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ABSTRACT
Over the last 40 years variations in the systemic velocity and the observed minus computed
time of first conjunction have been observed in the RS Cha binary system. Our goal is to
determine the probability for the existence of a third body in this system, and to calculate
an orbital solution for this component. A total of 381 high-resolution echelle spectra were
obtained at Mount John University Observatory using the 1.0-m McLellan telescope and High
Efficiency and Resolution Canterbury University Large Echelle Spectrograph (HERCULES;
echelle spectrograph). The spectra were collected during three observing runs occurring over
a 15 month period spanning from 2005 November 18 to 2007 February 17, and the data were
reduced using the HERCULES reduction software package 2.3. Radial velocities for the 46
echelle orders were generated using Two-Dimensional Correlation, and the velocities from the
best 15 orders were selected and used in the calculation of a weighted mean. The weight for
each order was determined by generating a preliminary orbital solution for that particular order,
using Stern’s method, with the rms of the orbital fit used to calculate the associated weight on
the order. Systemic velocities for each of the three observing runs were computed by applying
a linear regression to the radial velocities of one star against its companion (i.e. V1 versus
V2). The value of the slope and intercept of the regression line are required for calculating
the systemic velocity. Analysis of the 381 spectra confirmed the suspected variation of the
system velocity during the time-span over which these data were collected. The systemic
velocity for each observing run differs significantly (12.13 ± 0.26, 11.41 ± 0.22 and 9.68 ±
0.78 km s−1) and combined with four historical (previously published) values they failed the
χ2 test, and imply a 99.9 per cent confidence that a third body exists. Three possible orbital
solutions for the third body, with respect to the close binary, were generated using the historical
and current systemic velocity values (P = 12.69 ± 0.01 or 24.17 ± 0.01 or 74.45 ± 0.02 d).
The orbital solution for the binary was calculated after the effects of the shift in systemic
velocity during the course of our data were removed. Values for the period and masses are P =
1.66988 ± 0.00002 d, M1 = 1.823 ± 0.012 M� and M2 = 1.764 ± 0.012 M�, with the lowest
possible mass range obtained from the orbital solutions of the third body ranging from M3 =
0.30 to 0.52 M�.
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RS Cha – stars: pre-main-sequence.
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1 IN T RO D U C T I O N

RS Cha is rare and unique object possessing several fascinat-
ing characteristics which may account for the large number and
broad nature of studies that have been performed on it to date.
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In addition to being an eclipsing double-lined spectroscopic binary
system (SB2E), a recent study (Böhm et al. 2009) has confirmed
that both the Herbig Ae components are undergoing non-radial pul-
sations, thus allowing both stars in the system to also be classified
as δ Scuti-type variable stars.

SB2E systems, like RS Cha, are extremely important and are
one of the few ways that astronomers can measure such funda-
mental stellar parameters as mass and radius. From a photometric
orbital solution we can obtain the relative size of the stellar radius
to the relative size of the orbit (R1, 2/a), where a = a1 + a2, the
eccentricity (e), the inclination (i), the period (P) and the ratio of ef-
fective temperature (Teff1/Teff2). From a double-lined spectroscopic
solution we can obtain the radial velocity amplitude (K1, 2), the ec-
centricity, the period, the scaled length of the semimajor axis of
the orbit (a1, 2sin i), and the scaled masses (M1, 2sin 3 i). Knowledge
of the system’s inclination from the photometric solution allows
direct measures of the masses, semimajor axes, stellar radii and
luminosities to be made.

RS Cha’s δ Scuti nature combined with its classification as a
Herbig Ae star present an opportunity to study the stellar interior
of the young star. This is done using a technique known as astero-
seismology that examines pulsation characteristics to infer the inner
stellar structure. Both the ability to calculate the stellar masses and
radii from a spectroscopic binary study, and to be able to probe the
stellar interior using asteroseismology are important tools for deter-
mining stellar parameters and refining models of stellar evolution –
thus making RS Cha a valued celestial object.

The numerous studies done on RS Cha (HD 75747) have re-
sulted in publication of several well-defined parameters. RS Cha is
a relatively bright (V = 6.05) southern star whose variability due
to eclipses was discovered by Strohmeier (1964). Its spectral type
is given as A8V + A8V (Young et al. 2001). The inclination of the
system is 83.◦4 ± 0.◦3 and the stars are believed to be in a circular or-
bit, with an orbital period of 40.07 h (Clausen & Nordstrom 1980).
RS Cha has a parallax of 10.77 ± 0.24 mas (van Leeuwen 2007),
which corresponds to a distance of 92.9 ± 2.1 pc. It is a member
of the η Cha cluster (consisting of about 50 T Tauri stars) and it
is believed to be a pre-main-sequence system based on the X-ray
emission detected by Mamajek, Lawson & Feigelson (1999). The
age has been estimated between 6 and 8 Myr (Mamajek et al. 1999;
Luhman & Steeghs 2004).

Two recent spectroscopic studies of RS Cha give values for the
orbital elements (Alecian et al. 2005), and discuss the modes of
pulsation occurring in the components (Böhm et al. 2009). Alecian
et al. (2005) calculated values for the primary and secondary masses
and radii as follow: M1 = 1.89 ± 0.01 M�, R1 = 2.15 ± 0.06 R�,
M2 = 1.87 ± 0.01 M�, R2 = 2.36 ± 0.06 R�. Böhm et al. (2009)
also performed an orbital analysis, but their focus was directed to
determining modes of pulsation. Interestingly, in both papers the
analysis mentioned the detection of a slight variation in systemic
velocity. However, neither was able to confirm the presence of a
third body influencing the system and both suggest that an extensive
study based on a larger data set is needed.

The aim of our study is to calculate a probability for the existence
of a third body, and subsequently to determine its orbital solution
with respect to the binary system. In order to accomplish this goal,
high-resolution spectroscopic data were collected at Mount John
University Observatory (MJUO) over a period of 15 months, and
our findings were then compared with historical data published on
this system.

Details regarding the instrumentation, observations and data re-
duction are presented in Section 2. The method for measuring the

radial velocities, and the orbit investigation are discussed in Sec-
tion 3. The calculation of the orbital solution for the third body,
along with the orbital solution for the binary is shown in Section 4.
Masses, radii and Roche lobes are discussed in Section 5, and the
main ideas and ultimate conclusions are summarized in Section 6.

2 IN S T RU M E N T S A N D O B S E RVAT I O N S

2.1 Mount John University Observatory

Observations of RS Cha were made from the University of
Canterbury’s MJUO located near Tekapo, New Zealand at
170◦27.′9 E, 43◦59.′2 S at an elevation of 1029 m above mean sea
level. Spectra were obtained using the 1.0-m McLellan telescope
and the fibre-fed High Efficiency and Resolution Canterbury Uni-
versity Large Echelle Spectrograph (HERCULES; Hearnshaw et al.
2003), with a spectral resolving power of about R ∼ 45 000.

2.2 Spectra

A total of 381 spectra were obtained using the Photometrics Se-
ries 200 1 k × 1 k CCD camera system that includes orders 80
(7082 Å) to 126 (4532 Å). In general, a sequence of five or six
RS Cha exposures [typical duration of 300–600 s, signal-to-noise
ratio (S/N) ∼ 100] were followed by a thorium–argon arc cali-
bration exposure. The Julian Date corresponding to each spectrum
is automatically calculated by the observing software as the flux-
weighted mean time during an observation. To conclude each night
of observing three or four smooth fields (typical duration of 1–2.5 s)
were taken as these, along with the thorium–argon images, were re-
quired for data reduction. Three separate observing runs from 2005
November to 2007 March allowed a total of 27 nights of data to be
collected.

2.3 Data reduction and preparation

The spectra were reduced using HRSP, the HERCULES reduction
software package, version 2.3 (Skuljan 2004). The thorium–argon
spectra mentioned in Section 2.2 are necessary for wavelength cal-
ibration and the smooth fields are required for order recognition
and tracing. Interpolating the solutions corresponding to each set of
thorium–argon images allowed a dispersion solution to be produced
which was used for the wavelength calibration. Data reduction cul-
minated with the creation of a one-dimensional spectrum for each
order.

After data reduction the corresponding barycentric velocity and
Heliocentric Julian date corrections were applied to each observa-
tion. Each order of the 381 spectra were then continuum normalized,
by fitting a spline to manually selected continuum points, and fi-
nally lightly smoothed, by applying a low-pass Fourier filter to
eliminate high-frequency noise (i.e. eliminating frequencies higher
than ∼2 pixels). Out of the 46 available orders the best 15 orders
(091, 101, 106-109, 111, 115, 116, 119, 121–125) were selected for
measuring stellar radial velocities. These orders contain very little
telluric absorption thus resulting in a higher quality normalization
and a more precise radial velocity.

3 O R B I TA L A NA LY S I S

3.1 Radial velocities

Two radial velocities (one each for the primary and secondary
components) for every one of the 381 spectra were obtained by
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two-dimensional cross-correlation using Two-Dimensional Corre-
lation (TODCOR; Zucker & Mazeh 1994). This algorithm simultane-
ously determines the Doppler shift of both components in each spec-
trum by extending the traditional one-dimensional cross-correlation
technique, with one template spectrum, to include two different tem-
plate spectra. In general the two template spectra are unique as they
represent the individual spectral types of each star in the system,
however, since the RS Cha components are of an identical spectral
type, the same template spectrum is used twice. The template spec-
trum selected was a high S/N spectrum of RS Cha taken on 2006
December 6 when the stars were undergoing an eclipse. A total of
15 sets of the 381 radial velocities were generated for each star.

3.2 Orbital investigation

Typically an orbital analysis using spectroscopic radial velocities
assumes that all of the parameters (e.g. K, e, P and the systemic
velocity, γ ) are constant.1 However, inspection of the literature
relating to RS Cha suggests significant changes to the systemic
velocity over time (Chambliss 1969: 26 ± 3 km s−1; Jones 1969:
10.6 ± 1.1 km s−1; Andersen 1975: 15.9 ± 0.5 km s−1; Alecian
et al. 2005: 15.7 ± 0.2 km s−1). Since our HERCULES data set
is large (more than twice that of any previous data set) and we
have three distinct sets of observations spread over 15 months, we
could pursue an analysis to determine whether a systemic velocity
variation existed within the time span-over which our three data sets
were collected.

To begin this analysis it is first necessary to calculate the mean
value for the radial velocities from the 15 selected orders. Theoret-
ical studies by Murdoch & Hearnshaw (1991) conclude that factors
such as the depth, width and number of absorption lines present in an
order, in addition to the S/N, airmass, exposure time and observing
conditions, all contribute to impacting the wavelength dependence
of the incident light. As a result one would expect the orders to be
unequally weighted, and thus it is essential that a weighted mean
be calculated.

The weights are determined by employing the orbital fit technique
perceived by Ramm (2008), that utilizes Stern’s (1941) method
for each of the 15 orders of radial velocities, thus endeavouring to
achieve the optimal orbital fit. The initial iteration of Stern’s method
sets all weights as w = 1, and an estimate of each orbital element
is used based on previously published values (Alecian et al. 2005).
The rms error obtained in the final iteration is used to calculate the
weight given to that specific order, by w = 1/σ 2. To date the orbital
fit technique has been superior as the best-fitting rms error to the
final solution. It reduces the error by approximately 15 per cent
than that obtained with all the weights set at the value of w = 1 (see
Ramm, Skuljan & Hearnshaw 2004; Skuljan, Ramm & Hearnshaw
2004; Ramm 2008).

Once the weighted mean of the 15 sets of radial velocities has
been calculated the linear regression of one star’s velocities is plot-
ted against its companion’s (Fig. 1). The systemic velocity can then
be calculated from equation (1), where γ 1 is the systemic velocity,
c1 is the intercept and q1, the mass ratio, is the absolute value of the
slope of the linear regression line. A full derivation for equation (1)
is given in Appendix A. This systemic velocity calculation is done

1 It is assumed that if the systemic velocity is changing, then the other orbital
elements such as the eccentricity and the longitude of periastron passage
should also change, but these two only change if the orbit is non-circular
which is not the case for RS Cha (Wood 1971).

Figure 1. The least-squares fit for the linear regression of the primary
and secondary radial velocities. The portion of data shown is for Julian
Date ranging between 245 3745.944 and 245 3758.143, corresponding to
the second observing run.

Table 1. Published and recalculated systemic velocities.

Paper Published γ values Recalculated γ values

Chambliss (1969) 26 ± 3 km s−1 20.20 ± 2.76 km s−1

Jones (1969) 10.6 ± 1.1 km s−1 12.92 ± 1.03 km s−1

Andersen (1975) 15.9 ± 0.5 km s−1 16.78 ± 0.72 km s−1

Alecian et al. (2005) 15.7 ± 0.2 km s−1 –
This paper – 12.13 ± 0.26 km s−1

This paper – 11.41 ± 0.22 km s−1

This paper – 9.68 ± 0.78 km s−1

for both plotting arrangements, i.e. V1 versus V2 and V2 versus V1,
respectively. Using these two values of the systemic velocity, one
obtained from each plotting arrangement, a weighted mean is calcu-
lated for the data from each of the three subgroups (observing runs)
separately in order to determine their individual systemic velocities.
These values are displayed in the last three rows of Table 1:

γ1 = c1

1 + q1
. (1)

Calculating the systemic velocity in this manner confirmed our
suspicion of a perturbed or variable systemic velocity for the RS Cha
system. Several factors were considered as possible sources for the
detected perturbations to the systemic velocity. These included the
existence of a third star in the system, the non-spherical shapes
of the stars and a shifting spectrograph zero-point. It is unlikely
that the non-spherical shapes of the stars would be the culprit in
this instance as the duration of δ Scuti pulsations are substantially
shorter than the recognized orbital period (Böhm et al. 2009). The
shifting spectrograph zero-point can also be eliminated due to the
fact that this condition would be detected in the data collected
by other observers using HERCULES. (For further details refer to
Komonjinda, Hearnshaw & Ramm 2007, where an rms error of only
16 m s−1 was obtained from 142 spectra collected during the course
of 5 yr, thus suggesting that HERCULES is incredibly stable.) As
a result, the most feasible answer for the variation in the systemic
velocity would be the presence of a third body in the system.

In order to broaden the scope of our study, at this point we
incorporated all the published values of the systemic velocity for
the RS Cha system into our analysis. Several papers have published
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values of the systemic velocity, but three of these papers have also
published the radial velocity values. Using these radial velocity
values the same regression analysis, as that previously described,
is performed on these historical data sets. This produces systemic
velocities derived in the same manner as ours so that a more valid
comparison can be made. We are able to follow this procedure as
the velocities in these papers had been heliocentrically corrected
and could thus be assumed to share a common zero-point. The
published and recalculated systemic velocity values are shown in
Table 1. Alecian et al. (2005) did not publish radial velocity values
and thus only their published value is shown in the table. Some of
the historical values vary considerably from their published values
which may be a result of modern computational methods used for
this paper.

These seven values for systemic velocity, six in the right column
and the one calculated by Alecian et al. (2005) in the middle column,
fail the χ2 test for consistency with a significance of less than 0.001
(equation 2), implying a 99.9 per cent confidence that a third body
exists. The χ2 test is a well established test (Greenwood & Nikulin
1996), and the value of χ2 is dependent on the uncertainty associated
with each systemic velocity, as well as the weighted mean systemic
velocity. The uncertainties on the individual systemic velocities
are calculated using an algorithm from Numerical Recipes (Press
et al. 1992) for a least-squares fit to a straight line. The assumed
weighted mean systemic velocity is calculated as γ mean = 13.38 ±
0.12 km s−1 for the data in Table 1. Refer to Appendix A, equations
(A14)– (A19), for more details regarding this calculation:

χ2 =
N∑

i=1

(
γi − γmean

σi

)2

, (2)

where γ i is the observed systemic velocity, γ mean is the expected
value and σ i is the uncertainty in each systemic velocity value.

In the papers by Alecian et al. (2005) and Böhm et al. (2009), the
changing time of conjunction (or primary mid-eclipse) is discussed.
Alecian et al. (2005) used photometric and spectroscopic observa-
tions of RS Cha available in the literature (Jones 1969; Andersen
1975; Clausen & Nordstrom 1980; Mallama 1981), combined with
data from the Hipparcos and Tycho catalogues to calculate the
observed minus computed (O-C) timings of first and second con-
junctions (refer to fig. 2 in Alecian et al. 2005).

The error bars for the measurements in fig. 2 of Alecian et al.
(2005) are sufficiently small to show that there are significant
changes over time to the time of conjunction. This supports our
hypothesis that a third body is influencing the time of conjunction
and systemic velocity. Both Alecian et al. (2005) and Böhm et al.
(2009) noted the appearance of a changing systemic velocity but due
to their comparatively small data sets they were unable to confirm
the presence of a third body.

We have established that the systemic velocity is shifting, and
now to find a possible solution for the orbital period of the third
body some more values for the systemic velocity are produced by
creating subgroups of the available historical data sets. This is done
by dividing each historical data set that has a significant amount of
data, and extends over a time-span longer than about 30 d. Thus, the
value of systemic velocity calculated for each subgroup represents
data that were collected over a time-span of less than 30 d. The new
systemic velocities are presented in Table 2.

The Julian Date corresponding to each systemic velocity is cal-
culated as the mean for that data set, with the error calculated as the
standard deviation. A graphical representation of the data in Table 2
is displayed in Fig. 2. It is expected that if there is only one other

Table 2. Additional systemic velocities calculated for each
subgroup.

Paper Mean Julian date New systemic velocity

Chambliss (1969) 243 9582.4 ± 2.1 28.14 ± 2.92 km s−1

243 9612.9 ± 3.9 5.34 ± 4.11 km s−1

Jones (1969) 243 9634.5 ± 1.1 12.91 ± 1.03 km s−1

243 9932.7 ± 5.7 13.72 ± 1.20 km s−1

Andersen (1975) 244 1724.4 ± 3.1 17.48 ± 1.51 km s−1

244 1798.8 ± 2.2 16.27 ± 0.36 km s−1

Alecian et al. (2005) 245 2626.3 ± 0.1 15.7 ± 0.2 km s−1

This paper 245 3703.5 ± 5.7 12.13 ± 0.26 km s−1

This paper 245 3753.4 ± 3.4 11.41 ± 0.22 km s−1

This paper 245 4142.8 ± 5.3 9.68 ± 0.78 km s−1

Figure 2. A graphical representation of the systemic velocities shown in
Table 2. Open circles: Chambliss (1969); large crosses: Jones (1969); di-
amonds: Andersen (1975); asterisk: Alecian et al. (2005); full circles: this
paper.

star affecting the systemic velocity, i.e. a triple system, the systemic
velocities would vary in a smooth periodic manner.

4 O R B I TA L S O L U T I O N

4.1 Third body parameters

The period for the third body is determined using an algorithm
developed by Mazeh et al. (1987). The algorithm subjects the data
to a period search over a desired period range set by the operator,
and thus employs a power-series analysis to output the best period
in the desired range. In general, a 10 d range was input by the
operator and this was shifted forward by 5 d for each successive
search. That is, the first range was 1–10 d, the second 5–15 d, the
third, 10–20 d and so on. This process was repeated until about
370 d (∼1 yr). There is no need to continue searching for periods
beyond this point as we know that the systemic velocity is varying
over a shorter time-span than 1 yr, and the errors associated with
periods of greater that about 120 d are large (Fig. 3).

After discovering likely periods in the following regions, 12–13,
24–25 and 74–75 d (crosses in Fig. 3), the original 10 d search range
was narrowed in order to isolate the optimal period for each of the
three specified regions. This period value is then used to obtain
an orbital solution iteratively through least-squares minimization.
The orbital elements for these three orbital solutions for the third
mass (M3) are given in Table 3, and the phase plots are displayed
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Figure 3. Possible periods for the third body ranging from 1 to about 370 d.
Three periods exhibit a σ value of less than 2.5 (large crosses).

in Figs 4–6. The solutions obtained are just a few of many, the
reason being that due to only 10 available values of the systemic
velocity the solutions are insufficiently well defined. In Table 3 P3

is the period, γ 3 is the systemic velocity, K3 is the amplitude of
the systemic velocity curve, T is the time of periastron passage,
e3 is the eccentricity, w is the longitude of periastron and fM, the
mass function, is the mass ratio of the secondary to the primary
(equation 3):

q3

(1 + q)2
= fMPS

MPS sin3 i
, (3)

where MPS = M1 + M2 and q = M3
MPS

.
Although these three orbital fits for the third body are relatively

good, as σ is low, these are by no means definitive orbits, since in
each case we have assumed M3. The mass of the third star can be
estimated from the mass function fMPS , and depends on the incli-
nation of this system, however, a value for M3 cannot be calculated
until the values of M1 and M2 are known.

4.2 Binary orbit parameters

The systemic velocity is changing, and thus to determine the bi-
nary orbital solution for this system the effects of the change must
somehow be minimized or removed. Referring to the three ‘best’
orbital solutions for the third body, it is clear that there is no simply
approached to remove this effect because these approximated func-
tions (solutions) are all so different. One method would be to take
the weighted average of the three systemic velocities and apply a
‘step’ shift to align all the data with the average systemic velocity.

Figure 4. A phase plot (P = 12.69 d) for one of many possible orbital
solutions for the third body in the RS Cha system. Open circles: Chambliss
(1969); large crosses: Jones (1969); diamonds: Andersen (1975); asterisk:
Alecian et al. (2005); full circles: this paper.

Figure 5. A phase plot (P = 24.17 d) for one of many possible orbital
solutions for the third body in the RS Cha system. Open circles: Chambliss
(1969); large crosses: Jones (1969); diamonds: Andersen (1975); asterisk:
Alecian et al. (2005); full circles: this paper.

Another approach, that is probably less drastic, is to fit a straight line
to the three systemic velocities for the data obtained for this paper.
The difference between this fitted line and the mean systemic veloc-
ity (13.38 ± 0.12 km s−1) is then calculated and subtracted from the
radial velocities so that they all share a common zero-point. This is

Table 3. The orbital elements for three possible solutions for the orbit of the
third star in the RS Cha system.

Orbital elements Solution 1 Solution 2 Solution 3

P3 (d) 12.69 ± 0.01 24.17 ± 0.01 74.45 ± 0.02
γ 3 (km s−1) 13.22 ± 10.00 16.77 ± 0.84 15.70 ± 0.81
K3 (km s−1) 18.96 ± 85.14 9.93 ± 1.40 10.44 ± 1.08
T (JD 243 0000) 9583.80 ± 0.82 9584.71 ± 1.64 9582.83 ± 9.93
e3 0.70 ± 1.76 0.41 ± 0.26 0.18 ± 0.12
w 101.63 ± 99.65 73.83 ± 12.26 369.63 ± 31.68
fMPS (M�) 0.0032 ± 0.0457 0.0018 ± 0.0001 0.0084 ± 0.0026
σ 2.19 2.32 1.79
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Figure 6. A phase plot (P = 74.45 days) for one of many possible orbital
solutions for the third body in the RS Cha system. Open circles: Chambliss
(1969); large crosses: Jones (1969); diamonds: Andersen (1975); asterisk:
Alecian et al. (2005); full circles: this paper.

the method that we adopted to minimize the shift, thus allowing the
respective motion of the binary components alone to be studied.

Ideally, a method that derives orbital solutions for both stars
simultaneously is required. For systems that provide velocities for
both stars, the recommendations of Jones (1969) have been followed
so as to obtain a simultaneous solution for both stars; namely, derive
the slope and y-intercept by calculating the linear regression of the
velocities, then convert the velocities of the secondary into velocities
of the primary and vice versa. Finally, the method of differential
corrections of Sterne (1941) was applied to estimate the orbital
solution. Two sets of orbital elements are produced, one from the
velocities of component 1 and other from component 2. The solution
for the system is the weighted mean of these values and is shown in
Table 4. The phase plot is shown in Fig. 7.

Using the published value of the inclination (83.◦4 ± 0.◦3; Clausen
& Nordstrom 1980), we derive a1 = 2.172 ± 0.016 × 10−2 au,
a2 = 2.102 ± 0.016 × 10−2 au and a1 + a2 = 4.274 ± 0.033 au.
Since the orbit is circular, w (longitude of periastron) and T (time
of periastron passage) are undefined. Thus the time of periastron
passage is replaced by the time of zero mean longitude (T0; Stern
1941), which is the time of first eclipse.

5 MASSES, RADII AND ROTATIONAL
V E L O C I T I E S

5.1 Stellar masses

The masses for the primary and secondary components were
calculated using equation (4) (refer to Appendix B for the

Figure 7. The orbital solution and phase plot for component 1 (cross) and
component 2 (star).

derivation):

M1,2 = (1.0361 × 10−7) PK2,1(K1 + K2)2

[√
1 − e2

sin i

]3

, (4)

so that M1 = 1.823 ± 0.012 M� and M2 = 1.764 ± 0.012 M� for
the primary and secondary stellar masses, respectively.

Using these masses (MPS = M1 + M2) in equation (3) allows
possible values for the mass of the third component to be calculated.
Since there is insufficient information to calculate the mass with
respect to the derived orbital elements directly, Fig. 8 shows three
curves (one for each orbital solution) for the mass ratio as a function
of orbital inclination. Referring to Fig. 8, the lowest mass ratios
are 0.10 (solution 1), 0.08 (solution 2) and 0.15 (solution 3), which
correspond to lower masses of 0.37, 0.30 and 0.52 M�, respectively,
for the possible third component if this orbital system has i = 90◦.

These are realistic values for the mass as they lie close to the
mass range of a red dwarf (0.08–0.33 M�) or the mass range of a
white dwarf (0.2–1.4 M�). The absolute magnitude range for the
third body was calculated as Mv = 24.96 (solution 3) to Mv =
30.32 (solution 2), using the lowest mass values, respectively. This
magnitude range corresponds to that of a red dwarf and explains
why the third body is undetectable in the spectrum. Thus it is likely
that the third body is a small and faint object, probably a white or
red dwarf as these stars are faint, have relatively low mass and are
fairly common.

5.2 Stellar radii and Roche lobes

Alecian et al. (2005) published values for the stellar radii in RS Cha
as R1 = 2.36 ± 0.06 R� and R2 = 2.15 ± 0.06 R�, respectively.

Table 4. Binary orbital elements derived for both stellar components assuming a circular
orbit. A weighted mean of the period and the systemic velocity, as well as K = K1 + K2

and a sin i = (a1 + a2) sin i, is displayed in column 4.

Orbital elements V1 = f(V2) solution V2 = f(V1) solution Adopted solution
n = 1 n = 2

P (d) 1.66988 ± 0.00001 1.66988 ± 0.00001 1.66988 ± 0.00001
γ (km s−1) 14.07 ± 0.24 14.02 ± 0.24 14.05 ± 0.17
Kn (km s−1) 138.68 ± 0.32 134.24 ± 0.32 272.92 ± 0.64
T0 (JD 245 3000) 752.170 ± 0.001 752.170 ± 0.001 752.170 ± 0.001
an sin i (Gm) 3.1844 ± 0.0073 3.0825 ± 0.0074 6.2669 ± 0.0147
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Figure 8. The curves represent possible values for the third mass that de-
pend on the orbital inclination of the third body with respect to the inclination
of the binary. The solid line corresponds to solution 1, the dashed line to
solution 2, and the dotted line to solution 3.

To determine whether these stars are interacting it is necessary to
determine the size of their Roche lobe in relation to their volume.
The Roche lobe is the region surrounding each star in a binary
system, within which any material is gravitationally bound to that
particular star. Using equation (5) (Eggleton 1983) the radius of the
Roche lobe can be estimated to an accuracy of about 99 per cent,
thus allowing the likeliness of stellar interaction to be determined:

rL = RL

a
= 0.49q

2/3
L

0.6q
2/3
L + ln(1 + q

1/3
L )

, (5)

where rL is the radius of a sphere with the same volume as the
Roche lobe (effective volume or radius), relative to the component
separation a, RL is the actual effective radius, and the mass ratio is
given by qL = ML

MC
. ML is the mass of the component whose effective

radius is calculated and MC is the companion.
Performing this calculation using our values of q = M2

M1
= K1

K2
=

0.97 showed that the effective radius of the Roche lobe for the
primary and secondary components are rL1 = 0.38 and rL2 = 0.37,
respectively. Since a = 4.189 ± 0.009 × 10−2 au ≡ 9 R�, RL ∼
3.4 R�. This reveals that both radii are presently about 2/3 the size
of each Roche lobe and it is unlikely that matter transfer is occurring
in this system. This conclusion is also supported by Mamajek &
Feigelson (2001).

5.3 Stellar rotational velocities

The broadening of a spectral line is dependent on the rotational
velocity of a star. Although other mechanisms such as pressure
broadening, natural broadening and Doppler broadening also con-
tribute to the equivalent width of an absorption/emission line, they
are typically small compared with the broadening caused by rota-
tion. As a result these effects have been ignored in the rotational
velocity calculation.

Both stars in the RS Cha system exhibit non-radial pulsations
and thus it is necessary to first create a representative (average)
line profile that minimizes the effects of the non-radial pulsations.
The absorption line at 4957.6 Å, in order 115, is well defined and
uncontaminated by neighbouring spectral lines. This portion of the
spectrum was selected from all the spectra where the individual
stellar components were well separated, thus also preventing con-
tamination from the corresponding line of the other star.

Figure 9. Fourier transforms of the representative RS Cha line profile
(large amplitude range) and the theoretically produced line profile (v sin i =
10 km s−1). The ratio of the first minima along the abscissa is equal to the
inverse ratio of the rotational velocities, respectively.

A total of 235 high S/N spectra were selected and averaged to
create one representative profile for each star. To determine the stel-
lar rotational velocities, the Fourier transform of the representative
line profile for each of the stars is computed (Fig. 9). The position
of the first minimum along the abscissa is compared with the posi-
tion of the first minima for the Fourier transform of a theoretically
produced line profile (Gray 1992) with v sin i = 10 km s−1. The
ratio of these positions is equal to the inverse of the ratio of the
rotational velocities and is calculated using equation (6):

v sin i

10 km s−1
= x

y
, (6)

where x and y are the positions of the first minima along the abscissa
for the theoretical Fourier transform and the representative RS Cha
line profile Fourier transform, respectively.

The values of v1 sin i and v2 sin i are 68 ± 2 and 72 ± 2 km s−1,
respectively, and agree with the values of 64 ± 6 and 70 ± 6 km s−1

reported by Alecian et al. (2005).

5.4 Synchronization

A binary system is synchronized when the rotation period and the
orbital period are the same, or the ratio of the orbital velocities of
the two stars is equal to the ratio of their radii (Alecian et al. 2005).
These ratios are calculated as follows:

v1

v2
= R1

R2
, (7)

where v1 and v2 are the rotational velocities of components 1 and 2,
respectively, and R1 and R2 are their radii. The ratio of the rotational
velocities (v sin i) of the components in this system is 0.95 ± 0.05,
and the ratio of their radii is 0.91 ± 0.05. These ratio values agree
within the specified uncertainty and thus imply that the system is
synchronized.

6 C O N C L U S I O N S

RS Cha is an eclipsing doubled-lined spectroscopic binary system
with both components exhibiting non-radial pulsations (Alecian
et al. 2006; Böhm et al. 2009). This combination of characteristics
makes it a rare and unique celestial object that has been the focus
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of a number of complex studies. Over the last 40 years variations
in the systemic velocity and the observed minus computed time
of first conjunction have been observed in the system. With good
access to a high-resolution echelle spectrograph we undertook an
investigation to determine the probability for the existence of a third
body, and to compute its orbital solution with respect to the binary
system.

A total of 381 high-resolution echelle spectra were obtained
at MJUO using the 1.0-m McLellan telescope and HERCULES
(echelle spectrograph). The spectra were collected during three ob-
serving runs occurring over a 15 month period spanning from 2005
November 18 to 2007 February 17, and the data were reduced using
the HERCULES Reduction Software Package 2.3 (Skuljan 2004).

Radial velocities for the 46 echelle orders were generated using
TODCOR (Zucker & Mazeh 1994), and the velocities from the best
15 orders were selected and used in the calculation of a weighted
mean. The weight for each order was determined by generating a
preliminary orbital solution for that particular order, using Stern’s
(1941) method, with the rms of the orbital fit used to calculate
the associated weight on the order. Systemic velocities for each of
the three observing runs were computed using a linear regression
technique, whereby the radial velocities of each component were
plotted against each other (i.e. V1 versus V2). The value of slope
and intercept of the regression line are required for calculating the
systemic velocity.

Analysis of the 381 spectra confirmed the suspected variation of
the system velocity during the time-span over which these data were
collected. The systemic velocity for each observing run differs sig-
nificantly (12.13 ± 0.26, 11.41 ± 0.22 and 9.68 ± 0.78 km s−1) and
when combined with four historical (previously published) values
they failed the χ2 test, and imply a 99.9 per cent confidence that a
third body exists.

Three possible orbital solutions for the third body, with respect
to the close binary, were generated using the historical and current
systemic velocity values (P = 12.69 ± 0.01 or 24.17 ± 0.01 or
74.45 ± 0.02 d). The orbital solution for the binary was calculated
after the effects of the shift in systemic velocity during the course
of our data were removed. Values for the period and masses are
P = 1.66988 ± 0.00002 d, M1 = 1.823 ± 0.012 M� and M2 =
1.764 ± 0.012 M�, with the lowest possible mass range obtained
from the orbital solutions of the third body ranging from M3 = 0.30
to 0.52 M�.

In addition, calculations regarding the stellar Roche lobes, stellar
rotational velocities and system synchronization were completed.
The Roche lobe computation revealed that both stars currently fill
only 2/3 of their respective Roche lobe, thus confirming Alecian
et al. (2005)’s statement that no matter transfer is occurring in this
system. The stellar rotational velocities of the binary components
were calculated to be v1 = 68 ± 2 km s−1 and v2 = 72 ± 2 km s−1,
which agree with the respective values published by Alecian et al.
2005 (v1 = 64 ± 6 km s−1 and v2 = 70 ± 6 km s−1). Finally, the ratio
of the rotational velocities and the ratio of the radii were compared
and were found to be in agreement, thus confirming a synchronized
system (Alecian et al. 2005).
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A P P E N D I X A : R A D I A L V E L O C I T Y
E QUAT I O N S

The radial velocity equations for the primary and secondary stars
are, respectively,

V1 = γ − q

1 + q
K(e cos w + cos(v + w)) (A1)

and

V2 = γ + 1

1 + q
K(e cos w + cos(v + w)), (A2)

where K is the semi-amplitude of the relative orbit, w is the position
angle of periastron passage, v is the orbital true anomaly, q = M2/M1

is the mass ratio, γ is the systemic velocity and V1, 2 is the radial
velocity. Then

(V2 q) + V1 (A3)

gives

V1 = −qV2 + (1 + q)γ (A4)

and

V2 = − 1

q
V1 +

(
1 + q

q

)
γ. (A5)

Each of these represents straight lines in terms of V1 and V2.
For equation (A4) the intercept is given by

c1 = (1 + q1)γ1, (A6)

where the slope is

s1 = −q (A7)

and γ 1 is

γ1 = c1

1 + q1
. (A8)

For equation (A5) the intercept is given by

c2 =
(

1 + q2

q2

)
γ2, (A9)

where the slope is

s2 = − 1

q
(A10)

and γ 2 is

γ2 =
(

q2

1 + q2

)
c2. (A11)

The uncertainty in q1 and q2 is given by

σq1 = σs1 (A12)

and

σq2 = q2

(
σs2

s2

)
. (A13)

The uncertainty in γ 1 and γ 2 is given by the following equations:

σγ1 = γ1

√(
σc1

c1

)2

+
(

q1

1 + q1

)2 (
σq1

q1

)2

(A14)

and

σγ2 = γ2

√(
σc2

c2

)2

+
(

q2

1 + q2

)2 (
σq2

q2

)2

. (A15)

The weighted mean of γ 1 and γ 2 is given by the following
equations:

Gw =
(

w1

w1 + w2

)
γ1 +

(
w2

w1 + w2

)
γ2, (A16)

where

w1 = 1

σ 2
γ1

(A17)

and

w2 = 1

σ 2
γ2

. (A18)

The error in Gw, the weighted mean, is given by the following
equation:

1

σ 2
Gw

= 1

σ 2
γ1

+ 1

σ 2
γ2

. (A19)

APPENDI X B: MASS-RELATED EQUATI O NS

The mass ratio q is defined by

q = M2

M1
= K1

K2
, (B1)

where

Kn = 2π

P

ansin i√
1 − e2

for n = 1, 2 (B2)

and

K = K1 + K2. (B3)

From Kepler’s 3rd Law:

M1 + M2 = M1,2
K

K1,2
= a3

P 2
. (B4)

Then

M1,2 = K2,1

K

[
KP

√
1 − e2

2π sin i

]3
1

P 2
, (B5)

leading to

M1,2 = PK2,1(K1 + K2)2

[√
1 − e2

2π sin i

]3

. (B6)

For P in d, K in km s−1, M in M� and i in degrees,

M1,2 = (1.0361 × 10−7)PK2,1(K1 + K2)2

[√
1 − e2

sin i

]3

. (B7)

Also by inverting and rearranging equation (B4),(
M2

M1 + M2

)2

=
(

K1

K

)2

, (B8)

and multiplying the respective sides of equation (B8) for the sec-
ondary star, we can derive

fM1 = (M2 sin i)3

(M1 + M2)2
= (1.0361 × 10−7)PK3

1 (1 − e)2/3, (B9)

where fM1 is known as the mass function corresponding to the
primary mass.
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