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Inverse Obstacle Scattering Using Reduced Data

RAINER KRESST and WILLIAM RUNDELLZ

Abstract: The classical result of Schiffer in acoustic scattering is that a knowledge of the far
field pattern for all observation directions and all incident directions at a fixed wave number
k uniquely determines the sound-soft scattering obstacle D. This is widely believed to be
far greater information than is required for uniqueness and more recent results have been
obtained that considerably weaken the amount of data needed provided certain restrictions
are placed on the scatterer. Most of this work has concentrated on reducing the number of
incident waves required for a unique determination. This paper will take another approach
and seeks to determine sufficient information to recover the obstacle from measurements
of the far field at isolated points. Our approach will be constructive and some numerical
reconstructions will be presented.

AMS (MOs) subject classification primary 81U40, 65R30; secondary 35J05.

1. Introduction

The standard problem in inverse obstacle scattering for time-harmonic acoustic waves
is to determine the shape of an obstacle D from a measurement of the far field pattern
oo Of the scattered wave u® for a set of incident plane waves u'(z) = e* % with di-
rection of propagation d. The scattering of time-harmonic acoustic or electromagnetic
waves at a cylindrical obstacle is modeled by the exterior boundary value problem for
the Helmholtz equation

Au+ku=0 inR*\ D (1)

with positive wave number k£ and Dirichlet boundary condition
u=0 ondD. (2)

The Dirichlet conditions (2) corresponds to a sound-soft obstacle in acoustics or a
perfectly conducting obstacle in electromagnetics. The total wave u = u’ + u® is
decomposed into the given incident wave u’ and the unknown scattered wave u® which
is required to satisfy the Sommerfeld radiation condition

ou® . 1 B
szku _O<W>7 r=|z| = oo, (3)

uniformly in all directions & = x/|z|. The Sommerfeld radiation condition is equivalent
to the asymptotic behaviour

ui(z) = \e/';m_' (uoo(ﬁz;d) +0 (%)) L 2] = o, (4)
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where the amplitude factor uy, is known as far field pattern of the scattered wave. It
is defined on the unit circle in IR?, a set which we will denote by €2, and it depends
both on the observation direction % and the incident direction d. The inverse problem
now consists in the reconstruction of the scatterer D from a knowledge of the far field
pattern u.

The classical uniqueness theorem for this problem is due to Schiffer [LP] and states
that a knowledge of the far field pattern u(z;d) for all observation directions & € 2
and all incident directions d € ) at a fixed wave number k uniquely determines the
sound-soft or perfectly conducting scattering obstacle D.

In the more than three decades since Schiffer proved his theorem there have been
numerous attempts to reduce the amount of data required. There is widespread belief
based on some analysis and many numerical experiments that a measurement of the
far field pattern for a single incident direction suffices to determine the scattering
object, at least in the sound-soft or perfectly conducting case.

Indeed, based on Schiffer’s ideas, Colton and Sleeman [CS] were able to show that D is
uniquely determined by the far field pattern for a finite number of incident plane waves
provided a priori information on the size of the obstacle is available. In particular,
given the a priori information that the scatterer is contained in a disk of radius R then
it is uniquely determined by the far field pattern for one incident plane wave provided
the wave number satisfies kR < (o where (y denotes the smallest positive zero of the
Bessel function Jy of order zero.

There are two recent uniqueness results of some interest: Potthast [Po] has proven
that two obstacles which lie within a distance of € of each other and share the same
far field patterns for N(e) incident waves must be identical. Using a different method
Liu and Nachman [LN] have shown that there is at most a finite number of bounded,
Lipschitz obstacles that can share the same far field pattern arising from a single
incident wave. Further, a convex polyhedron is uniquely determined from this data.

Taking another approach, the present authors were able to obtain a local uniqueness
result for obstacles sufficiently close to a circle. This allowed the consideration of an
obstacles whose boundary lay in some finite dimensional set S and which could be
recovered from the far field pattern at a discrete set of values for a single incident
wave [KR1].

While the proof of Schiffer’s theorem does not itself lead to a constructive approach,
many numerical schemes have been developed to reconstruct the obstacle from these
data measurements. Most of these have relied on optimisation techniques, see [CK].
However, the result of [KR1] led naturally to a constructive method and in particular
the authors were able to characterise the degree of ill-posedness of the problem as a
function of the wave number k& and the dimension of the underlying basis set S for
the class of admissible obstacles. In fact, an even stronger result is likely; in [KR2]
the authors presented numerical evidence that the shape (but not the location) of
the obstacle can be successfully reconstructed from only the amplitude of the far field
pattern.

This paper will investigate the possibilities of obtaining local uniqueness results from
considerably less data data than indicated by the Schiffer result. We will consider two
such problems. The first seeks to recover the obstacle from knowledge of the far field
pattern uo(Z;d) at a single observation direction & = @Qd for all incident directions
d € ) where () is a fixed rotation matrix. In particular, this includes the case of
backscattering. The second considers the case of a set of incident waves all from a
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fixed direction, but with frequencies varying over an interval of k£ values. Data consists
of values of the far field pattern at a finite number of directions for each value of k.
We will show that unique recovery is possible for the first problem provided the wave
number is sufficiently small. For the second it will be shown that two measurement
directions, judiciously chosen, will also suffice.

As in [KR1], our approach will be through an explicit representation for the Fréchet
derivative of the map F from the obstacle boundary 0D to the far field pattern o,
using a domain derivative approach. This technique goes back to the very foundations
of the subject, but the formulation we shall use is due to Kirsch [Kr]. From this we
will be able to show local invertibility and the derivative so obtained will be used in

an iterative method to obtain effective numerical reconstructions.

For the Schrédinger equation with backscattered data Eskin and Ralston [ER1], [ER2]
have shown that the backscattering map is a local analytic homeomorphism in a small
neighbourhood of a certain set of potentials. Recently, Stefanov and Uhlmann [SU]
have given a uniqueness result for inverse potential scattering with backscattering
for all incident directions and all frequencies. To our knowledge nothing is known
on uniqueness for the inverse obstacle scattering problem for the Helmholtz equation
with backscattering data.

2. Computation of the Fréchet Derivative

In this section, we will collect some known results for the derivative of the mapping
F from an obstacle 9D to the far field pattern u,,. We will develop a general repre-
sentation which will then be used to obtain properties of the derivatives for the maps
under consideration. We assume that the boundary 9D is starlike with respect to the
origin, i.e., 9D can be represented in the parametric form

OD = {(r(t) cost,r(t)sint) : t € [0, 27]}

with a positive, twice continuously differentiable, 27 periodic function r : [0, 27] — R
representing the radial distance from the origin. The solution to the direct scattering
problem (1) — (3) with a fixed incident wave u® defines an operator

F:C%0,2n] — L*(Q) (5)

which maps the radial function r into the far field pattern u,, of the scattered wave
u® for the obstacle described by (5). Here, C% [0, 2n] is the cone of positive functions
in C?[0,27]. We can in fact reduce this regularity assumption but, for our present
purposes, the effort would not be repaid. Given a (measured) far field pattern o, in
terms of the operator F, the inverse problem now is equivalent to solving the equation

F(q) = us (6)

for the radial function ¢(6) representing the boundary curve 9D.

Instead of the usual Fourier representation of a real valued periodic function

oo oo
q(t) = Z Q. cosmt + Z By sinmt (7)
m=0 m=1
we choose the complex form of the boundary representation
N
at) = D ame'™ (8)
m=—N
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where N can be infinite and where
) 1 .
am = 5 (am - Zﬂm): aG—m = 5 (am + Zﬂm)
In the sequel, we will express the directions d = (cos#fy,sinfy), & = (cosf,sinf) in
terms of the incident angle 6y and the observation angle . Now from [KR1], the value
of the Fréchet derivative of the mapping F' in a direction g about the circle r = 1 is

Fo@) = F /2 Y P i ©

where ( :
% o0 Z'nfmei m—n)fg
Cp 1= — Ay ——————— (10)
m m;oo H,",, (k)

and we note that the series (9) converges uniformly.

We are interested in the situation where the far field is measured with a fixed angle
v between the the incident angle 6y and the observation angle §. Thus we will write
0 = 6y + . Our formulae will be simpler if we choose the origin of our coordinate
system at the point ¢ = /2 and so instead of (8) we use

Z ame’ mtE=/2) (11)

m=—00

Then from (9), (10) and (11) it can be shown that the derivative takes the form

(F/q)(eo +77k) = el Z am B eimSo (12)
where
Bon(7, k) == ei(n=%)7, (13)
= A

We can write the above as

bl 1 cos(n — 2)y _ '
(1) [H%(k)H m + 2 Z T(k) if m is even,
B (7, k) = N
; mo1 sm(n — mh . '
v ;H Hy(k)Hy (k) if m is odd,

which indicates the importance that the parity of m plays. The sequence B, will
play a prominent role in the analysis to follow and we collect some of the important
properties below. We shall drop the suffix on the Hankel functions, it being understood
they are of the first kind.

Lemma 1. For all v € (0,27) and k > 0 we have that B_,,(v, k) = (—=1)" B (7, k)
for all m and B, (0,k) = 0 for m odd.

Proof: We use the Bessel function identities H_,, = (—1)"H, to obtain




from which the first part follows directly. For the second part we note that

oo . o0

Bm(0= k) = n:;m m - n’;oo Hmm’(k)an’(k)
S o

- ¥ T = " B0k,

n'=—oo

Lemma 2. For k sufficiently small and all v € [0, 27] we have that

2 m

s k
Bo(v, k) = 4111—2E+O(k2), B (7, k) = gm(v) km"‘hm(V)ln—E +O(k™*?), m >0,
2

uniformly with respect to m where

7T 27
— — 0 m — _ m—2 | > 27

90(7) = 9:1(7) gm(7) = =7 e

and ,
72”171(7:” 1 (-=1)% cos ? if m is even,
h‘m(’y) = 2 . m
m-1 Yoo, .
T (m 1)1 (—=1)7= sin - if m is odd.

Proof: We use the asymptotic expansions
2.k 9 1 9
Yo(k) = Z1n T O(k*Ink), Vi(k) = —= "= (-1 (1+0(k%)), n>1,
™ ™

for small k£ which are uniformly valid with respect to n. Note that there are two terms
in the series representing B,, containing a Hankel function of order zero and these
give the contribution

i ei(i%)’y . ei(mi%)’y :|
LG () HY, (k) Hi () HG (k)
7'('2 1 i % m_—i % m 1
= gy e + (O Bk s

where h,, is defined above. If m = 0 then it is easily seen that the lowest order term
in k not containing Hy(k) must come from the contribution of 1/H,(k)H, (k) with
n = +1 and these terms are of order k2. The lowest order term arises from the product
of the two Hankel terms of order zero and has value 72/41n*(k/2). If m = 1 then
the lowest terms not including Hy(k) are of order k3. This implies that g, = 0 for
m = 0,1. For m > 2, the terms of order £™ are contributed by the combinations

1 m_! ei(n7%)7
- = g (VK™ + O(K™*?)
" = =D (RHY,, (k)

where, by the binomial formula,

n—D'(m-n-1 4(m-2)!

(- (cneilnE) 2 G2 o—iv/2\ m—2
9m(Y) =~ ;( ( 2 )

as claimed in the statement of the lemma.

Corollary. For k sufficiently small and any v # 0 we have for all m that B,,(, k) # 0.



3. Uniqueness Results

For the single frequency, multiple incident direction case we let 8;, i = 1,2,... be
a set of incident directions and denote by 4 ; the (complex-valued) farfield pattern
measured at the single observation angle 6; 4+ that arises from the wave with incident
direction 6; and with fixed frequency k. Let Fj,. be the map that takes an obstacle
0D onto the set of values {uo,;}$2,. The offset v between the incident and measured
directions is fixed; the value 7 = 7 corresponds to the backscattering case and v = 0
to the forward scattering situation.

For the case when the obstacle D is the unit disc we can use (12) to obtain the
representation

b= 8| 55 (oot iy oo
m=0
m:;e" (14)
+ 1 Z {a,, sin m% ~+ B cos m%}Bm(% k).
add

From (14) it is clear that F}, g = 0 for all directions 6%, where {6;} has a point
of accumulation on the unit circle, implies that the sequences {B,,(7,k) a,,} and
{B.(7, k) Bm} are identically zero. Now if k is sufficiently small, and v # 0, it follows
from the corollary to Lemma 2 that B,, has no zeroes, and hence the pair of sequences
{am} and {B,,} must be zero, showing that ¢ = 0. Thus under these conditions on &
and ~ the map F} . is one to one.

We note that if v is zero, the forward scattering case, then from Lemma 1 we know
that By, (0, k) is identically zero for all odd m. From (12) it follows that the odd cosine
and sine coefficients of the perturbation ¢ (as measured from the origin) cannot be

recovered.

If we consider the finite dimensional situation, where there are 2N + 1 basis trigono-
metric functions and M incident directions given by angles i, i = 1, ...; M, then
provided M > 2N + 1 the resulting system of equations is uniquely solvable for the
coefficients {B,, (7, k) an Y and {B,,(7,k) B }Y¥. The condition number of the re-
sulting Gram matrix which has rows [1,cosm#b;,sinm;], 1 <i < M, 1 <m < N, will
depend on the choice of the directions of the incident waves. The condition number
will be minimised by choosing an equal spread of the directions over [0, 27|, whereas
a concentration into a sector will result in very poor conditioning. As we will show
in a later section the additional degree of ill-conditioning due to division by the term
B,,, is small.

This is summarised in

Theorem 1. Let 0 < v < 2w. Then if the wavenumber k is sufficiently small the
derivative map F! . is injective. In the finite dimensional problem with M incident

waves from distinct directions and a finite trigonometric basis (7), the resulting Jaco-
bian matrix has trivial nullspace provided M > 2N + 1.

We now consider the multiple frequency, single incident direction problem. Here we
assume that a single incident wave with direction angle 6y has the (complex) value of
its far field pattern measured at a single angle 8 = 6y + . The frequency of the wave
is assumed to be vary over an interval [kmin, kmax]. We denote this map by Fieq. Due
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to the rotational invariance of the circle, the derivative Fy . (¢) will depend only on

the difference v, so that without loss of generality, we may set 8y = 0.

If we use the representation (12) and take into account the symmetry condition on
B_,, = (—1)™B,, shown in Lemma 1, then we have

R ) N N
(Ff’reqq)(v) = mez l Z amBm('%k)Jf'i Z ﬁmBm('%k) . (15)

m=0 m=1
m=even m=odd

INE

It is immediately clear from this that one cannot recover the even numbered sine and
the odd numbered cosine coefficients of the perturbation ¢ defined by (8). On the
other hand, if Fy, (¢) = 0, then although nothing can be said about the coefficients
aogr1 and By , it is clear that Bag(y, k)age = 0 and Bagi1 (7, k) Bae+1 = 0. Now it is
obvious that By, (v, k) is analytic for £ > 0 and hence we can use Lemma 2 to expand
the derivative in terms of powers of k to obtain

k2

k
+(m')sin1 ﬂll—k"‘zCOSV a21—7£a2k2 + ...,
nk
2

iz [T
(Ff(reqq)(ry) = \/g e 4| —ao 9 9 ng 4

4

2 k
lni

and equating terms in k we see that Ff, . (¢)(7) = 0 implies that az, = 0 and B2/41 = 0,
£=0,1...,provided that 0 < v < 27. This is summarised in the following theorem:

Theorem 2. For any v with 0 < v < 2w, the nullspace of Fflreq consists of the odd
numbered cosine and the even numbered sine coefficients (when expanded with the
origin at t = ).

Is there complete loss of information if v = 07 Certainly, as before, the odd cosine
coefficients are still in the nullspace. In addition, we see from the above and Lemma, 1
that all the sine coefficients are also in the nullspace. From Lemma 2 we see that
gm (0) = 0 for all m and h,,(0) = 0 for m odd. However, for m even, h,,(0) is nonzero.
Thus the nullspace of Ff’req when v = 0 consists of all the sine coefficients and all the
odd cosine coefficients.

Theorem 2 shows that the measurement of the far field at a single angle gives “one half”
the amount of information required to reconstruct a sufficiently small perturbation of
the circle. Thus for those perturbations g with a finite Fourier series with maximum
frequency N the dimension of the nullspace of Fflreq is exactly N. The obvious question
is, does measurements at a scan of frequencies at two distinct points recover full
information? Since we have given a precise characterisation of the nullspace for a
single measurement, we are able to answer this question in the affirmative:

Theorem 3. From the values of the far field pattern measured at two angles v, and
~vo we can recover all Fourier coefficients in (7) provided vy, # 0 and 7, # 0 and

sinm

w;&o form=1,..., N. (16)
Proof: This follows directly from Theorem 2 and the fact that the pairs

sinm(tf l) and sinm(tf E)

2 2

and

cosm(tf%) and cosm(tf%)

are linearly independent if (16) is satisfied.



4. Some numerical methods for the reconstruction of the domain

Our approach to the numerical reconstruction will involve iterative methods to solve
the nonlinear equation F(0D) = u,. We seek a sequence of approximations {r,} to
the obstacle boundary r generated by the scheme

Tnt1 = T — An(F(rn) — too) (17)

where the operator A uses derivative information from the map F, and u,, denotes
the data obtained from measurements of the far field. That is, we seek to replace the
operator equation (6) by its linearisation.

Two commonly used cases are A,, = (F’ [rn])fl (where (F')~! may mean the gener-
alised inverse of F') or A,, = (F'[r,]) *. The former leads to Newton-type schemes and
the latter to Landweber-Fridman iteration. If the solution of (6) is to be considered
as the least squares minimum of the objective functional |[F(r) — uql|2, then taking

A= (F’[r]*F’[r])ilF’[r]* gives a scheme that is usually referred to as the Gauss-
Newton method. The choice A,, = (F’[rn])* gives the method of Steepest Descent.

While the above considers the nonlinear nature of (6), we must also consider the ill-
conditioning. In the Landweber scheme the usual implementation utilises a stopping
criteria; when the residual, defined as the L? difference of the computed solution and
actual data, no longer decreases then the scheme is terminated. The existence of
such a stopping condition and the convergence of the iteration procedure requires the
verification of certain conditions (see for example [HNS]) which we have not been
able to show for the infinite dimensional operator (F')*). For the finite dimensional
problem these are trivially satisfied if we use the value of the derivative at a circle,
since we have been able to show that F' is one to one (Theorems 1 and 3). However,
this has not been proven for more general regions, nor can we guarantee that the rate
of convergence will not slow down with increasing dimension of the underlying space.

In the Newton scheme we will also take a standard approach and seek a generalised
inverse that is not only invertible, but has a sufficiently small condition number. One
way to achieve this is by limiting the size of the basis set, that is, the value of N.
Again, we have no guarantee that the Jacobian matrix will be invertible for non-
circular regions, but in practice no difficulties were found. Since this limitation is
equivalent to ignoring all frequencies in the boundary representation higher than IV,
this is simply just regularisation by spectral cut-off.

An alternative means to stabilise the inversion in the Newton scheme is to use Tichonov
regularisation; replacing the inverse of F' by (al + F’[r]*F’[r])le’ [r]*. We show a
few reconstructions using this approach.

Of course we can combine the two methods to advantage by for example choosing A,, =
Al + (F' [r]*F’[r])le’[r]* for some sequence A,. This is the Levenberg-Marquardt
idea and typically one uses a decreasing sequence {)\,} that has the effect weighting
towards the more rapidly convergent Newton scheme once the initial approximation
has been sufficiently improved to be within the often narrow domain of capture of this
method. As we will point out later this may actually be an essential step.

For the solution of the forward problem generating the synthetic data u., and eval-
uating F' in each iteration step we used the Nystrém method based on a combined
double and single-layer boundary integral equation approach as presented in [CK]. In
order to ensure the integrity of the procedure we used different coupling parameters
in the combination of the double- and single-layer potentials. The synthetic data was
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generated using only 16 grid points, so that the solution was only about 1% accurate.
However, in the computation of the forward map F' in the inverse problem solver a
much finer grid was used; typically 60 or 80 points.

Our data consisted of a subset of the values of us,. In the case of multiple incident
waves this is o (d’, #) where the M incident plane waves have incident directions d/,
1 < j < M, (corresponding to the angles of incidence 6}) and the measurement point
 is determined by 6 = v + 96 for some fixed angle ~.

For the multiple frequency situation we have M /2 measurements of the scattered wave
at both of the points 6y + 71 and 6y + 72, each at a different wavenumber k;. Note
that we are using both the real and imaginary parts of the far field, so that there are
in fact 2M data values in each of the two inverse problems.

For a stopping rule for the scheme we used the relative residual

M 1 M
B = (L IF ) — )"/ (18P

and terminated the procedure when the difference between the values of R,, for two
consecutive iterations was less than a tolerance value §. In our computations we used
§ = 10*. As a measure of accuracy for the reconstructions we used the L? error

1
2

||rn - Tact”Q-

The corresponding reconstructions are illustrated in Figures 1 and 2. The dashed lines
give the exact boundary curves and the full lines give the reconstructions. The starting
approximation rq in each case was the unit circle and this is also shown on each figure.
The number of iterations required for each reconstruction is indicated along with the
final L? norm of the difference of the reconstructed and actual boundaries.

For the case of multiple incident plane waves Figure 1 shows reconstructions of three
obstacles; an ellipse, a bean-shape and a figure with three lobes,

1 1+0.9cost + 0.1sin2t

= 0.5+ 0.25¢~ 513 _ () 1sint
1+ Ccost’ 1+ 0.75cost ’ + € st

r(t)

In these numerical experiments we chose 16 equally spaced directions. The (fixed)
wavenumber was k = 1. Various values of the offset angle v was used. Theoretically,
the backscattered case (7 = 7) should give optimal results, but in fact we found very
little difference in the quality of the reconstructions provided v was chosen greater than
about 7/10. In the case of forward scattering (v = 0), we even were able to obtain an
excellent reconstruction of a curve whose Fourier coefficients were relatively small in
the direction of the nullspace of F'[r = 1] by using a singular value decomposition of
the Jacobian and simply ignoring all directions in the nullspace of F'. The number of
iterations required for numerical convergence varied very little with the shape of the
object; on average, about 10 iterations were necessary to satisfy the stopping crite-
rion. Since the data was obtained through a course mesh size in the direct scattering
numerical scheme these figures should be considered as being obtained under about
1% error, which in this case is liable to be systematic rather than random.

Reconstructions of the same three test obstacles using data consisting of a set of
incident plane waves with common direction but with a range of frequencies is shown
in Figure 2. We have used arrows to represent the incident direction d, while the marks
A indicate the two locations where the far field pattern was measured. In each case
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Fig 1. Reconstruction using spectral-cut-off from 16 incident waves .

k=1,v=mu/4, N =4. k=1,v=m, N = 4.
[[r10 — ract]|2 = 0.011 [[r10 — ract||2 = 0.010

k=1,v=m/4, N =5. k=1,v=m, N = 5.
[[r10 — Tact|[2 = 0.041 [[r10 — Tact][2 = 0.041

k=1,yv=n/4, N =4. k=1,y=a, N=T.
[[r10 — Tact]|2 = 0.312 [[r10 — Tact||2 = 0.042

the difference in the angles vy; and 72 was chosen so that the condition in Theorem 3
was satisfied for the values of N used. Note that this condition is known to hold only
when the obstacle is the unit circle. We used 20 frequencies chosen randomly from
the interval [0.5,2.0]. As the numerical scheme progressed we monitored the values
of the condition number k of the Jacobian matrix, but actually found little difference
from the sort of values obtained when the scatterer was a circle. (A typical range was
k=5 for N =2 to about x = 500 for N = 6 with careful choice of v, — 72.)

As in the previous problem, ten iterations was usually sufficient to reconstruct a wide
variety of obstacles. However, for regions not close to the initial approximation, the
Newton scheme would often not converge, but in fact would rapidly diverge within a
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few iterations. If we first take a small number (typically, 5 was used) of Landweber
steps to improve the starting approximation, then the Newton scheme was often able to
take over resulting in rapid convergence. This was the case for the three-lobed region.
Of course, a more sophisticated Levenberg-Marquardt scheme could be developed
where the choice of the parameter A, could be made on the basis of the current values
of the residuals, rather than taking \,, very large for n < 5 and then \,, = 0 for n > 5.

Fig 2. Reconstruction using 20 wavenumbers at two measurement points

1 ¢

Frozen Newton, spectral cut-off, N = 3. Full Newton, spectral cut-off, N = 5.
0o = 7m/2, v1 = 0.57, y2 = 0.68~. 0o =7/2, v1 = 0.57, y2 = 0.68.
[[r30 — ract|/2 = 0.231 [[r7 — Tact||2 = 0.036

A A

— —

Full Newton, spectral cut-off, N = 3. Full Newton, spectral cut-off, N = 5.
0o =0, v1 = 0.57, y2 = 0.73m. 0o =0, v1 = 0.5m, y2 = 0.73m.

[[r10 — ract|/2 = 0.203 [[r10 — ract]|2 = 0.078
VAN
oy
Landweber-Newton, Tichonov, a = 0.02. Landweber-Newton, Tichonov, a = 0.02.

0o =0, v = 0.5, 72 = 0.737. 0o =0, y1 = 0.5m, 72 = 0.737.

[|r13 — ract||2 = 0.076 [[r12 — ract]|2 = 0.147

11



We also attempted to reconstruct objects using a frozen Newton scheme — where the
derivative is held fixed at the initial approximation, in our case the unit circle. Thus
in (17) we take A,=Ay. This approach has two advantages. First, we are able to
prove that the matrix we are using is actually invertible. Second, the additional cost
of computing the derivative F'(r,) is avoided. Computing this requires the solution
of a second scattering problem (see [KR1]) which increases the computational cost
of each iteration by approximately a factor of two. The disadvantage, of course, is
that the value of the derivative may vary considerably even in a neighbourhood of the
origin and the resulting method will lose some of the power of the full Newton scheme,
or, even fail to converge at all.

In the case of recovering an obstacle from a single plane wave, but where the far field
pattern was measured in all directions, [KR1], this frozen Newton scheme gave results

that were for the most part indistinguishable from when the actual derivative was
used at each step.

However, for the case of multiple frequency data the situation was quite different; we
were only able to recover obstacles that were close to a circle. In Figure 2 an example
is shown of the frozen Newton being used to reconstruct the ellipse. Note the poorer
reconstruction than that obtained by updating the derivative at each stage. There
was an additional cost since the frozen Newton scheme required four times as many
iterations to achieve these results; thus the total computational cost was approximately
twice as much. We were able to reconstruct an ellipse with eccentricity less than 1.5
about equally well with both the full and frozen Newton schemes, although with many
more iterations being required in the latter case. If the eccentricity was greater than
2 then the frozen Newton scheme failed. If it were increased to about 2.5 then even
the full Newton scheme would fail unless a better initial approximation was obtained
by using several Landweber steps.

It was also noted that our schemes would sometimes obtain obstacles different from
the actual figure and these reconstructions would depend on the parameters such as
size of basis and initial approximation. This is usually an indication of the existence
of additional local minima in the associated optimisation problem.

In some sense these results bear out other evidence gleaned from numerical experi-
ments and some analysis. The scattering problem consisting of a single incident wave
at a fixed frequency with measurements on all of 2 is highly ill-posed; the effective
Jacobian of the boundary to data map increases exponentially in N [KR1]. The in-
cident wave at multiple frequency problem appears to lead to a derivative with a
smaller condition number with a consequent decrease in ill-posedness. However, the
later problem appears to be “more nonlinear” than the former.
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