fan-in 2 but require exponential size for cir-
cuits of depth k with bottom fan-in 1. A general scheme is established
to study the trade-o� between circuit bottom fan-in and circuit size.
Based on this scheme, we are able to prove, for example, that for any
integer c, there are functions that are computable by circuits of linear
size and depth k with bottom fan-in O(logn) but require exponential
size for circuits of depth k with bottom fan-in c, and that for any
constant � > 0, there are functions that are computable by circuits
of linear size and depth k with bottom fan-in logn but require super-
polynomial size for circuits of depth k with bottom fan-in O(log1�� n).
A consequence of these results is that the three input read-modes of
alternating Turing machines proposed in the literature are all distinct.
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1 Introduction

To prove lower bounds for various computational models remains as one of
the most challenging tasks in complexity theory. Much progress has been
made recently in deriving lower bounds for computational models with lim-
ited capabilities, with the hope that these may lead to better lower bounds
for more general computational models and to better understanding of in-
trinsic complexity of computation.

One of the most successful trials is the derivation of lower bounds for
constant depth circuits. The �rst strong lower bounds were given by Furst,
Saxe, and Sipser [12], independently by Ajtai [1], who show that the size of
a constant depth circuit computing the parity function is superpolynomial.
The results were subsequently sharpened by Yao [18] who derived an ex-
ponential lower bound. H�astad [14, 15] further strengthened the result and
obtained near optimal lower bounds. A direct consequence of these results is
that the logarithmic time hierarchy [17], i.e., the set of languages accepted
by families of circuits of constant depth and polynomial size, is a proper
subset of P .

The logarithmic time hierarchy was further re�ned by Sipser [17] who
showed that for each integer k > 1, there are functions that are computable
by a circuit of depth k and polynomial size but require superpolynomial size
for circuits of depth k� 1. Thus, all levels of the logarithmic time hierarchy
are distinct. Exponential lower bounds for the depth k to k � 1 conversion
were �rst claimed by Yao [18] and then fully proved by H�astad [14, 15].

In this paper, we will further sharpen the separation results in the log-
arithmic time hierarchy by investigating the relationship between circuit
bottom fan-in and circuit size when circuit depth is �xed. We show that in
order to compute certain functions, a moderate reduction in circuit bottom
fan-in will cause signi�cant increase in circuit size. In particular, we prove
that there are functions that are computable by circuits of linear size and
depth k with bottom fan-in 2 but require exponential size for circuits of
depth k with bottom fan-in 1. A general scheme is established to study
the trade-o� between circuit bottom fan-in and circuit size. Based on this
scheme, we are able to prove, for example, that for any integer c, there are
functions that are computable by circuits of linear size and depth k with
bottom fan-in O(logn) but require exponential size for circuits of depth k
with bottom fan-in c, and that for any constant � > 0, there are functions
that are computable by circuits of linear size and depth k with bottom fan-in
log n but require superpolynomial size for circuits of depth k with bottom
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fan-in O(log1�� n). Therefore, the computational power of constant depth
circuits depends not only on its depth, but also strictly on its bottom fan-in
when the depth of the circuits is �xed.

Another motivation of our present research is from the study of input
read-modes of a sublinear-time alternating Turing machine, which is an im-
portant computational model in the study of complexity classes. A number
of input read-modes for sublinear-time alternating Turing machines have
appeared in the literature. In the standard model proposed by Chandra,
Kozen, and Stockmeyer [9], a computation path of the machine can read up
to O(log n) input bits in time O(logn). Ruzzo [16] proposed an input read-
mode in which each computation path can read at most one input bit and
the reading must be performed at the end of the path. An input read-mode
studied by Sipser [17] insists that each input reading takes time 
(log n).
These input read-modes have been carefully studied by Cai and Chen [6],
who have given a precise circuit characterization for each read-mode for
log-time alternating Turing machines of constant alternations. Input read-
modes of log-time alternating Turing machines also �nd applications in the
study of computational optimization problems [5, 8] and in the study of
limited nondeterminism [7].

Based on Cai and Chen's circuit characterizations and our separation re-
sults in constant depth circuits, we are able to show that the three proposed
input read-modes for alternating Turing machines are all distinct. More
precisely, if we let �U

k (resp. �R
k , �

S
k ) be the class of languages accepted by

log-time k-alternation alternating Turing machines using Chandra, Kozen,
and Stockmeyer's (resp. Ruzzo's, Sipser's) input read-mode, then we can
show that for all integers k � 1

�R
k � �S

k � �U
k � �R

k+1

where � means \proper subset". This gives a very detailed re�nement of
the logarithmic time hierarchy, and shows the rich structural properties of
the logarithmic time hierarchy.

The paper is organized as follows. Section 2 introduces necessary def-
initions and related previous work. In Section 3, we show that in order
to compute certain functions, an O(log n) factor reduction in circuit bot-
tom fan-in may cause exponential increase in circuit size. In Section 4, we
show that for circuits computing certain special functions, even reducing
the circuit bottom fan-in by 1 will result in exponential increase in circuit
size. A general scheme is established in Section 5 to study the trade-o� be-
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tween circuit bottom fan-in and circuit size. The relationship to the input
read-modes of alternating Turing machines is given in Section 6.

2 Preliminaries

We briey review the fundamentals related to the present paper. For fur-
ther discussion on the theory of circuit complexity and alternating Turing
machines, the reader is referred to [3, 11].

An (unbounded fan-in) Boolean circuit �n with input x = x1x2 � � � xn of
length n is a directed acyclic graph. The fan-in of a node in the circuit is
the in-degree of the node. The nodes of fan-in 0 are called inputs and are
labeled from the set f0; 1; x1; x1; � � � ; xn; xng. The nodes of fan-in greater
than 0 are called gates and are labeled either and or or. One of the nodes
is designated the output node. The size is the number of gates, and the
depth is the maximum distance from an input to the output. Without loss
of generality, we assume the circuits are of the special form where all and
and or gates are organized into alternating levels with edges only between
adjacent levels. Any circuit may be converted to one of this form without
increasing the depth and by at most squaring the size [10]. In this special
form, the gates that are connected to input nodes will be called bottom level

gates, or depth 1 gates. The gates that receive inputs >from depth 1 gates
will be called depth 2 gates, and so on. The bottom fan-in of a circuit is
the maximum over fan-ins of all bottom level gates. The following notation
introduced by Boppana and Sipser [3] will be especially convenient in our
discussion.

De�nition [3] A circuit � is a �s
k-circuit (resp. �

s
k-circuit) if � is a depth k

circuit of size at most s with an and-gate (resp. an or-gate) at the output.
A circuit � is a �s;c

k -circuit (resp. �s;c
k -circuit) if � is a depth k + 1 circuit

of size at most s with bottom fan-in c and an and-gate (resp. an or-gate)
at the output.

A family of circuits is a sequence f�n jn � 1g of circuits, where �n is
with input of length n. A family of circuits may be used to de�ne a language.
A family f�n j n � 1g of circuits is said to be a �poly

k -family (resp. �poly;c
k -

family) if there is a polynomial p such that for all n � 1, �n is a �
p(n)
k -circuit

(resp. �
p(n);c
k -circuit).

The Sipser function fmk , as de�ned in [14, 15], is given by the circuit
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Figure 1: The circuit Cm
k de�ning the function fmk

Cm
k shown in Figure 1. The circuit Cm

k is a tree of depth k in which every
gate in the bottom level has fan-in

p
km logm=2, the fan-in of the output

gate is
p
m= logm, and the fan-in for all other gates is m. Each variable xi,

1 � i � n, occurs at only one leaf. Note that the number n of variables of
the function fmk equals mk�1pk=2.

The following theorem is proved by H�astad [14, 15].

Theorem 2.1 ([14, 15]) There is no depth k circuit computing the function

fmk with bottom fan-in 1
12
p
2k

q
m

logm and fewer than 2
1

12
p
2k

p
m

logm gates of

depth � 2, for m > m0, where m0 is a absolute constant.

To further sharpen the separation results and study the relationship
between circuit bottom fan-in and circuit size, we introduce a variation fm;b

k

of the Sipser function by explicitly specifying the bottom fan-in for the
de�ning circuits.

De�nition Let Cm;b
k be the tree circuit de�ning the Sipser function fmk ,

as illustrated in Figure 1, except that each bottom level gate of Cm;b
k has

fan-in b instead of
p
km logm=2. De�ne fm;b

k to be the function computed

by the tree circuit Cm;b
k . The number n of variables of the function fm;b

k is
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n = bmk�2pm= logm.

The discussion of the present paper is centered on the complexity of the
function fm;b

k .

3 On circuits that compute f
m;
(logm)
k

In this section, we consider the complexity of the function fm;b
k , where b is

of order 
(logm).

Our main result in this section is that for b > k logm, the function fm;b
k

cannot be computed by any depth k circuit without exponential size and
with bottom fan-in b

c logm for a particular constant c. This result requires
two di�erent proofs depending on whether the bottom fan-in b is larger or
smaller than the bottom fan-in of the standard Sipser function circuit Cm

k

given in Figure 1.
We �rst consider the case b � pkm logm=2. For this, we need to briey

review some notation and results by H�astad [14].

De�nition ([14]) Let q be a real number and (Bi)
r
i=1 a partition of the

variables. Let R+
q;B be the probability space of restrictions � that take values

as follows.
For every Bi, 1 � i � r independently

1. With probability q let si = � and else si = 0.

2. For every xk 2 Bi let �(xk) = si with probability q and else �(xk) = 1.

Similarly, an R�
q;B probability space of restrictions is de�ned by inter-

changing the roles played by 0 and 1.
The idea behind these restrictions is that a block Bi will correspond to

the variables leading into one of the bottom level gates of the circuit Cm;b
k

that de�nes the function fm;b
k . If the bottom level gates of Cm;b

k are ands,

we use a restriction from R+
q;B; if the bottom level gates of Cm;b

k are ors, we

use a restriction from R�
q;B .

De�nition ([14]) For a restriction � 2 R+
q;B, let g(�) be the restriction de-

�ned as follows: For all Bi with si = �, g(�) gives the value 1 to all variables
which are given value � by � except the one with the highest index among
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those variables given value � by �, to which g(�) gives value �.

If � 2 R�
q;B, then g(�) is de�ned similarly but now takes the value 0 and

�. Note that for a given restriction �, the restriction g(�) can be obtained
by a deterministic process that makes each block Bi have at most one �.

Let �g(�) denote the composition of the two restrictions. That is, �g(�)
is the restriction g(�) obtained from the restriction �.

Lemma 3.1 (The Switching Lemma [14]) Let � be an and of ors all of

size � t and � 2 R+
q;B. Then the probability that under the restriction �g(�)

� cannot be written as an or of ands all of size < s is bounded by �s, where
� < 4qt

ln 2 < 5:78qt.

The Switching Lemma is also true if we do either or both of the following
replacements: (1) replacing the probability space R+

q;B by the probability

space R�
q;B ; and (2) replacing � by an or of ands to be converted to an and

and ors.
Now we are ready for our �rst main result of this section.

Theorem 3.2 For k logm < b � pkm logm=2, the function fm;b
k cannot be

computed by any depth k circuit of bottom fan-in b
12k logm and size bounded

by 2
1

12
p

2(k�1)

p
m

logm , for m > m0, where m0 is an absolute constant.

Proof. The proof is similar to the induction step in the proof given by
H�astad for Theorem 2.1 (see [14], pages 48-50). Therefore, we only outline
the proof and describe in detail those places that are di�erent.

We set q = k logm
b . Suppose that �1, : : :, �r, r = mk�2pm= logm, are

the bottom level gates of the tree circuit Cm;b
k de�ning the function fm;b

k .

Let (Bj)
r
j=1 be the partition of the variables of fm;b

k such that block Bj is

the set of variables leading into the bottom level gate �j of C
m;b
k .

Claim 1: The probability that under the restriction �g(�) any bottom level

gate �j of the tree circuit C
m;b
k does not take value sj is bounded by 1

6m .
The proof is identical to the proof by H�astad for Fact 1 in [14] (page 49):

Such a gate �j does not take the corresponding value sj with probability
(1 � q)jBj j < 1

6m
�k. Since there are fewer than mk�1 bottom level gates in

the tree circuit Cm;b
k , the probability in Claim 1 is bounded by 1

6m .
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Claim 2: The probability that under the restriction �g(�) any depth 2 gate

in the tree circuit Cm;b
k gets fewer than

p
(k � 1)m logm=2 �'s from the

bottom level is bounded by 1
m .

Let pi =
�m
i

�
qi(1 � q)m�i be the probability that a �xed depth 2 gate

� in the tree circuit Cm;b
k gets exactly i �'s from the bottom level. With

the condition b � pkm logm=2, we can show that for i � p(k � 1)m logm,
we have pi

pi�1
� p

2. Thus the probability that the gate � gets fewer thanp
(k � 1)m logm=2 �'s is bounded by m�k for su�ciently large m. Since

there are fewer than mk�1 depth 2 gates in the tree circuit Cm;b
k , the prob-

ability in Claim 2 is bounded by 1
m .

Now suppose that the theorem is not true. Thus, there is a depth k

circuit C0 of size bounded by 2
1

12
p

2(k�1)

p
m

logm and bottom fan-in t � b
12k logm

that computes the function fm;b
k . Furthermore, assume that the gates in the

bottom level of the circuit C0 are or gates (the dual case can be proved
similarly).

Claim 3: The probability that under the restriction �g(�) any depth 2 gate

in the circuit C0 cannot be written as an or of ands of size
1

12
p

2(k�1)
q

m
logm

is bounded by 1
2 .

Let � be a �xed depth 2 gate in the circuit C0. By the Switching Lemma,
under the restriction �g(�), the probability that � cannot be written as an or

of ands of size 1

12
p

2(k�1)
q

m
logm is bounded by (5:78qt)

1

12
p

2(k�1)

p
m

logm . Since

the circuit C0 has at most 2
1

12
p

2(k�1)

p
m

logm depth 2 gates, the probability in
Claim 3 is bounded by

(5:78qt)
1

12
p

2(k�1)

p
m

logm � 2
1

12
p

2(k�1)

p
m

logm

< (5:7812 )
1

12
p

2(k�1)

p
m

logm � 2
1

12
p

2(k�1)

p
m

logm

� (5:786 )
1

12
p

2(k�1)

p
m

logm

which is smaller than 1
2 when m is su�ciently large.

Therefore with a probability larger than 1� ( 1
6m + 1

m + 1
2) >

1
3 , the tree

circuit Cm;b
k becomes a circuit that computes a function f at least as hard as

the Sipser function fmk�1, and the circuit C0 becomes a depth k�1 circuit that
computes the function f and has bottom fan-in 1

12
p

2(k�1)
q

m
logm and fewer
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than 2
1

12
p

2(k�1)

p
m

logm gates of depth � 2. But this contradicts Theorem 2.1.

Letting b =
p
km logm=2 in Theorem 3.2, we obtain Theorem 2.1. Note

that the size bound is slightly improved.
Note that the condition b � p

km logm=2 in Theorem 3.2 is essential
in the proof for Claim 2. For larger bottom fan-in b, we have the following
theorem.

Theorem 3.3 For b � 2
p
km logm=2, the function fm;b

k cannot be com-

puted by any depth k circuit of bottom fan-in b
25ke logm and size bounded by

2
1

12
p
2k

p
m

logm , for m > m0, where m0 is an absolute constant and e is the

base of the natural logarithm.

Proof. Let q =
1:04

p
km logm=2

b . Consider the following probability space
R+
q of restrictions:

For each variable xk of the function fm;b
k , let �+(xk) = � with

probability q and else �+(xk) = 1.

The probability space R�
q is de�ned similarly except that the value 1 is

replaced by value 0.
>From now on, we assume that the bottom level gates of the tree circuit

Cm;b
k de�ning fm;b

k are and gates. The case when the bottom level gates of

Cm;b
k are or gates can be proved similarly by using the probability space

R�
q instead of the probability space R+

q .
We �rst show that under a restriction �+ 2 R+

q , with very large prob-

ability, the tree circuit Cm;b
k computes a function at least as hard as the

Sipser function fmk . The proof is similar to that for Claim 2 in Theorem 3.2.
Thus, we only describe the di�erences.

Let � be a bottom level gate in the tree circuit Cm;b
k . The gate � is an

and gate of fan-in b. Let pi =
�b
i

�
qi(1 � q)b�i be the probability that the

gate � gets exactly i �'s under a restriction �+ 2 R+
q . First we consider the

ratio
pi
pi�1

=
b� i+ 1

i
� q

1� q
>

b� i

i
� q

1� q

For i � 1:02
p
km logm=2, we have

b� i

i
� b� 1:02

p
km logm=2

1:02
p
km logm=2
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and

q

1� q
=

(1:04
p
km logm=2)=b

1� (1:04
p
km logm=2)=b

=
1:04

p
km logm=2

b� 1:04
p
km logm=2

Thus, we have

pi
pi�1

>
b� 1:02

p
km logm=2

1:02
p
km logm=2

� 1:04
p
km logm=2

b� 1:04
p
km logm=2

� 52

51

This gives (51=52)j�ipj > pi for i < j � 1:02
p
km logm=2.

Now under a restriction �+ 2 R+
q , the probability that the gate � gets

fewer than
p
km logm=2 �'s is bounded by

Ppkm logm=2
i=0 pi <

Ppkm logm=2
i=0 (51=52)

p
km logm=2�ipp

km logm=2
�

� 52pp
km logm=2

< 52(51=52)0:02
p

km logm=2p
1:02

p
km logm=2

�

� 52(51=52)0:02
p

km logm=2

and 52(51=52)0:02
p

km logm=2 is smaller than 1
mk for su�ciently large m.

Since the circuit Cm;b
k has fewer than mk�1 bottom level gates, we con-

clude that under a restriction �+ 2 R+
q , the probability that any bottom level

gate of the tree circuit Cm;b
k gets fewer than

p
km logm=2 �'s is bounded by

1
m .

Now suppose that the theorem is not true. Thus, there is a depth k cir-

cuit C0 of bottom fan-in at most b
25ke logm and size bounded by 2

1

12
p
2k

p
m

logm

such that the circuit C0 computes the function fm;b
k . We show that under

a restriction �+ 2 R+
q , with very large probability, the circuit C0 becomes a

depth k circuit of bottom fan-in at most 1
12
p
2k

q
m

logm .

Let � be a bottom level gate of fan-in c � b
25ke logm in the circuit C0,

and let ri =
�c
i

�
qi(1� q)c�i be the probability that the gate � gets exactly i

�'s under a restriction �+ 2 R+
q . We have 

c

i

!
qi(1� q)c�i � c!

i!(c � i)!
qi � ciqi

i!
�
�
cqe

i

�i

where the last inequality is based on Stirling's approximation [13]

i! � 0:9(i=e)i
p
2�i � (i=e)i; for i � 1

11



Let s = 1
12
p
2k

q
m

logm . Under a restriction �+ 2 R+
q the probability that the

gate � gets more than s �'s is bounded by

cX
i=s+1

ri �
cX

i=s+1

�
cqe

i

�i
�

cX
i=s+1

0
@ 1:04

25
p
2k

q
m

logm

i

1
A

i

For i > s = 1
12
p
2k

q
m

logm , we have (
1:04

25
p
2k

q
m

logm )=i <
12:48
25 . Thus under a

restriction �+ 2 R+
q the probability that the gate � gets more than s �'s is

bounded by
cX

i=s+1

(12:48=25)i < (12:48=25)s

Since the circuit C0 has at most 2s bottom level gates, we conclude that
under a restriction �+ 2 R+

q , the probability that any bottom level gate of
the circuit C0 gets more than s �'s is bounded by

(12:48=25)s � 2s = (24:96=25)s = (24:96=25)
1

12
p
2k

p
m

logm

which is smaller than 1
m for su�ciently large m.

Thus, under a restriction �+ 2 R+
q , with probability � 1� 1

m � 1
m > 1

2 ,

all bottom level gates of the tree circuit Cm;b
k get at least

p
km logm=2 �'s

(thus Cm;b
k is converted to a circuit computing a function at least as hard as

the Sipser function fmk ), and all bottom level gates of the circuit C0 get at

most 1
12
p
2k

q
m

logm �'s. Note that if a bottom level gate � of the circuit C0

gets at most 1
12
p
2k

q
m

logm �'s, then either the gate � is eliminated from the

bottom level (e.g., � is an and gate and gets an input with value 0) or the

gate � becomes a gate of fan-in at most 1
12
p
2k

q
m

logm . In any case, we have

derived that there is an assignment that converts the circuit C0 into a depth
k circuit C 0 of bottom fan-in bounded by 1

12
p
2k

q
m

logm and size bounded by

2
1

12
p
2k

p
m

logm such that the circuit C 0 computes a function at least as hard
as the Sipser function fmk . But this contradicts Theorem 2.1.

This completes the proof.

4 On circuits that compute f
m;2
k

In the previous section, we showed that for circuits to compute the function
fm;b
k , b = 
(logm), an O(logm) factor reduction in bottom fan-in may cause
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an exponential increase in the circuit size. In this section, we will show that
in certain cases, even reducing the circuit bottom fan-in by 1 will cause an
exponential increase in the circuit size. More precisely, we will show that
the function fm;2

k can be computed by a depth k circuit of linear size and
bottom fan-in 2, but requires exponential size for depth k circuits of bottom
fan-in 1. Note that a depth k circuit of bottom fan-in 1 is actually a depth
k � 1 circuit.

We prove the above result with a new probability space of restrictions.
We start with the following lemma.

Lemma 4.1 Partition the Boolean variables fx1; � � � ; xng into groups of c
variables each. For each group, randomly pick r variables and assign them

0, and assign the rest c � r variables �. Let � be an or of a subset S�
of fx1; x1; � � � ; xn; xng such that S� contains at least h negative literals xi.
Then with the above random assignment,

Pr[� 6� 1] � ((c � r)=c)h

Proof. Let s = n=c be the number of groups in the partition given in the
statement of the lemma. We �rst rename the literals in the set S� so that
x
(d)
1 , : : :, x

(d)
jd
, d = 1; : : : ; s, j1 + � � � + js = h, are h negative literals in S�,

where x
(d)
1 , : : :, x

(d)
jd

belong to the same group in the partition, d = 1; : : : ; s.

Let A
(d)
t be the event that the variable x

(d)
t is not assigned 0 by the

random assignment, and let E� 6�1 be the event that � is not identical to 1.
Then

E� 6�1 �
s\

d=1

(A
(d)
1 \ � � � \A

(d)
jd
)

Thus

Pr[� 6� 1] = Pr[E� 6�1] � Pr[
s\

d=1

(A
(d)
1 \ � � � \A(d)

jd
)] =

sY
d=1

Pr[A
(d)
1 \ � � � \A(d)

jd
]

The last equality is because the event A
(d)
1 \ � � � \A(d)

jd
and the event A

(d0)
1 \

� � � \A
(d0)
jd0

are independent for d 6= d0.

Now consider Pr[A
(d)
1 \ � � � \ A

(d)
jd
]. If jd > c � r, then by the way we

assign the dth group, at least one of the variables x
(d)
1 , : : :, x

(d)
jd

is assigned
0. Therefore,

Pr[A
(d)
1 \A

(d)
2 \ � � � \A

(d)
jd
] = 0

13



If jd � c� r, then

Pr[A
(d)
1 \A

(d)
2 \ � � � \A

(d)
jd
] =

Pr[A
(d)
1 ] � Pr[A(d)

2 jA(d)
1 ] � Pr[A(d)

3 jA(d)
1 \A

(d)
2 ] � � �Pr[A(d)

jd
jA(d)

1 \ � � � \A
(d)
jd�1]

Note that

Pr[A
(d)
i jA(d)

1 \ � � � \A
(d)
i�1] =

c� r � i+ 1

c� i+ 1
� c� r

c

Thus,

Pr[A
(d)
1 \A

(d)
2 \ � � � \A

(d)
jd
] � ((c� r)=c)jd

This gives directly

Pr[� 6� 1] �
sY

d=1

Pr[A
(d)
1 \ � � � \A

(d)
jd
] �

sY
d=1

�
c� r

c

�jd
=

�
c� r

c

�h

Similarly we can prove

Lemma 4.2 Partition the Boolean variables fx1; � � � ; xng into groups of c
variables each. For each group, randomly pick r variables and assign them

1, and assign the rest c � r variables �. Let � be an or of a subset S� of

fx1; x1; � � � ; xn; xng such that S� contains at least h positive literals xi. Then
with the above random assignment,

Pr[� 6� 1] � ((c � r)=c)h

Now we are ready for the main theorem of this section.

Theorem 4.3 The function fm;2
k cannot be computed by any depth k � 1

circuit of size bounded by 2
1

12
p

2(k�1)

p
m

logm
for m > m0, where m0 is an

absolute constant.

Proof. To simplify the expressions, we let s = 1

12
p

2(k�1)
q

m
logm . Suppose

that the theorem is not true and that there is a depth k� 1 circuit C of size
2s that computes the function fm;2

k . Furthermore, we assume that the gates
in the bottom level of C are or gates (the case that the bottom level gates
of C are and gates can be proved similarly.)

14



Randomly pick one variable from each pair x2i�1 and x2i and assign it 0.
This will reduce the tree circuit Cm;2

k de�ning fm;2
k to the tree circuit Cm;m

k�1
de�ning fm;m

k�1 .
Let � be an or gate in the bottom level of the circuit C such that � has

more than s negative literals in its input, then by Lemma 4.1,

Pr[� 6� 1] � (1=2)s+1

Let �1, � � �, �r, r � 2s, be all the gates in the bottom level of the circuit C
such that there are more than s negative literals in their input, then

Pr[�1 6� 1_ � � � _ �r 6� 1] � Pr[�1 6� 1] + � � �+Pr[�r 6� 1] � 2s(1=2)s+1 = 1=2

Thus,
Pr[�1 � 1 ^ � � � ^ �r � 1] � 1=2

Therefore, there is an assignment that converts the circuit Cm;2
k to the circuit

Cm;m
k�1 and eliminates all gates in the bottom level of the circuit C in whose

input there are more than s negative literals. Let the circuit obtained from
C by this assignment be C 0.

Now partition the input of the function fm;m
k�1 into groups of m variables

each such that each group corresponds to the inputs to a bottom level gate
of the tree circuit Cm;m

k�1 . Randomly pick half of the variables in each group
and assign them 1. The circuit Cm;m

k�1 under such an assignment is converted

to the circuit C
m;m=2
k�1 de�ning the function f

m;m=2
k�1 .

Let � be an or gate in the bottom level of the circuit C 0 with more than
s positive literals in its input, then by Lemma 4.2,

Pr[� 6� 1] � (1=2)s+1

Let �1, � � �, �t, t � 2s, be all the gates in the bottom level of the circuit C 0

with more than s positive literals in their input, then

Pr[�1 6� 1_� � �_�t 6� 1] � Pr[�1 6� 1]+ � � �+Pr[�t 6� 1] � 2s(1=2)s+1 = 1=2

Thus,
Pr[�1 � 1 ^ � � � ^ �t � 1] � 1=2

Therefore, there is an assignment that converts the circuit Cm;m
k�1 to the

circuit C
m;m=2
k�1 and eliminates all gates in the bottom level of C 0 that have

more than s positive literals in their input. Let the circuit obtained from C 0

by this assignment be C 00.

15



Since each gate in the bottom level of the circuit C 00 has neither more
than s negative literals nor more than s positive literals in its input, the bot-
tom fan-in of the circuit C 00 is at most 2s = 1

6
p

2(k�1)
q

m
logm , which is smaller

than m=2
25e(k�1) logm for su�ciently large m. Thus, we have constructed a cir-

cuit C 00 of depth k�1, bottom fan-in less than m=2
25e(k�1) logm , and size bounded

by 2s = 2
1

12
p

2(k�1)

p
m

logm such that C 00 computes the function f
m;m=2
k�1 . This

contradicts Theorem 3.3.

The following corollary will be used in Section 6.

Corollary 4.4 The function fm;2
k can be computed by a circuit of depth k,

linear size, and bottom fan-in 2, but cannot be computed by any depth k� 1
circuit of polynomial size.

Corollary 4.5 For each pair of integers k; c > 1, there are functions that

are computable by circuits of linear size and depth k with bottom fan-in c
but require exponential size for circuits of depth k � 1.

5 Trade-o� between bottom fan-in and size

We �rst summarize the results in the previous two sections in the following
theorem.

Theorem 5.1 For all integers b � 2 and su�ciently large m, the function

fm;b
k can be computed by a depth k circuit of linear size and bottom fan-in

b, but requires size larger than 2
1

12
p
2k

p
m

logm for depth k circuits of bottom

fan-in b
25ek logm .

Proof. For the case 2 � b � k logm, since b
25ek logm < 1, the theorem

is implied by Theorem 4.3. The case k logm < b � p
km logm=2 is proved

in Theorem 3.2. For the case
p
km logm=2 < b < 2

p
km logm=2, since

b
25ek logm �

p
km logm=2

12k logm , the theorem is implied by Theorem 3.2. Finally,

the case b � 2
p
km logm=2 is proved by Theorem 3.3.

A number of important consequences follow directly >from Theorem 5.1.
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Theorem 5.2 For any integers k � 1 and h � 1, and for any real number r,
there are functions that are computable by circuits of linear size and depth k
with bottom fan-in O(logh n), but require exponential size for depth k circuits

of bottom fan-in r logh�1 n.

Proof. Let b = 25ek(k � 1)h�1r loghm. Note that in this case, the

number of variables in the function fm;b
k is n � mk�1 for m large enough.

Thus, logm � log n � (k � 1) logm. By the de�nition, the function fm;b
k

can be computed by a depth k and linear size circuit with bottom fan-in
b = O(logh n). On the other hand, according to Theorem 5.1, the function

fm;b
k requires exponential size for depth k circuits whose bottom fan-in is
r(k � 1)h�1 logh�1m. Note that r(k � 1)h�1 logh�1m is at least as large as
r logh�1 n.

By more careful selections of the bottom fan-in b in Theorem 5.1, com-
bined with a padding technique, we are able to obtain general results for the
trade-o� between circuit size and circuit bottom fan-in. We illustrate this
technique by the following theorem, which can be easily extended to other
cases using the same technique.

Theorem 5.3 For any integer k � 1 and for any real number � > 0, there is
a function F �

k that is computable by a circuit of linear size and depth k with

bottom fan-in logn, but requires superpolynomial size for depth k circuits of

bottom fan-in O(log1�� n).

Proof. Choose h such that h
h+1 > 1 � �, and then use Theorem 5.2

to choose a function fm;b
k of � mk�1 variables which can be computed by

a depth k circuit of linear size and bottom fan-in b = 25ek logh+1m but
requires size

2
1

12
p
2k

p
m

logm (1)

when the bottom fan-in is � loghm.
Now make the function fm;b

k formally the function F �
k of n = 225ek log

h+1 m

variables by adding dummy variables that are not used. The theorem now
follows for the function F �

k since the size bound (1) is superpolynomial in n
and c log1�� n < loghm for any �xed constant c when m is su�ciently large.
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In particular, if we let � = 1 and h = 1, then we obtain the following
corollary that will be used in Section 6.

Corollary 5.4 For any integer k � 1, there is a function Fk that is com-

putable by a circuit of linear size and depth k with bottom fan-in log n, but
requires superpolynomial size for depth k circuits of bottom fan-in O(1).

6 Input read-modes of Turing machines

An important application of the above investigation is to the input read-
modes of a sublinear-time alternating Turing machine, which is an important
computational model in the study of complexity classes.

To make sublinear-time Turing machines meaningful, we allow a Turing
machine to have a random access input tape plus a read-write input address
tape, such that the Turing machine has access to the bit of the input tape
denoted by the contents of the input address tape.

An O(logn)-time alternating Turing machine (log-time ATM) is de�ned
as an extension of the O(log n)-time deterministic Turing machines in the
usual way [9]. Given an input, the computation of a log-time ATM M can
be represented by an ^-_ tree. Each computation path in the ^-_ tree can
be divided into phases, which are the maximal subpaths in which M does
not make alternations. The �rst con�guration in each phase is called an
alternation (con�guration). In particular, the starting con�guration of M is
always an alternation.

A number of input read-modes for sublinear-time alternating Turing ma-
chines have appeared in the literature. The standard input read-mode intro-
duced by Chandra, Kozen, and Stockmeyer [9] allows a computation path
of an O(log n)-time alternating Turing machine to read up to �(logn) input
bits. Ruzzo [16] proposed an input read-mode in which each computation
path can read at most one input bit and the reading must be performed at
the end of the path. An input read-mode studied by Sipser [17] insists that
the input address tape be always reset to blank after each input reading so
that each input reading takes time 
(logn).

It can be shown that many complexity classes such as NCk for k � 1
and ACk for k � 0 remain the same for all these input read-modes of
alternating Turing machines. On the other hand, it was unknown whether
these input read-modes a�ect the classes of lower complexity such as the
levels in the logarithmic time hierarchy. Recently, Cai and Chen [6] have
demonstrated how each level of the logarithmic time hierarchy based on each
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of the above input read-modes can be characterized by a uniform family of
circuits. Combining these characterizations with the separation results given
in the previous sections, we are able to show that all these input read-modes
are distinct.

Formally, the logarithmic time hierarchy is de�ned to be the union of the
following classes:

�1;�2; � � � ;�k; � � �
where �k is the class of languages accepted by a log-time ATM that always
starts with an ^-state and makes at most k alternations.

The above de�nition ignores the input read-modes of the log-time ATMs
and thus is not very precise. To be more precise, we will call

�U
1 ;�

U
2 ; � � � ;�U

k ; � � �

the logarithmic time hierarchy based on Chandra-Kozen-Stockmeyer's model,

�R
1 ;�

R
2 ; � � � ;�R

k ; � � �

the logarithmic time hierarchy based on Ruzzo's model, and

�S
1 ;�

S
2 ; � � � ;�S

k ; � � �

the logarithmic time hierarchy based on Sipser's model, where �U
k (resp. �R

k ,
�S
k ) is the class of languages accepted by a log-time ATM based on Chandra-

Kozen-Stockmeyer's input read-mode (resp. on Ruzzo's input read-mode,
on Sipser's input read-mode) that always starts with an ^-state and makes
at most k alternations.

Theorem 6.1 ([6]) For all integers k � 1,

(1). If a language L is in the class �R
k , then L is accepted by a �poly

k -

family of circuits;

(2). If a language L is in the class �S
k , then L is accepted by a �poly;c

k -

family of circuits for some constant c;
(3). If a language L is in the class �U

k , then L is accepted by a

�poly;d log n
k -family of circuits for some constant d;

According to the de�nitions, it is easy to see that �R
k � �S

k � �U
k . A

proof for the inclusion �U
k � �R

k+1 can be found in [6]. Our main result for
this section is that all these inclusions are strict, as proved in the following
theorem.
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Theorem 6.2 For any integer k � 1, we have

�R
k � �S

k � �U
k � �R

k+1

where � means \proper subset".

Proof.

(1). �R
k � �S

k .
It has been proved by Cai and Chen in [6] that �R

1 � �S
1 . Thus, we only

need to prove the strict inclusion for k � 2.
Without loss of generality, we suppose that the output gate of the tree

circuit Cm;2
k+1 de�ning the function fm;2

k+1 is an and gate (otherwise, we con-

sider the negation of the function fm;2
k+1). Moreover, to make the operations

such as mk, logm, and
p
m feasible within O(log n) deterministic time, we

consider only the case where m is a power of 2.
Let S1 be the language whose characteristic function is given by the

functions fm;2
k+1, where m is a power of 2 (in particular, a string is not in

the set S1 if its length does not match the number of variables for any such
function fm;2

k+1). We �rst construct a log-time ATM M1 that accepts the set
S1 as follows. On input x, M1 �rst computes the length n of x. This can
be done in deterministic O(log n) time by reading O(log n) input bits [2].
Then M1 veri�es that n = 2mk�1pm= logm for some integer m that is a
power of 2. After this, M1 simply traces the tree circuit Cm;2

k+1 de�ning the

function fm;2
k+1, except that in the kth phase, M1 reads the two consecutive

input bits for the corresponding bottom level gate and directly computes
the value for the gate. Since the output gate of the circuit Cm;2

k+1 is an and
gate, the log-time ATM M1 starts with an ^-state and makes at most k
alternations.

According to our assumption, k � 2. Thus, the log-time ATM M1 reads
at most two input bits in its last phase. By Theorem 3.1 in Cai and Chen [6],
M1 can be simulated by a log-time ATM based on Sipser's input read-mode
that always starts with an ^-state and makes at most k alternations. This
proves that the set S1 is in the class �S

k .
Suppose that S1 is also in the class �R

k . Then by Theorem 6.1(1), S1 is

accepted by a �poly
k -family of circuits. Thus, for any integerm that is a power

of 2, the function fm;2
k+1 is computable by a depth k circuit of polynomial size.

This contradicts Corollary 4.4.
This shows �R

k � �S
k .

(2). �S
k � �U

k .
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The proof is similar to that for Case (1). Consider the function Fk+1

in Corollary 5.4, which is a function of n variables obtained from the
function fm;b

k+1, b = 25e(k + 1) log2m by adding dummy variables, where

n = 225e(k+1) log2m. We also make the similar assumptions as we did for
Case (1). Thus, the output gate of the tree circuit Cm;b

k+1 de�ning the func-

tion fm;b
k+1 is an and gate, and m is a power of 2. Under these assumptions,

it is easy to see that the set S2 whose characteristic function is given by the
functions Fk+1 in Corollary 5.4 is in the class �

U
k : A log-time ATM M2 �rst

veri�es the length of the input and traces the tree circuit Cm;b
k+1 de�ning the

corresponding function fm;b
k+1 except that in the kth phase, M2 reads directly

a consecutive block of b input bits that are the inputs to the corresponding
bottom level gate. Note that the b consecutive input bits can be read in
deterministic O(b + logn) time [4], and that b is logarithmic in the input
length n of the function Fk+1. This proves that the language S2 is in the
class �U

k .
Suppose that S2 is also in the class �

S
k . By Theorem 6.1(2), the language

S2 is accepted by a �poly;c
k -family of circuits for some constant c. That is,

the function Fk+1 is computable by a depth k + 1 and bottom fan-in c
circuit whose size is polynomial. But this contradicts Corollary 5.4. Thus,
�S
k � �U

k .

(3). �U
k � �R

k+1.
The proof is similar to those for the other two cases. Let S3 be the

language whose characteristic function is given by the Sipser functions fmk+1.
Then the set S3 can be accepted by a log-time ATM M3 that always starts
with an ^-state and makes at most k + 1 alternations. Moreover, the last
phase of M3 reads at most one input bit. By Theorem 3.1 in Cai and
Chen [6], M3 can be simulated by a log-time ATM based on Ruzzo's input
read mode that always starts with an ^-state and makes at most k + 1
alternations. Thus, the set S3 is in the class �R

k+1. On the other hand, by

Theorem 6.1(3), S3 2 �U
k would imply that S3 is accepted by a �

poly;O(logn)
k -

family of circuits. That would in turn imply that the Sipser function fmk+1 is
computable by a depth k+1 circuit of polynomial size whose bottom fan-in
is O(log n), contradicting Theorem 2.1.

This completes the proof.

Corollary 6.3 For each k � 1, the kth levels of the logarithmic time hierar-

chy based on Chandra-Kozen-Stockmeyer's input read-mode, Sipser's input

read-mode, and Ruzzo's input read-mode are all distinct.
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