
Inverse Obstacle Scattering Using Reduced DataRainer Kressy and William RundellzAbstract: The classical result of Schi�er in acoustic scattering is that a knowledge of the far�eld pattern for all observation directions and all incident directions at a �xed wave numberk uniquely determines the sound-soft scattering obstacle D. This is widely believed to befar greater information than is required for uniqueness and more recent results have beenobtained that considerably weaken the amount of data needed provided certain restrictionsare placed on the scatterer. Most of this work has concentrated on reducing the number ofincident waves required for a unique determination. This paper will take another approachand seeks to determine su�cient information to recover the obstacle from measurementsof the far �eld at isolated points. Our approach will be constructive and some numericalreconstructions will be presented.ams (mos) subject classi�cation primary 81U40, 65R30; secondary 35J05.1. IntroductionThe standard problem in inverse obstacle scattering for time-harmonic acoustic wavesis to determine the shape of an obstacle D from a measurement of the far �eld patternu1 of the scattered wave us for a set of incident plane waves ui(x) = eik d�x with di-rection of propagation d. The scattering of time-harmonic acoustic or electromagneticwaves at a cylindrical obstacle is modeled by the exterior boundary value problem forthe Helmholtz equation 4u+ k2u = 0 in IR2 n �D (1)with positive wave number k and Dirichlet boundary conditionu = 0 on @D: (2)The Dirichlet conditions (2) corresponds to a sound-soft obstacle in acoustics or aperfectly conducting obstacle in electromagnetics. The total wave u = ui + us isdecomposed into the given incident wave ui and the unknown scattered wave us whichis required to satisfy the Sommerfeld radiation condition@us@r � ikus = o� 1pr� ; r = jxj ! 1; (3)uniformly in all directions x̂ = x=jxj. The Sommerfeld radiation condition is equivalentto the asymptotic behaviourus(x) = eikxpjxj �u1(x̂; d) +O� 1jxj�� ; jxj ! 1; (4)yInstitut f�ur Numerische und Angewandte Mathematik, Universit�at G�ottingen,37083 G�ottingen, GermanyzDepartment of Mathematics, Texas A&M University, College Station, Texas 77843-3368.This author acknowledges thanks for partial support from the National Science Foundation.1
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where the amplitude factor u1 is known as far �eld pattern of the scattered wave. Itis de�ned on the unit circle in IR2, a set which we will denote by 
, and it dependsboth on the observation direction x̂ and the incident direction d. The inverse problemnow consists in the reconstruction of the scatterer D from a knowledge of the far �eldpattern u1.The classical uniqueness theorem for this problem is due to Schi�er [LP] and statesthat a knowledge of the far �eld pattern u(x̂; d) for all observation directions x̂ 2 
and all incident directions d 2 
 at a �xed wave number k uniquely determines thesound-soft or perfectly conducting scattering obstacle D.In the more than three decades since Schi�er proved his theorem there have beennumerous attempts to reduce the amount of data required. There is widespread beliefbased on some analysis and many numerical experiments that a measurement of thefar �eld pattern for a single incident direction su�ces to determine the scatteringobject, at least in the sound-soft or perfectly conducting case.Indeed, based on Schi�er's ideas, Colton and Sleeman [CS] were able to show that D isuniquely determined by the far �eld pattern for a �nite number of incident plane wavesprovided a priori information on the size of the obstacle is available. In particular,given the a priori information that the scatterer is contained in a disk of radius R thenit is uniquely determined by the far �eld pattern for one incident plane wave providedthe wave number satis�es kR < �0 where �0 denotes the smallest positive zero of theBessel function J0 of order zero.There are two recent uniqueness results of some interest: Potthast [Po] has proventhat two obstacles which lie within a distance of � of each other and share the samefar �eld patterns for N(�) incident waves must be identical. Using a di�erent methodLiu and Nachman [LN] have shown that there is at most a �nite number of bounded,Lipschitz obstacles that can share the same far �eld pattern arising from a singleincident wave. Further, a convex polyhedron is uniquely determined from this data.Taking another approach, the present authors were able to obtain a local uniquenessresult for obstacles su�ciently close to a circle. This allowed the consideration of anobstacles whose boundary lay in some �nite dimensional set S and which could berecovered from the far �eld pattern at a discrete set of values for a single incidentwave [KR1].While the proof of Schi�er's theorem does not itself lead to a constructive approach,many numerical schemes have been developed to reconstruct the obstacle from thesedata measurements. Most of these have relied on optimisation techniques, see [CK].However, the result of [KR1] led naturally to a constructive method and in particularthe authors were able to characterise the degree of ill-posedness of the problem as afunction of the wave number k and the dimension of the underlying basis set S forthe class of admissible obstacles. In fact, an even stronger result is likely; in [KR2]the authors presented numerical evidence that the shape (but not the location) ofthe obstacle can be successfully reconstructed from only the amplitude of the far �eldpattern.This paper will investigate the possibilities of obtaining local uniqueness results fromconsiderably less data data than indicated by the Schi�er result. We will consider twosuch problems. The �rst seeks to recover the obstacle from knowledge of the far �eldpattern u1(x̂; d) at a single observation direction x̂ = Qd for all incident directionsd 2 
 where Q is a �xed rotation matrix. In particular, this includes the case ofbackscattering. The second considers the case of a set of incident waves all from a2



�xed direction, but with frequencies varying over an interval of k values. Data consistsof values of the far �eld pattern at a �nite number of directions for each value of k.We will show that unique recovery is possible for the �rst problem provided the wavenumber is su�ciently small. For the second it will be shown that two measurementdirections, judiciously chosen, will also su�ce.As in [KR1], our approach will be through an explicit representation for the Fr�echetderivative of the map F from the obstacle boundary @D to the far �eld pattern u1using a domain derivative approach. This technique goes back to the very foundationsof the subject, but the formulation we shall use is due to Kirsch [Kr]. From this wewill be able to show local invertibility and the derivative so obtained will be used inan iterative method to obtain e�ective numerical reconstructions.For the Schr�odinger equation with backscattered data Eskin and Ralston [ER1], [ER2]have shown that the backscattering map is a local analytic homeomorphism in a smallneighbourhood of a certain set of potentials. Recently, Stefanov and Uhlmann [SU]have given a uniqueness result for inverse potential scattering with backscatteringfor all incident directions and all frequencies. To our knowledge nothing is knownon uniqueness for the inverse obstacle scattering problem for the Helmholtz equationwith backscattering data.2. Computation of the Fr�echet DerivativeIn this section, we will collect some known results for the derivative of the mappingF from an obstacle @D to the far �eld pattern u1. We will develop a general repre-sentation which will then be used to obtain properties of the derivatives for the mapsunder consideration. We assume that the boundary @D is starlike with respect to theorigin, i.e., @D can be represented in the parametric form@D = f(r(t) cos t; r(t) sin t) : t 2 [0; 2�]gwith a positive, twice continuously di�erentiable, 2� periodic function r : [0; 2�]! IRrepresenting the radial distance from the origin. The solution to the direct scatteringproblem (1) { (3) with a �xed incident wave ui de�nes an operatorF : C2+[0; 2�]! L2(
) (5)which maps the radial function r into the far �eld pattern u1 of the scattered waveus for the obstacle described by (5). Here, C2+[0; 2�] is the cone of positive functionsin C2[0; 2�]. We can in fact reduce this regularity assumption but, for our presentpurposes, the e�ort would not be repaid. Given a (measured) far �eld pattern u1, interms of the operator F , the inverse problem now is equivalent to solving the equationF (q) = u1 (6)for the radial function q(�) representing the boundary curve @D.Instead of the usual Fourier representation of a real valued periodic functionq(t) = 1Xm=0�m cosmt+ 1Xm=1�m sinmt (7)we choose the complex form of the boundary representationq(t) = NXm=�N ameimt (8)3



where N can be in�nite and wheream = 12 (�m � i�m); a�m = 12 (�m + i�m):In the sequel, we will express the directions d = (cos �0; sin �0), x̂ = (cos �; sin �) interms of the incident angle �0 and the observation angle �. Now from [KR1], the valueof the Fr�echet derivative of the mapping F in a direction q about the circle r = 1 is(F 0q)(�) = e��i4 r 2�k 1Xn=�1 cninH(1)n (k) ein� (9)where cn := 2i� 1Xm=�1 am in�mei(m�n)�0H(1)n�m(k) (10)and we note that the series (9) converges uniformly.We are interested in the situation where the far �eld is measured with a �xed angle between the the incident angle �0 and the observation angle �. Thus we will write� = �0 + . Our formulae will be simpler if we choose the origin of our coordinatesystem at the point t = =2 and so instead of (8) we useq(t) = 1Xm=�1 ameim(t�=2) (11)Then from (9), (10) and (11) it can be shown that the derivative takes the form(F 0q)(�0 + ; k) =r 8�2k ei�4 1Xm=�1 amBm(; k) eim�0 (12)where Bm(; k) := 1im 1Xn=�1 1H(1)n (k)H(1)n�m(k) ei(n�m2 ) : (13)We can write the above asBm(; k) =8>>>>><>>>>>: (�1)m2 h 1Hm2 (k)H�m2 (k) + 2 1Xn=m2 +1 cos(n� m2 )Hn(k)Hn�m(k) i if m is even,2(�1)m�12 1Xn=m+12 sin(n� m2 )Hn(k)Hn�m(k) if m is odd,which indicates the importance that the parity of m plays. The sequence Bm willplay a prominent role in the analysis to follow and we collect some of the importantproperties below. We shall drop the su�x on the Hankel functions, it being understoodthey are of the �rst kind.Lemma 1. For all  2 (0; 2�) and k > 0 we have that B�m(; k) = (�1)mBm(; k)for all m and Bm(0; k) = 0 for m odd.Proof: We use the Bessel function identities H�n = (�1)nHn to obtainB�m(; k) = 1i�m 1Xn=�1 ei(n+m2 )Hn(k)Hn+m(k)= (�1)mim 1Xn0=�1 ei(n0�m2 )Hn0�m(k)Hn0(k) = (�1)mBm(; k)4



from which the �rst part follows directly. For the second part we note thatBm(0; k) = 1Xn0=�1 i�mHn0+m(k)Hn0 (k) = 1Xn0=�1 i�mHm�n0(k)H�n0(k)= 1Xn0=�1 (�1)mi�mHn�m(k)Hn(k) = (�1)mBm(0; k):Lemma 2. For k su�ciently small and all  2 [0; 2�] we have thatB0(; k) = �24 ln2 k2 +O(k2); Bm(; k) = gm() km+hm() kmln k2 +O(km+2); m > 0;uniformly with respect to m whereg0() = g1() = 0; gm() = � �24 (m� 2)! sinm�2 2 ; m � 2;and hm() = 8>><>>: �22m�1(m� 1)! (�1)m2 cos m2 if m is even,�22m�1(m� 1)! (�1)m�12 sin m2 if m is odd.Proof: We use the asymptotic expansionsY0(k) = 2� ln k2 +O(k2 ln k); Yn(k) = � 1� 2nkn (n� 1)! (1 +O(k2)); n � 1;for small k which are uniformly valid with respect to n. Note that there are two termsin the series representing Bm containing a Hankel function of order zero and thesegive the contribution1im h ei(�m2 )H(1)0 (k)H(1)�m(k) + ei(m�m2 )H(1)m (k)H(1)0 (k) i= � �22m�1(m� 1)! 1im �ei(m2 ) + (�1)me�i(m2 )�hmkm 1ln(k=2)where hm is de�ned above. If m = 0 then it is easily seen that the lowest order termin k not containing H0(k) must come from the contribution of 1=Hn(k)Hn(k) withn = �1 and these terms are of order k2. The lowest order term arises from the productof the two Hankel terms of order zero and has value �2=4 ln2(k=2). If m = 1 thenthe lowest terms not including H0(k) are of order k3. This implies that gm = 0 form = 0; 1. For m � 2, the terms of order km are contributed by the combinations1im m�1Xn=1 ei(n�m2 )H(1)n (k)H(1)n�m(k) = gm()km +O(km+2)where, by the binomial formula,gm() = ��2(�1)m2mim m�1Xn=1 (�1)n ei(n�m2 )(n� 1)! (m� n� 1)! = � �24 (m� 2)! �ei=2 � e�i=22i �m�2as claimed in the statement of the lemma.Corollary. For k su�ciently small and any  6= 0 we have for allm that Bm(; k) 6= 0.5



3. Uniqueness ResultsFor the single frequency, multiple incident direction case we let �i, i = 1; 2; : : : bea set of incident directions and denote by u1;i the (complex-valued) far�eld patternmeasured at the single observation angle �i+ that arises from the wave with incidentdirection �i and with �xed frequency k. Let Finc be the map that takes an obstacle@D onto the set of values fu1;ig1i=1. The o�set  between the incident and measureddirections is �xed; the value  = � corresponds to the backscattering case and  = 0to the forward scattering situation.For the case when the obstacle D is the unit disc we can use (12) to obtain therepresentationF 0inc:q =r 8�2k ei�4 " 1Xm=0m=evenf�m cosm�j0 � �m sinm�j0gBm(; k)+ i 1Xm=1m=oddf�m sinm�j0 + �m cosm�j0gBm(; k):# (14)From (14) it is clear that F 0incq = 0 for all directions �i0, where f�ig has a pointof accumulation on the unit circle, implies that the sequences fBm(; k)�mg andfBm(; k)�mg are identically zero. Now if k is su�ciently small, and  6= 0, it followsfrom the corollary to Lemma 2 that Bm has no zeroes, and hence the pair of sequencesf�mg and f�mg must be zero, showing that q = 0. Thus under these conditions on kand  the map F 0inc is one to one.We note that if  is zero, the forward scattering case, then from Lemma 1 we knowthatBm(0; k) is identically zero for all odd m. From (12) it follows that the odd cosineand sine coe�cients of the perturbation q (as measured from the origin) cannot berecovered.If we consider the �nite dimensional situation, where there are 2N + 1 basis trigono-metric functions and M incident directions given by angles �i0, i = 1; : : : ;M , thenprovided M � 2N + 1 the resulting system of equations is uniquely solvable for thecoe�cients fBm(; k)�mgN0 and fBm(; k)�mgN1 . The condition number of the re-sulting Gram matrix which has rows [1; cosm�i; sinm�i], 1 � i �M , 1 � m � N , willdepend on the choice of the directions of the incident waves. The condition numberwill be minimised by choosing an equal spread of the directions over [0; 2�], whereasa concentration into a sector will result in very poor conditioning. As we will showin a later section the additional degree of ill-conditioning due to division by the termBm is small.This is summarised inTheorem 1. Let 0 <  < 2�. Then if the wavenumber k is su�ciently small thederivative map F 0inc is injective. In the �nite dimensional problem with M incidentwaves from distinct directions and a �nite trigonometric basis (7), the resulting Jaco-bian matrix has trivial nullspace provided M � 2N + 1.We now consider the multiple frequency, single incident direction problem. Here weassume that a single incident wave with direction angle �0 has the (complex) value ofits far �eld pattern measured at a single angle � = �0 + . The frequency of the waveis assumed to be vary over an interval [kmin; kmax]. We denote this map by Ffreq. Due6



to the rotational invariance of the circle, the derivative F 0freq(q) will depend only onthe di�erence , so that without loss of generality, we may set �0 = 0.If we use the representation (12) and take into account the symmetry condition onB�m = (�1)mBm shown in Lemma 1, then we have(F 0freqq)() =r 8�2k ei�4 " NXm=0m=even �mBm(; k) + i NXm=1m=odd �mBm(; k)#: (15)It is immediately clear from this that one cannot recover the even numbered sine andthe odd numbered cosine coe�cients of the perturbation q de�ned by (8). On theother hand, if F 0freq(q) = 0, then although nothing can be said about the coe�cients�2`+1 and �2` , it is clear that B2`(; k)�2` = 0 and B2`+1(; k)�2`+1 = 0. Now it isobvious that Bm(; k) is analytic for k > 0 and hence we can use Lemma 2 to expandthe derivative in terms of powers of k to obtain(F 0freqq)() = p8 ei�4 h�4�0 1ln2 k2 +(�i) sin 2 �1 kln k2 + �2 cos  �2 k2ln k2 � �4�2 k2 + : : : i;and equating terms in k we see that F 0freq(q)() = 0 implies that �2` = 0 and �2`+1 = 0,` = 0; 1 : : : ; provided that 0 <  < 2�. This is summarised in the following theorem:Theorem 2. For any  with 0 <  < 2�, the nullspace of F 0freq consists of the oddnumbered cosine and the even numbered sine coe�cients (when expanded with theorigin at t = 2 ).Is there complete loss of information if  = 0? Certainly, as before, the odd cosinecoe�cients are still in the nullspace. In addition, we see from the above and Lemma 1that all the sine coe�cients are also in the nullspace. From Lemma 2 we see thatgm(0) = 0 for all m and hm(0) = 0 for m odd. However, for m even, hm(0) is nonzero.Thus the nullspace of F 0freq when  = 0 consists of all the sine coe�cients and all theodd cosine coe�cients.Theorem 2 shows that the measurement of the far �eld at a single angle gives \one half"the amount of information required to reconstruct a su�ciently small perturbation ofthe circle. Thus for those perturbations q with a �nite Fourier series with maximumfrequencyN the dimension of the nullspace of F 0freq is exactlyN . The obvious questionis, does measurements at a scan of frequencies at two distinct points recover fullinformation? Since we have given a precise characterisation of the nullspace for asingle measurement, we are able to answer this question in the a�rmative:Theorem 3. From the values of the far �eld pattern measured at two angles 1 and2 we can recover all Fourier coe�cients in (7) provided 1 6= 0 and 2 6= 0 andsinm (1 � 2)2 6= 0 for m = 1; : : : ; N: (16)Proof: This follows directly from Theorem 2 and the fact that the pairssinm�t� 12 � and sinm�t� 22 �and cosm�t� 12 � and cosm�t� 22 �are linearly independent if (16) is satis�ed.7



4. Some numerical methods for the reconstruction of the domainOur approach to the numerical reconstruction will involve iterative methods to solvethe nonlinear equation F (@D) = u1. We seek a sequence of approximations frng tothe obstacle boundary r generated by the schemern+1 = rn �An(F (rn)� u1) (17)where the operator A uses derivative information from the map F , and u1 denotesthe data obtained from measurements of the far �eld. That is, we seek to replace theoperator equation (6) by its linearisation.Two commonly used cases are An = �F 0[rn]��1 (where (F 0)�1 may mean the gener-alised inverse of F 0) or An = �F 0[rn]��. The former leads to Newton-type schemes andthe latter to Landweber-Fridman iteration. If the solution of (6) is to be consideredas the least squares minimum of the objective functional kF (r) � u1k2, then takingA = �F 0[r]�F 0[r]��1F 0[r]� gives a scheme that is usually referred to as the Gauss-Newton method. The choice An = �F 0[rn]�� gives the method of Steepest Descent.While the above considers the nonlinear nature of (6), we must also consider the ill-conditioning. In the Landweber scheme the usual implementation utilises a stoppingcriteria; when the residual, de�ned as the L2 di�erence of the computed solution andactual data, no longer decreases then the scheme is terminated. The existence ofsuch a stopping condition and the convergence of the iteration procedure requires theveri�cation of certain conditions (see for example [HNS]) which we have not beenable to show for the in�nite dimensional operator (F 0)�). For the �nite dimensionalproblem these are trivially satis�ed if we use the value of the derivative at a circle,since we have been able to show that F 0 is one to one (Theorems 1 and 3). However,this has not been proven for more general regions, nor can we guarantee that the rateof convergence will not slow down with increasing dimension of the underlying space.In the Newton scheme we will also take a standard approach and seek a generalisedinverse that is not only invertible, but has a su�ciently small condition number. Oneway to achieve this is by limiting the size of the basis set, that is, the value of N .Again, we have no guarantee that the Jacobian matrix will be invertible for non-circular regions, but in practice no di�culties were found. Since this limitation isequivalent to ignoring all frequencies in the boundary representation higher than N ,this is simply just regularisation by spectral cut-o�.An alternative means to stabilise the inversion in the Newton scheme is to use Tichonovregularisation; replacing the inverse of F 0 by ��I + F 0[r]�F 0[r]��1F 0[r]�. We show afew reconstructions using this approach.Of course we can combine the two methods to advantage by for example choosingAn =�nI + �F 0[r]�F 0[r]��1F 0[r]� for some sequence �n. This is the Levenberg-Marquardtidea and typically one uses a decreasing sequence f�ng that has the e�ect weightingtowards the more rapidly convergent Newton scheme once the initial approximationhas been su�ciently improved to be within the often narrow domain of capture of thismethod. As we will point out later this may actually be an essential step.For the solution of the forward problem generating the synthetic data u1 and eval-uating F in each iteration step we used the Nystr�om method based on a combineddouble and single-layer boundary integral equation approach as presented in [CK]. Inorder to ensure the integrity of the procedure we used di�erent coupling parametersin the combination of the double- and single-layer potentials. The synthetic data was8



generated using only 16 grid points, so that the solution was only about 1% accurate.However, in the computation of the forward map F in the inverse problem solver amuch �ner grid was used; typically 60 or 80 points.Our data consisted of a subset of the values of u1. In the case of multiple incidentwaves this is u1(dj ; �) where the M incident plane waves have incident directions dj ,1 � j �M , (corresponding to the angles of incidence �j0) and the measurement point� is determined by � =  + �j0 for some �xed angle .For the multiple frequency situation we haveM=2 measurements of the scattered waveat both of the points �0 + 1 and �0 + 2, each at a di�erent wavenumber kj . Notethat we are using both the real and imaginary parts of the far �eld, so that there arein fact 2M data values in each of the two inverse problems.For a stopping rule for the scheme we used the relative residualRn := � MXj=1 jF (rn)� uj1j2� 12.� MXj=1 jF (rn)j2� 12and terminated the procedure when the di�erence between the values of Rn for twoconsecutive iterations was less than a tolerance value �. In our computations we used� = 10�4. As a measure of accuracy for the reconstructions we used the L2 errorkrn � ractk2.The corresponding reconstructions are illustrated in Figures 1 and 2. The dashed linesgive the exact boundary curves and the full lines give the reconstructions. The startingapproximation r0 in each case was the unit circle and this is also shown on each �gure.The number of iterations required for each reconstruction is indicated along with the�nal L2 norm of the di�erence of the reconstructed and actual boundaries.For the case of multiple incident plane waves Figure 1 shows reconstructions of threeobstacles; an ellipse, a bean-shape and a �gure with three lobes,r(t) = 11 + C cos t ; 1 + 0:9 cos t+ 0:1 sin 2t1 + 0:75 cos t ; 0:5 + 0:25e� sin 3t � 0:1 sin tIn these numerical experiments we chose 16 equally spaced directions. The (�xed)wavenumber was k = 1. Various values of the o�set angle  was used. Theoretically,the backscattered case ( = �) should give optimal results, but in fact we found verylittle di�erence in the quality of the reconstructions provided  was chosen greater thanabout �=10. In the case of forward scattering ( = 0), we even were able to obtain anexcellent reconstruction of a curve whose Fourier coe�cients were relatively small inthe direction of the nullspace of F 0[r = 1] by using a singular value decomposition ofthe Jacobian and simply ignoring all directions in the nullspace of F 0. The number ofiterations required for numerical convergence varied very little with the shape of theobject; on average, about 10 iterations were necessary to satisfy the stopping crite-rion. Since the data was obtained through a course mesh size in the direct scatteringnumerical scheme these �gures should be considered as being obtained under about1% error, which in this case is liable to be systematic rather than random.Reconstructions of the same three test obstacles using data consisting of a set ofincident plane waves with common direction but with a range of frequencies is shownin Figure 2. We have used arrows to represent the incident direction d, while the marks4 indicate the two locations where the far �eld pattern was measured. In each case9



Fig 1. Reconstruction using spectral-cut-o� from 16 incident waves .
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......................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................k = 1,  = �, N = 7.kr10 � ractk2 = 0:042the di�erence in the angles 1 and 2 was chosen so that the condition in Theorem 3was satis�ed for the values of N used. Note that this condition is known to hold onlywhen the obstacle is the unit circle. We used 20 frequencies chosen randomly fromthe interval [0:5; 2:0]. As the numerical scheme progressed we monitored the valuesof the condition number � of the Jacobian matrix, but actually found little di�erencefrom the sort of values obtained when the scatterer was a circle. (A typical range was� = 5 for N = 2 to about � = 500 for N = 6 with careful choice of 1 � 2.)As in the previous problem, ten iterations was usually su�cient to reconstruct a widevariety of obstacles. However, for regions not close to the initial approximation, theNewton scheme would often not converge, but in fact would rapidly diverge within a10



few iterations. If we �rst take a small number (typically, 5 was used) of Landwebersteps to improve the starting approximation, then the Newton scheme was often able totake over resulting in rapid convergence. This was the case for the three-lobed region.Of course, a more sophisticated Levenberg-Marquardt scheme could be developedwhere the choice of the parameter �n could be made on the basis of the current valuesof the residuals, rather than taking �n very large for n � 5 and then �n = 0 for n > 5.Fig 2. Reconstruction using 20 wavenumbers at two measurement points?y
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ull Newton, spectral cut-o�, N = 5.�0 = 0, 1 = 0:5�, 2 = 0:73�.kr10 � ractk2 = 0:078
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andweber-Newton, Tichonov, � = 0:02.�0 = 0, 1 = 0:5�, 2 = 0:73�.kr13 � ractk2 = 0:076
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andweber-Newton, Tichonov, � = 0:02.�0 = 0, 1 = 0:5�, 2 = 0:73�.kr12 � ractk2 = 0:14711



We also attempted to reconstruct objects using a frozen Newton scheme { where thederivative is held �xed at the initial approximation, in our case the unit circle. Thusin (17) we take An�A0. This approach has two advantages. First, we are able toprove that the matrix we are using is actually invertible. Second, the additional costof computing the derivative F 0(rn) is avoided. Computing this requires the solutionof a second scattering problem (see [KR1]) which increases the computational costof each iteration by approximately a factor of two. The disadvantage, of course, isthat the value of the derivative may vary considerably even in a neighbourhood of theorigin and the resulting method will lose some of the power of the full Newton scheme,or, even fail to converge at all.In the case of recovering an obstacle from a single plane wave, but where the far �eldpattern was measured in all directions, [KR1], this frozen Newton scheme gave resultsthat were for the most part indistinguishable from when the actual derivative wasused at each step.However, for the case of multiple frequency data the situation was quite di�erent; wewere only able to recover obstacles that were close to a circle. In Figure 2 an exampleis shown of the frozen Newton being used to reconstruct the ellipse. Note the poorerreconstruction than that obtained by updating the derivative at each stage. Therewas an additional cost since the frozen Newton scheme required four times as manyiterations to achieve these results; thus the total computational cost was approximatelytwice as much. We were able to reconstruct an ellipse with eccentricity less than 1:5about equally well with both the full and frozen Newton schemes, although with manymore iterations being required in the latter case. If the eccentricity was greater than2 then the frozen Newton scheme failed. If it were increased to about 2.5 then eventhe full Newton scheme would fail unless a better initial approximation was obtainedby using several Landweber steps.It was also noted that our schemes would sometimes obtain obstacles di�erent fromthe actual �gure and these reconstructions would depend on the parameters such assize of basis and initial approximation. This is usually an indication of the existenceof additional local minima in the associated optimisation problem.In some sense these results bear out other evidence gleaned from numerical experi-ments and some analysis. The scattering problem consisting of a single incident waveat a �xed frequency with measurements on all of 
 is highly ill-posed; the e�ectiveJacobian of the boundary to data map increases exponentially in N [KR1]. The in-cident wave at multiple frequency problem appears to lead to a derivative with asmaller condition number with a consequent decrease in ill-posedness. However, thelater problem appears to be \more nonlinear" than the former.5. References[CK] Colton, D., and Kress, R: Inverse Acoustic and Electromagnetic Scattering Theory.Springer-Verlag, Berlin Heidelberg New York 1992.[CS] Colton, D., and Sleeman, B.D: Uniqueness theorems for the inverse problem ofacoustic scattering. IMA J. Appl. Math. 31, 253{259 (1983).[ER1] Eskin, G., and Ralston, J: Inverse backscattering in two dimensions, Comm. Math.Phys. 138, (1991), no. 3, 451{486.[ER2] Eskin, G., and Ralston, J: The inverse backscattering problem in three dimensions,Comm. Math. Phys. 124, (1989), no. 2, 169{215.[HNS] Hanke, M., Neubauer, A. and Scherzer, O.: A convergence analysis for the Landwe-ber iteration for nonlinear ill-posed problems. Numer. Math. 72, 21{37 (1995).12
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