
SOFTWARE DEFINED RESOURCE ALLOCATION FOR ATTAINING QOS AND QOE

GUARANTEES AT THE WIRELESS EDGE

A Dissertation

by

RAJARSHI BHATTACHARYYA

Submitted to the Office of Graduate and Professional Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Chair of Committee, Srinivas Shakkottai
Committee Members, A. L. Narasimha Reddy

Jean-Francois Chamberland-Tremblay
Radu Stoleru

Head of Department, Miroslav M. Begovic

May 2019

Major Subject: Computer Engineering

Copyright 2019 Rajarshi Bhattacharyya

ABSTRACT

Wireless Internet access has brought legions of heterogeneous applications all sharing the same

resources. However, current wireless edge networks that provide Quality of Service (QoS) guar-

antees that only cater to worst or average case performance lack the agility to best serve these

diverse sessions. Simultaneously, software reconfigurable infrastructure has become increasingly

mainstream to the point that dynamic per packet and per flow decisions are possible at multiple

layers of the communications stack. In this dissertation, we explore several problems in the space

of cross-layer optimization of reconfigurable infrastructure with the objective of maximizing user-

perceived Quality of Experience (QoE) under the resource constraints of the Wireless Edge.

We first model the adaptive reconfiguration of system infrastructure as a Markov Decision Pro-

cess with a goal of satisfying application requirements, and whose transition kernel is discovered

using a reinforcement learning approach. Our context is that of reconfigurable (priority) queueing,

and we use the popular application of video streaming as our use case. Self declaration of states

by all participating applications is necessary for the success of the approach. This need motivates

us to design an open market-based system which promotes the truthful declaration of value (state).

We show in an experimental setup that the benefits of such an approach are similar to those of the

learning approach. Implementations of these techniques are conducted on off-the-shelf hardware,

which have inherent restrictions on reconfigurability across different layers of the network stack.

Consequently, we exploit a custom hardware platform to achieve finer grained reconfiguration

capabilities like per packet scheduling and develop a platform for implementation and testing of

scheduling protocols with ultra-low latency requirements. Finally, we study a distributed approach

for satisfying strict application requirements by leveraging end user devices interested in a shared

objective. Such a system enables us to attain the necessary performance goals with minimal use of

centralized infrastructure.

ii

DEDICATION

To my family.

iii

ACKNOWLEDGMENTS

I would first like to thank my advisor, Dr. Srinivas Shakkottai, who has guided, inspired and

motivated me throughout the duration of my studies. He has been very patient and understanding

with me, for which I am ever grateful.

I am also thankful to my committee members, Dr. A.L.N. Reddy, Dr. Jean-Francois Cham-

berland Tremblay and Dr. Radu Stoleru for their guidance. Their insights have been invaluable

towards the completion of my dissertation.

Finally, I would like to thank my lab mates over the years for their collaboration on several

projects. Their friendship and support has made this journey very enjoyable and fufilling.

iv

CONTRIBUTORS AND FUNDING SOURCES

Contributors

This work was supported by a dissertation committee consisting of advisor Dr. Srinivas Shakkot-

tai, Dr. A.L. Narasimha Reddy and Dr. Jean-Francois Chamberland-Tremblay of the Department

of Electrical and Computer Engineering and Dr. Radu Stoleru of the Department of Computer

Science and Engineering.

The collection of data for the experiments described in this dissertation, and the subsequent

analysis, was conducted in collaboration with Bainan Xia, KiYeob Lee, Suman Paul, Simon Yau,

Ping-Chun Hsieh, Desik Rengarajan, Archana Bura and Mason Rumuly. All other work conducted

for the dissertation was completed by the student independently.

Funding Sources

Graduate study was supported by a research assistantship from Texas A&M University.

v

NOMENCLATURE

AP Access Point

CDF Cumulative Distrbution Function

DQN Deep Q Network

DP Decision Period

DQS Delivery Quality Score

HD High Definition

MAC Medium Access Control Layer

MDP Markov Decision Process

NQB Number of QoE bins

NSB Number of Stall bins

NUC Next Unit of Computing

PHY Physical Layer

QoS Quality of Service

QoE Quality of Experience

RL Reinforcement Learning

RSSI Received Signal Strength Indicator

RTT Round Trip Time

SDN Software Defined Networks

SDR Software Defined Radio

TCP Transmission Control Protocol

UDP User Datagram Protocol

vi

TABLE OF CONTENTS

Page

ABSTRACT . ii

DEDICATION . iii

ACKNOWLEDGMENTS . iv

CONTRIBUTORS AND FUNDING SOURCES . v

NOMENCLATURE . vi

TABLE OF CONTENTS . vii

LIST OF FIGURES . x

LIST OF TABLES. xiii

1. INTRODUCTION. 1

2. QFLOW: A REINFORCEMENT LEARNING APPROACH TO HIGH QoE VIDEO
STREAMING OVER WIRELESS NETWORKS . 4

2.1 Introduction . 4
2.2 Main Results . 6
2.3 Related Work . 8
2.4 System Model . 9

2.4.1 Markov Decision Process . 9
2.4.2 Measuring QoE for Video Streaming . 11
2.4.3 System Architecture . 13

2.5 QFlow Implementation Details. 15
2.5.1 Policy Commands . 17
2.5.2 Statistics Commands . 18

2.6 Model-Free RL. 19
2.6.1 Q-Learning . 20
2.6.2 Deep Q-Learning . 21
2.6.3 Training the RL Algorithm . 23
2.6.4 Dynamic Number of Clients . 24

2.7 Model-Based RL . 27
2.7.1 Static Model . 28
2.7.2 Dynamic Number of Clients . 30

vii

2.8 Evaluation . 30
2.8.1 Policies . 30
2.8.2 Basic Performance Study . 31
2.8.3 Static Network Configuration . 33
2.8.4 Dynamic Number of Clients . 38

2.9 Conclusion . 40

3. FLOWBAZAAR: A MARKET-MEDIATED SOFTWARE DEFINED COMMUNICA-
TIONS ECOSYSTEM AT THE WIRELESS EDGE. 42

3.1 Introduction . 42
3.1.1 Main Results and Organization . 44

3.2 Related Work . 46
3.3 System Model . 47

3.3.1 System-wide Model . 47
3.3.2 Auction-based Model . 49
3.3.3 Measuring QoE for Video Streaming . 50

3.4 System Architecture . 51
3.5 Policy Design . 54

3.5.1 Transition Kernel of an Individual Client . 54
3.5.2 Optimal Policy for System-wide Model . 54
3.5.3 Optimal Policy for Auction-based Model . 55
3.5.4 Index Policy . 56
3.5.5 Dynamic Number of Clients and Varying Channel. 57

3.6 Evaluation . 57
3.6.1 Emulation of bad network conditions . 61
3.6.2 Policies . 61
3.6.3 Static Network Configuration . 62
3.6.4 Dynamic Number of Clients and Varying Channel. 65

3.7 Conclusion . 67

4. PULS: PROCESSOR-SUPPORTED ULTRA-LOW LATENCY SCHEDULING 68

4.1 Introduction . 68
4.2 Related Work . 72
4.3 Design of PULS. 73

4.3.1 Basic MAC Functions for Wireless Scheduling . 73
4.3.2 Mechanism-Policy Separation . 73
4.3.3 Flexible MAC through Host-FPGA Separation . 74

4.4 Implementation of PULS . 75
4.4.1 Packet Generation . 75
4.4.2 Queueing, Deadlines and Types of Flows. 77
4.4.3 Scheduling and Transmission Procedures . 77
4.4.4 Retransmission . 79

4.5 Measuring Host-to-FPGA Interfacing Latency and Round-Trip Latency 80

viii

4.6 Experimental Results . 85
4.6.1 Capacity Regions. 86
4.6.2 Throughput Performance . 87
4.6.3 Changing the Arrival Process. 92

4.7 Conclusion . 93

5. REALTIME STREAMING WITH GUARANTEED QoS OVER WIRELESS D2D NET-
WORKS . 94

5.1 Introduction . 94
5.2 Related Work . 97
5.3 Organization and Main Results. 98
5.4 System Model . 99
5.5 D2D Scheduling Algorithm . 102

5.5.1 Optimal D2D Scheme. 102
5.6 D2D Algorithm Under Reliable Broadcast . 106

5.6.1 Achievability of QoS Metric . 107
5.6.2 Optimal Reliable D2D Scheme. 110
5.6.3 Simple Suboptimal Scheme for Unreliable D2D Network. 112

5.7 Selection of B2D Stopping Time. 113
5.8 Finite Field Case . 114
5.9 Simulation Results . 116
5.10 Android Experiments . 118
5.11 Conclusion . 121

6. CONCLUSION. 123

REFERENCES . 124

ix

LIST OF FIGURES

FIGURE Page

2.1 Feedback loop for configuration selection. 5

2.2 DQS state machine. 12

2.3 Sample DQS evolution. 12

2.4 The system architecture of QFlow. 13

2.5 Interaction among the different components of QFlow.. 16

2.6 Policy packet format . 17

2.7 Client statistics packet format . 19

2.8 RL framework . 21

2.9 RL agent training with various network specifications and learning rates 25

2.10 Simulated performance comparison for 6 clients. 26

2.11 Simulated performance distribution for 6 clients . 26

2.12 Evolution of QoE for dynamic clients . 27

2.13 Comparison of QoS and QoE in high and low priority queues . 32

2.14 Evolution of QoE with buffer state and throughput . 32

2.15 Comparison of average QoE . 34

2.16 Comparison of client QoE CDF . 34

2.17 Comparison of average QoE CDF . 35

2.18 Comparison of average buffer state . 35

2.19 Comparison of client buffer state CDF . 36

2.20 Comparison of average buffer state CDF . 36

2.21 Comparison of average stall duration . 37

x

2.22 Comparison of client stall duration CDF . 37

2.23 Comparison of average stall duration CDF . 38

2.24 Evolution of QoE for dynamic clients . 39

2.25 Comparison of client QoE CDF for dynamic clients . 39

2.26 Comparison of average QoE CDF for dynamic clients . 40

3.1 Ensuring high QoE video streaming via adaptive prioritization. 43

3.2 Evolution of DQS . 50

3.3 FlowBazaar architecture. 52

3.4 Ordering of states in different client configurations. 56

3.5 Comparison of average QoE . 57

3.6 Client QoE comparison for good channel . 58

3.7 Client QoE comparison for bad channel . 58

3.8 Comparison of average buffer . 59

3.9 Client buffer comparison for good channel . 59

3.10 Client buffer comparison for bad channel . 60

3.11 Comparison of average stall duration . 63

3.12 Stall duration comparison for good channel . 63

3.13 Stall duration comparison for bad channel . 64

3.14 Bid distribution for 3 and 6 client configurations . 64

3.15 Evolution of QoE for dynamic clients in variable channel. 66

3.16 Comparison of client QoE CDF for dynamic clients in variable channel 66

4.1 Architecture of PULS. 76

4.2 Packet transmission on PULS. 80

4.3 Empirical CDF of Host-to-FPGA latency for payload size = 1500 bytes and data
rate = 54Mbps. 83

4.4 Empirical CDFs of round-trip latency for various data rates and payload sizes. 83

xi

4.5 Throughput vs. Deadline for 20 packets generated every 11ms. 84

4.6 Experiment setup with host machines and USRP-2153Rs being used as wireless
AP and clients. 85

4.7 Capacity regions for the different policies with 5ms deadline and 0.99 delivery ratio. 85

4.8 Throughputs for KRT=4 and KNRT=4. 88

4.9 Throughputs for KRT=3 and KNRT=6. 88

4.10 Throughputs for KRT=3, KNRT=5 for client 1, KRT1=4, KNRT=6 for client 2. 89

4.11 Throughputs for KRT=7, KNRT=4 for client 1, KRT1=3, KNRT=5 for client 2. 90

4.12 Throughputs for the second arrival process with P(KRT1) = 0.8, P(KNRT1) = 0.3,
P(KRT2) = 0.1, P(KNRT2) = 0.5. 90

4.13 Deficit growth for the KRT=4 and KNRT=4 for both clients. 91

5.1 Hybrid wireless network. 95

5.2 Sequence of transmissions over B2D and D2D networks. Each block must be
delivered within two frames of its generation or lost. 96

5.3 Achievable delivery ratios with finite field sizes (N = 20, T = 15, M = 4,
βi = 0.9 in a reliable D2D network). 116

5.4 Comparison of Algorithm 3 with others for M = 4 and η = 0.9. 118

5.5 Distribution of smooth play out times (η = 0.9). 119

5.6 Sample trajectory of deficit. 121

xii

LIST OF TABLES

TABLE Page

2.1 Selected hyperparameters for RL agent . 23

2.2 Client state space discretization . 28

4.1 Host-to-FPGA latency results . 82

4.2 Round-trip latency results . 84

4.3 Loss ratios of real-time flows. 92

5.1 Optimal B2D stopping time T ∗
B . 117

5.2 QoS achieved by the heuristic algorithm for TB ≥ T ∗
B . 117

5.3 Delivery ratios achieved with different initializations. 121

xiii

1. INTRODUCTION

Rapid growth of Wireless networks has led to the proliferation of heterogeneous applications.

Although these applications all share the same reources, they have varied requirements for optimal

performance. Current wireless edge networks that provide Quality of Service (QoS) guarantees

that only cater to worst or average case performance lack the agility to best serve these diverse

sessions. Simultaneously, software reconfigurable infrastructure has become increasingly main-

stream to the point that dynamic per packet and per flow decisions are possible at multiple layers

of the communications stack. We explore several problems in the space of cross layer optimiza-

tions in reconfigurable infrastructure with the objective of maximizing user-perceived Quality of

Experience (QoE) under the resource constraints of the Wireless Edge.

In the first chapter, we design and develop a system which is able to exploit such reconfig-

urability to enable different configurations, measure the impact of a particular configuration on

the application performance (QoE), and adaptively select a new configuration based on its influ-

ence/effect on application performance. This feedback loop is modelled as a Markov Decision

Process and we present QFlow, which instantiates this feedback loop as an application of rein-

forcement learning (RL). Our context is that of reconfigurable (priority) queueing, and we con-

sider the popular application of video streaming as our use case. We develop both model-free and

model-based RL approaches that are tailored to the problem of determining which clients should

be assigned to which queue at each decision period. Through experimental validation, we show

how the RL-based control policies on QFlow are able to schedule the right clients for prioritization

in a high-load scenario to outperform the status quo, as well as the best known solutions with over

25% improvement in QoE, and a perfect QoE score of 5 over 85% of the time.

The success of the learning approach presented in Chapter 1 is dependent on the truthful decla-

ration of state by all clients participating in the system. This motivates us to develop a system which

promotes the clients to reveal their true value (state) in the next chapter. We demonstrate Flow-

Bazaar, an open market-based approach to create a value chain from the end-user of an application

1

on one side, to algorithms operating over reconfigurable infrastructure on the other. The ecosystem

enables disparate applications to obtain necessary resources for optimal performance. We compare

the performance of this approach with the learning approach on an experimental testbed and show

that the market-based approach exhibits similar application performance guarantees.

Working with off-the-shelf hardware (Access Points) during the course of the first two projects

exposed us to the inherent restrictions present on reconfigurability across different layers of the

network stack. Therefore, we explore a custom hardware platform to achieve finer grained recon-

figuration capabilities like per-packet scheduling in Chapter 3. We present PULS, a processor-

supported scheduling implementation for testing of downlink scheduling protocols with ultra-low

latency requirements. Based on our decoupling architecture, programmability of delay sensitive

scheduling protocols is done on a host machine, with low latency mechanisms being deployed

on hardware. This enables flexible scheduling policies on software and high hardware function

re-usability, while meeting the timing requirements of the Medium Access Control layer. We per-

formed extensive tests on the platform to verify the latencies experienced for per packet scheduling,

and present results that show packets can be scheduled and transmitted under 5 ms in PULS. Using

PULS, we implemented four different scheduling policies and provide detailed performance com-

parisons under various traffic loads and real-time requirements. We show that in certain scenarios,

the optimal policy can maintain a loss ratio of less than 1% for packets with deadlines, while other

protocols experience loss ratios of up to 65%.

The techniques for resource allocation discussed hitherto are based on a Server (Access Point)-

Client architecture. In the last chapter, we design a distributed approach for meeting application

performance requirements by leveraging end user devices interested in a shared objective. Such a

system enables us to achieve the performance guarantees with minimal use of centralized infras-

tructure. We consider a group of co-located wireless peer devices that desire to synchronously

receive a live content stream. The devices are each equipped with an expensive unicast base-

station-to-device (B2D) interface, as well as a broadcast device-to-device (D2D) interface over a

shared medium. The stream is divided into blocks, which must be played out soon after their ini-

2

tial creation. We transform the problem into the two questions of (i) deciding which peer should

broadcast on the D2D channel at each time, and (ii) how long B2D transmissions should take place

for each block. We analytically develop a provably-minimum-cost algorithm that can ensure that

QoS targets can be met for each device. We study its performance via simulations, and present an

overview of our implementation on a testbed consisting of Android phones.

3

2. QFLOW: A REINFORCEMENT LEARNING APPROACH TO HIGH QoE VIDEO

STREAMING OVER WIRELESS NETWORKS∗

2.1 Introduction

Growth in wireless networks is being fueled by a multitude of new applications that require a di-

verse set of link characteristics for optimal operation. However, current algorithms on the wireless

edge (last-hop link) are geared towards an average or worst case performance in an application-

agnostic manner. They are thus ill-equipped to adapt in order to optimize the user Quality of

Experience (QoE) in real time. QoE is a number in the interval [1, 5] that indicates end-user satis-

faction, with a QoE of 5 being the best. However, such optimization is needed in upcoming dense,

small cell deployments in WiFi and 5G networks that are expected to support high and diverse

loads. This disconnect raises the question of whether it is possible to develop a framework for

network reconfiguration that can ensure high QoE for users in a fair manner?

From software defined networking (SDN) at the network layer on commercial routers, to dif-

ferent sub-layers of PHY/MAC on software defined radio (SDR) platforms, it is becoming increas-

ingly easier to reconfigure networking equipment at all layers of the networking stack. Among

these sub-layers, a fundamental entity that impacts per-packet and per-flow performance is the

behavior of queues at the router. How many queues exist on the router, at what rate they obtain

service, and which flows are assigned to these queues all impact statistical QoS performance met-

rics, such as throughput, RTT, jitter and loss rate that flows experience. Indeed, the fundamental

nature of queueing is the reason for much effort on the design and evaluation of throughput or

delay optimal scheduling mechanisms [1, 2, 3, 4].

Even when differentiated queueing mechanisms are available, exploiting them for maximizing

system-wide benefit requires a feedback control loop of the kind shown in Figure 2.1. First, we

need to configure the system in terms of assigning flows to queues. Second, we need to measure the

∗This chapter has been submitted to MobiHoc, 2019 for publication and is under review. It is also available at
https://arxiv.org/abs/1901.00959.

4

impact of the configuration on QoE and relevant application state at the end-user. Third, we need

to learn what is the relation between realized QoE and the configuration used (using a combination

of offline and online learning). Finally, we need to adapt the policy used for configuration as we

learn in order to maximize performance goals. Note that such a control loop applies to problem

of choosing optimal reconfigurations at all layers of network stack. However, the fundamental

nature of queueing implies that first order gains might be best attained through such adaptive queue

control.

Configure	 Measure	

Learn	
	

Adapt	

Figure 2.1: Feedback loop for configuration selection.

Posed in this manner, the application QoE and other measurable application-specific parame-

ters (such as buffered seconds of video) is the observable application state of the system, whose

evolution is mediated through the assignment of flows to queues. The network QoS statistics

of each queue are hidden variables that cause transitions to the application state, potentially in a

stochastic manner. The decision of which flows to assign to what queue determines the state transi-

tions that a particular application is exposed to, and must be done in a manner that maximizes QoE

over all applications. Thus, the control loop in Figure 2.1 can be interpreted as a Markov Decision

Process (MDP) whose transition kernel is unknown, and which could potentially be discovered

using reinforcement learning.

In this work, our goal is to design, implement, and evaluate QFlow, a platform for reinforce-

ment learning that instantiates the feedback control loop described above. Here, we choose video

5

streaming as the application of interest using the case study of YouTube, since video has stringent

network requirements and occupies a majority of Internet packets today [5]. Our context is that

of a WiFi access point that faces a high demand situation. Performance over high capacity wired

backhaul links is near-deterministic, and hence the resource constraint usually applies to the last

hop wireless link to a mobile device.

2.2 Main Results

The main innovations in QFlow that address the elements shown in Figure 2.1, and our exper-

imental results are as follows.

Queue Configuration: We enable reliable delivery of configuration commands to hardware

that can support re-configuration. We extend the OpenFlow protocol (currently limited to the

network layer) in a generic manner that enables us to use it reconfigure queueing mechanisms. We

select commercially available WiFi routers with Gigabit ethernet backhaul as the wireless edge

hardware. Reconfigurable queueing is attained by leveraging differentiated queueing mechanisms

available in the Traffic Controller (tc) package by installing OpenWRT (a stripped-down Linux

version). Here, we can choose between queueing disciplines and set filters to assign flows to

queues. Details are presented in Section 2.5.

Measurement of Application State and QoE: We enable continuous monitoring of client-

specific application state consisting of buffered seconds of video and stall duration (when the

video re-buffers). These monitors at the WiFi router and the mobile station, are compatible with

our OpenFlow extensions, and use the protocol to periodically send statistics to the OpenFlow

controller for processing. We continuously predict the QoE of the ongoing application (video

streaming) flows as a function of the application state using existing maps of the relationship

between video events (such as stalls) and QoE. Details are presented in sections 2.4, 2.5.

Model-Free Reinforcement Learning: We develop a model-free reinforcement learning (RL)

method that enables adaptation to the current QoE and application state over all users to maximize

the discounted sum of QoEs. We design a simulator that approximates the evolution of the un-

derlying system, and its impact on application state and QoE. We use the simulator to train a

6

Q-Learning approach in an offline manner, with non-linear function approximation using a neu-

ral network. This so-called Deep Q Network (DQN) is able to account for state space explosion

across the users and provides a Q-function approximation for all states. Details are presented in

section 2.6.

Model-Based Reinforcement Learning: We next develop a model-based RL approach based

on the observation that the state evolution of an individual client is independent of others given the

action (queue assignment). We first use measurements conducted over the system using a range

of control policies to empirically determine the transition probabilities on a per-client basis, and

then use the independence observation to construct the system transition kernel (this applies to the

vector of all client states taken together). While doing so, we reduce the system state space by

discretization and aggregation to a subset of frequently observed system states. Finally, we solve

the MDP numerically to obtain the model-based policy. Details are presented in section 2.7.

Experimental Results: The experimental configuration consists of a single queue in the base

(vanilla) case, and two reconfigurable queues in the adaptive case. We conducted experiments in

both a static scenario of 6 clients, as well as a dynamic one in which anywhere between 4 and

6 clients are in the system at a given time. Apart from model-free and model-based RL, we also

implemented round-robin assignment, greedy maximization of expected QoE, and greedy selection

of the clients with lowest video buffers (this policy has been shown to ensure low probability of

stalling [6]). Our results on adaptive flow assignment (Section 2.8) reveal that the vanilla approach

of treating all flows identically has significantly worse average QoE than adaptive approaches.

More interestingly, both the model-based and model-free approaches manage to ensure that

any given client experiences a perfect QoE of 5 over 85% of the time, whereas the best that any

other policy is able to achieve is only about 60%, while vanilla manages even less at about 50%.

This impressive performance improvement of about 25-30% indicates that by selecting flows in

need of QoE improvement (due to high likelihood of stalls in the near future), RL-based adaptive

flow assignment improves QoE for the majority of clients.

7

2.3 Related Work

Our work brings together several different areas ranging from SDN, QoS, QoE and machine

learning.

OpenFlow and Configuration: There has been much recent interest in extending the SDN

idea to other layers. For example, CrossFlow [7, 8] uses SDN OpenFlow principles to control

networks of Software Defined Radios. In ÆtherFlow [9], the SDN/OpenFlow framework is used

to bring programmability to the Wireless LAN setting. They show that this type of system can

handle hand-offs better than the traditional 802.11 protocol. These SD-X extensions (X being the

MAC layer in this case) focus on centralized configuration of the hardware and do not provide

sample statistics on performance that we desire. Closer to our theme, systems such as AeroFlux

[10] and OpenSDWN [11] develop a wireless SDN framework for enabling prioritization rules for

flows belonging to selected applications (such as video streaming) via middle-boxes using packet

inspection. However, they do not tie such prioritization to the impact on application QoE or end-

user value across competing applications from multiple clients. Nor do they use measured QoS

statistics as feedback.

QoE Maps: The map between QoS and QoE has been studied recently, particularly on the

wired network. The work in this space attempts to determine the QoS properties of a network, and

then based on data obtained directly from an application, match the observed QoS to the corre-

sponding QoE. Mok et al. [12] describe a method for determining the QoE for HTTP Streaming,

focusing on the choice of initial streaming rate for maximizing QoE. Other work focuses on dif-

ferent applications, such as Skype [13] or general Web services [13], to identify conditions that are

sufficient to meet the average QoE targets for those applications. Different from these, we desire

a continuous estimate of QoE as a function of player state (such as buffered video seconds) and

network state (QoS statistics).

SDN-based Video Streaming: A number of systems have been proposed to improve the per-

formance and QoE of video streaming with SDN. One direction is to assign video streaming flows

to different network links according to various path selection schemes [14] or the location of bot-

8

tlenecks detected in the WAN [15]. In the home network environment, the problem shifts from

managing the paths of video traffic to sharing the same network (link) with multiple devices or

flows. VQOA [16] and QFF [17] employ SDN to monitor the traffic and change the bandwidth

assignment of each video flow to achieve better streaming performance. However, without an

accurate map of action to QoE, the controller can only react to QoE degradation passively.

Reinforcement Learning: An RL approach is natural for the control of systems with measur-

able feedback under each configuration. The idea of using model-free RL in the context of video

streaming rate selection was explored in [18]. The work can be seen as the complement of our own.

Whereas we are interested in allocating network resources (at the wireless edge) to suit concurrent

video streams, their goal is to choose the streaming rate to suit the realized network characteristics.

2.4 System Model

We consider a system in which clients are connected to an wireless Access Point (AP) in a high

demand situation. We choose video streaming as the application of interest using the case study

of YouTube, since video has stringent network requirements and occupies a majority of Internet

packets today [5]. Our goal is to maximize the overall QoE of all the clients in this resource

constrained situation.

The AP has a high priority and low priority queue. Clients assigned to the high priority queue

typically experience a better QoS (higher bandwidth, lower latency etc.) when compared to the

clients assigned to the low priority queue. The controller assigns clients to each of these queues at

every decision period (DP; 10 seconds in our implementation). Determining the optimal strategy

is complex, since the controller does not have prior knowledge of the system model. Hence, the

controller must learn the system model and/or control law.

2.4.1 Markov Decision Process

We consider a discrete time system where time is indexed by t ∈ {0, 1, ...}. At each DP

(t = 0, 1, 2..) the controller makes an assignment of clients to queues, and observes the sys-

tem. Based on its observation and previous assignment, the controller makes an assignment in

9

the next DP, eventually learning the system model empirically. This class of problem falls within

the Reinforcement Learning (RL) paradigm, and thus can be abstracted to a general RL framework

consisting of an Environment that produces states and rewards and an Agent that takes actions.

Environment: The environment is composed of clients and the AP. Let C denote the set of

clients.

State: Each client keeps track of its state which consists of its current buffer (the number of

seconds of video that it has buffered up), the number of stalls it has experienced (i.e., the number

of times that it has experienced a break in playout and consequent re-buffering), and its current

QoE (a number in [1, 5] that represents user satisfaction, with 5 being the best). The state of the

system is the union of the states of all clients. Let sct denote the state of client c at time t and st

denote the state of the system,

sct = [Current Buffer State, Stall Information, Current QoE] ∀c ∈ C

st = [∪∀c∈Csct]

Agent: The controller is the agent, which takes an action at ∈ A (queue assignment) in every

decision period in order to maximize its expected discounted reward. Let act denote the action

taken on client c at time t,

at = [∪∀c∈Cact]

Reward: The reward R(st, at) obtained by taking action at at state st is the average QoE of all

clients in state st+1.

The goal of the agent is to maximize the overall QoE of the system. This goal can be formulated

as maximizing the expected discounted reward over an infinite horizon. Let π(at|st) denote the

probability of taking action at given the current state (called the policy) and γ denote the discount

factor. Then the goal is to find π∗, the policy that maximizes the expected discounted reward,

π∗ = arg maxπE

[
∞∑
t=0

γtR(st, at)|s0 = s, at ∼ π(·|st)

]
.

10

2.4.2 Measuring QoE for Video Streaming

Considerable progress has been made in identifying the relation between video events such as

stalling, and subjective user perception (QoE) [19, 20, 21] via laboratory studies. However, these

studies are insufficient in our context, since they do not consider the network conditions (QoS

statistics) that gave rise to the video events in the first place. Nevertheless, we can leverage these

studies by using them as models of human perception of objectively measurable video events. We

considered three models in this context, namely Delivery Quality Score (DQS) [19], generalized

DQS [20], and Time-Varying QoE (TV-QoE) [21]. All of the three models are based on the same

features (stall event information) if there is no rate adaptation. Since our goal is to support high

resolution video without degradation, we fix the resolution so as to prevent video rate adaptation.

Under this scenario, all three models are fundamentally similar, and we choose DQS as our candi-

date. Note that DQS has been validated using 183 videos and 53 human subjects [19], and we do

not repeat the user validation experiments. .

The DQS model weights the impact according to duration of the impairments to better model

the human perception. For example, the impact of stall events during playback is greater on the

QoE than that of initial buffering. Similarly, the first stalling event is looked at with less dissatis-

faction than repeated stalling. The state diagram of the model is shown in Figure 2.2. The increases

and the decreases in perceived QoE are captured by a function which is a combination of raised

cosine and ramp functions. This enables it to model greater or lesser changes in the perceived QoE

according to the time it spends in a particular state. The behavior of the predicted QoE by the

model in the presence of a particular stalling pattern can be seen in Figure 2.3, where the two stall

events result in degradation of QoE. Recovery of QoE from each stall event becomes progressively

harder.

11

Begin	

Startup	
delay	

Initial	
Playing	

End	

First	Re-
buffering	

First	Re-
buffering	
Playing	

Multiple	
Re-

buffering	

Multiple	
Re-

buffering	
Playing	

Figure 2.2: DQS state machine

0 10 20 30 40 50 60 70 80
Time (in seconds)

1

2

3

4

5

De
liv

er
y

Qu
al

ity
 S

co
re

Sta
ll

Stall

Play

Play

DQS Play Status

Figure 2.3: Sample DQS evolution.

12

2.4.3 System Architecture

The system architecture of QFlow is illustrated in Figure 2.4. The three main units of our

system are, (i) an off-the-shelf WiFi access point running the OpenWRT operating system, (ii)

a centralized controller hosted on a Linux workstation, and (iii) multiple wireless stations (Win-

dows/Linux/Android supported). We denote each software functionality with both a color and a

circled number. These functionalities pertain to 1⃝ queueing mechanisms, 2⃝ QoS policy (con-

figuration selection), 3⃝ Reinforcement Learning, and 4⃝ Policy Adaptation, which we overview

below. Tying together the units are 5⃝ Databases at the Controller (to log all events), and at each

station (that obtains a subset of the data for local decision making). The final components are 6⃝

Network Interfaces and 7⃝ User Application, which are unaware of our system. We refer to the

user application as a client or session, which is composed of one or more flows that are treated

identically.

Wireless	Station	

QoS	Policy	

Controller	
Database	

Controller	

Client	Middleware	 To/From	
Internet	

Network	
Interface	

Qflow	
Interface	

Queueing	
Mechanism	

Statistics	
Collection	

Reconfigurable	
Queueing	

User	
Application	

Data	path	
	
Control	path	

Statistics	
Collection	

WiFi	Access	Point	

Statistics	

Policy	Commands	

RL		
Agent	

Policy	
Adaptation	

2	

2	

2	

1	

3	

4	

5	

6	

Network	
Interface	

6	7	

Statistics	

5	2	
Client	

Database	

Figure 2.4: The system architecture of QFlow.

1⃝ Per-Packet Queueing Mechanisms: At the level of data packets, we utilize the MAC layer

13

of software defined infrastructure, namely, reconfigurable queueing. Multiple Layer 2 queues can

be created, and different per-packet scheduling mechanisms can be applied over them. When such

mechanisms are applied to aggregates of flows, the resulting QoS statistics at the queue level can

be varied, with higher priority queues getting improved performances. In turn, this results in state

and QoE changes at the application.

2⃝QoS Policy and Statistics: Policy decisions are used to select configurations (which clients

are assigned to which queue) that result in different QoS vectors. These are made at a centralized

controller that communicates using the OpenFlow protocol. We create a custom set of OpenFlow

messages for QFlow. The Access Point runs QFlow, an application that interprets these messages

and instantiates the queueing mechanisms and configurations selected by the controller. The access

point periodically collects statistics related to QoS, including signal strengths, throughput, and RTT

and returns those back to the controller (these statistics are for a sanity check and are not directly

used for learning).

A smart middleware layer at clients is used to interface with QFlow in a manner that is trans-

parent to the applications (such as YouTube) and the end-user. The middleware determines the

foreground application, and samples the application to determine its state (stalls, and buffered sec-

onds on YouTube). QoE is calculated using the DQS model. The client middleware contacts the

Controller Database to periodically send the application state and QoE.

3⃝ Reinforcement Learning Agent: Application state and configuration decisions (state-

action pairs) are used to train RL agents. in the case of the Model-Free approach, a simulation

environment duplicating the QFlow setup is used for offline training, and online training continues

on the actual system. In the case of Model-Based RL, state-action pairs (resulting from various

different policies) stored in the controller database are used for learning the model.

4⃝ Policy Adaptation: Policy Adaptation has to do with implementing the policy as empirical

data accumulates. An assignment algorithm (policy) matches sessions to queues every 10 seconds,

and obtains a sample of client state each time it does so. This state-action pair is captured in the

database, and a new action is obtained form the database (as determined by the RL agent). The

14

assignment algorithm is geared towards discounted QoE maximization.

Interactions: The chronological order of small timescale events is shown in Figure 2.5. The

Client Middleware at each wireless client captures the state and calculates the corresponding QoE

values specific to the foreground application. These realized QoE and state values from all partic-

ipating clients are sent to the Controller, which performs a policy decision for flow assignment.

These policy decisions are sent to the Access Point using OpenFlow Experimenter messages.

QFlow interprets and implements these policy decisions. These steps are executed once every

10 seconds.

2.5 QFlow Implementation Details

In this section, we describe our design decisions and implementation of QFlow, in which we

extend the OpenFlow protocol using experimenter messages. We exploit the separation of control

and data planes of OpenFlow to implement policy decisions using QFlow. Further, our choice of

using experimenter messages to send QFlow commands ensures that we do not require implemen-

tation of specific changes at the controller. We use an off-the-shelf TP-Link WR1043ND v3 router

with OpenWRT Chaos Calmer as the firmware for our implementation. We choose OpenWRT be-

cause of its support for Linux based utilities like tc (Traffic Control) for implementing per packet

mechanisms. Since OpenWRT does not natively support SDN, we use CPqD SoftSwitch [22], an

OpenFlow 1.3 compatible user-space software switch implementation.

We next extend SoftSwitch to include QFlow capabilities. Such capabilities include the ability

to modify packet-handling mechanisms. Our goal is to enable configuration changes, in addition

to the collection of statistics related to the implemented per packet mechanisms and the connected

clients. We construct two types of QFlow commands for implementing the described capabilities,

Policy commands and Statistics commands. The rationale behind this separation is to differentiate

policy decisions from statistics collection. The controller uses Experimenter messages to commu-

nicate these commands to the Access Point using OpenFlow.

15

Middleware determines foreground application

Middleware calculates QoE based on foreground
application

State (QoE, buffer, stall information) of all
clients sent to Controller

RL Agent in Controller makes flow
assignment policy decision

Controller sends policy decisions to AP using
OpenFlow

SoftStack assigns Client flows to Queues

Statistics collected at AP and Clients are sent to
Controller using OpenFlow

Sm
al

l t
im

es
ca

le

Controller processes data and updates database

Figure 2.5: Interaction among the different components of QFlow.

16

2.5.1 Policy Commands

We design Policy commands to allow us to choose between available mechanisms at different

layers. Every time a Policy command is sent, it is paired with a Solicited response that is generated

by the receiver and sent to the controller using an experimenter message. A Solicited response

message thus provides us with the means of retransmission of a failed Policy command, thereby

guaranteeing reliability. We define the format of the policy experimenter messages as shown in

Figure 2.6. The Controller packs a policy command in the format, and sends it to the Access

Point using OpenFlow. On receiving the message, QFlow unpacks it, identifies the specific policy

command using the type field, and performs the corresponding operation. Using this framework,

we implemented policy commands for the MAC layer.

Experimenter ID: QFlow

Type: QFlow Policy Command

Command ID

Command Length

Command

Figure 2.6: Policy packet format

Data Link Layer Queue Command: At the data link layer, we need a means of providing

variable queueing schemes. Traffic control (tc) is a Linux utility that enables us to configure the

settings of the kernel packet scheduler by allowing us to Shape (control the rate of transmission

17

and smooth out bursts) and Schedule (prioritize) traffic. Each network interface is associated with

a qdisc (Queueing discipline) which receives packets destined for the interface. We selected Hi-

erarchical Token Bucket (htb) for our experiments because of the versatility of the scheme. It

performs shaping by specifying rate (guaranteed bandwith) and ceil (maximum bandwidth) for a

class, with sharing of available bandwidth between children of the same parent class, and can also

prioritize classes. Finally, we use Filters to classify and enqueue packets into classes.

In our experiments, we create queues with different token rates using htb. Tokens may be

borrowed between queues, meaning that queues will share tokens if they have no traffic. We also

create a default queue that handles any background traffic. Decisions at the data link layer include

assigning flows to queues, setting admission limits, changing the throughput caps queues, and

enabling or disabling sharing of excess (unused) throughput between them.

2.5.2 Statistics Commands

Policy commands result in changes to the QoS statistics of the queues. We define Statistics

commands to collect these results and send them back to the controller for analysis. Queue statis-

tics include cumulative counts of downlink packets, bytes and dropped packets. Client-specific

statistics consist of average Round Trip Times (RTT; which includes both the RTT from the base

station to the client as well as the RTT from the base station to the wide-area destinations with

which the client communicates), signal strength (RSSI) and Application specific statistics like

buffer state, stall information and video bitrate. Since statistics are sent periodically (once every

second) to the controller, we label such messages as Unsolicited response messages.

Similar to Policy commands, we define the structure of both Queue and Client-specific Statis-

tics messages. After collecting the respective statistics, QFlow packs the data and sends them to

the Controller using OpenFlow. On receiving these messages, the Controller unpacks them, iden-

tifies the type from the header information and then saves the extracted data to the database. The

packet formats of the Client Statistics messages is shown in Figure 2.7.

QFlow thus is capable of generating state-action, and measuring the resultant rewards in terms

of QoE. The details of using the system for RL will be described in the next two sections.

18

Experimenter ID: QFlow

Type: QFlow Client Statistics

Client ID

Average RTT (in ms)

RSSI (in dBm)

Application specific info

Figure 2.7: Client statistics packet format

The client-specific statistics, together with statistics of the queue it is placed in, constitute the

Quality of Service (QoS) for a client.

2.6 Model-Free RL

In this section, we describe a model-free reinforcement learning based approach for learning

a control algorithm for the system described in Section 2.4. More specifically, the objective is to

learn a control policy for the MDP when the system model (transition probability kernel of the

MDP) is unknown. Model-free RL algorithms learn the optimal control policy directly via the

interactions with the system, without explicitly estimating the system model. The interaction of

the RL agent with the system is modeled as a set of tuples (st, at, Rt+1, st+1) over time and the

goal of the RL agent is to learn a policy π that recommends an action to take given a state, in order

to maximize its long term expected cumulative reward. We will employ one specific model-free

RL algorithm known as Q-learning algorithm.

19

2.6.1 Q-Learning

Each state-action pair (s, a) under a policy π can be mapped to a scalar value, using a Q-

function. Qπ(s, a) is the expected cumulative reward of taking an action a in a state s and following

the policy π from there on. Qπ is specified as

Qπ(s, a) = E

[
∞∑
t=0

γtR(st, π(st))|s0 = s, a0 = a

]
,

where γ ∈ (0, 1) is the discount factor. Thus, maximizing the cumulative reward is equivalent to

finding a policy that maximizes the Q-function. The optimal Q-function, Q∗, satisfies the Bellman

equation,

Q∗(s, a) = R(s, a) + γEs′ [max
b

Q∗(s′, b)],∀s, a.

The objective of the Q-learning algorithm is to learn this optimal Q∗ from the sequence of obser-

vations (st, at, Rt+1, st+1). The optimal policy π∗ can be computed from Q∗ as,

π∗(s) = argmax
a

Q∗(s, a).

Q-learning algorithm is implemented as follows. At each time step k, the RL agent updates the

Q-function Qk as

Qk+1(s, a) =

(1− αk)Qk(s, a) + αk (Rk + γmaxbQk(sk+1, b))

if s = sk, a = ak

Qk(s, a) otherwise

where αk is the step size (learning rate). It is known that if each-state action pairs is sampled

infinitely often and under some suitable conditions on the step size, Qk will converge to the optimal

Q-function Q∗ [23].

20

2.6.2 Deep Q-Learning

Using a standard tabular Q-learning algorithm as described above to solve our problem is in-

feasible due to the huge state space associated with it. Figure 2.8 depicts our learning problem.

The individual client states are combined to form a joint state. The aggregate reward is the reward

of all clients combined. The learning agent observes the states and rewards, and outputs an action.

The environment then moves to the next state, yielding a reward.

Figure 2.8: RL framework

The state of each client is a tuple consisting of its buffer state, stall information, and its QoE

at t. Buffer state and QoE are considered to be real numbers, and thus can take an uncountable

number of values. Even if we quantize, the number of states increases exponentially with the

dimension and the number of clients. Tabular Q-learning approaches fails in such scenarios.

To overcome this issue due to the curse of dimensionality, we address this problem through

the framework of deep reinforcement learning. In particular, we use the double DQN algorithm in

[24] that achieved the state of the art performance in many tasks including Atari games. This ap-

proach is a clever combination of three main ideas: Q-function approximation with neural network,

experience replay, and target network. We give a brief description below.

21

Q-function approximation with Neural Network: To address the problem of large and

continuous state space, we approximate the Q-function using a multi-layer neural network, i.e.,

Q(s, a) ≈ Qw(s, a) where w is the parameter of the neural network. Deep neural networks have

achieved tremendous success in both supervised learning (image recognition, speech processing)

and reinforcement learning (AlphaGo games) tasks. They can approximate arbitrary functions

without explicitly designing the features like in classical approximation techniques. The param-

eter of the neural network can be updated using a (stochastic) gradient descent with step size α

as

w = w + α∇Qw(st, at)(Rt + γmax
b

Qw(st+1, b)−Qw(st, at)) (2.1)

Experience Replay: Unlike supervised learning algorithm, the data samples {st, at, Rt, st+1}

obtained by an RL algorithm is correlated in time due to the underlying system dynamics. This

often leads to a very slow convergence or non-convergence of the gradient descent algorithms like

(2.1). The idea of experience replay is to break this temporal correlation by randomly sampling

some data points from a buffer of previously observed (experienced) data points to perform the

gradient step in (2.1) [25]. New observation are then added to the replay buffer and the process is

repeated.

Target Network: In (2.1), the target Rt + γmaxbQw(st+1, b) depends on the neural network

parameter w, unlike the targets used for supervised learning which are fixed before learning begins.

This often leads to poor convergence in RL algorithms. To addresses this issue, deep RL algorithms

maintain a separate neural network for the target. The target network is kept fixed for multiple

steps. The update equation with target network is given below.

w = w + α∇Qw(st, at)(Rt + γmax
b

Qw−(st+1, b)−Qw(st, at))

w− = w after every N steps.

The combination of neural networks, experience replay and target network forms the core of

the DQN algorithm [25]. However, it is known that DQN algorithm suffers from overestimation

22

Table 2.1: Selected hyperparameters for RL agent

Hyperparameter Chosen Value
Discount 0.9999
Network Hidden Layers (64, 32)
Network Optimizer Adam, Learning Rate 0.001
Replay Buffer 500000
Replay Batch 32
Target Sync Period 100000
Huber Loss 1.0
Double Learning On
Control Policy ϵ-greedy, Decay ϵ from 1.0 to 0.01 over 1000000 steps

of Q values. Double DQN algorithm [24] overcomes this problem using slightly modified updated

equation as

w = w + α∇Qw(st, at)(Rt + γQw−(st+1, arg maxbQw(st+1, b))−Qw(st, at)).

The target network is updated after every N steps as before.

2.6.3 Training the RL Algorithm

We implemented the double DQN algorithm using the TensorForce library [26]. Hyperpa-

rameters are selected via random search. The final configuration and hyperparameter of the RL

algorithm is specified in Table 2.1.

For the faster training of our RL algorithm, we first implement a simulation environment which

closely mimics the dynamics of the physical testbed. The environment simulates each video includ-

ing its bitrate, buffer, length, and QoE. The bitrate and length of each video is generated according

to a normal distribution; buffer is stored in terms of time, rather than bits. Each client continuously

plays one video after another, stalling where its buffer runs out and building up a buffer of 10 sec-

onds before attempting playing again. Queues are serviced with a constant total bandwith, but the

fairness of queue’s service among flows assigned to that queue is chosen in each decision period

(DP) according to a Dirichlet distribution. Each DP is of duration 10 seconds. The simulation en-

23

vironment uses a high-priority queue with 11 Mbps bandwidth and a low-priority queue with 4.3

Mbps. In the static network configuration, six clients are specified that draw video bit-rates from

a truncated N (2.9, 10) distribution in Mbps, and draw video lengths from a truncated N (600, 50)

distribution in seconds.

For hyperparameter search, the system was simulated for 200 DP per episode for 1000 episodes.

Note that increasing the number of units or layers in the network used for value estimation after

(64, 32) does not significantly affect the convergence curve; however, the magnitude of the learning

rate creates large differences in the performance to which the agent ultimately converges. Further,

a single layer is incapable of learning to the performance achieved by the two-layer network. We

therefore choose the (64, 32) configuration for our agent. The evolution of value during the train-

ing process for the different network configurations and learning rates is shown in Figure 2.9. As

is seen, the trained controller achieves a high QoE.

Next, we compare the performance of different policies in the simulation environment. Fig-

ure 2.10 shows the average QoE attained by different policies, which suggests that perhaps the

model-free approach, while best, may not give substantial performance improvements. The QoE

CDFs in Figure 2.11, however, indicate that model-free RL achieves a higher QoE for a larger

fraction of clients, suggesting that it might be more robust to resource constraints. Indeed, we will

see in experiments in Section 2.8 that it attains quite substantial gains over the other approaches in

practice under a bandwidth constrained environment.

2.6.4 Dynamic Number of Clients

In the above description, we assumed that the number of clients in the system is static. The

timescale at which the number of clients change is very large (several tens of minutes; this models

human mobility as users connect and disconnect to different access points) when compared to the

decision period (10 seconds). Hence, including a dynamic number of clients into training would

require augmenting the state space with the number of connected clients, and a Markov model

of transitions in this value. Since this increases the state space and training duration still further,

we instead obtain the optimal static policy for the system with 4 to 6 clients using the model-free

24

Figure 2.9: RL agent training with various network specifications and learning rates

25

Figure 2.10: Simulated performance comparison for 6 clients

Figure 2.11: Simulated performance distribution for 6 clients

26

approach. Training for each policy can happen in parallel. Figure 2.12 shows the evolution of

value over the training process over the different cases. As expected, the case of 6 clients produces

the lowest average QoE. We create a composite controller using the individual static policies by

simply choosing the right policy based on number of clients in the system at the time. Note that

the composite controller is only slightly sub-optimal, due to the infrequent changes in the number

of connected clients.

Figure 2.12: Evolution of QoE for dynamic clients

2.7 Model-Based RL

In this section, we discuss the scenario in which the dynamics of the system (transition kernel)

are first determined, i.e., given the current state st of the system and the action taken at, we find

the transition probabilities to the next states st+1. Given the transition kernel of the system P , we

can use policy or value iteration to solve for the optimal policy π∗. The model-based approach is

particularly interesting because of its special structure, since the state transitions of a client given

27

Table 2.2: Client state space discretization

Parameter Range Bins
Buffer [0,20] 21
Stalls [0,5] 5
QoE [1,5] 9

its current state and action are independent of the states and actions of other clients in the system.

In other words,

P(st+1|at, st) =
∏
∀c∈C

P(sct+1|act , sct)

It must also be noted that the state transitions of all clients in the system given their current states

and actions are identical. Thus, we can determine the transition kernel of the system using the

transition kernel of each individual client.

2.7.1 Static Model

In what follows, we determine the transition kernel of the system with a fixed number of clients,

and obtain the optimal policy.

Experimental Traces: We generate state (sct), action (act) and next state (sct+1) tuples for all

clients by running the system under Round Robin, Greedy Buffer, Random, Model Free and Vanilla

policy for a duration of 10 hours.

Discretizing the State Space: The state of each individual client sct and hence the state of the

system st have elements that are (non-negative) real numbers. In order to calculate the transition

kernel of the client in atractable manner, we discretize the state space of the client according to

table 2.2. Since the state of a client is 3 dimensional (Buffer, Stall, QoE) we encode it to obtain a

label for each client state as follows, Let NSB and NQB denote the number of stall and QoE bins

respectively,

sct = Buffer× NSB× NQB + QoE× NSB + Stall

The discretized and encoded state space of a client Sc has a cardinality of 945.

Determining the Transition Kernel of a client: We determine the transition kernel of a single

28

client by fitting an empirical distribution over the state, action, and next state tuples collected from

experimental traces, i.e., we empirical determine,

P(sct+1|act , sct) ∀sct+1, s
c
t ∈ Sc ∀act ∈ Ac

from experimental traces. Here, Ac is the set of all actions for a client c.

Identifying Frequent States of the System: The state of the system (st) is the union of states

of all clients (sct) in the system. If there are N clients in the system, the state of the system is a N

dimensional vector, where each dimension corresponds to the state of a client. Let S denote the

discretized state space of the system. The cardinality of S is of the order of 945N . Solving an MDP

with 945N states is intractable. Hence, based on experimental traces, we identify the most frequent

states Sp of the system, and approximate all other states to these popular states using the L2 norm,

i.e., given a state in S, we approximate it by a state in Sp with the least Euclidean distance.

Calculating the Transition Kernel of the System: The state space of our system has now

reduced from S to Sp. To obtain the transition kernel of this system, we empirically sample one

hundred state transitions for each state in Sp under each action in A using the transition kernel

of individual clients. If the generated state transitions are outside Sp, we approximate it with the

state in Sp which is closest in Euclidean distance. Thus, we obtain state, action, next state tuples

for the system with state space Sp. We fit an empirical distribution over these tuples to obtain the

transition kernel of the system. Hence, we empirically determine

P(st+1|at, st) ∀st+1, st ∈ Sp ∀at ∈ A.

Obtaining the Optimal Policy: We obtain the optimal policy π∗ by running value iteration

over the transition kernel generated for Sp. It must be noted that the reward obtained by taking

action at in state st is the average QoE of state st+1 which is a part of st+1 and hence need not be

calculated explicitly.

29

2.7.2 Dynamic Number of Clients

In the previous section, we assumed that the number of clients in the system are static. To deal

with a dynamic number of clients, we follow an approach similar to the one described in section

2.6. We obtain the optimal policy for the system with 4-6 clients using the static model approach

described in the previous section. Since the time scale in which the number of clients change is

large when compared to the decision period, the controller swaps between static policies based on

number of clients in the system.

2.8 Evaluation

An off-the-shelf WiFi router installed with QFlow is used as the Access Point and three Intel

NUCs are used to instantiate up to 6 clients (YouTube sessions) for our experiments. Note that

each such session can be associated with multiple TCP flows, and we treat all the flows associated

with a particular YouTube session identically. The three NUCs are equipped with 5th generation i7

processors with 8 GB of memory, each capable of running multiple traffic intensive sessions simul-

taneously. Relevant session information such as ports used by an application, play/load progress,

bitrate and stall information for YouTube sessions is collected every second and written to the

database.

We setup a scenario with two downlink queues, one with a higher bandwidth allocation than

the other using token bucket queueing. A default queue is used for any background traffic. Two

clients may be allowed into the high priority queue. The throughput limit for the high and the

low priority queues are set such that clients in the high priority queue experience better QoS than

those in the low priority queue. For the no differentiation case, we just set up a single queue with

the same total throughput limit as that of the two queues in the previous scenarios. Our control

problem is to determine which sessions to assign to which queues.

2.8.1 Policies

In addition to described Model-based and Model-free policies, we consider four additional

policies for choosing these assignments.

30

Vanilla: This is the base case with a single queue that is allocated the full bandwidth, and with

no differentiation between clients.

Round Robin: As the name suggests, we assign clients to the high priority queue in turn.

Although it is computationally inexpensive, work-conserving and prevents starvation, it might

lead to the wrong clients (those who have no hope of significantly increasing their QoE) being

considered for the high-quality service instead of clients who might benefit much more from the

service.

Reward Greedy: This policy computes the expected one-step reward on a per-client basis,

and assigns clients so as to maximize the sum of rewards. We can think of this as a myopic version

of model-based RL. This might starve sessions that were unlucky and stalled at some point, since

QoE growth rates reduce after stalls.

Greedy Buffer: The smooth playout of a video depends on the size of the playback buffer.

When the buffer is empty, the client experiences a stall and the perceived QoE drops. This approach

promotes the clients with the lowest buffered video to the high priority queue to prevent this from

occurring. This policy might promote the wrong agents who have low buffers because they are at

the end of their videos, or those that have stalled multiple times and can never recover high QoE.

2.8.2 Basic Performance Study

Given the experimental setup, we first study the performance experienced by clients assigned

to the queues with different configurations. We setup a scenario with two downlink queues, one

with a higher bandwidth allocation than the other, and statically assigned one client to each queue.

Each client ran a single YouTube session in HD (1080p). The evolution of realized QoS metrics

and the predicted QoE for the clients is shown in Figure 2.13. The client in the high priority

queue experiences better Throughput and RTT than that in the low priority queue, and as a result,

witnesses no stalls, has buffered video (in seconds), and hence the predicted QoE is always higher.

Another observation is that although the measured throughput is less than the recommended value

(3Mbps) for HD streaming, the buffered video makes up for the deficiency and QoE remains high.

The evolution of the QoE with Buffer state and Throughput of a particular client as it moves

31

0 50 100 150 200 250 300

1000

1500

2000

2500

3000

T
h
ro

u
g
h
p
u
t

(K
b
p
s)

0 50 100 150 200 250 300
20
40
60
80

100
120
140
160

R
T
T
 (

m
se

c)

Low Priority High Priority

0 50 100 150 200 250 300
0

10
20
30
40
50
60

Jit
te

r
(m

se
c)

0 50 100 150 200 250 300
0

20

40

60

80

100

S
ta

ll
D

u
ra

ti
o
n
 (

se
c)

0 50 100 150 200 250 300
Event index

0
20
40
60
80

100
120
140

B
u
ff

e
r

st
a
te

 (
se

c)

0 50 100 150 200 250 300
Event index

0
1
2
3
4
5
6

Q
o
E

Figure 2.13: Comparison of QoS and QoE in high and low priority queues

0 5 10 15 20 25

Event index

0

10

20

30

40

50

60

B
u
ff

e
r

st
a
te

 (
se

cs
)

Buffer state (High)
Buffer state (Low)

0 5 10 15 20 25

Event index

500

1000

1500

2000

2500

T
h
ro

u
g
h
p
u
t

(K
b
p
s)

Throughput (High)
Throughput (Low)

0

1

2

3

4

5

6

Q
o
E
 V

a
lu

e

0

1

2

3

4

5

6

Q
o
E
 V

a
lu

e

QoE (High)
QoE (Low)

Figure 2.14: Evolution of QoE with buffer state and throughput

32

through the high and the low priority queues is seen in Figure 2.14. As the buffer of the client

is depleted (seen in the beginning of each subplot), any intelligent scheduling policy moves it to

the high priority queue where it is able to replenish its buffer and experience good QoE. When it

is moved down to the low priority queue again, it depletes its buffer but is still able to experience

good QoE. This behavior supports our claim that such policies are able to dynamically promote

the flows which require better service to maintain a high average QoE.

2.8.3 Static Network Configuration

In our static configuration, each NUC hosts two YouTube sessions to simulate a total of 6

clients. The QoE performance comparison of the different policies is shown in Figures 2.15,

2.16 and 2.17. We first compare the average QoE of the various policies in the first figure. It

is clear that the Model-based and the Model-free policies outperform the other policies. This gap

in performance becomes even more evident when we compare the CDFs of the individual and the

average QoE of the different policies in Figures 2.16 and 2.17. For example, we can observe from

Figure 2.16 that the Model-based and the Model-free policies are able to provide a QoE of 5 for

almost 90 and 85% of the time for all clients, whereas it is only about 65% of the time for the next

best policy. Similarly, it can be deduced from Figure 2.17 that the Model-based and the Model-free

policies are able to achieve an average QoE of 5 for all participating clients in the system about 55

and 40% respectively. The value of this metric for the next best policy is about 5%.

The QoE experienced by a client is affected by the buffer state of the client and the stalls expe-

rienced during video playback. Hence, we study the buffer state and the stall durations experienced

by the clients under the different policies. Similar to the QoE plots, we compared the averages,

the CDFs of the individual and the average values for both these features in Figures 2.18 to 2.23.

Again, it is evident from the figures that the Model-based and the Model-free policies ensure better

buffer state and lower stall durations (both individual and average) than the other policies under

consideration.

33

Vanilla Round
Robin

Reward
Greedy

Greedy
Buffer

Model
based

Model
free

0

1

2

3

4

5

Av
er

ag
e

Qo
E

Va
lu

e

Figure 2.15: Comparison of average QoE

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
Client QoE

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

Vanilla
Round Robin
Reward Greedy
Greedy Buffer
Model-based
Model-free

Figure 2.16: Comparison of client QoE CDF

34

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
Average QoE

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

Vanilla
Round Robin
Reward Greedy
Greedy Buffer
Model-based
Model-free

Figure 2.17: Comparison of average QoE CDF

Vanilla Round
Robin

Reward
Greedy

Greedy
Buffer

Model
based

Model
free

0

1

2

3

4

5

6

Av
er

ag
e

Bu
ffe

r s
ta

te
 (s

ec
)

Figure 2.18: Comparison of average buffer state

35

50 25 0 25 50 75 100 125
Client Buffer state (sec)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

Vanilla
Round Robin
Reward Greedy
Greedy Buffer
Model-based
Model-free

Figure 2.19: Comparison of client buffer state CDF

20 10 0 10 20 30 40 50
Average Buffer state (sec)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

Vanilla
Round Robin
Reward Greedy
Greedy Buffer
Model-based
Model-free

Figure 2.20: Comparison of average buffer state CDF

36

Vanilla Round
Robin

Reward
Greedy

Greedy
Buffer

Model
based

Model
free

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Av
er

ag
e

St
al

l D
ur

at
io

n
(s

ec
)

Figure 2.21: Comparison of average stall duration

0 2 4 6 8 10
Client Stall Duration (sec)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

Vanilla
Round Robin
Reward Greedy
Greedy Buffer
Model-based
Model-free

Figure 2.22: Comparison of client stall duration CDF

37

0 1 2 3 4 5 6 7
Average Stall Duration (sec)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

Vanilla
Round Robin
Reward Greedy
Greedy Buffer
Model-based
Model-free

Figure 2.23: Comparison of average stall duration CDF

2.8.4 Dynamic Number of Clients

We next study the performance of the policies in a scenario with a varying number of clients.

We choose the number of active clients in the system to vary between 4 and 6, while keeping the

bandwidth allocation same as that of the static configuration.

We consider a larger timescale of 30 minutes for changing the number of clietns participating

in the system. We start with 6 clients in the system and then remove 1 client each for the next two

time periods. At the end of the third period, we introduce two more clients in the system. The

evolution of the average QoE for each of the policies for the above scenario is shown in Figure

2.24. It is seen that Model-based and Model-free policies perform well irrespective of the number

of users in the system, whereas other policies only do well when there are relatively fewer clients

in the system.

Since the bandwidth allocation is the same, reducing the number of clients implies relaxation

38

0 500 1000 1500 2000 2500 3000 3500
Decision Period

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

Av
er

ag
e

Qo
E

5 clients
4 clients 6 clients

Vanilla
Round Robin

Reward Greedy
Greedy Buffer

Model-based
Model-free

Figure 2.24: Evolution of QoE for dynamic clients

1 2 3 4 5
Client QoE

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

Vanilla
Round Robin
Reward Greedy
Greedy Buffer
Model-based
Model-free

Figure 2.25: Comparison of client QoE CDF for dynamic clients

39

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
Average QoE

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

Vanilla
Round Robin
Reward Greedy
Greedy Buffer
Model-based
Model-free

Figure 2.26: Comparison of average QoE CDF for dynamic clients

of the resource constraints and hence, other policies see an improvement in performance. This can

be seen in Figures 2.25 and 2.26, where the CDF curves of the other policies are closer to those

of the Model-based and the Model-free polciies. Even so, Model-based and Model-free policies

exhibit the best performance, which reinforces their superiority over other policies in both static

and dynamic client scenarios.

2.9 Conclusion

In this study, we considered the design, development and evaluation of QFlow, a platform for

reinforcement learning based edge network configuration. Working with off-the-shelf hardware

and open source operating systems and protocols, we showed how to couple queueing, learning

and scheduling to develop a system that is able to reconfigure itself to best suit the needs of video

streaming applications. The discussed RL algorithm was able to learn the optimal scheduling

policy directly via interactions with the system. This success of this approach is based on the

40

truthful declaration of state by all participating clients. We propose a market based system in the

next chapter which promotes such truthful reporting of client state.

41

3. FLOWBAZAAR: A MARKET-MEDIATED SOFTWARE DEFINED COMMUNICATIONS

ECOSYSTEM AT THE WIRELESS EDGE∗

3.1 Introduction

A majority of Internet usage today occurs over wireless access networks, and this trend is only

likely to accelerate with the growing penetration of connected televisions, VR headsets, and other

smart home appliances. These access networks are growing ever more dense, and the difference

between WiFi and cellular access is becoming less clear as 5G standards that require small, densely

located cells, and next generation WiFi standards that utilize per-packet scheduling rather than

random access become more popular.

A major fraction of the packets carried by these wireless access networks are related to me-

dia streaming, which have relatively stringent constraints on the required quality of service (QoS)

provided by the network for ideal operation. These QoS metrics typically are measured as link

statistics such as [Throughput, RTT, Jitter, LossRate]. The impact of such QoS on user sat-

isfaction is identified in terms of Quality of Experience (QoE). QoE is measured as a number in

the interval [1, 5], and can be dependent on the application and its evolving state. For example,

the application can be video streaming over the Web, with the state being the number and duration

of stalls (re-buffering events) that have been experienced thus far. Supporting a large number of

concurrent streams of this kind, while ensuring high QoE for all clients is a major challenge.

As a concrete example, consider Figure 3.1 that shows nine simultaneous YouTube clients that

are supported over a wireless access network. This setup is used for our laboratory experiments,

and can emulate a range of load and channel conditions by restricting the available QoS values

at the access point. The traditional (vanilla) approach is to maintain a single queue, and to treat

all packets identically regardless of the importance of the packets to the QoE of the clients. So a

session that has already buffered up many seconds of video might get equal service as one that is

∗This chapter has been submitted to WiOpt, 2019 for publication and is under review. It is also available at
https://arxiv.org/abs/1801.00825.

42

In
te

rn
et

Controller

H

L

H

L

High
RSSI and

QoS

Low
RSSI and

QoS
Access Point

Figure 3.1: Ensuring high QoE video streaming via adaptive prioritization.

near stalling. While this approach might be acceptable when the number of streams is limited, the

need to support multiple high quality streams motivates the desire to do better.

Given that queuing behavior is fundamental to all elements of the QoS statistics mentioned

above, differentiated queuing at the access point immediately suggests itself. Token-bucket-based

shaping can be used to create high-priority and low-priority queues, with the QoS statistics of

the former being superior to that of the latter. Furthermore, we can create multiple “bins” of

queues as shown in Figure 3.1, with each bin corresponding to similar client channel conditions

(with worse channels implying lower achievable QoS), and allocate them similar time-spectrum

resources. Then a basic question is that of periodically deciding client schedules: Given the

current QoE and video state at each client, how should the controller assign clients to queues for

the next decision period?

If we visualize the system state as being the QoE, stalls and buffered video of all clients, and

actions as deciding assignments of clients to queues, then the problem of maximization of the sum

QoE can be posed as a Markov Decision Process (MDP). However, the transition kernel of this

MDP is unknown apriori. In the previous Chapter, we considered this problem from the perspective

of reinforcement learning (RL), and utilized model-based and model-free RL approaches to finding

the optimal policy over a platform entitled QFlow. Indeed, impressive improvements were seen on

43

QFlow—in a situation where the vanilla policy was only able to achieve a QoE of about 3, the RL

approaches achieved a QoE of over 4.7.

However, there are two main drawbacks to the RL approach. First, is complexity. The model-

free approach using Q-learning requires an enormous amount of training, which necessitates its

being trained over a simulated data set. Furthermore, the model-based approach needs to obtain

the complete transition kernel of the system, which does not scale well as the number of clients

increases. The second is a question of incentives. The state of each client has to be supplied by the

clients themselves, which implies that intelligent clients could obtain more than their fair share of

resources through appropriate state declarations to the AP.

The goal of this paper is to design, develop and validate FlowBazaar, an auction-based system

for ensuring high QoE video streaming using information volunteered by the clients themselves.

FlowBazaar uses the same hardware platform as QFlow, but the focus is on eliciting true value

functions from the clients, and using that to decide on prioritization policy.

3.1.1 Main Results and Organization

In this paper, we design FlowBazaar as a scheme for ensuring high QoE of video streaming.

The system consists of a setup similar to Figure 3.1 under which all TCP flows corresponding to

a particular client can be periodically assigned to any one of the queues. The system of setting up

and assigning flows to queues follows 2.5, in which OpenFlow extensions are developed to enable

an OpenFlow controller to instantiate policy decisions at the AP. The decision period is set as 10

seconds, so as to allow time for the TCP flows to attain equilibrium. Each client samples its video

state, and maps this state to a standard video QoE model called Delivery Quality Score (DQS)

[19]. The QoE forms the one-step reward seen by the client.

The core of FlowBazaar is an incentive compatible (truth-telling) auction that is conducted

every 10 seconds. In our setup, we only permit two clients to be assigned to the high priority queue

(in each bin), and hence select a third-price auction as our mechanism for queue assignment. Here,

the clients are asked for bids, and the top two bidders are selected, with the price being charged

equal to the third highest value. It is easy to show that such an auction will elicit the true value

44

functions of the clients. Bids for the auction are placed via a smart middle-ware algorithm (not by

a human end-user, who may be unaware of the existence of the system). The bids themselves are

values in the interval [1, 5], and can be interpreted as the number of cents that the bidding algorithm

is willing to pay for high priority service for the next 10 seconds. We calculate that the eventual

dollar price paid will be of the order to a few tens of dollars per month, consistent with cellular

data access billing schemes of today.

Under this system, clients first learn the system model in an offline manner, i.e., the marginal

transition kerenels that correspond to the change in state at a client, given the queue that it was

assigned to. Once the kernel is known, the client solves an MDP to determine its bid, given a belief

distribution of bids made by other clients. This belief is simply the empirical distribution of bids

made thus far (using a weighted moving average to eliminate older information) and is collected

and made available by the controller to all clients. Our earlier work shows analytically in a similar

problem framework that an efficient equilibrium in the space of belief distributions exists under

the so called mean field approximation [27].

FlowBazaar, solves the two main issues of the RL approach by leaving the MDP solution to

the clients themselves under an auction-based scheduling scheme. Here, the clients only need to

consider the marginal transition kernel (impact on their own states of the scheduling decision)

while solving the MDP, and coordinate with one another via the auction conducted periodically at

the access point. While one might think that the resulting allocation is suboptimal, it actually turns

out to yield a superior QoE over reinforcement learning for all clients. This result suggest that a

indexing of state is occurring in this problem, under which each client state is associated with a

real-number index. The optimal policy simply picks the clients with largest indices to promote

to the high priority queues. We empirically validate this hypothesis, and find that such an index

policy performs as well or better than all others, lending credence to the indexing claim.

The paper is organized as follows. Section 3.2 reviews existing studies on QoS and queue-

ing, OpenFlow extensions to wireless and auctions and pricing on the wireless edge. Section 3.3

describes our models for the system-wide model for overall QoE maximization, as well as the

45

individual model for the auction. Section 3.4 describes the system architecture of FlowBazaar,

emphasizing the algorithmic nature of the auctions with no human intervention. Section 3.5 deter-

mines both the system-wide and marginal kernels experimentally, and designs policies that apply to

the different cases and belief structures. Section 3.6 presents our experimental results, that clearly

illustrate the superior performance of FlowBazaar over tall other policies that we evaluated against.

Finally, Section 3.7 concludes the paper.

3.2 Related Work

We review existing research work on Queueing, Auctions and OpenFlow extensions in this

section.

Optimal Queueing: There has been significant work on QoS as a function of the scheduling

policy, e.g., a sequence of work starting with [1], and follow on work in the wireless context that

resulted in algorithms such as backpressure-based scheduling and routing in wireless networks [2]

and more recently [3] that ensures that strict delay guarantees are met. Most of these works aim

at maximizing throughput or loss rate, but they do not consider all the elements of QoS together.

Also, they do not map received QoS to application QoE.

Auctions and Scheduling: There has also been work on using price or auction-based resource

allocation in the wireless context. On the analytical side, [28] considered the problem of auction-

based wireless resource allocation. Here, users participate in a second price auction and bid for a

channel. It was shown that with finite number of users, a Nash Equilibrium exists and the solution

is Pareto optimal. In [27], an auction framework is presented in which queues (representing apps

on mobile devices) repeatedly bid for service in a second-price auction that determines which set

of queues will be selected for service. They show that under a large system scaling (called the

mean field game regime), the result of the auction would be the same as that of the longest-queue-

first algorithm, and hence ensuring fair service for all. Our design of auction-based scheduling

algorithms are motivated by these ideas. In the context of experiments, a recent trial of a price-

based system is described in [29]. Here, day-ahead prices are announced in advance to users, who

can choose to use their cellular data connection based the current price. Thus, the decision makers

46

are the human end-users that essentially have an on/off control. Furthermore, the prices are not

dynamic and have to be determined offline based on historical usage.

OpenFlow Extensions: There has been significant research into the development of OpenFlow

extension to cross-layer wireless configuration selection. In this context, CrossFlow [7, 8] uses

the SDN framework for configuring software defined radios. Similarly ÆtherFlow [9], extends

OpenFlow for enabling remote configuration of WiFI access points. Finally, recent systems such

as AeroFlux [10] and OpenSDWN [11] enable packet prioritization for flows that are identified by

packet inspection as belonging to high priority applications, such as video streaming. However,

these are all offline static policies in that they do not relate the prioritization policy with the state

of the application.

3.3 System Model

We consider a resource constrained system in which clients are connected to a wireless Ac-

cess Point (AP). We choose video streaming as the application of interest using the case study

of YouTube, since video has stringent network requirements and occupies a majority of Internet

packets today [5]. The AP has a high and low priority queue. Clients assigned to the high priority

queue typically experience a better QoS (higher bandwidth, lower latency etc.) when compared

to the clients assigned to the low priority queue. We assume that a fixed number of clients can be

assigned to the high priority queue. The controller optimally assigns clients to each of these queues

at every decision period (DP; 10 seconds in our implementation).

3.3.1 System-wide Model

We consider a discrete time system where time is indexed by t ∈ {0, 1, ...}. At each DP

(t = 0, 1, 2..) the controller observes the state of the system and assigns clients to queues based

on a policy. This problem can be modeled as a Markov Decision Process (MDP) consisting of an

Environment that produces states and rewards and an Agent that takes actions.

Environment: The environment is composed of the AP and clients. Let C denote the set of all

clients.

47

Client State: Each client keeps track of its state which consists of its current buffer (the number

of seconds of video that it has buffered up), the number of stalls it has experienced (i.e., the number

of times that it has experienced a break in playout and consequent re-buffering), and its current QoE

(a number in [1, 5] that represents user satisfaction, with 5 being the best). Let sct denote the state

of client c at time t.

System State: The state of the system is the union of the states of all clients. Let st denote the

state of the system and S denote the set of all possible system states,

sct = [Current Buffer State, Stall Information, Current QoE] ∀c ∈ C

st = [∪∀c∈Csct]

Agent: The controller is the agent, that assigns flows to queue every decision period based on

a policy. The queue assignment performed by the controller at time t is called action at ∈ A. Let

act denote the assignment of client c at time t,

at = [∪∀c∈Cact]

Reward: The reward R(st, at) obtained by taking action at at state st is the expected QoE of

all clients in state st+1.

Policy: The goal of the agent is to maximize the overall QoE of the system. This goal can be

formulated as determining the optimal policy π∗, that maximizes the Bellman Optimality Equation

given by,

π∗(st) = argmaxat∈A(R(st, at) + γ
∑

st+1∈S

P(st+1|st, at)V ∗(st+1)) (3.1)

where γ is the discount factor, P(st+1|st, at) is the system transition kernel and V ∗(st+1) is the

optimal value of state st+1.

48

3.3.2 Auction-based Model

We consider a market wherein clients bid for high priority service periodically. In each discrete

time instant, a fixed number of clients N are assigned to the high priority queue. Clients participate

in an (N + 1)th auction to compete for admission to the high priority queue. The N winners who

obtain high priority services will pay a price that is equal to the (N + 1)th highest bid and the rest

of the clients will be assigned to the low priority queue. We model the system in a Mean Field

approach as described below.

Bid: The bid submitted by the client in each auction is denoted by b ∈ B, where B is a set

containing discrete bid values. One could interpret different bid values as the price each client c is

willing to pay to obtain high priority service.

Bid Distribution: The clients must place their bid based on the beliefs of their competitors.

We denote the assumed bid distribution in the market as ρ.

Payment: The amount of transaction after each auction is denoted by pay. Note that pay is a

random variable that corresponds to the auction mechanism. In particular, the payment distribution

in our system is exactly the distribution of the (N + 1)th highest bid.

Client Reward: The reward R(sct , a
c
t) obtained by taking action act at state sct is the expected

QoE of client c in state sct+1.

Client Transition Kernel Let P(sct+1|sct , act) denote the client transition kernel. The action

act = win and act = lose corresponds to assignment of client c to the high and low priority queue

respectively. Thus the probability of transitioning to state sct+1 is jointly defined by the probability

of winning the auction when bidding b, pwin(b) and P(sct+1|sct , act).

Policy: From a single client’s perspective, all his opponents are placing bids according to the

same bid distribution, which is a public belief. Thus we formulate the policy of the corresponding

49

MDP as follows,

b∗(sct) = argmaxb∈B

{
pwin(b)

[
R(sct+1, a

c
t = win)− pay +

∑
sct+1

P(sct+1|sct , act = win)γv(sct+1)
]
+

(1− pwin(b))
[
R(sct+1, a

c
t = lose) +

∑
sct+1

P(sct+1|sct , act = lose)γv(sct+1)
]}

(3.2)

3.3.3 Measuring QoE for Video Streaming

Various models validated by extensive human experiments such as Delivery Quality Score

(DQS) [19], generalized DQS [20], and Time-Varying QoE (TV-QoE) [21] identify the relation

between video events and subjective user perception (QoE). These models are based on video

stalling events if there is no rate adaptation. Since our goal is to support high video resolution, we

fix the video resolution to prevent rate adaption. We choose the Delivery Quality Score (DQS) [19]

as our QoE model.

Figure 3.2: Evolution of DQS

The DQS model takes various factor into account (such as stall duration and number of stalls)

to measure the impact of a stall on QoE. Figure 3.2 shows the evolution of QoE over the duration

50

of a video. Observe that the impact of the first stall event on QoE is large when compared to

subsequent stall events. The change in perceived QoE is captured by a function which is is a

combination of raised cosine and ramp functions. Recovery of QoE from each stall event becomes

progressively harder. Note that DQS has been validated using 183 videos and 53 human subjects

[19], and we do not repeat the user validation experiments.

3.4 System Architecture

The architecture of FlowBazaar, which is illustrated in Figure 3.3, is an extension to QFlow

described in Section 2.4.3. We briefly describe it in this section. The three main units in our sys-

tem are an off-the-shelf WiFi Access Point running a custom operating system with extensions,

multiple wireless stations installed with custom middleware and a centralized controller. The units

contain different functional components which are shown in a color coded manner. These com-

ponents have functionalities pertaining to packet mechanisms, QoS policy, application QoE, and

end-user value. Tying together the units are a Controller Database in which we log all events, and

a smaller Client Database at each station that obtains a subset of the data that it needs for deci-

sion making, both shown as yellow tiles. The components related to Network Interface and User

Application are unaware of the rest of the system.

We briefly overview the different functional components below.

Queueing Mechanisms (Blue Tiles): We utilize reconfigurable queueing at the MAC layer

of reconfigurable infrastructure stack. We create multiple MAC Layer queues, and apply different

per-packet scheduling mechanisms over them. The impact of the application of such mechanisms

on flows is seen on the resultant QoS statistics at the queue level, which in turn affects application

performance. Flows in high priority queues experience much better performance when compared

to those in low priority queues.

QoS Policy (Orange Tiles): The centralized controller makes policy decisions (assignment

of flows to queues) which are communicated to the Access Point using the OpenFlow protocol.

We reuse a custom message format described in Section 2.5 to send MAC Layer commands. The

Access Point is installed with SoftStack, which interprets the received messages and implements

51

Wireless Station

OpenFlow
Policy

Controller
Database

Dynamic
Auction

Controller

QoS Data
Analytics

Value
Engine

App Tracker
Bid

Generator

Data Port

Client Middleware

To/From
Internet

Queueing

L2 Flow

SoftStack

Scheduling
Mechanism

Statistics
Collection

Reconfigurable
Queueing

User
Application

Client
Database

QoS →
QoE Map

WiFi Access Point

Data path

Control path

Figure 3.3: FlowBazaar architecture.

52

the policies selected by the controller. The Statistics Collection component at the Access Point

periodically collects network connection statistics like throughput, drop rates and RTT and sends

them back to the controller in a predefined message format using the OpenFlow protocol.

Application QoE (Beige Tiles): A smart middleware layer at clients is used to interface with

our system. It retrieves the state of the foreground application and translates it into the impact on

perceived QoE using the DQS model. This layer ensures that all the other functional components

remain transparent to the end user.

End-user Value (Pink Tiles): Clients are offered high and low priority service under a market

framework. The decision on which N flows to admit to a high-priority queue is taken via an

(N+1)th price auction, which is conducted every 10 seconds. The resultant policy decisions in turn

lead to a realization of network connection metrics, which in turn impact the end-user perceived

QoE. The Value Engine retrieves the application state from the Client Database and the statistics

of the current market conditions (bid distribution) from the Controller Database. On receiving

both, it is responsible for running the Value Iteration to obtain the optimal Value Function, which

determines what the value of winning and losing would be. The Value Engine then sends an

appropriate bid over to the Controller Database. The Dynamic Auction module collects the bids

of all participating clients and conducts the (N + 1)th-price auction. The results of the auction

translate into assignment of clients to queues, that remain in place for 10 seconds.

Interactions: The chronological order of the interactions among the three functional units is

as follows. The Client Middleware, after determining the foreground application on the wireless

station, calculates the corresponding QoE values. Based on these QoE values, the Middleware

determines the value of winning and losing using the Value Engine and places a bid accordingly.

Bids from all participating clients are sent to the Controller, which conducts the auction. The

results of the auction, which are the policy decisions, are sent to the Access Point using OpenFlow

Experimenter messages. SoftStack interprets and implements these policy decisions, which leads

to the updation of network connection parameters and finally the application QoE. These steps

are executed once every 10 seconds by the Client Middleware, the Controller and SoftStack. The

53

(updated) list of client and queue statistics is sent back to the Controller every second.

3.5 Policy Design

In this section, we determine the policy obtained for the System-wide and Auction based mod-

els.

3.5.1 Transition Kernel of an Individual Client

To determine these policies, we first need to compute the transition kernel of an individual

client, ie., we need to determine P(sct+1|sct , act). We do this as follows:

1. We generate state (sct), action (act) and next state (sct+1) tuples for clients by running the

system described in Section 3.4 for a duration of 10 hours under vanilla, round robin and

greedy buffer (discussed in Section 3.6) policy.

2. The state sct is a 3 dimensional vector (Buffer, Stall, QoE) consisting of continuous values,

thus we discretize the state space according to table 2.2. We encode the discretized state

space to obtain a label for each state. Let NSB and NQB denote the number of stall and

QoE bins respectively,

sct = Buffer× NSB× NQB + QoE× NSB + Stall

3. We fit an empirical distribution over the discretized data to obtain the transition kernel.

3.5.2 Optimal Policy for System-wide Model

To obtain the optimal policy for the system-wide model, we have to first determine the system

transition kernel i.e., given the current state st of the system and the action taken at, we find the

transition probabilities to the next states st+1. Given the transition kernel of the system, we can

use policy or value iteration to solve for the optimal policy π∗. The system-wide approach is

particularly interesting because of its special structure, since the state transitions of a client given

its current state and action are independent of the states and actions of other clients in the system.

54

In other words,

P(st+1|at, st) =
∏
∀c∈C

P(sct+1|act , sct)

It must also be noted that the state transitions of all clients in the system given their current states

and actions are identical. Thus, we can determine the transition kernel of the system using the

transition kernel of each individual client.

Directly determining the system transition kernel and solving it to obtain the optimal policy is in-

tractable due to the large state space of the system. Consider a system with N clients (the state

space is an N dimensional vector, with each dimension corresponding to the state of a client),

where each client has a state space of the order of 103. The state space of the system (S) is of

the order of 103N which is very large. To combat the problem of state space explosion, we take

advantage of the structure of the problem and identify the popular states of the system (Sp), and

approximate all the other states to the closest popular state under the L2 norm.

To obtain the system transition kernel, we empirically fit a distribution over the transitions gener-

ated for each state in Sp under each action in A using the transition kernel of an individual client

(Section 3.5.1). If the transitions generated are outside Sp we approximate it with the state closest

in Sp under the L2 norm. Once the system transition kernel is obtained, we run value iteration

solve (3.1) to obtain the optimal policy. It must be noted that the reward obtained by taking action

at in state st is the expected QoE of state st+1.

3.5.3 Optimal Policy for Auction-based Model

Using the transition kernel of a client (Section 3.5.1), we use Value Iteration to solve (3.2)

and obtain the optimal value function for an individual client. This approach also provides a map

between state of a client and its bid, which is subsequently used in the (N + 1)th price auction.

Since it is known that (N + 1)th-price auction promotes truth telling, a client participating in such

an auction makes a bid which reflects its true value. The Auction Agent receives the bids from

all clients, conducts the (N + 1)th-price auction and performs the assignment on the basis of the

result.

55

3.5.4 Index Policy

The solution to (3.2) results in a value for each state sct of the client. We can order states in

increasing order of value, and associate each state with an index, which is its position in the order.

Then these indices can be used to directly decide which clients to prioritise, and we call this as

an index policy. Now, given the indices corresponding to a system with N clients, it would save

computational effort if we could use the same indices for a system with M < N clients, by simply

setting indices of non-existent clients to 0. The question is whether the indices for a system with 6

clients are consistent with (for example) one that has 3 clients?

0 50 100 150 200 250 300 350
State Index

50

100

150

200

250

300

350

Or
de

r

6 client system
5 client system
4 client system
3 client system

Figure 3.4: Ordering of states in different client configurations.

We experimentally determined the values for different numbers of clients, and calculated the

state indices in each case. The comparison of the orderings for different client configurations (6, 5,

4, 3 clients) is shown in Figure 3.4, using the ordering for 6 clients as the base ordering. We observe

that the relative ordering of most of the high value states is consistent across configurations, which

56

indicates that an index policy for 6 clients is likely to perform well for one with fewer clients.

3.5.5 Dynamic Number of Clients and Varying Channel

In the previous subsections we assumed that the number of clients and channel state of the

system were static. To deal with a dynamic environment, ie., varying number of clients and channel

states (described in Section 3.6), we first obtain the optimal policy for all the different scenarios

using the static approach described in section. We then construct a composite controller which

chooses the appropriate policy based on the environment. This approach works well in practice

since the time scale in which the environment changes is larger than the decision period.

3.6 Evaluation

Vanilla
Good Bad

RR
Good Bad

SW
Good Bad

AB
Good Bad

0

1

2

3

4

5

Av
er

ag
e

Qo
E

Figure 3.5: Comparison of average QoE

We ran a series of experiments to evaluate the performance of the described policies on a

testbed hosting multiple YouTube sessions. A WiFi router installed with SoftStack is used as the

57

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
Client QoE

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

Vanilla
Round Robin
System-wide
Auction-based

Figure 3.6: Client QoE comparison for good channel

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
Client QoE

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

Vanilla
Round Robin
System-Wide
Auction-based

Figure 3.7: Client QoE comparison for bad channel

58

Vanilla
Good Bad

RR
Good Bad

SW
Good Bad

AB
Good Bad

0

10

20

30

40

50

60

Av
er

ag
e

Bu
ffe

r S
ta

te
 (s

ec
)

Figure 3.8: Comparison of average buffer

0 20 40 60 80 100 120
Client Buffer state (sec)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

Vanilla
Round Robin
System-wide
Auction-based

Figure 3.9: Client buffer comparison for good channel

59

0 20 40 60 80 100 120
Client Buffer state (sec)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

Vanilla
Round Robin
System-Wide
Auction-based

Figure 3.10: Client buffer comparison for bad channel

Access Point and three Intel NUCs are used to simulate up to 9 clients (YouTube sessions) for our

experiments. Although each YouTube session can be associated with multiple TCP flows, all such

flows are treated identically. Each of the NUCs is configured with an i7 processor and 8 GBs of

memory, and is powerful enough to host multiple traffic intensive sessions simultaneously. Ubuntu

Operating system is installed on the NUCs, which makes it easier to measure session specific

information such as ports used by an application, play/load progress, bitrate and stall information.

This information is collected every second and written to the centralized database for ease of

sharing.

Since we are interested in studying the behavior of queues in routers, we create two bins of

downlink queues, each containing a high priority and a low priority queue. The motivation behind

the creation of two separate bins is to ensure that clients having similar signal strengths are eligible

for the same bin and hence, do not adversely affect the performance of client with better signal

strengths. Hence, we have a Good bin for clients with high signal strengths and a Bad bin for

those who have low signal strengths. These bins are attached to the WiFi interface of our AP using

60

tc. We allocate a higher bandwidth to each of the high priority queues using hierarchical token

bucket queueing discipline. This is done so that clients assigned to these (high priority) queues

experience better service than those in the other (low priority) queues. For the current scope of

experiments, we set the admission limit of the high priority queues to two clients. We also create a

default queue to accommodate any background traffic.

3.6.1 Emulation of bad network conditions

Since we have a fixed number of NUCs to host a total of upto 9 sessions, we decided to emulate

bad channel by reducing the throughput and increasing the latency and loss rates of the queues in

the Bad bin as compared to those in the Good bin. We ran several hours of experiments with

clients having low signal strengths to come up with these heuristics for emulating a bad channel.

This enables us to mimic varying network conditions by dynamically assigning the sessions hosted

on the NUCs to either the Good or the Bad bin.

Given this setup, the control problem is to determine the assignment of sessions to queues

under varying channels.

3.6.2 Policies

We compare the System-wide (SW) policy described in Section 3.3.1 and the Auction-based

(AB) policy described in Section 3.3.2 with two other policies for determining the assignment of

sessions to queues.

Vanilla: This baseline scenario consists of a single queue which treats all clients equally. The

queue is allocated the total bandwidth of the queues used for the other policies.

Round Robin: The Round Robin (RR) policy assigns clients to the high priority queue in a

cyclic manner. It is simple, easy to implement, work-conserving and starvation-free. But it might

promote the wrong clients (like clients who have stalled multiple times) to the high priority queue

instead of those who might benefit much more from the assignment.

61

3.6.3 Static Network Configuration

We run the first set of experiments in a static configuration consisting of 6 clients hosted on

three NUCs under both channel conditions. For the Good channel scenario, the total bandwidth

allocation of the two downlink queues is set such that simultaneous playback of all the YouTube

sessions cannot not be supported at HD (1080p), whereas for the Bad channel scenario, we further

reduce the bandwidth and add latency and loss. Figure 3.5 shows the comparison of the average

QoE achieved by the policies under the different channel conditions. It is evident from the figure

that the System-wide and the Auction-based policies perform much better than the other policies.

Interestingly, the Auction outperforms the System-wide policy. We believe that this is due to the

coarse quantization of the state space. System-wide is worse affected by this due to the fact that 6

clients together are considered in the sate, whereas in Auction only 1 client is part of the (marginal)

state. Hence, we believe that value identification is more accurate in the Auction case. The differ-

ence in achieved performance for the different policies becomes more clear in the comparison of

the CDFs of the client QoE under Good and Bad channel conditions in Figures 3.6 and 3.7. For

example, we can observe from Figure 3.6 that the System-wide and the Auction-based policies are

able to provide a QoE of 5 for almost 90 and 85% of the time for all clients, whereas it is only about

40% of the time for Round Robin. Similarly, we can deduce from Figure 3.7 that the Model-based

and the Auction-based policies are able to achieve a QoE of 5 for all participating clients in the

system about 50% of the time, whereas Round Robin is only able to achieve it 40% of the time.

We can observe that this gap decreases in the Bad channel scenario, but the System-wide and the

Auction-based policies still achieve higher QoE for the clients.

Since the QoE perceived by a client depends on the state of the buffer and the stalls experienced

during video playback, we also study these individual components for the different policies under

the different channel conditions. We can observe a similar trend when we compare the CDFs of

the individual values for both these components in Figures 3.8 to 3.13. We can clearly infer from

the figures that the System-wide and the Auction-based policies ensure higher number of buffered

seconds and lower duration of stalls under both channel conditions when compared to the other

62

Vanilla
Good Bad

RR
Good Bad

SW
Good Bad

AB
Good Bad

0.0

0.5

1.0

1.5

2.0

2.5

Av
er

ag
e

Di
ffe

re
nt

ia
l S

ta
ll

Du
ra

tio
n

(s
ec

)

Figure 3.11: Comparison of average stall duration

0 2 4 6 8 10
Client Differential Stall Duration (sec)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

Vanilla
Round Robin
System-wide
Auction-based

Figure 3.12: Stall duration comparison for good channel

63

0 2 4 6 8 10
Client Differential Stall Duration (sec)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

Vanilla
Round Robin
System-Wide
Auction-based

Figure 3.13: Stall duration comparison for bad channel

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
Bid

0.0

0.2

0.4

0.6

Pr
ob

ab
ilit

y 3 clients

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
Bid

0.0

0.2

0.4

0.6

Pr
ob

ab
ilit

y 6 clients

Figure 3.14: Bid distribution for 3 and 6 client configurations

64

policies, even though the gap in performance is much less in the Bad channel case.

We also compared the bid distributions of the clients in the Auction-based policy for two differ-

ent client configurations. The first configuration had 3 clients whereas the second one had 6, with

the total bandwidth allocation kept the same. The comparison of the two distributions is shown in

Figure 3.14. When there are more clients participating, resources are scarce and valuable, and so,

clients tend to bid higher in order to get into the high priority queue and experience better QoE.

When the total number of clients is low, everyone experiences good QoE irrespective of the queue

they are assigned to, and there is no incentive to bid higher.

3.6.4 Dynamic Number of Clients and Varying Channel

In a realistic setting, the number of participating clients as well as the channel conditions do

not remain static. Hence, we would like to evaluate the performance of the policies with dynamic

number of clients under varying channel conditions. We vary the number of active clients in the

system between 3 and 6 for the next set of experiments, under the assumption that a particular

configuration of clients remains unchanged (in the same channel condition) for a duration of 30

minutes. Since this duration is large as compared to the policy decision period of 10 seconds, the

use of a composite controller as described earlier is only slightly sub-optimal.

We fix a sequence of client configurations (number of active clients) under each channel con-

dition for the evaluation of all policies. The first configuration consists of 6 clients under Good

channel conditions and 3 under Bad channel conditions. We decrease the number of clients in the

Good scenario by 1 and increase that in the Bad scenario by 1 for the next three intervals. The

evolution of the average QoE for each of the policies for the above sequence is shown in Figure

3.15. The System-wide and Auction-based policies exhibit a high average QoE in most of the

configurations except for the last where it is not possible to achieve a high QoE for the 6 clients in

the Bad channel. Even in such a scenario, the drop in QoE is more severe for the other policies.

Decrease in the number of active clients under a constant bandwidth allocation results in the re-

laxation of the constraints for each individual client and hence, Round Robin and even the Vanilla

approach perform better in some configurations. This improvement in performance, when com-

65

0 1000 2000 3000 4000 5000
Measurement index

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

Av
er

ag
e

Qo
E

5G+4B
4G+5B 3G+6B

Vanilla
Round Robin

System-wide
Index Policy

Figure 3.15: Evolution of QoE for dynamic clients in variable channel

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
Client QoE

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

Vanilla
Round Robin
System-wide
Index Policy

Figure 3.16: Comparison of client QoE CDF for dynamic clients in variable channel

66

pared with the constrained setting, can be seen in Figures 3.16, where the CDF curves of both

policies are closer to those of the System-wide and the Auction-based policies. Nevertheless,

it is evident that System-wide and Auction-based policies outperform the other policies, which

strengthens our claim that they are superior to other policies in both static and dynamic scenarios.

3.7 Conclusion

In this paper, we described FlowBazaar, a platform for adaptive prioritization of flows in re-

sponse to their self-declared values. We showed that using an auction framework is able to a elicit

truthful proxy for state in terms of the bid made for prioritized service. Furthermore, the model

needed at clients to make optimal bids is simply the marginal transition kernel of the system, which

is learned quite easily. Using YouTube video streaming as an example application, we showed how

FlowBazaar is able to make the correct choices on which clients to prioritize, and actually ensured

higher overall QoE than system-wide optimization (using a coarsely quantized state space). We

also discovered an index policy (ordering of state values) that can be applied directly as a simple

and effective policy. Our future goal is to analytically characterize the nature of this index policy.

67

4. PULS: PROCESSOR-SUPPORTED ULTRA-LOW LATENCY SCHEDULING∗

4.1 Introduction

Strict latency requirement is currently one of the most critical challenges for next-generation

wireless networks. Emerging applications, such as virtual reality (VR) [30], factory IoT, and tactile

Internet [31], require an end-to-end latency between 1 to 10 milliseconds to provide seamless user

experience. However, the existing wireless networks cannot provide such stringent latency guaran-

tees. For example, the round-trip time of LTE is estimated to be at least 20 milliseconds, including

the transmission time, scheduling overhead, and processing delay [32]. In practice, the current

LTE technology can only support voice or video streaming applications with round-trip time in

the range of 20-60 milliseconds [33]. For Wi-Fi networks, due to the nature of random access, the

round-trip time could vary from several milliseconds to hundreds of milliseconds depending on the

traffic load [34]. Therefore, compared to the current technology, the latency budget is expected to

be at least one order of magnitude smaller in next-generation wireless networks.

To provide strict per-packet latency guarantees, numerous theoretical solutions have been pro-

posed to accommodate per-packet deadline constraints in wireless scheduling. For example,

[35] proposes a theoretical framework to study wireless scheduling with per-packet deadline con-

straints. In this framework, packets not delivered on time are dropped. Later on, this framework

has been applied to many other scenarios, such as utility maximization [36], scheduling for both

latency-constrained and best-effort traffic [37], broadcast traffic [38], and multicast traffic [39].

The performances of these protocols are usually measured by timely-throughput, i.e. the time

average of the amount of data delivered within their deadlines. While the above proposals are

promising, there has been no implementation for these ultra-low-latency wireless protocols.

As such, we do not know what kinds of system throughputs and capacity regions are achievable

with these systems. Without knowledge of the throughputs and capacity regions, these protocols

∗Republished with permission of ACM, from PULS: Processor-Supported Ultra-Low Latency Scheduling, Simon
Yau, Ping-Chun Hsieh, Rajarshi Bhattacharyya, K. R. Kartic Bhargav, Srinivas Shakkottai, I-Hong Hou, P. R. Kumar,
MobiHoc, 2018; permission conveyed through Copyright Clearance Center, Inc.

68

may not function as expected.

Furthermore, future networks are expected to support many heterogeneous applications. Such

diversity necessitates a system that is capable of switching between a set of MAC protocols for

different applications. For example, one might choose to use backpressure/max-weight schedul-

ing for throughput maximization [40, 41], deadline constrained scheduling for latency sensitive

flows [35, 42] or perhaps a time division solution to support polling of IoT devices or in vehicu-

lar communication [43, 44]. Thus, a range of scheduling algorithms need to be instantiated, with

the scheduling algorithm that is to be applied to a particular aggregate of packets being chosen

based on its requirements. This can be difficult to implement on hardware due to the development

time required, and the fact that instantiating each algorithm occupies hardware resources (on either

FPGA or ASIC) that cannot easily be shared.

Another constraint appears in the form of the computational resources needed to support these

algorithms. For example, the Max-Weight Independent Set problem that needs to be solved re-

peatedly for scheduling in multihop wireless networks is known to be NP-hard, and even poly-

nomial approximations need significant computational resources [45]. More recently, scheduling

algorithms that take a given schedule and “puncture” it with delay sensitive packets have been

proposed to increase the efficiency of the MAC for 5G applications, and these algorithms also re-

quire significant computational resources [46]. As machine learning approaches make their way

into MAC algorithms, the need for high speed computation at each scheduling decision will only

become more pressing. Hence, the desire to support a diverse range of scheduling algorithms, cou-

pled with the fact that some of these algorithms might require significant computational resources

suggests the need for a platform that can support processor-assisted software scheduling. Thus,

to prototype these ultra-low-latency wireless protocols and achieve realistic timely-throughput and

system throughput, a powerful software-defined radio (SDR) platform with dedicated architec-

tural design is required to compute complex algorithms quickly, provide enough latency budget

for checking deadlines, as well as minimize the software and hardware processing and interfacing

overhead.

69

Our main contribution is to bridge the gap between theory and implementation for hetero-

geneous wireless networks supporting flows with strict per-packet latency constraints (real-time

flows), as well as flows that have no latency constraints (non-real-time flows), while maintaining

high overall system throughput by proposing PULS, a processor-supported software-defined wire-

less platform that can support ultra-low-latency scheduling protocols. The PULS platform consists

of a host machine that has significant computational power in the form of a general purpose mul-

ticore CPU, coupled with an SDR platform with FPGAs for low-level processing. PULS aims to

leverage the higher clock speeds, and memory available at the host machine (which are at least

an order of magnitude higher than what is available on SDRs) for performing complex schedul-

ing algorithms, while leveraging the deterministic performance of the FPGA while performing

simple repetitive tasks associated with PHY and low-level MAC layers. To achieve the required

per-packet latency performance while performing scheduling on the host, PULS needs to address

the following challenges:

1. Enforce per-packet deadline on a software-defined wireless platform. PULS aims to

support per-packet latency as low as one millisecond. When packets arrive at software host,

they are first queued and start waiting for transmission according to some scheduling policy.

The deadline of each packet in the queue needs to be tracked and checked before transmis-

sion. A packet that misses its deadline should be dropped from the queue. Moreover, due to

the nature of SDRs, packet transmission is carried out on hardware while packet scheduling

is often done on software host. Therefore, it is not directly clear how deadlines should be

maintained and checked on a software-defined platform if there is no synchronization be-

tween software and hardware. Moreover, it usually requires non-trivial efforts to provide an

accurate reference timer shared by software host and hardware. In Section 4.4.3, we present

a simple design that tracks packet deadlines accurately using only timestamps of software

host, without any synchronization between software host and hardware.

2. Low interfacing latency between software host and hardware. There are three major

factors that affect the end-to-end latency: (i) queuing delay on software host, (ii) interfacing

70

latency between software host and hardware, and (iii) hardware processing time. Queuing

delay depends mainly on the scheduling policy, and hardware processing time can usually

be made small due to the high clock rate supported by current technology. Therefore, with

a proper choice of scheduling policy and hardware component, interfacing latency between

software host and hardware needs to be minimized in order to achieve ultra-low latency.

In Section 4.5, we present a simple experiment that demonstrates the interfacing latency of

PULS is indeed small compared to packet deadlines.

3. Achieve realistic per-flow timely-throughput. Ultra-low latency needs to come with re-

alistic timely-throughput. Given the same physical data rate, the overhead of enforcing

per-packet deadlines could be quantified by the difference in total MAC-layer throughput

between the networks with and without packet deadlines. In Section 4.6.1, through an exper-

imental study on system capacity, we show that PULS achieves almost the same MAC-layer

throughput as that with no deadlines.

4. Support functions working on heterogeneous time scales. MAC layer functions operate

on very different time scales. For example, an ACK response needs to be done within tens of

microseconds. The transmission time of a typical data packet is between 0.5 to 1 millisecond.

The target per-packet deadline is between 1 to 10 milliseconds. The parameters of wireless

protocols usually change over a period of at least several seconds to several minutes. In

Section 4.3, we describe the separation principles of PULS which inherently incorporates

the heterogeneity in time scale.

5. Support various ultra-low-latency downlink applications. For example, VR requires la-

tency as low as 1 millisecond with moderate timely-throughput while factory automation

needs ultra-low packet loss rate with latency of about 5-10 milliseconds. PULS is able

to support applications with totally different performance requirements and provide a pro-

grammable environment for different wireless protocols.

To tackle the above challenges, PULS follows three major design principles. First, as a software-

71

defined wireless testbed, PULS follows the Host-FPGA separation principle for both high flexibil-

ity and performance. Next, PULS addresses the heterogeneous time scales of MAC functions by

applying Mechanism-Policy separation. Third, to support a broad class of scheduling policies, we

borrow ideas from both WiFi as well as LTE standards, and build up a set of basic MAC functions

required by most of the wireless protocols.

4.2 Related Work

Most of the existing experimental studies for wireless LANs focus primarily on maximiz-

ing system throughput or throughput-based network utility. For example, to achieve maximium

throughput, the well-known backpressure algorithm has been tailored and implemented for vari-

ous scenarios, such as multi-hop wireless networks [47], TDMA-based MAC protocol [48] and

wireless networks with intermittent connectivity [49]. Besides, for wireless LAN with random

access, [50] implements an enhanced version of 802.11 DCF and demonstrates that it achieves

near-optimal throughput as well as fairness with the original DCF. However, all of the above stud-

ies provide no support for packets with latency constraints. To address latency requirement for

industrial control applications, RT-WiFi, a WiFi-compatible TDMA-based protocol, has been pro-

posed and implemented on commercial 802.11 interface cards [51]. However, it cannot achieve

both ultra-low latency and satisfactory timely-throughput performance for each user at the same

time due to the nature of TDMA.

On the cellular side, several preliminary studies about 5G provide candidate solutions to en-

hance the low-latency capability via either numerical and experimental evaluation. [52] studies

the trade-off between latency budget and required bandwidth by applying the conventional OFDM

framework to 5G networks through numerical analysis. However, these numerical results do not

take the possible signaling and processing overhead into account. [53] provides experimental

study for latency performance of 5G millimeter-wave networks with beamforming. However, this

solution relies heavily on the beam-tracking technique and frame structure employed by cellular

networks and cannot be directly applied to wireless LAN applications. Besides, [54] demonstrates

a wireless testbed that is potentially capable of supporting millisecond-level end-to-end latency

72

requirement. However, it supports only single link and does not take wireless scheduling issue into

account.

4.3 Design of PULS

Our objective was to develop a platform for testing ultra-low latency protocols that require

scheduling on a per packet basis, with a focus on downlink protocols. In this section, we will

explain the basic design principles upon which PULS was built to achieve the goals described in

the previous sections.

4.3.1 Basic MAC Functions for Wireless Scheduling

Our platform borrows ideas from both the WiFi and LTE standards. From the WiFi side,

we used features such as Carrier Sense for loose synchronization between the nodes and some

robustness to interference. We also use the same interframe space timing intervals as WiFi for

transmission (and reception) of packets. Furthermore, ACKs are sent immediately following trans-

mission of data packets after a SIFS period, which allows us to know in a short period of time

whether the packet was transmitted successfully. On the other hand, we are using a completely

centralized framework for scheduling the different queues, which is similar to what LTE does. By

using ideas from WiFi and LTE, we are able to obtain a deployment that is both lightweight and

can be incorporated more easily into our framework for ultra low latency scheduling.

4.3.2 Mechanism-Policy Separation

In our design of PULS, we utilize a mechanism-policy separation used in [55]. Mechanisms

are functions or hardware blocks used to handle the low-level operations of packet transmissions

over the network, whereas policy refers to the high-level specification of the scheduling protocol

itself. This mechanism-policy separation builds on the framework of Wireless MAC Processors,

introduced by Tinnirello et al in [56].

Each mechanism has a set of inputs, outputs, events, conditions to check and possible actions

that can be performed. Inputs and outputs of a mechanism take the form of register values (e.g.

channel state and average energy), or an array of bytes (e.g. my address and packet).

73

Mechanisms provide the set of actions, events and also act as condition checkers, whereas the

policy specifies the set of enabling functions, the parameters for the conditions, the set of update

functions and the transition relations for the state machine of the scheduling protocol. Having the

distinction between the different mechanisms and its associated events, actions, and conditions

allows us to design new mechanisms more cleanly and reuse previously developed mechanisms.

In addition to the mechanisms used in [55] and in [56], we implemented mechanisms to allow for

deadline checking, packet dropping, controlling the packet arrival process, as well as features to

increment and decrement some notion of deficit according to user-speficied conditions. Deficits

can be used in various ways to achieve some performance guarantees in delay-sensitive traffic, or to

control the ratio of service times between inelastic and elastic flows. We will focus more on these

mechanisms since they allow us to achieve certain guarantees on delay-sensitive traffic. These

mechanisms can also be changed at runtime, allowing us to switch between different protocols

on-the-fly. The implementation details of these mechanisms are laid out in section 4.4. Note, in

the design of our testbed, mechanisms are implemented both on the FPGA as well as on the host

machine. Furthermore, the inputs and outputs for each mechanism can be modified accordingly

to allow for cross-layer designs. For example, the update deficit mechanism can use the packet’s

MCS as an input for the function to increment and decrement the deficits.

4.3.3 Flexible MAC through Host-FPGA Separation

For flexible MAC scheduling decisions, we employed a Host-FPGA separation, where high-

level MAC functions such as packet scheduling, and packet dropping, are done on the host, and

low-level functions such as packet encoding/decoding, carrier sensing, ACK processing, and CRC

checking are done on the FPGA. This is done to allow for easy changes in packet scheduling

decisions, while still being able to achieve our latency requirements for the platform.

Our testbed was designed with the following goals in mind:

• Ultra low-latency scheduling of packet transmissions on a packet by packet basis.

• Decoupling of specification of protocol from the underlying features of the system.

74

• Specification of scheduling protocols in the software domain.

• Allows for cross-layer design of protocols.

• Supports protocol changes at runtime.

4.4 Implementation of PULS

We will discuss the implementation details of PULS in this section, namely, the flow of events,

and the design of mechanisms for the nodes. Since our platform focuses on downlink schedul-

ing, the mechanisms shown here are geared towards that, although most can be re-used for up-

link scheduling as well. Starting with the National Instruments 802.11 Application Framework,

we implemented additional mechanisms on the Host machine and on a USRP-2953R for flexible

scheduling protocols. To support packets with strict deadlines, PULS presents a data transmis-

sion procedure which enables per-packet scheduling on the host while keeping the FPGA design

simple.

4.4.1 Packet Generation

For packet generation, we implemented a packet generation mechanism that allows three main

parameters that can be tweaked to replicate the different kinds of traffic that a user might want

to experiment with: 1) interarrival times, 2) probability that packets get generated, 3) number of

packets that are generated. Packets can be generated with interarrival times up to 1ms in resolution,

with a certain number of packets being generated at each time. In addition to that, packets can

be generated deterministically or stochastically. At each interrival time, users can specify the

probability that a certain number of packets get generated. Furthermore, the number of packets

can be set to be a fixed number, or can take on a random number based on a distribution. For our

purposes, in the random case, we use a simple uniform distribution for the number of packets that

are generated. The maximum number of packets that can be generated are specified by the user.

These arrival patterns and rates are by no means exhaustive, but it is sufficient for us to justify the

performance of the platform and of particular protocols that we’ve implemented. (The details of

the results are in Section 4.6.)

75

Figure 4.1: Architecture of PULS.

76

4.4.2 Queueing, Deadlines and Types of Flows

Each data flow, either elastic or inelastic, is associated with a queue on the Host. To add dead-

lines to the packets, we implemented a simple mechanism to prepend deadlines to each packet

arriving at the queue. The input of this block is the current tick count of the system, the deadline,

the incoming packet, and all the references to the queues associated with each flow. This block

takes the current tick count of the system, adds the correct tick count corresponding to the deadline

of the packet and prepends it to the packet before adding it to the correct queue. For inelastic

flows, when a packet is generated (according to the Packet Generation mechanism), the corre-

sponding deadline identifier, in the format of Host reference timer, is prepended onto the packet

and then the packet is queued for scheduling. Since the absolute packet deadlines of each flow are

assumed to form a non-deceasing sequence, every queue on the Host is always inherently arranged

in an earliest-deadline-first manner. (Note, this may not be true if packet deadlines are changed

frequently in a non-increasing manner. However, applications typically just require a baseline

performance guarantee so this is valid for most cases. In the event that deadlines for packets are

not arranged in an earliest-deadline-first manner, we can sort the packets while packets are being

transmitted.) On the other hand, for elastic flows, the packet deadlines are set to be negative one

for simplicity and better modularity in design.

4.4.3 Scheduling and Transmission Procedures

Once packets are generated and the packets are in their respective queues, scheduling is per-

formed and repeated on a per-packet basis. In PULS, scheduling is aided by the use of several

mechanisms to achieve our desired latency goals. First, we have packet dropping mechanism

which scans the head-of-line packet of each queue, and drops the packets that have expired. This

block only requires the references of each queue, and the current tick count of the system as inputs.

It also has an output to inform other mechanisms whether or not a packet has been dropped. Next,

we have a mechanism to update the state of the flows. Its job is to update the deficits associated

with each flow based on whether or not an ACK was received and if a packet has been dropped

77

from the queue. It uses the references of the queues, ACK received count, ACK timeout count, and

the output of the packet dropping mechanism as its inputs. Lastly, we have a scheduling decision

block that decides which flow to schedule based on the current states of the flows. This mechanism

uses the deficits associated with each flow, the ACK counters for each of the flow, and the output of

the packet dropping mechanism as inputs. All scheduling-related mechanism blocks are executed

on the Host.

Scheduling and transmission executions are triggered when at least one queue is non-empty,

and the scheduling state is UNLOCKED. The scheduling state becomes LOCKED as soon as

a packet has been scheduled and is being processed for transmission. The state becomes UN-

LOCKED again when either of the two following FPGA events happen: an ACK reception or an

ACK timeout. A successful ACK reception happens when an ACK packet is decoded successfully.

This in turn increments the number of ACKs that have been received. The Host machine polls

the register that stores the number of ACKs that have been received, and when the numbers differ

from one iteration of the while loop to the next, the Host registers an ACK reception. For ACK

timeouts, we implemented a mechanism that starts a counter after a packet has been transmitted on

the FPGA. If an ACK is not received within a specified time period (set to be 75 microseconds),

the count for timeout is increased on the FPGA. As in the case of ACK reception, if the count for

ACK timeouts that the Host polls from the FPGA differ from one while loop iteration to the next,

an ACK timeout event is registered. The timing of loop executions will be described further in

Section 4.5. In every loop cycle, exactly one packet is scheduled for transmission. Before mak-

ing a scheduling decision, the Host first “cleans up” the queues and updates the deadline-related

state information by dropping expired packets in each queue using the mechanisms detailed above.

Given the computing power of the Host, this cleanup can be finished almost instantaneously com-

pared to the transmission time of a packet. (We should note that there will be more overhead if a

batch of packets have expired, since we are only dropping one packet per loop execution, but this

time is also negligible relative to the packet transmission time.) Given the queues in a clean state,

the flow scheduler sets priorities of the flows according to the scheduling policy and schedules

78

the flow with a non-empty queue and the highest priority. The scheduled queue then sends the

head-of-line packet to the Prepare ICP Packet block, which removes the deadline identifier and

appends the ICP header to the packet. The ICP header carries the information required by the

FPGA, such as packet length, modulation and coding scheme, source MAC address, destination

MAC address, and flow identifier, etc. Upon receiving the scheduled packet from the Host, FPGA

simply triggers the required channel access procedure of the MAC layer as well as the physical

transmission procedure in the PHY layer. By placing all the scheduling complexity on the Host,

the design of PULS can be easily reproduced on an existing wireless interface card. The Access

Point (AP) packet transmission procedure is summarized in Algorithm 1 and the function blocks

associated with the transmission procedure are depicted in Figure 4.2.

4.4.4 Retransmission

As reliable transmission is often required by mission-critical low-latency applications, PULS

also supports retransmission for both elastic and inelastic flows to recover packet losses. Note that

while MAC-layer retransmission is usually implemented in the hardware for conventional SDRs

to minimize latency, the retransmission block of PULS is located in the Host for two reasons: (i)

Packet deadlines need to be checked before any retransmission. Since deadlines are tracked in the

Host, it is straightforward to handle retransmission in the Host. (ii) The Hostto-FPGA interfacing

latency is low enough for supporting retransmission in the Host.

In PULS, retransmission is built on top of the scheduling and data transmission procedure

described in Section 4.4.3. An additional retransmission mechanism with retransmission queue

is created on the Host for temporarily storing the duplicate of the scheduled packet in the current

loop cycle. The inputs to this block are the references to all the queues, the ACK counts for

the flows, and the maximum retransmission attempts which can be easily configured in the Host

according to the user specified scheduling policy. If an ACK timeout is received and the maximum

retransmission count is not met, then the scheduler will attempt to retransmit the same packet in

the next cycle; otherwise, the duplicate packet is removed from the retransmission queue.

The ICP packet is sent to the SDR’s FPGA fabric via a Direct Memory Access (DMA) Chan-

79

DMA
Channel

Flow
Scheduler

Prepare
ICP

Packet

ICP
Packet
to MAC
MPDU

TX

Flow 1

Flow 2

Flow N

Carrier
Sense Backoff

HOST FPGA

RF
Front
End

Figure 4.2: Packet transmission on PULS.

nel. All PHY layer processing required to transmit the packet is performed on the FPGA using

the Intellectual Properties (IP) provided by the 802.11 AF. While the platform supports mecha-

nisms for random backoff, we set backoffs to zero since our scheduling algorithms are completely

centralized.

After the packet is transmitted, the Received Packet mechanism will determine whether an

ACK was received or not. If an ACK was received, then ACK count will be incremented. Oth-

erwise, the ACK timeout count will be incremented. Received packets are then sent back to the

Host for processing, again via a DMA Channel. Concurrently, the Host polls the FPGA regis-

ters for transmitted packet count, ACK count, and ACK timeout count, and updates the deficits

accordingly based on these counts.

4.5 Measuring Host-to-FPGA Interfacing Latency and Round-Trip Latency

The interfacing latency between hardware and software significantly affects the achievable link

throughput of a software-defined wireless testbed. As discussed in Section 4.4, flow scheduling

is repeated on a per-packet basis in a loop where scheduling-related function blocks are executed.

The time between two consecutive loop executions depends on the round-trip transmission time

of each packet plus the Host-to-FPGA interfacing latency. The interfacing latency between Host

and FPGA needs to be low enough to support a packet deadline as low as 1ms. Meanwhile, round-

80

Algorithm 1 AP transmission procedure.
Initialize the state variables and the Host queues
While (station is ON)

update Host queues and state variables
schedule the flow with the highest priority
send the scheduled packet to Prepare ICP Packet
state of flow scheduler← LOCKED
While (state of flow schedule is LOCKED)

If (receive ACK response)
state of flow scheduler← UNLOCKED

end
end

end

trip latency, which is defined as the elapsed time between a packet arrival at the Host and the

ACK reception of the packet, inidcates the minimum achievable per-packet deadline of a wireless

platform. To measure interfacing latency and round-trip latency, we devise a simple experiment by

using the FPGA counter for the timestamps of the packet events.

The experiment can be summarized as follows:

1. Test packets of fixed payload size arrive at the Host periodically. The period is set to be large

enough such that at each time there is only 1 test packet waiting for transmission in the Host

queue. This completely eliminates the effect of queueing delay in the Host.

2. When a test packet arrives at the Host, it is given a timestamp denoted by th (read by the

Host from an FPGA register) and then forwarded to the FPGA through a DMA Channel

immediately.

3. When FPGA detects the new test packet, FPGA starts processing the ICP header and re-

trieves th from the header. Along with the current FPGA counter denoted by tf , the Host-

to-FPGA interfacing latency can be derived as tf − th.

4. The packet is then transmitted. When the corresponding ACK is received, FPGA reads the

current timestamp tr and calculates the round-trip latency as tr − th.

81

In the experiments, we measure both latency metrics for 50000 packets with a fixed interarrival

time of 10ms. Figure 4.3 shows the empirical cumulative distribution function (CDF) of the Host-

to-FPGA interfacing latency for packets with 1500 bytes payload at a data rate of 54Mbps. The

mean interfacing latency is around 192 µs, and the 90, 95, and 99 percentiles are 233.4, 257.6,

and 316.1 µs, respectively. Table 4.1 further summarizes the statistics of the interfacing latency

for different data rates and payload sizes. We see that both the mean and the percentiles of the

Host-to-FPGA latency are almost invariant, regardless of data rate and payload size. Therefore,

PULS indeed exhibits low and predictable interfacing latency.

Next, Figure 4.4 shows the empirical CDF of round-trip latency, and Table 4.2 summarizes the

statistics of round-trip latency for different data rates and payload sizes. Since round-trip latency

consists of both transmission time and Host-to-FPGA interfacing latency, it varies with the physical

data rate and the payload size. For the six test cases listed in Table 4.2, the maximum 99 percentile

round-trip latency is 933.7 µs. Therefore, PULS is indeed able to guarantee a round-trip latency of

less than 1ms with high probability even for large packet sizes and moderate physical data rates.

Table 4.1: Host-to-FPGA latency results

Data rate
(Mbps)

Payload size
(bytes)

Host-to-FPGA latency (µs)
Mean 90% 95% 99%

54 500 185.2 227.6 251.5 301.8
54 1000 189.7 235 259 315
54 1500 192.2 233.4 257.6 316.1
24 500 187.8 228.4 252.7 305.7
24 1000 188.3 230.6 254.3 304
24 1500 189.2 231.5 255 304.6

As further verification of the system, we also plotted the receive throughput of clients against

packet deadlines. This is to ensure that packets are not transmitted when they have expired. For

this test, 20 packets arrive deterministically on the AP every 11ms. (Note, packets are only expired

when the current time exceeds the deadlines. Hence even 0ms deadlines give some throughput.)

82

0 0.1 0.2 0.3 0.4 0.5 0.6

Measured Host-to-FPGA Latency (ms)

0

0.2

0.4

0.6

0.8

1

E
m

p
ir
ic

a
l
C

D
F

54 Mbps,1500 Bytes

Figure 4.3: Empirical CDF of Host-to-FPGA latency for payload size = 1500 bytes and data rate
= 54Mbps.

0 0.5 1 1.5 2
Measured Round-Trip Latency (ms)

0

0.2

0.4

0.6

0.8

1

E
m

p
ir
ic

a
l
C

D
F

54 Mbps,500 Bytes

54 Mbps,1000 Bytes

54 Mbps,1500 Bytes

24 Mbps,500 Bytes

24 Mbps,1000 Bytes

24 Mbps,1500 Bytes

Figure 4.4: Empirical CDFs of round-trip latency for various data rates and payload sizes.

83

Table 4.2: Round-trip latency results

Data rate
(Mbps)

Payload size
(bytes)

Round-trip latency (µs)
Mean 90% 95% 99%

54 500 377.0 419.2 443.4 494.4
54 1000 459.9 505.1 529.2 585.0
54 1500 536.9 578.5 602.3 660.8
24 500 479.5 520.2 544.4 598.1
24 1000 646.6 688.9 712.7 762.8
24 1500 817.9 860.2 883.9 933.7

0 2 4 6 8 10
Deadline (ms)

0

5

10

15

20

T
im

e
ly

-T
h
ro

u
g
h
p
u
t
(M

b
p
s
)

Timely-Throughput vs Deadline

Figure 4.5: Throughput vs. Deadline for 20 packets generated every 11ms.

84

As we can see from Figure 4.5, the throughput increases linearly as deadline increases, which

shows expired packets are indeed getting dropped by the AP.

Figure 4.6: Experiment setup with host machines and USRP-2153Rs being used as wireless AP
and clients.

4.6 Experimental Results

0 5 10 15

K
RT

0

5

10

15

20

K
N

R
T

LDF Policy

Achievable

Non-Achievable

0 5 10 15

K
RT

0

5

10

15

20

K
N

R
T

LQF Policy

Achievable

Non-Achievable

0 5 10 15

K
RT

0

5

10

15

20

K
N

R
T

Random Policy

Achievable

Non-Achievable

0 5 10 15

K
RT

0

5

10

15

20

K
N

R
T

Round-Robin Policy

Achievable

Non-Achievable

Figure 4.7: Capacity regions for the different policies with 5ms deadline and 0.99 delivery ratio.

We provide experimental results for a network with one AP and two downlink clients (as shown

in Figure 4.6) in various scenarios. Each client is associated with one real-time flow with per-

packet deadlines as well as one non-real-time flow without deadline constraints. Each of the nodes

85

(AP and clients) is a USRP-2153R that is connected to a Windows laptop acting as the Host ma-

chine. A specific scenario will have a certain arrival process, as well as predefined requirements

for deadlines and delivery ratios for the real-time flows. These experiments were run using 1500B

packets and IEEE 802.11a MCS 7 (54Mbps theoretical link data rate). We consider four schedul-

ing policies: Largest Deficit First (LDF) [35], Longest Queue First (LQF), Round Robin (RR), and

Random. Based on the definition of deficit introduced in [35], LDF schedules the real-time flows

with the largest deficit and selects non-real-time flows with the largest queue length if the real-time

flows are empty. Ties are broken randomly. LQF, as the name suggests, schedules the flow with

the longest queue, with ties broken randomly. Random policy randomly picks a flow to schedule

among non-empty queues. RR schedules flows in the following order: real-time flow for client 1,

real-time flow for client 2, non-real-time flow for client 1, and then non-real-time flow for client 2.

If any of the queues are empty, it will schedule the next queue. A point to note is that dropping ex-

pired packets is not done in most implementations today. To ensure a fair comparison, we decided

to enable packet dropping for all policies, which improves the performance for all policies.

The results are presented in this section as follows. In section 4.6.1, we show the capacity

regions of a single client under the different policies for one scenario to show the achievable regions

of our system. Then, in section 4.6.2, we present the throughputs of the policies under different

scenarios to compare the system performance. In these sections, packets are generated every 5ms

and the number of packets generated are uniformly distributed from 0 to KRT for real-time flows,

and KNRT for the non-real-time flows. We used a different arrival process in section 4.6.3 to have

packets to arriving more frequently to show that ultra low latencies with 1ms deadlines are indeed

achievable.

4.6.1 Capacity Regions

For our capacity region experiments, we defined achievable regions as regions where the sys-

tem deficit (accumulated when packets are dropped) and queue length of the clients does not grow

to infinity. Per-packet deadline is set to 5ms and the delivery ratio is set to 0.99, which means that

the deficit increases by 0.99 every time a packet is dropped, and decreases by 0.01 when the packet

86

is successfully delivered. In other words, if we require 99% of real-time packets to arrive in 5ms,

we say the policy can achieve that for any incoming packet rate where the deficits do not grow to

infinity. As we can see from Figure 4.7, the LDF policy has a bigger achievable region than LQF,

Random and RR. Random and RR has similar capacity regions, but Random performs slightly

better than RR when KRT is higher, and worse when KRT is smaller. This is because the amount

of time waiting for service is bounded for RR, so for small number of real-time packets, they will

always be served before the packets expired. On the other hand, when KRT is high, RR will not

be able to serve the packets in time, but random has a chance of serving the packets before they

expire. LQF works better for higher value of KRT than Random and RR, since it would schedule

real-time flows more frequently, but suffers significantly when the value of KNRT is higher than

KRT , since non-real-time flows will be schedule first. LDF always schedules real-time flows first,

so the drop off in the capacity region is linear until KRT = 11, after which the deficits start increas-

ing to infinity for this delivery ratio and deadline. In this scenario, all policies can support up to a

KRT = 11, and serve up to 20 packets every 5ms.

4.6.2 Throughput Performance

Using the capacity region plots, we can know what kind of arrival rates our platform is capable

of supporting. However, this did not tell us much about system performance is affected, in terms

of the throughputs for real-time and non-real-time flows when operating in different scenarios. For

brevity, in this section, throughputs for real-time flows will be referred to as timely-throughput, and

throughputs for non-real-time flows will just be referred to as throughputs. So, the next thing we

did was to run experiments for multiple clients, each with a real-time and non-real-time flow, under

various scenarios to see how each protocol performed. We ran two symmetric scenarios (clients

have the same traffic and requirements), and two asymmetric scenarios. In the first scenario, we

had KRT = 4 and KNRT = 4 for both clients, with deadlines set to 3ms and delivery ratio set to

0.98. As we can see in Figure 4.8, while most protocols perform relatively well, LDF has a higher

timely throughput and overall throughput for both clients. Next, we increased non-real-time traffic

(KNRT = 6) and decreased real-time traffic (KRT = 3), and changed the requirements of the real-

87

LDF LQF Rand RR LDF LQF Rand RR
0

2

4

6

8

10

T
h
ro

u
g
h
p
u
t
(M

b
p
s
)

RT Throughput

NRT Throughput

Client 1 Client 2

Figure 4.8: Throughputs for KRT=4 and KNRT=4.

LDF LQF Rand RR LDF LQF Rand RR
0

2

4

6

8

10

12

T
h
ro

u
g
h
p
u
t
(M

b
p
s
)

RT Throughput

NRT Throughput

Client 1 Client 2

Figure 4.9: Throughputs for KRT=3 and KNRT=6.

88

LDF LQF Rand RR LDF LQF Rand RR
0

2

4

6

8

10

12

T
h
ro

u
g
h
p
u
t
(M

b
p
s
)

RT Throughput

NRT Throughput

Client 1 Client 2

Figure 4.10: Throughputs for KRT=3, KNRT=5 for client 1, KRT1=4, KNRT=6 for client 2.

time flows to 2ms deadlines and 0.95 delivery ratios to see how the system performs with lower

latencies. This could be an example of two clients downloading a large file while streaming videos.

As we can see in Figure 4.9, LQF has the worst performance since it will tend to serve non-real-

time traffic first, followed by Random and RR. LDF has the best performance in both of these

symmetrical scenarios.

For the first asymmetrical scenario, we set KRT = 3 and KNRT = 5 for client 1, KRT = 4 and

KNRT = 6 for client 2. For client 1, deadline of real-time packets was set to 2ms, with 0.97 delivery

ratio, whereas client 2 has a deadline of 3ms with 0.98 delivery ratio i.e. client 1 has a real-time

flow requirement where 97% of packets have to arrive in 2ms and client 2 has a real-time flow

requirement where 98% of packets arrive in 3ms. As we can see in figure 4.10, LDF outperforms

the other policies in terms of timely throughput and overall throughput. This difference is even

more apparent when we ’increase’ the asymmetry between the requirements of both clients. In our

second asymmetrical scenario, we set KRT = 7 and KNRT = 4 for client 1, KRT = 3 and KNRT = 5

89

LDF LQF Rand RR LDF LQF Rand RR
0

2

4

6

8

10

12

14

T
h
ro

u
g
h
p
u
t
(M

b
p
s
)

RT throughput

NRT Throughput

Client 1 Client 2

Figure 4.11: Throughputs for KRT=7, KNRT=4 for client 1, KRT1=3, KNRT=5 for client 2.

LDF LQF Rand RR LDF LQF Rand RR
0

2

4

6

8

10

12

14

T
h
ro

u
g
h
p
u
t
(M

b
p
s
)

RT throughput

NRT Throughput

Client 1 Client 2

Figure 4.12: Throughputs for the second arrival process with P(KRT1) = 0.8, P(KNRT1) = 0.3,
P(KRT2) = 0.1, P(KNRT2) = 0.5.

90

0 5 10 15 20 25 30

Time (s)

0

500

1000

1500

2000

2500

3000

D
e
fi
c
it

LDF

LQF

Rand

RR

Figure 4.13: Deficit growth for the KRT=4 and KNRT=4 for both clients.

for client 2. Client 1’s deadline was set to 5ms with 0.98 delivery ratio, and client 2’s deadline was

2ms with 0.99 delivery ratio. This could be a case where client 1 is streaming a video where 5ms

latency is tolerable but it generates a lot of traffic, and client 2 was running a control application

that does not produce as many packets but has stricter latency and delivery ratio requirements. We

see that Random and RR does not have a good timely throughput for client 1, while LQF does not

perform well for client 2. LDF outperforms all policies in both clients since it smartly schedules

client 1 and client 2’s real-time flows so that both requirements are met, without sacrificing overall

system throughput. Note, since we are operating on the boundaries of LDF, the deficits of LQF,

Random and RR are growing to infinity as well. The deficit evolution from the first symmetrical

scenario is shown in Figure 4.13.

Even though the throughput does not differ by much, the picture becomes very different when

we examine the number of real-time packets that were dropped. Using the deficits of the clients,

we calculated the loss ratios of the real-time flows for all the scenarios above. (Since the deficits

of LDF stays at 0, the most we can conclude is the loss ratio is below 1 - delivery ratio). In Table

91

Table 4.3: Loss ratios of real-time flows

Arrival Rate
Deadline (ms) Delivery Ratio

Policy
Loss Ratio (%)

C1 C2 C1 C2 C1 C2
KRT1 = 4

3 3 0.98 0.98

LDF <2 <2
KNRT1 = 4 LQF 23.51 17.12
KRT2 = 4 Rand 15.17 15.62
KNRT2 = 4 RR 15.07 16.03
KRT1 = 3

2 2 0.95 0.95

LDF <5 <5
KNRT1 = 6 LQF 60.24 54.97
KRT2 = 3 Rand 26.48 27.22
KNRT2 = 6 RR 19.96 21.27
KRT1 = 3

2 3 0.97 0.98

LDF <3 <2
KNRT1 = 5 LQF 61.45 27.35
KRT2 = 4 Rand 27.2 18.07
KNRT2 = 6 RR 20.09 17.13
KRT1 = 7

5 2 0.98 0.99

LDF <2 <1
KNRT1 = 4 LQF 7.18 63.51
KRT2 = 3 Rand 17.01 29.46
KNRT2 = 5 RR 19.14 21.42

4.3, we see that the loss ratios of LQF, Random and RR are much higher than LDF. The biggest

difference is for the fourth scenario, when LDF can maintain less than 1% loss rate for Client 2,

but LDF, Rand and RR experience loss rates of 63.5%, 29.5% and 21.4% respectively.

4.6.3 Changing the Arrival Process

In our final experiment, we modified the arrival process to further evaluate the policies under

more stringent deadline requirements. Instead of packets being generated every 5ms, packets can

now be generated every 1ms. However, instead of generating it uniformly from 0 to KRT (or

KNRT), 1 packet is generated with some probability, which is specified for each flow by the client.

Let P(KRTi) and P(KNRTi) be the probability of generating a packet for client i’s real-time flow

and non-real-time flow respectively. As in the previous experiment, the contrasts are most stark

in the asymmetrical case, which is presented in the following scenario. Client 1 has P(KRT1) =

0.8, P(KNRT2) = 0.3 with the real-time flow requirement of 2ms and 0.99 delivery ratio. This

could be a user streaming a video while downloading some files in the background. Client 2 on

the other hand has P(KRT2) = 0.1, P(KNRT2) = 0.5 with a deadline of 0ms and 0.99 delivery ratio.

92

Note that packets are only expired when the current time exceeds the deadlines, and hence even

0ms deadlines give some throughput. This could be a mission-critical application which does not

generate much traffic but requires control packets to be delivered within 1ms. As we can see in

Figure 4.12, client 1’s timely throughput is lower for Random and RR and LQF causes client 2’s

timely throughput to suffer. However, LDF is able to support both clients and give good timely

throughput and throughputs as well. Furthermore, this also shows that the system is capable of

delivering packets under 1ms.

These results show that our system is indeed capable of supporting experimentation of policies

for ultra-low latency applications with various packet arrival patterns and deadline requirements.

4.7 Conclusion

Applications today have increasingly stringent requirements, especially in terms of latency and

throughput. This presents next generation networks with one of its critical challenges: providing

some measure of guarantee for applications with strict latency and throughput requirements. There

exist theoretical frameworks to develop protocols that are able to do this, but there is still a gap

between theory and implementation of these protocols. We aim to bridge this gap by developing

PULS, which we have shown to be capable of supporting per-packet scheduling for downlink

with latencies on the order of 1ms, with realistic system throughputs. PULS was developed for

with reprogrammability in mind, so new scheduling policies can be more easily implemented and

experimented on it.

This chapter, along with the previous two, dealt with the design of scheduling policies in a cen-

tralized manner. In the next chapter, we propose a distributed approach for enhancing application

performance by intelligent sharing among end user devices interested in a common objective.

93

5. REALTIME STREAMING WITH GUARANTEED QoS OVER WIRELESS D2D

NETWORKS∗

5.1 Introduction

There has recently been a steep increase in the use of smart, handheld devices for content

consumption. These devices, such as smart phones and tablets, are equipped with multiple orthog-

onal wireless communication interfaces. Interfaces include expensive (both dollar-cost and energy)

long-range base-station-to-device (B2D) interfaces (e.g. 3G/4G), as well as low-cost short-range

interfaces like WiFi. More recently, the use of short-range interfaces such as WiFi-Direct and

FlashLinQ for device-to-device (D2D) communication is starting to make an appearance. Simul-

taneously, there has been an explosion in available content, and it is expected that streaming of live

events will play a big part in future demand [57].

In this chapter, we focus on live-streaming of content to multiple co-located devices, as shown

in Figure 5.1. Here, data is generated in realtime by a server, and must be delivered to all the

devices quickly in order to maintain the “live” aspect of the event. Each device is both capable of

unicast communication via a B2D interface, and broadcast D2D communication with peer devices.

Devices desire to minimize the usage of their B2D interfaces to reduce cost, while maintaining

synchronous reception and playout of content. While it might be possible for a cellular base

station to broadcast live events to multiple handsets, such content would be restricted to a few

selected channels, and only available to subscribers of a single provider. Utilizing both interfaces

enables users to pick any event of interest, and “stitch together” their B2D capacities regardless of

provider support. Apart from content consumption in a social setting, such a scheme would also

be valuable in an emergency response or battlefield setting.

In our model, content is generated in realtime in the form of blocks, with one block corre-

sponding to a playout time called a frame. In other words, each device must receive one block of

∗Republished with permission of ACM, from Realtime Steaming with Guaranteed QoS over Wireless D2D Net-
works, Naved Abedini, Swetha Sampath, Rajarshi Bhattacharyya, Suman Paul, Srinivas Shakkottai, MobiHoc, 2013;
permission conveyed through Copyright Clearance Center, Inc.

94

Figure 5.1: Hybrid wireless network.

data within one frame of time for smooth playout. The blocks are divided into chunks for sharing

via different interfaces. Coordination of chunk identities across all devices and all base-stations is

near impossible, so a coding solution is needed for transmitting chunks. Hence, the server performs

random linear coding [58, 59] across each block, and unicasts the resulting coded chunks to the

devices via the Internet and through the B2D connections. Thus, each coded chunk can be thought

of as an element in a vector space with the scalars in a finite field. The information at each device

can then be represented by a matrix that contains all the vectors that it has received thus far, and the

block of information can be decoded when this matrix is of full rank. Both the Internet and B2D

links are lossy, but since the chunks are coded, there is no need for feedback and the server simply

generates a new chunk for each transmission. The devices receive coded chunks from the server,

and in turn transmit these chunks to each other over a potentially lossy D2D broadcast channel,

again without feedback. If each device receives enough chunks to decode the block, it can play it,

else it has to skip that block.

We illustrate the timing diagram for block transmission in Figure 5.2. Here, we divide time

into slots, and each frame consists of T slots. Each block is divided into N chunks, and coding is

performed over these chunks. We require all devices to synchronously play out the kth block during

95

the kth frame. Since our application is that of live streaming, the kth block would be available at

the server to disseminate to devices only within some short interval before the kth frame. Hence,

we assume that the kth block is available at the server not before frame k−2. Thus, devices receive

chunks of block k using their individual B2D interfaces during frame k − 2. These chunks may

be disseminated over the broadcast D2D network during frame k − 1, and must be played out in

frame k. Device i is able to play out block k, only if it has received enough degrees of freedom to

decode the N chunks of the kth block by the beginning of frame k. Otherwise, i will be idle during

this frame.

Playing (k-2) Playing (k-1) Playing (k)

D2D block (k)D2D block (k-1) D2D block (k+1)

B2D (k) B2D (k+1) B2D (k+2)

frame kframe k-1frame k-2

Figure 5.2: Sequence of transmissions over B2D and D2D networks. Each block must be delivered
within two frames of its generation or lost.

We use a recent model of service quality for realtime wireless applications in which each

station’s QoS is parametrized by a delivery-ratio, which is the average ratio of blocks desired to the

blocks generated [35]. For example, a delivery ratio of 90% would mean that 10% of the blocks can

be skipped without noticeable impairment (which depends on the video coding used). We desire

an algorithm that minimizes the usage of the expensive B2D connections, while maintaining an

acceptable quality of service for each device. We note that the scenario is different from traditional

peer-to-peer sharing in a wired network, wherein streaming with full chunk coordination using

tree construction is the norm. In our situation, each device is independently connected to a base-

station (perhaps using different service providers), and there is no coordination across base stations.

96

The broadcast D2D medium is shared across the devices, and interference across the devices is a

limiting factor.

The objectives of this work are three-fold. First, we would like to systematically design

provably-cost-optimal chunk exchange algorithms that would minimize the usage of expensive

B2D transmissions, while ensuring that quality constraints for live streaming can be met. Second,

we would like to conduct performance analysis of our schemes using simulations to understand

how different parameters affect the algorithms. Third, we desire to implement the developed algo-

rithms on Android smart phones in order to observe real-world behavior. In what follows, we will

describe these objectives in greater detail, and present our results in attaining each.

5.2 Related Work

The problem of exchanging random linear coded information while using the minimum number

of transmissions over a broadcast D2D network (starting from some initial condition) was studied

in [60, 61, 62]. There is also recent work on quick file transfer to a set of peer devices using a hybrid

network, while minimizing the amount of B2D usage [63]. All consider a reliable model for the

D2D links, and their common objective is to be able to decode a single block of information at the

end. Unlike these papers, our objective and QoS metric—minimum cost timely synchronization of

a live stream—is quite different.

There is a rich body of literature in the area of P2P multimedia streaming applications. Lava

[64] and UUSee [65] are among the systems built based on the idea of network coding. While all

the above models only consider unicast (wired) transmissions among peers, our D2D framework

is one of the few models in this context that allows having broadcast transmissions over the D2D

network.

Closest to our multimedia streaming model is [66] that investigates the problem of managing

multiple interfaces for cooperatively sharing content over a D2D network. Unlike our block-by-

block delay sensitive model for realtime streaming, they try to maximize a utility function of the

average information flow rate achieved by the peers, which is relevant to elastic traffic such as file

transfer or streaming of stored content.

97

5.3 Organization and Main Results

In Section 5.4, we present the live streaming model and the QoS metric. In our model, we

assume that time is slotted, and in each time slot there can be one unicast B2D transmission to

each device, and one broadcast D2D transmission over all devices. The probabilities of success

of each are different, and these are assumed to be known. There is no feedback in the system,

consistent with the idea of using UDP-based communications. Our frame timing structure allows

us to study the B2D and the D2D communications as two sub-problems, namely, (i) B2D stopping

time: how long should each device use its B2D channel for each block? and (ii) D2D broadcast

scheduling: which device should broadcast at each time?

We consider the problem of D2D scheduling in Section 5.5. Since the B2D communications

result in a random initialization of coded chunks with each peer device at the beginning of each

frame, our first objective is to find a set of necessary and sufficient conditions for achievability of

a given QoS. We then use ideas from queueing theory and the Foster-Lyapunov stability criterion

to find an optimal D2D scheme for sufficiently large field sizes over which we perform coding.

We next study the special case of fully reliable D2D broadcast in Section 5.6. The optimal D2D

scheduling algorithm in this case has a simple and intuitive form, which allows for easy implemen-

tation, as well as development of good heuristics.

Our next problem is to answer the question of how to determine the stopping time for B2D,

which we tackle in Section 5.7. This problem is hard to solve explicitly, given the form of the

necessary conditions for QoS achivability. However, it has to be solved only once for any particular

set of users, and we provide a general framework to find the optimal B2D usage times for any given

cost structure.

We assumed in the above sections that coding is performed using fields of sufficiently large

size as to ignore the performance degradation effects of receiving linearly dependent (and hence

useless) chunks. In Section 5.8, we show that the degradation decreases inversely proportional to

the field size, and is independent of other parameters like the number of devices or the number of

chunks in a block, which is a useful result as the system scales.

98

We validate the proposed algorithms through simulations in Section 5.9, comparing with some

intuitive heuristic algorithms. Finally, we discuss implementation ideas for music streaming in

Section 5.10. Our system is more like an emulation for B2D, as we did not yet have 3G service on

the phones, and hence initialized each device with coded chunks periodically. However, the D2D

part was achieved accurately through WiFi broadcast. Finally, we conclude in Section 5.11.

5.4 System Model

We have M co-located peer devices in our system, denoted by i ∈ {1, . . . ,M}, all interested

in synchronously receiving the same stream of data. The data source generates the stream in the

form of a sequence of blocks. Each block is further divided into N chunks for transmission. We

use random linear network coding over the chunks of each block, which implies that each coded

chunk (a degree of freedom) is now a random linear combination (with coefficients in finite field

Fq of size q) of the N original chunks in the corresponding block, and can be represented by a

vector in FN
q .

Time is divided into slots, and at each time slot τ , each device can receive up to one chunk

using its B2D interface, and one using its D2D interface. We assume that the two interfaces are

orthogonal. Also, both B2D unicasts and D2D broadcasts are made in a connectionless fashion

with no feedback. The probabilities of success when using each interface are different, and we can

use these probabilities to reflect the relative throughputs of the two interfaces.

Thus, each device has an expensive but unreliable B2D unicast channel to a base-station, whose

success probability depends on the loss probability over the Internet as well as the condition of the

B2D channel. For each device i, we model the chunk reception event for the B2D interface by a

Bernoulli random variable with parameter βi, independent of the other devices. Each device also

has a low-cost D2D broadcast interface, and only one device (denoted by u[τ] ∈ {1, . . . ,M}) can

broadcast over the D2D network at each time τ . Losses over the D2D channel could happen due

to collisions that occur as an overhead of distributed scheduling. Hence, we assume that a D2D

broadcast is either received by all devices with a probability equal to δ, or lost. It is straightforward

to extend our results and framework to a more general D2D model in which only a subset of

99

devices receive each broadcast chunk, but at the cost of greater algorithmic complexity. Wireless

devices could apply channel estimation techniques to determine their success probabilities βi and

δ, and we will develop algorithms assuming that these values are known. We will also study a

system (similar to the ones investigated in [60, 61, 62]) in which the D2D broadcast is assumed to

be completely reliable.

Since each D2D broadcast is either received by all devices or none, there is no need to rebroad-

cast any information received via D2D. Following this observation, it is straightforward to verify

that the order of D2D transmissions has no impact on the performance. Thus, we only need to

keep track of the number of chunks transmitted and received over the interfaces during a frame in

order to determine the state of the system. We denote the total number of coded chunks of block k

delivered to device i via the B2D network during frame k−2 using b
(k)
i . Also, t(k)i and r

(k)
i are used

to denote, respectively, the total number of transmitted and received chunks of block k by device i

via D2D during frame k − 1 (i.e., before frame k, which is the block k’s play out time). Note that

according to the model

∑
i t

(k)
i ≤ T, (5.1)

i.e., only one device can broadcast over the D2D network at each slot, and hence at most T trans-

missions can occur during frame k − 1.

Let n̂(k)
i denote the total number of coded chunks of block k possessed by device i at the

beginning of frame k,

n̂
(k)
i = b

(k)
i + r

(k)
i .

Hence, device i has a set of n̂(k)
i vectors of coefficients corresponding to the coded chunks that it

has received. We denote by n
(k)
i (called the kth rank of device i) the dimension of the subspace

spanned by these vectors. In order to decode the original N chunks of block k at the beginning

of frame k, device i must have n
(k)
i = N . Otherwise, i skips the block and will be idle during

100

this frame. Let Ri[k] ∈ {0, 1} denote the success or failure of the kth block w.r.t i, i.e., Ri[k] = 0

means device i is idle during frame k, and Ri[k] = 1 denotes the event of successful decoding of

block k. Clearly, Ri[k] = 0, if n(k)
i < N .

Each device i has a delivery ratio ηi ∈ (0, 1], which is the minimum acceptable long-run

average number of frames device i must playout. Hence, we require

ηi ≤ lim
K→∞

1

K

K∑
k=1

E[Ri[k]]. (5.2)

The objective of this chapter is to find a scheme to coordinate both interfaces that would satisfy the

delivery ratio requirement of all devices at the lowest cost of using B2D transmissions. Since the

B2D and D2D transmissions corresponding to a particular block k occur during the disjoint frames

k − 2 and k − 1, respectively, we will explore schemes that consist of two parts, namely:

1. B2D Stopping Time: We use a fixed number of transmissions on the B2D channel for each

block and for each device. Hence, for each block k, device i receives some random number

b
(k)
i of coded chunks via B2D at the beginning of frame k − 1. By assumption, the values

of b(k)
i are independent over devices. Also, since we fix the B2D usage in each frame, b(k)

i

are independent and identically distributed over blocks k for each device i. We need to

determine the minimum stopping time such that delivery requirements can be met.

2. D2D Scheduling Algorithm: Given the B2D stopping time, each device receives chunks at

the beginning of each frame in an i.i.d fashion according to an arrival process denoted by bi.

We must determine a scheduling algorithm that can achieve the delivery requirements if at

all it is possible to do so, given the D2D broadcast channel reliability.

In what follows, we will first solve the problem of D2D scheduling, and will then show how to

select the B2D stopping time. We will do so under different assumptions on channel reliability and

coding schemes.

101

5.5 D2D Scheduling Algorithm

Under the assumption of i.i.d B2D arrivals, we first need to determine whether the desired QoS

metric (η1, ..., ηM) is achievable for the given arrival process (b1, ...,bM). For large field sizes,

distinct randomly coded chunks are linearly independent with high probability. In what follows,

we assume that the field size q is large enough that we can ignore the effect of its finiteness on the

performance of the linear coding. We will consider the impact of finite field size on performance

in Section 5.8.

Definition 1. We say the QoS (η1, ..., ηM) is achievable, if there exists a feasible policy to coordi-

nate the D2D transmissions such that, on average each device i successfully receives ηi fraction of

the blocks before their deadlines.

Since the B2D arrivals are assumed to be i.i.d. over frames, the achievability of the QoS metric

can be evaluated based on the existence of a randomized stationary D2D policy as follows:1

Lemma 1. The QoS (η1, ..., ηM) is (strictly) achievable if and only if there exists a D2D policy P∗

such that,

for each block k, given the B2D arrivals b(k) = (b
(k)
1 , ..., b

(k)
M), P∗ chooses a feasible D2D schedule

t(k) = (t
(k)
1 , ..., t

(k)
M) (satisfying (5.1)) with probability P

(
t(k)|b(k)

)
, such that for each device i,

Eb

[∑
t(k)

E
[
Ri[k] | t(k), b(k)

]
P
(
t(k)|b(k)

)]
> ηi (5.3)

where Eb[.] is expectation with respect to the B2D arrival processes.

5.5.1 Optimal D2D Scheme

In order to keep track of quality of service, each device maintains a so-called deficit queue.

The length of this queue di[k], for device i at frame k, follows the dynamic below

di[k] = di[k − 1] + ηi −Ri[k]. (5.4)
1It is easy to verify this characterization of achievability, which is used in much recent work. For instance, a

detailed proof can be found in [67].

102

Recall that Ri[k] = 0 means device i is not successful in receiving the block k before its deadline,

and hence is idle in frame k. In this case, the deficit value of this device increases by an amount

equal to its delivery ratio ηi. Otherwise, Ri[k] = 1 and the deficit value decreases by 1−ηi. There-

fore, the deficit queue can be thought of as a counter that captures the accumulated “unhappiness”

of a device experienced thus far,

di[k] = kηi −
k∑

l=1

Ri[l].

The evolution of these deficit queues can be understood by using a Markov chain D, whose

state at each step k is ([d1[k]]+, ..., [dM [k]]+), where [a]+ = max{a, 0}. If our D2D algorithm is

such that D is stable (positive recurrent), then E[[di[k]]+] <∞ for all k, and we will have

lim
K→∞

1

K
E[di[k]] ≤ lim

K→∞

1

K
E[[di[k]]+] = 0.

Hence, ηi ≤ limK→∞
1
K

∑K
k=1 E[Ri[k]], which implies that the QoS requirement of device i is

satisfied. We next define a D2D scheme in Algorithm 2, whose optimality is shown in Theorem 2.

Algorithm 2 Optimal D2D scheme (unreliable broadcast)

At the beginning of each frame k − 1: Given the B2D arrivals (b
(k)
1 , ..., b

(k)
M) and the deficit

values ([d1[k−1]]+, ..., [dM [k−1]]+) = (d1, ..., dM), solve the following maximization problem
to find the optimal number of transmissions (t(k))∗ = ((t(k))∗1, ..., (t

(k))∗M):

max
∑

i diP(
∑

j ̸=i min(t̂
(k)
j , b

(k)
j) ≥ N − b

(k)
i)

s.t.
t̂
(k)
j = Bin(δ, t

(k)
j), ∀j∑

j t
(k)
j ≤ T

(5.5)

Devices take turns (in any arbitrary order) to broadcast over the D2D network: Device i

first broadcasts min(b
(k)
i , (t(k))∗i) of its initial coded chunks received from the B2D network. For

the remaining max((t(k))∗i − b
(k)
i , 0) transmissions, device i randomly combines the initial b(k)i

B2D chunks.

103

Theorem 2. The D2D scheme in Algorithm 2 is throughput optimal, i.e., it can satisfy all achiev-

able QoS metrics (η1, ..., ηM).

Proof. In this proof, we will use the Lyapunov criterion [68] to show the stability of Markov chain

D. Consider the candidate Lyapunov function V [k] = 1
2

∑
i([di[k]]

+)2. We will show that for any

achievable QoS, the proposed D2D algorithm results in an expected drift ∆V [k] =

E [V [k]− V [k − 1] | state of the system at frame k − 1] ,

which is negative except in a finite subset of the state space. Hence, the Lyapunov Theorem implies

that the Markov chain D is stable. Now, we present the details of the proof.

∆V [k] = E
[
V [k]− V [k − 1]

∣∣∣[di[k − 1]]+ = di : ∀i
]

= 1
2
E
[∑

i

(
[di[k − 1] + ηi −Ri[k]]

+)2∣∣∣[di[k − 1]]+
]

−1
2

∑
i

(di)
2

(a)

≤ 1
2
E
[∑

i

(di + ηi −Ri[k])
2 − (di)

2

]
= E

[∑
i

di (ηi −Ri[k])

]
+ 1

2
E
[∑

i

(ηi −Ri[k])
2

]
(b)

≤ M/2 +
∑
i

diηi − E
[∑

i

diRi[k]

]
,

where (a) follows from ([X + Y]+)2 ≤ ([X]+ + Y)2, and (b) holds since (ηi −Ri[k])
2 ≤

max((ηi)
2 , (1− ηi)

2) ≤ 1.

In order to get a negative drift (except in a finite subset), we minimize the above upperbound.

Hence, at the beginning of each frame k − 1, for given deficit values ([d1[k − 1]]+, ..., [dM [k −

1]]+) = (d1, ..., dM) and any realization of the B2D arrivals (b(k)1 , ..., b
(k)
M), we solve the following

maxt(k)
∑

i diE
[
Ri[k] | t(k), b(k)

]
, (5.6)

to find the optimal schedule (t(k))∗. Note that policy P∗ (in Lemma 1) randomly chooses a feasible

104

t(k) according to some distribution P
(
t(k)|b(k)

)
, hence one can easily verify that

∑
i diE

[
Ri[k] | (t(k))∗, b(k)

]
≥∑

t(k)

∑
i diE

[
Ri[k] | t(k), b(k)

]
P
(
t(k)|b(k)

)
.

(5.7)

Taking expectation on both sides of the above inequality with respect to the arrival processes results

in

∑
i diE

[
Ri[k] | (t(k))∗

]
≥
∑

i diE
[∑

t(k)

[
Ri[k] | t(k), b(k)

]
P
(
t(k)|b(k)

)]
(c)
>
∑

i diηi ≥
∑

i di(ηi + ϵ)

(5.8)

for some small enough ϵ > 0, where (c) follows from (5.3). By considering (5.8) in inequality (b),

we conclude that using schedule (t(k))∗ will result in

∆V [k] ≤ M

2
− ϵ
∑
i

di,

which is negative for large enough di values, and hence can stabilize the deficit queues.

We have just shown that we can satisfy any achievable QoS metric by using the schedule

obtained by solving (5.6) for each frame. In what follows, we will show (5.6) is equivalent to the

optimization problem (5.5) that appears in Algorithm 2.

Recall that Ri[k] = 1{n(k)
i =N}, where the indicator variable 1{A} is equal to 1 if A is true, and 0

otherwise. Hence, E [Ri[k]] = P
(
n
(k)
i = N

)
. Suppose device j broadcasts t(k)j chunks generated

from random linear combinations of its initial b(k)j chunks. Since each transmission is successful

with probability δ, the number of successful transmissions by device j is distributed as a Binomial

random variable t̂
(k)
j = Bin(δ, t

(k)
j) with parameters δ and t

(k)
j .

Now, we have assumed that the random linear coding is performed over a field of sufficiently

large size q such that N distinct randomly coded chunks are linearly independent. Consequently,

each successful transmission increases the rank of the receiving devices by one. Thus, the trans-

105

missions by device j introduces min(t̂
(k)
j , b

(k)
j) new degrees of freedom (DoF) at the other devices.

Also, device i is full-rank (i.e., n(k)
i = N) if and only if it has received at least N − b

(k)
i new DoFs

from other devices, that is b(k)i +
∑

j ̸=i min(t̂
(k)
j , b

(k)
j) ≥ N . Therefore, we have

E [Ri[k]] = P
(
n
(k)
i = N

)
= P

(
b
(k)
i +

∑
j ̸=i min(t̂

(k)
j , b

(k)
j) ≥ N

)
.

(5.9)

Substituting (5.9) in (5.6) results in the optimization (5.5).

We have just shown the throughput optimality of Algorithm 2 for the unreliable D2D case.

However, we note that in practice we need a central entity with significant computational capa-

bilities to implement this optimal algorithm, since it takes a combinatorial form. In the following

section, we will consider the special case when D2D broadcast is completely reliable. We will

show that the optimal algorithm under this case possesses an intuitively appealing form that lends

itself to easy implementation. We also will develop a heuristic modification of this algorithm when

the D2D broadcast is not reliable, which does not have the complexity of the optimal algorithm.

5.6 D2D Algorithm Under Reliable Broadcast

In this section, we assume that D2D broadcasts are always successfully received by all intended

recipients. Of course, the constraint that only one device can broadcast at a time still applies.

As before, we first model the B2D arrivals as i.i.d. random variables bi for each device i, and

focus on scheduling the D2D transmissions. Since broadcasts are deterministically successful,∑
j ̸=i t

(k)
j = r

(k)
i . In other words, the total number of D2D chunks received by device i is equal

to the number of transmissions performed by all other devices. Also, each device i can transmit

at most b(k)i times during frame k − 1, since any further transmissions by i will not add to other

devices’ information, i.e.,

t
(k)
i ≤ b

(k)
i . (5.10)

106

Consequently, it is easy to see that n(k)
i = min{N, n̂

(k)
i } holds for large field size q, i.e., device i

will obtain full-rank if it receives at least a total of N coded chunks from B2D and D2D interfaces.

Further, since the chunks received from the B2D interfaces are initially randomly coded, com-

bining them further with random coefficients cannot improve performance. Hence, at time τ, the

device chosen to transmit, u[τ], can simply broadcast any of the chunks received via its B2D in-

terface, which it has not transmitted yet. We are primarily interested in the case where N > T ,

because otherwise there are enough number of time slots in each frame for devices to broadcast all

N degrees of freedom and hence the optimal D2D scheme becomes trivial.

5.6.1 Achievability of QoS Metric

In Section 5.5, Lemma 1 implicitly characterizes the achievability conditions of a given QoS

requirement (η1, ..., ηM), and can be applied for the reliable D2D case as well. However, we will

see below that the QoS achievability condition can be determined explicitly based on a set of

necessary and sufficient conditions for this case.

Devices have T slots in each frame to exchange the received B2D chunks. Hence, each device

i can potentially recover block k, only if (i) it has received enough B2D chunks initially (i.e, b(k)i ≥

N − T) and (ii) the whole system is full-rank at the beginning of the frame (i.e,
∑

j b
(k)
j ≥ N).

Therefore, for each device i we have,

Ri[k] ≤ 1{b(k)i ≥N−T,
∑

j b
(k)
j ≥N}. (5.11)

Since (b
(k)
1 , ..., b

(k)
M) is assumed to be identically and independently distributed across frames ac-

cording to (b1, ...,bM), from (5.2) we get the following necessary condition on the achievability

of ηi :

ηi ≤ P

(
bi ≥ N − T,

∑
j

bj ≥ N

)
. (5.12)

Let Ns(b
(k)
1 , ..., b

(k)
M) =

∑
i Ri[k] be the number of devices that successfully receive the whole

107

block k, given the B2D arrivals (b(k)1 , ..., b
(k)
M). The following lemma provides an upper bound on

Ns(b
(k)
1 , ..., b

(k)
M).

Lemma 3. Given the B2D arrivals (b(k)1 , ..., b
(k)
M), we have

Ns(b
(k)
1 , ..., b

(k)
M)

≤ N∗
s (b

(k)
1 , ..., b

(k)
M)

≡
min

(
|S|(N−T),

[∑
i b

(k)
i −T

]+)
N−T

,

(5.13)

where S = {i ∈ {1, ...,M} : N − b
(k)
i ≤ T, b

(k)
i +

∑
j ̸=i b

(k)
j ≥ N}.

Proof. Since n
(k)
i ≤ n̂

(k)
i , we have

Ri[k] = 1{n(k)
i ≥N} ≤ 1{n̂(k)

i ≥N} = 1{b(k)i −t
(k)
i +

∑
j t

(k)
j ≥N}.

Therefore, we can solve the following maximization problem in order to find an upper bound on

Ns(b
(k)
1 , ..., b

(k)
M),

max
∑

i 1{b(k)i −t
(k)
i +

∑
j t

(k)
j ≥N}

s.t. t
(k)
i ≤ b

(k)
i ∀i∑

j t
(k)
j ≤ T

(5.14)

The first constraint implies
∑

j t
(k)
j ≤

∑
j b

(k)
j . Hence, to achieve the maximum objective we let∑

j t
(k)
j = min(

∑
j b

(k)
j , T).

We partition the set of devices {1, ...,M} into sets S and Sc = {1, ...,M}\S. Here, Sc is the

set of devices which, either individually or collectively, have not received enough number of B2D

arrivals to possibly recover the block, and Ri[k] = 0 for i ∈ Sc.

Suppose
∑

j b
(k)
j < N. Then we have Ns(b

(k)
1 , ..., b

(k)
M) = |S| = 0. Otherwise

∑
j b

(k)
j ≥ N,

108

and with our assumption that T < N , the optimization in (5.14) can be rewritten as

max
∑

i∈S 1{b(k)i −t
(k)
i ≥N−T}

s.t. t
(k)
i ≤ b

(k)
i ∀i∑

j t
(k)
j = min(

∑
j b

(k)
j , T) = T.

(5.15)

The maximum value above can be shown to be

min

(
|S|(N − T),

[∑
i b

(k)
i − T

]+)
N − T

 .

Consequently, we obtain

Ns(b
(k)
1 , ..., b

(k)
M) ≤

min

(
|S|(N − T),

[∑
i b

(k)
i − T

]+)
N − T

.

Now, from Lemma 3 and (5.2), since (b(k)1 , ..., b
(k)
M) is i.i.d over frames, the following necessary

condition on
∑

i ηi can be obtained:

∑
i

ηi ≤ E [⌊N∗
s (b1, ...,bM)⌋] . (5.16)

The following theorem summarizes our results.

Theorem 4. The QoS metric (η1, ..., ηM) is achievable with respect to i.i.d B2D arrivals (b1, ...,bM)

if and only if the following conditions are satisfied

(C1) ∀i : ηi ≤ P
(
bi ≥ N − T,

∑
j bj ≥ N

)
(C2)

∑
i ηi ≤ E [⌊N∗

s (b1, ...,bM)⌋] .
(5.17)

Further, we can show that for the symmetric case where ηi = η, and bi are identically distributed

109

for all devices i, the necessary and sufficient condition reduces to

(C2′) η ≤ 1
M
E [⌊N∗

s (b1, ...,bM)⌋] . (5.18)

Proof. The necessity part was shown in (5.12) and (5.16). To prove the sufficiency of these con-

ditions, we will propose an algorithm in the next subsection which can fulfill any QoS constraints

satisfying (C1) and (C2). The proof of (C2’) is not hard, and is omitted here due to space con-

straints.

5.6.2 Optimal Reliable D2D Scheme

In this subsection, we propose a simple algorithm that can achieve any QoS metric satisfying

the conditions in (5.17). As a result, (C1) and (C2) are sufficient conditions on achievability of a

QoS metric (Theorem 4). Also, the proposed algorithm is throughput optimal.

We follow the same approach as in Section 5.5 to study the D2D system using deficit queues

di[k]. Algorithm 3 describes an optimal D2D scheme that can stabilize these deficit queues for any

achievable QoS metrics.

Algorithm 3 Optimal D2D scheme (reliable broadcast)

At the beginning of each frame k − 1, given the arrivals (b(k)1 , ..., b
(k)
M):

Partition the devices into sets S = {i ∈ {1, ...,M} : N − b
(k)
i ≤ T, b

(k)
i +

∑
j ̸=i b

(k)
j ≥ N} and

Sc.
If S = ∅, nobody can get full-rank. Otherwise,
Phase 1) Let all the devices in Sc transmit all they have initially received for the next T1 =

min{
∑
i∈Sc

b
(k)
i , T} slots.

If there exist time and a need for more transmissions,
Phase 2) Let each device i ∈ S transmit up to b

(k)
i + T −N of its initial chunks.

Phase 3) While there exist time and a need for more transmissions, let devices in S transmit
their remaining chunks in an increasing order of their deficit values.

110

Theorem 5. The D2D scheme in Algorithm 3 is throughput optimal when the D2D transmissions

are reliable.

Proof. As in the proof of Theorem 2, we use the Lyapunov criterion. Equivalent to the optimization

in (5.6), we need to solve the following

max
∑

i diRi[k] =
∑

i di1{b(k)i +
∑

j ̸=i t
(k)
j ≥N}

s.t. t
(k)
i ≤ b

(k)
i ∀i∑

i t
(k)
i ≤ T.

(5.19)

The optimization in (5.19) is similar to the one in (5.14). Hence, we can apply a similar

argument and verify that the following optimization problem is equivalent to (5.19),

max
∑

i dizi

s.t. zi ≤ 1{b(k)i ≥N−T,
∑

j b
(k)
j ≥N} ∀i∑

i zi ≤ N∗
s (b

(k)
1 , ..., b

(k)
M),

(5.20)

where N∗
s (b

(k)
1 , ..., b

(k)
M) is defined in (5.13).

Using the solution to the above maximization in the drift formula ∆V [k] will result in

∆V [k] ≤M/2 +
∑

i diηi − E [max
∑

i dizi]

≤M/2 +
∑

i diηi −max
∑

i diE [zi].
(5.21)

From (5.20), we notice that E [zi] must satisfy

E[zi] ≤ P
(
b
(k)
i ≥ N − T,

∑
j b

(k)
j ≥ N

)
∑

i E[zi] ≤ E
[
N∗

s (b
(k)
1 , ..., b

(k)
M)
]
.

(5.22)

In Subsection 5.6.1, we have shown that an achievable QoS metric (η1, ..., ηM) needs to satisfy

the above conditions. This suggests that for a strictly achievable QoS metric (η1, ..., ηM), for which

111

these conditions hold with strict inequalities, there exists some ϵ > 0 such that

max
∑
i

diE [zi] ≥
∑
i

diηi(1 + ϵ). (5.23)

Consequently, the drift in (5.21) reduces to

∆V [k] ≤M/2− ϵ
∑

i diηi. (5.24)

Thus, for large enough deficit values di, the drift is negative. This means the D2D scheme im-

plied by solving (5.19) at each frame can satisfy any achievable QoS metric, and hence is optimal.

Furthermore, it proves the sufficiency of the conditions in Theorem 4 on the achievability of a QoS

metric.

The argument showing that the D2D scheme in Algorithm 3 actually solves the optimization

problem in (5.19) is straightforward, and follows from dividing devices into those that cannot com-

plete (and so might as well transmit all that they have), then considering those that can complete

(and hence can transmit a limited number of chunks), and finally considering those with the largest

deficit (and so should stop transmitting after phase two).

5.6.3 Simple Suboptimal Scheme for Unreliable D2D Network

The optimal D2D scheme, presented in Section 5.5 for the unreliable D2D system is hard to

implement in practice due to high complexity. Further, this algorithm requires estimates on the

channel quality. Here, we propose a modified version of Algorithm 3, which inherits its simple

3-phase form and tries to account for the unreliability of the broadcast network by letting devices

retransmit a number of times.

We incorporate the following modifications in Algorithm 3:

1. In the second phase, we choose devices in an increasing order of their deficit values to

transmit upto the same threshold that Algorithm 3 suggests.

2. Each device chosen to transmit by Algorithm 3 holds onto the channel for ρ time slots. For

112

each transmission, it generates a new chunk as a random combination of its initial B2D

chunks.

The parameter ρ can be chosen in accordance with the quality of broadcast channel. The heuristic

algorithm attempts to improve the performance of Algorithm 3 when loss rates are not too high by

accounting for deficits during Phase 2, as well as improving reliability by retransmissions. We will

investigate the performance of this algorithm in Section 5.9.

5.7 Selection of B2D Stopping Time

In this section, we would like to determine the number of time slots that the B2D interface

should be used by each device over each frame. We consider this as an offline stopping time

problem, and will show how to calculate this value. Thus, we want to find 0 ≤ TB(i) ≤ T, which

is the number of times in each frame that device i attempts to receive a coded chunk from the server

using the B2D interface.

The B2D usage times should be such that the QoS target can be met with the lowest total cost

C(TB(1), ..., TB(M)), where C(.) is a general cost function. Note that the function could be linear

(
∑

i TB(i)), if usage-based costs are considered. Furthermore, it makes intuitive sense that devices

that desire a higher QoS ηi, should contribute more to the system so as to maintain a level of

fairness. This requirement can also be captured in the cost function, by simply choosing weights

for each device that are dependent on its desired QoS value.

Recall that the B2D interface of each device i is assumed to be Bernoulli with success proba-

bility βi. This means that the B2D arrivals b(k)i to each device i are independently and identically

distributed over frames k as a Binomial random variable Bin(βi, TB(i)) with parameters βi and

TB(i):

P(b(k)i = a) = 1{0≤a≤TB(i)}

(
TB(i)

a

)
βa
i (1− βi)

TB(i)−a.

For the fully reliable D2D scenario, we can determine the achievability of a QoS require-

ment based on conditions (C1) and (C2) in Theorem 4. In order to achieve a given QoS metric

(η1, ..., ηM), TB(i) values must be large enough such that these conditions are satisfied. Hence, the

113

optimal values of T ∗
B(i) can be obtained by solving the following problem:

minC(TB(1), ..., TB(M))

s.t.

0 ≤ TB(i) ≤ T for all i

bi = Bin(βi, TB(i)) for all i

(C1) and (C2) in (5.17) are satisfied.

(5.25)

Note that the minimization problem in (5.25) does not have a simple form that can be solved

efficiently. However, since the region for feasible TB(i) values is finite (i.e., {0, 1, ..., T}M), and

the values need to be determined only once for the given set of system parameters, we could

conduct an exhaustive search to find the optimal T ∗
B(i) values. We can also improve the search

algorithm by applying more efficient search methods like branch-and-bound.

In the case of the unreliable D2D channel, there is only an implicit achievability condition as

given by Lemma 1. We therefore cannot analytically solve for the optimal B2D usage times. Since

TB(i) values are to be calculated in an offline manner, we can run stochastic simulations of the

optimal D2D scheme presented in Algorithm 1 in order to find the optimal values numerically. We

present results of this nature in Table 5.1.

5.8 Finite Field Case

So far we assumed that the field size q is large enough that all randomly coded chunks are lin-

early independent almost surely. Under this assumption, it was sufficient for each device to receive

N distinct coded chunks in order to recover the original block. In this section, we turn our attention

to the case where field size q <∞, and there is a non-zero probability that randomly coded chunks

are linearly dependent. More specifically, we are interested in evaluating the performance of our

proposed B2D and D2D schemes in the case of finite field sizes. We require the following useful

Lemma, whose proof is omitted for brevity.

Lemma 6. A matrix of dimension R×N , whose elements are drawn uniformly at random from a

114

finite field Fq, is full-rank with probability at least 1− 1
q|N−R|(q−1)

, where q is the field size.

We now have the following result.

Theorem 7. Suppose that the coefficients for coding the chunks are drawn uniformly at random

from a field of size q ≥ 2. If we apply Algorithm 2 (or Algorithm 3 for the reliable D2D case) to

coordinate the D2D broadcasts and choose the B2D usage times as discussed in Section 5.7, then

for each device i we have

lim
K→∞

1

K

K∑
k=1

E[Ri[k]] ≥ ηi −
1

q − 1
. (5.26)

Proof. We define R̂i[k] = 1{b(k)i +
∑

j ̸=i min(t̂
(k)
j ,b

(k)
j)≥N}. For the case of infinite field size, we had

n
(k)
i = min

(
N, b

(k)
i +

∑
j ̸=i min(t̂

(k)
j , b

(k)
j)
)

and R̂i[k] = Ri[k].

In the proof of throughput optimality of Algorithms 2 and 3, we showed that

lim
K→∞

1

K

K∑
k=1

E[R̂i[k]] ≥ ηi (5.27)

holds true, when we employ the proposed D2D schemes. For Ri[k], we have

E[Ri[k]] = E[Ri[k]|R̂i[k] = 1]P(R̂i[k] = 1)

+E[Ri[k]|R̂i[k] = 0]P(R̂i[k] = 0)

(a)
= E[Ri[k]|R̂i[k] = 1]P(R̂i[k] = 1)

= E[Ri[k]|R̂i[k] = 1](1− 1 + E[R̂i[k]])
(b)

≥ E[Ri[k]|R̂i[k] = 1] + E[R̂i[k]]− 1
(c)

≥ E[R̂i[k]]− 1
q−1

,

(5.28)

where (a) holds because if R̂i[k] = 0, then i did not receive enough distinct coded chunks and

cannot get full-rank (i.e., Ri[k] = 0). (b) follows from −1 + E[R̂i[k]] ≤ 0 and E[Ri[k]|R̂i[k] =

1] ≤ 1, and (c) holds by Lemma 6, since E[Ri[k]|R̂i[k] = 1] is equal to the probability that i who

has received at least N distinct randomly coded chunks is full-rank. We then sum both sides of

(5.28) from k = 1 to K, divide the result by K, and let K →∞. Then the desired bound in (5.26)

115

follows from (5.27).

Note that the effect of finiteness of the field size is limited by the value 1
q−1

, for example for

field size q = 32, there is only around 3% reduction in the quality of service. In the simulation

results presented in Figure 5.3, we see the actual reduction in the QoS is even less than this value.

Note that the achieved delivery ratio is sometimes higher than desired since TB is chosen as the

smallest integer value that can support η.

0.94	

0.76	

0.59	

0.92	

0.74	

0.57	

0.84	

0.66	

0.50	

0.4	

0.5	

0.6	

0.7	

0.8	

0.9	

1	
Achieved	 QoS	 (average	 delivery	 ra;o)	

infinte	 field	 size	 q	 lower	 bound	 for	 q=32	 (-‐3%)	
q=32	 lower	 bound	 for	 q=8	 (-‐14%)	
q=8	

(η,ΤΒ)=(0.9,10) (η,ΤΒ)=(0.75,9) (η,ΤΒ)=(0.55,8)

Figure 5.3: Achievable delivery ratios with finite field sizes (N = 20, T = 15, M = 4, βi = 0.9 in
a reliable D2D network).

5.9 Simulation Results

We now study the performance of our different algorithms through Matlab simulations. We

chose the chunks per block N = 20, frame length T = 15, B2D success probability βi = 0.9 for

all i, and varied the other parameters. The results are listed below.

B2D Stopping Time: In Section 5.7, we saw that the B2D stopping time problem needs a

numerical solution. We present the optimal stopping time T ∗
B for a system with M devices with

QoS requirement η, probability of success of the D2D channel δ, and a linear cost criterion in

116

Table 5.1. We use values from this table as the optimal B2D stopping times T ∗
B in the other

simulations presented in this section.

Table 5.1: Optimal B2D stopping time T ∗
B

η
δ

1 0.95 0.9 0.85 0.8

M = 4
0.8 9 11 12 13 14
0.9 10 12 13 14 15

M = 5
0.8 8 10 11 12 13
0.9 9 11 12 13 14

Heuristic algorithm for unreliable D2D: In Section 5.6.3, we proposed a simple heuristic

scheme based on the optimal algorithm derived for the reliable D2D case. Table 5.2 depicts the

achieved QoS by this algorithm for number of per-chunk transmissions ρ = 2, in a network of

M = 4 devices and a target QoS of η = 0.8. We observe that if we set TB = T ∗
B, the degradation

Table 5.2: QoS achieved by the heuristic algorithm for TB ≥ T ∗
B

δ
TB 11 12 13 14 15

0.8 73.88% 74.78%
0.85 72.54% 74.45% 74.93%
0.9 68.92% 73.54% 74.77% 74.96%
0.95 61.79% 70.78% 74.11% 74.85% 74.97%

in the QoS when using the heuristic algorithm is around 7% − 22% for different values of δ. We

can improve the achieved QoS by increasing the B2D usage time, e.g., the degradation reduces to

6% − 11% if we let TB = T ∗
B + 1. The results suggest that the simple heuristic algorithm can be

used successfully if the D2D channel quality is reasonably good, or if the frame length T is long

enough to permit retransmissions.

117

Other intuitive D2D schemes: In Figure 5.4, we compare the optimal scheme, Algorithm 3,

with other algorithms in the case of reliable D2D: (i) Round Robin: each device broadcasts in turn,

(ii) Min-Deficit-First: the device with smallest deficit broadcasts, and (iii) Max-Rank-First: the

device with highest current rank broadcasts. We see that the optimal algorithm outperforms the

others by combining the best of each.

0.94	

0.78	

0.53	

0.91	 0.92	

0.78	

0.53	

0.90	
0.84	

0.72	

0.52	

0.83	

0.5	

0.55	

0.6	

0.65	

0.7	

0.75	

0.8	

0.85	

0.9	

0.95	

1	

Op.mal	 D2D	
Scheme	

Round	 Robin	 Min-‐Deficit-‐First	 Max-‐Rank-‐First	

Achieved	 QoS	 (average	 delivery	 ra.o)	

Infinite	 field	 size	 Field	 size	 q=32	 Field	 size	 q=8	

Figure 5.4: Comparison of Algorithm 3 with others for M = 4 and η = 0.9.

Playout smoothness: Since our QoS metric is in terms of the average delivery ratio, we do

not know if a device loses a few chunks with a small periodicity, or a large number of chunks with

a large periodicity, or indeed if it is periodic at all. The first case is preferred, since by using an

outer code over the blocks, the device will be able to recover the dropped blocks to some extent.

We define a smooth play out interval as the time between two consecutive block drops. Figure 5.5

demonstrates the distribution of these smooth play out intervals. We observe that the actual QoS

implied by our algorithm is acceptable, since the smooth play out interval has a small variance

(i.e., almost periodic reception) and a small average (no loss of big portions).

5.10 Android Experiments

We now describe experiments on an Android testbed consisting of HTC Evo smart phones. A

full scale system with peer discovery, multimedia coding and so on is beyond the scope of this

118

Figure 5.5: Distribution of smooth play out times (η = 0.9).

chapter, and our objective is primarily to observe real-world performance of the D2D algorithms.

As discussed earlier, we emulate B2D transmissions by initializing each device periodically with

chunks representing their B2D arrivals to test the D2D algorithms. Since Android does not support

ad-hoc UDP broadcast (D2D) over 802.11 (WiFi), we rooted the phones to enable this service. To

allow experiments with more (unrooted) phones, we also used the approximation of UDP broadcast

via a WiFi access point (AP). Here, the phone unicasts to the AP, which broadcasts to the rest.

As in the analytical model, we divide the file into blocks, with the blocks being further divided

into chunks. We chose the chunk size as 1450 Bytes to roughly correspond to the usual packet

size in 802.11. Chunks are generated using an open source random linear coding library [69] with

field size 256, and the degrees of freedom per block is 10, i.e., a block is decodable with high

probability if 10 chunks are received successfully across both interfaces. Each chunk has a header

that contains the block number that it corresponds to, as well as the device’s current deficit.

While the analytical model assumes slotted time, we do not have fine grain control of when

exactly transmissions will take place in 802.11. Instead, we transmit a pilot chunk (whose header

119

simply contains frame number) periodically to indicate the beginning of a new frame, but do not

have distinct time slots within the frame. Recall that our D2D scheduling in Algorithm 3 proceeds

in three phases. We approximate these phases by backing off by different amounts of time, based

on the estimate of which phase that device is in before sending the chunk to the UDP socket. Note

that after doing this, 802.11 itself follows a back off procedure to avoid collisions.

Now, the three backoff times are chosen as follows. Devices that cannot complete (i.e., Phase

1 devices) should be the most aggressive in D2D channel access and transmit all their chunks. We

therefore set them to randomly backoff between 1 and 5 ms before transmission. Devices that can

afford to transmit some number of chunks should be less aggressive, and transmit chunks upto the

limit as given by Phase 2 of Algorithm 3 by backing off between 1 and 15 ms. Finally, once each

device completes Phase 2, it enters Phase 3, and modulates its aggressiveness based on deficits in

the system. Each device normalizes its deficit based on the values of deficits that it sees from all

other transmissions, and backs off proportional to this deficit within the interval of 10 to 20 ms.

To allow for all the backoffs and the transmission of 10 or more D2D chunks, we set the frame

duration as 450 ms.

Devices ensure that they are all synchronized to each other by observing the frame ID present

in the header of each chunk. If a device is not able to recover a block by the time a new frame pilot

chunk or a chunk bearing a new frame ID is received, it reports that block as lost and updates its

deficit.

We conducted experiments involving 3 to 5 phones, using a standard MP3 audio file as the

source, since playout is easily accomplished using the built in player on Android. An example

trajectory of the (smoothed) deficit queue for a run with 3 phones, with each phone being initialized

with 4 chunks in each frame, and desired delivery ratio 0.95 is shown in Figure 5.6. The deficit

queue exhibits periodic decrease, and clearly does not increase to infinity, showing stabilization.

We also conducted experiments to determine the stable delivery ratio achieved using D2D for

different B2D initializations per frame. We present these results for 5 phones (labeled Ph 1 − 5),

with delivery ratio indicated out of 100% in Table 5.3. It is clear we can have significant savings in

120

0 100 200 300 400 500 600 700 800 900
0

5

10

15

20

25

30

35

Frames

E
xp

on
en

tia
lly

 W
ei

gh
te

d
A

ve
ra

ge
 D

ef
ic

it

Figure 5.6: Sample trajectory of deficit.

B2D usage. For instance, with a target delivery ratio of 94%, we save about 60% of the B2D costs

for each phone.

Table 5.3: Delivery ratios achieved with different initializations.

B2D Ph 1 Ph 2 Ph 3 Ph 4 Ph 5 Avg
2 56.38 38.44 56.37 41.7 43.1 47.198
3 86.9 70.85 81.8 75.3 83.6 79.69
4 85.75 94.6 94.3 98.31 98.45 94.282
5 98.34 98.03 97.3 99.48 100 98.63

5.11 Conclusion

We studied the problem of realtime streaming applications for wireless devices that can receive

coded data chunks via both expensive long-range unicast and an inexpensive short-range broadcast

wireless interfaces. QoS was defined in terms of the fraction of blocks recovered successfully on

average.

121

We utilized a Lyapunov stability argument to propose a minimum cost D2D transmission al-

gorithm that can attain the required QoS, in the case of unreliable and reliable D2D transmissions.

We also showed how to calculate the minimum cost B2D usage per device. We showed how the

infinite field size assumption under which the algorithms are derived does not have a significant

impact on scaling and performance, and then showed how performance changes with parameters

using simulations. Finally, we described our design decisions for an Android implementation.

Future work includes a full scale implementation, as well as multihop D2D transmission.

122

6. CONCLUSION

The goal of this dissertation was to exploit the increasingly prevalent paradigm of software

reconfigurable infrastructure with the objective of optimizing application performance under the

resource constraints of the wireless edge. We studied several problems in the space of cross layer

optimization, and demonstrated that a holistic approach, which accounts for the interactions be-

tween a configuration and the effect it has on the application performance, is able to achieve both

Quality of Service (QoS) and Quality of Experience (QoE) guarantees that a narrow focus on

individual components of the system is incapable of achieving.

We first studied reconfigurability in the context of (priority) queueing with High Definition

video streaming application as our use case. We developed Reinforcement Learning control poli-

cies which are able to prioritize the desired clients in a bandwidth restrained scenario, and hence

exceed the performance exhibited by the state of the art policies. We next designed an open-market

based approach which promotes truthful declaration of value by the clients. Such an approach not

only enables applications to obtain the necessary resources for optimal performance, but also is vi-

tal for the correct determination of control policies using the learning approach. We also explored

a custom hardware platform to achieve finer grained reconfiguration capabilities such as per-packet

scheduling. Our processor supported implementation enables flexible scheduling policies on soft-

ware and high hardware function re-usability, while meeting ultra-low latency latency requirements

of modern applications like Virtual Reality. Finally, we also demostrated a distributed approach

for satisfying application performance requirements by leveraging end user devices interested in

a shared objective. Such an approach empowered us to achieve the performance guarantees with

minimal use of centralized infrastructure.

We believe that the application of such software-defined, adaptive resource allocation will be

in upcoming small cell wireless architectures such as 5G, and our goal will be to extend our ideas

to such settings.

123

REFERENCES

[1] L. Tassiulas and A.Ephermides, “Stability properties of constrained queueing systems and

scheduling policies for maximum throughput in multihop radio networks,” IEEE Trans. Au-

tomat. Contr., vol. 37, no. 12, pp. 1936–1948, 1992.

[2] A. Eryilmaz, R. Srikant, and J. Perkins, “Stable scheduling policies for fading wireless chan-

nels,” IEEE/ACM Trans. Network., vol. 13, pp. 411–424, April 2005.

[3] I. Hou, V. Borkar, and P. Kumar, “A theory of QoS for wireless,” in IEEE INFOCOM 2009,

(Rio de Janeiro, Brazil), April 2009.

[4] S. Yau, P.-C. Hsieh, R. Bhattacharyya, K. Bhargav, S. Shakkottai, I. Hou, and P. Kumar,

“Puls: Processor-supported ultra-low latency scheduling,” in Proceedings of the Eighteenth

ACM International Symposium on Mobile Ad Hoc Networking and Computing, pp. 261–270,

ACM, 2018.

[5] Ericsson, “Ericsson Mobility Report: On the Pulse of the Networked Soci-

ety.” https://www.ericsson.com/assets/local/mobility-report/

documents/2015/ericsson-mobility-report-june-2015.pdf, 2015.

[6] R. Singh and P. Kumar, “Optimizing quality of experience of dynamic video streaming over

fading wireless networks,” in Decision and Control (CDC), 2015 IEEE 54th Annual Confer-

ence on, pp. 7195–7200, IEEE, 2015.

[7] P. Shome, M. Yan, S. M. Najafabad, N. Mastronarde, and A. Sprintson, “Crossflow: A cross-

layer architecture for SDR using SDN principles,” in Proceedings of IEEE NFV-SDN, 2015.

[8] P. Shome, J. Modares, N. Mastronarde, and A. Sprintson, “Enabling dynamic reconfigurabil-

ity of SDRs using SDN principles,” in Proceedings of Ad Hoc Networks, 2017.

[9] M. Yan, J. Casey, P. Shome, A. Sprintson, and A. Sutton, “Ætherflow: Principled wireless

support in SDN,” in Proceedings of IEEE ICNP, 2015.

124

https://www.ericsson.com/assets/local/mobility-report/documents/2015/ericsson-mobility-report-june-2015.pdf
https://www.ericsson.com/assets/local/mobility-report/documents/2015/ericsson-mobility-report-june-2015.pdf

[10] J. Schulz-Zander, N. Sarrar, and S. Schmid, “AeroFlux: A near-sighted controller architecture

for software-defined wireless networks,” in Proceedings of USENIX ONS, 2014.

[11] J. Schulz-Zander, C. Mayer, B. Ciobotaru, S. Schmid, and A. Feldmann, “OpenSDWN: Pro-

grammatic control over home and enterprise WiFi,” in Proceedings of ACM SOSR, 2015.

[12] R. Mok, W. Li, and R. Chang, “IRate: Initial video bitrate selection system for HTTP stream-

ing,” IEEE Journal on Selected Areas in Communications, vol. 34, pp. 1914–1928, June

2016.

[13] T. Spetebroot, S. Afra, N. Aguilera, D. Saucez, and C. Barakat, “From network-level mea-

surements to expected quality of experience: The Skype use case,” in Proceedings of IEEE

M&N, 2015.

[14] M. Jarschel, F. Wamser, T. Hohn, T. Zinner, and P. Tran-Gia, “SDN-based application-aware

networking on the example of YouTube video streaming,” in Proceedings of EWSDN, 2013.

[15] H. Nam, K.-H. Kim, J. Y. Kim, and H. Schulzrinne, “Towards QoE-aware video streaming

using SDN,” in Proceedings of IEEE GLOBECOM, 2014.

[16] S. Ramakrishnan, X. Zhu, F. Chan, and K. Kambhatla, “SDN based QoE optimization for

HTTP-based adaptive video streaming,” in Proceedings of IEEE ISM, 2015.

[17] P. Georgopoulos, Y. Elkhatib, M. Broadbent, M. Mu, and N. Race, “Towards network-wide

QoE fairness using Openflow-assisted adaptive video streaming,” in Proceedings of ACM

FhMN, 2013.

[18] H. Mao, R. Netravali, and M. Alizadeh, “Neural adaptive video streaming with pensieve,” in

Proceedings of the Conference of the ACM Special Interest Group on Data Communication,

pp. 197–210, ACM, 2017.

[19] H. Yeganeh, R. Kordasiewicz, M. Gallant, D. Ghadiyaram, and A. C. Bovik, “Delivery qual-

ity score model for Internet video,” in Proceedings of IEEE ICIP, 2014.

125

[20] N. Eswara, K. Manasa, A. Kommineni, S. Chakraborty, H. P. Sethuram, K. Kuchi, A. Kumar,

and S. S. Channappayya, “A continuous QoE evaluation framework for video streaming over

HTTP,” IEEE Transactions on Circuits and Systems for Video Technology, vol. In press, 2017.

[21] D. Ghadiyaram, J. Pan, and A. C. Bovik, “Learning a continuous-time streaming video QoE

model,” IEEE Transactions on Image Processing, vol. 27, pp. 2257–2271, May 2018.

[22] CPqD, “OpenFlow Software Switch.” http://cpqd.github.io/

ofsoftswitch13/, 2015.

[23] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction. MIT press, 2018.

[24] H. Van Hasselt, A. Guez, and D. Silver, “Deep reinforcement learning with double q-

learning.,” in AAAI, vol. 2, p. 5, Phoenix, AZ, 2016.

[25] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves,

M. Riedmiller, A. K. Fidjeland, G. Ostrovski, et al., “Human-level control through deep

reinforcement learning,” Nature, vol. 518, no. 7540, p. 529, 2015.

[26] M. Schaarschmidt, A. Kuhnle, and K. Fricke, “Tensorforce: A tensorflow library for

applied reinforcement learning,” Web page https://github.com/reinforceio/

tensorforce, 2017.

[27] M. Manjrekar, V. Ramaswamy, and S. Shakkottai, “A mean field game approach to scheduling

in cellular systems,” in Proceedings of IEEE INFOCOM, pp. 1554–1562, 2014.

[28] J. Sun, E. Modiano, and L. Zheng, “Wireless channel allocation using an auction algorithm,”

IEEE Journal on Selected Areas in Communications, vol. 24, no. 5, pp. 1085–1096, 2006.

[29] S. Ha, S. Sen, C. Joe-Wong, Y. Im, and M. Chiang, “TUBE: Time-dependent pricing for

mobile data,” in Proceedings of ACM SIGCOMM, pp. 247–258, 2012.

[30] “NSF Workshop on Ultra-Low Latency Wireless Networks,” November 2016.

[31] ITU-T, “The Tactile Internet,” August 2014.

126

http://cpqd.github.io/ofsoftswitch13/
http://cpqd.github.io/ofsoftswitch13/
https://github.com/reinforceio/tensorforce
https://github.com/reinforceio/tensorforce

[32] H. Holma and A. Toskala, LTE for UMTS: Evolution to LTE-advanced. John Wiley & Sons,

2011.

[33] M. Laner, P. Svoboda, P. Romirer-Maierhofer, N. Nikaein, F. Ricciato, and M. Rupp, “A

comparison between one-way delays in operating HSPA and LTE networks,” in Modeling

and Optimization in Mobile, Ad Hoc and Wireless Networks (WiOpt), 2012 10th International

Symposium on, pp. 286–292, IEEE, 2012.

[34] K. Sui, M. Zhou, D. Liu, M. Ma, D. Pei, Y. Zhao, Z. Li, and T. Moscibroda, “Characterizing

and improving WiFi latency in large-scale operational networks,” in Proceedings of the 14th

Annual International Conference on Mobile Systems, Applications, and Services, pp. 347–

360, ACM, 2016.

[35] I. H. Hou, V. Borkar, and P. R. Kumar, “A Theory of QoS for Wireless,” in IEEE INFOCOM

2009, pp. 486–494, April 2009.

[36] I.-H. Hou and P. Kumar, “Utility maximization for delay constrained qos in wireless,” in

INFOCOM, 2010 Proceedings IEEE, pp. 1–9, IEEE, 2010.

[37] J. J. Jaramillo and R. Srikant, “Optimal Scheduling for Fair Resource Allocation in Ad Hoc

Networks With Elastic and Inelastic Traffic,” IEEE/ACM Transactions on Networking, vol. 4,

no. 19, pp. 1125–1136, 2011.

[38] I.-H. Hou, “Broadcasting delay-constrained traffic over unreliable wireless links with network

coding,” IEEE/ACM Transactions on Networking, vol. 23, no. 3, pp. 728–740, 2015.

[39] K. S. Kim, C.-p. Li, and E. Modiano, “Scheduling multicast traffic with deadlines in wireless

networks,” in INFOCOM, 2014 Proceedings IEEE, pp. 2193–2201, IEEE, 2014.

[40] L. Tassiulas and A. Ephremides, “Stability properties of constrained queueing systems and

scheduling policies for maximum throughput in multihop radio networks,” IEEE Transac-

tions on Automatic Control, vol. 37, pp. 1936–1948, Dec. 1992.

127

[41] A. Eryilmaz and R. Srikant, “Joint Congestion Control, Routing and MAC for Stability and

Fairness in Wireless Networks,” IEEE Journal on Selected Areas in Communications, vol. 24,

pp. 1514–1524, August 2006.

[42] R. Li, A. Eryilmaz, and B. Li, “Throughput-optimal wireless scheduling with regulated inter-

service times,” in INFOCOM, 2013 Proceedings IEEE, pp. 2616–2624, 2013.

[43] R. K. Lam and P. Kumar, “Dynamic channel reservation to enhance channel access by ex-

ploiting structure of vehicular networks,” in Vehicular Technology Conference (VTC 2010-

Spring), 2010 IEEE 71st, 2010.

[44] R. K. Lam and P. Kumar, “Dynamic channel partition and reservation for structured channel

access in vehicular networks,” in Proceedings of the seventh ACM international workshop on

VehiculAr InterNETworking, pp. 83–84, ACM, 2010.

[45] S. Sanghavi, D. Shah, and A. S. Willsky, “Message passing for max-weight independent set,”

in Advances in Neural Information Processing Systems, pp. 1281–1288, 2008.

[46] A. Anand, G. de Veciana, and S. Shakkottai, “Joint scheduling of urllc and embb traffic in 5g

wireless networks,” in INFOCOM (to appear), 2018 Proceedings IEEE, 2018.

[47] A. Warrier, S. Janakiraman, S. Ha, and I. Rhee, “DiffQ: Practical differential backlog con-

gestion control for wireless networks,” in INFOCOM 2009, IEEE, pp. 262–270, IEEE, 2009.

[48] R. Laufer, T. Salonidis, H. Lundgren, and P. Le Guyadec, “XPRESS: A cross-layer back-

pressure architecture for wireless multi-hop networks,” in Proceedings of the 17th annual

international conference on Mobile computing and networking, pp. 49–60, ACM, 2011.

[49] J. Ryu, V. Bhargava, N. Paine, and S. Shakkottai, “Back-pressure routing and rate control for

ICNs,” in Proceedings of the sixteenth annual international conference on Mobile computing

and networking, pp. 365–376, ACM, 2010.

[50] J. Lee, H. Lee, Y. Yi, S. Chong, E. W. Knightly, and M. Chiang, “Making 802.11 DCF near-

optimal: Design, implementation, and evaluation,” IEEE/ACM Transactions on Networking,

vol. 24, no. 3, pp. 1745–1758, 2016.

128

[51] Y.-H. Wei, Q. Leng, S. Han, A. K. Mok, W. Zhang, and M. Tomizuka, “RT-WiFi: Real-

time high-speed communication protocol for wireless cyber-physical control applications,”

in Real-Time Systems Symposium (RTSS), 2013 IEEE 34th, pp. 140–149, IEEE, 2013.

[52] O. N. Yilmaz, Y.-P. E. Wang, N. A. Johansson, N. Brahmi, S. A. Ashraf, and J. Sachs, “Analy-

sis of ultra-reliable and low-latency 5G communication for a factory automation use case,” in

Communication Workshop (ICCW), 2015 IEEE International Conference on, pp. 1190–1195,

IEEE, 2015.

[53] S. Yoshioka, Y. Inoue, S. Suyama, Y. Kishiyama, Y. Okumura, J. Kepler, and M. Cudak,

“Field experimental evaluation of beamtracking and latency performance for 5G mmWave

radio access in outdoor mobile environment,” in Personal, Indoor, and Mobile Radio Com-

munications (PIMRC), 2016 IEEE 27th Annual International Symposium on, pp. 1–6, IEEE,

2016.

[54] J. Pilz, M. Mehlhose, T. Wirth, D. Wieruch, B. Holfeld, and T. Haustein, “A Tactile Internet

demonstration: 1ms ultra low delay for wireless communications towards 5G,” in Proc. of

INFOCOM WKSHPS, pp. 862–863, IEEE, 2016.

[55] S. Yau, L. Ge, P.-C. Hsieh, I. Hou, S. Cui, P. Kumar, A. Ekbal, N. Kundargi, et al., “Wimac:

Rapid implementation platform for user definable mac protocols through separation,” in ACM

SIGCOMM Computer Communication Review, vol. 45, pp. 109–110, ACM, 2015.

[56] I. Tinnirello, G. Bianchi, P. Gallo, D. Garlisi, F. Giuliano, and F. Gringoli, “Wireless mac

processors: Programming mac protocols on commodity hardware,” in INFOCOM, 2012 Pro-

ceedings IEEE, pp. 1269–1277, IEEE, 2012.

[57] Cisco, Cisco Visual Networking Index: Global Mobile Data Traffic Forecast Update, 2010-

2015. Cisco, February 2011.

[58] S. Deb, M. Médard, and C. Choute, “Algebraic gossip: A network coding approach to optimal

multiple rumor mongering,” IEEE Trans. on Information Theory, vol. 52, no. 6, pp. 2486–

2507, 2006.

129

[59] A. ParandehGheibi, M. Medard, A. Ozdaglar, and S. Shakkottai, “Avoiding interruptions - a

QoE reliability function for streaming media applications,” IEEE Journal on Selected Areas

in Communications, vol. 29, no. 5, pp. 1064–1074, 2011.

[60] A. Sprintson, P. Sadeghi, G. Booker, and S. El Rouayheb, “A randomized algorithm and

performance bounds for coded cooperative data exchange,” in Proc. of IEEE ISIT, pp. 1888–

1892, 2010.

[61] N. Milosavljevic, S. Pawar, S. El Rouayheb, M. Gastpar, and K. Ramchandran, “An optimal

divide-and-conquer solution to the linear data exchange problem,” in Proc. of IEEE ISIT,

2011.

[62] T. Courtade and R. Wesel, “Coded cooperative data exchange in multihop networks,” Arxiv

preprint arXiv:1203.3445v1, 2012.

[63] N. Abedini, M. Manjrekar, S. Shakkottai, and L. Jiang, “Meeting deadlines: Server-assisted

wireless p2p networks,” in Proc. of ITA 2012, February 2012.

[64] M. Wang and B. Li, “Lava: A reality check of network coding in peer-to-peer live streaming,”

in INFOCOM 2007, pp. 1082–1090, 2007.

[65] Z. Liu, C. Wu, B. Li, and S. Zhao, “UUSee: Large-scale operational on-demand streaming

with random network coding,” in INFOCOM, 2010 Proceedings IEEE, pp. 1–9, 2010.

[66] H. Seferoglu, L. Keller, B. Cici, A. Le, and A. Markopoulou, “Cooperative video streaming

on smartphones,” in Allerton, pp. 220–227, IEEE, 2011.

[67] M. Neely, “Energy optimal control for time varying wireless networks,” IEEE Transactions

on Information Theory, vol. 52, pp. 2915–2934, July 2006.

[68] F. Foster, “On the stochastic matrices associated with certain queuing processes,” The Annals

of Mathematical Statistics, vol. 24, no. 3, pp. 355–360, 1953.

[69] “Network coding utilities.” Library available at http://arni.epfl.ch/software.

130

http://arni.epfl.ch/software

	ABSTRACT
	DEDICATION
	ACKNOWLEDGMENTS
	CONTRIBUTORS AND FUNDING SOURCES
	NOMENCLATURE
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	Introduction
	QFLOW: A REINFORCEMENT LEARNING APPROACH TO HIGH QoE VIDEO STREAMING OVER WIRELESS NETWORKS
	Introduction
	Main Results
	Related Work
	System Model
	Markov Decision Process
	Measuring QoE for Video Streaming
	System Architecture

	QFlow Implementation Details
	Policy Commands
	Statistics Commands

	Model-Free RL
	Q-Learning
	Deep Q-Learning
	Training the RL Algorithm
	Dynamic Number of Clients

	Model-Based RL
	Static Model
	Dynamic Number of Clients

	Evaluation
	Policies
	Basic Performance Study
	Static Network Configuration
	Dynamic Number of Clients

	Conclusion

	FLOWBAZAAR: A MARKET-MEDIATED SOFTWARE DEFINED COMMUNICATIONS ECOSYSTEM AT THE WIRELESS EDGE
	Introduction
	Main Results and Organization

	Related Work
	System Model
	System-wide Model
	Auction-based Model
	Measuring QoE for Video Streaming

	System Architecture
	Policy Design
	Transition Kernel of an Individual Client
	Optimal Policy for System-wide Model
	Optimal Policy for Auction-based Model
	Index Policy
	Dynamic Number of Clients and Varying Channel

	Evaluation
	Emulation of bad network conditions
	Policies
	Static Network Configuration
	Dynamic Number of Clients and Varying Channel

	Conclusion

	PULS: PROCESSOR-SUPPORTED ULTRA-LOW LATENCY SCHEDULING
	Introduction
	Related Work
	Design of PULS
	Basic MAC Functions for Wireless Scheduling
	Mechanism-Policy Separation
	Flexible MAC through Host-FPGA Separation

	Implementation of PULS
	Packet Generation
	Queueing, Deadlines and Types of Flows
	Scheduling and Transmission Procedures
	Retransmission

	Measuring Host-to-FPGA Interfacing Latency and Round-Trip Latency
	Experimental Results
	Capacity Regions
	Throughput Performance
	Changing the Arrival Process

	Conclusion

	REALTIME STREAMING WITH GUARANTEED QoS OVER WIRELESS D2D NETWORKS
	Introduction
	Related Work
	Organization and Main Results
	System Model
	D2D Scheduling Algorithm
	Optimal D2D Scheme

	D2D Algorithm Under Reliable Broadcast
	Achievability of QoS Metric
	Optimal Reliable D2D Scheme
	Simple Suboptimal Scheme for Unreliable D2D Network

	Selection of B2D Stopping Time
	Finite Field Case
	Simulation Results
	Android Experiments
	Conclusion

	Conclusion
	REFERENCES

