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We present a complete analysis of elastic scattering 6Li+16O at 4 MeV/nucleon.
Using either traditional Woods-Saxon or a range of semi microscopic folding form fac-
tors we find that the data require deep, highly transparent potentials. The intermediate
angle structures and the oscillatory increase of the cross section at large angles is inter-
preted either as a pre-rainbow oscillation resulting from the interference of the barrier
and internal barrier far-side scattering subamplitudes, or, equally well, as a resonant
diffraction arising from two Regge poles located in peripheral waves. Both semiclassi-
cal and Regge pole approaches allow a dynamical separation of the resonant component
of the S-matrix.

PACS: 25.70.Bc, 24.10.Ht, 25.70.Hi, 27.20.+n.

1. INTRODUCTION

The study of nucleus-nucleus elastic scattering has a long history but remains of
interest due to both successes and failures that mark it (see for example, Refs. [1, 2]
and references therein). We are searching here for reliable ways to predict optical
model potentials for reactions with radioactive nuclear beams (RNB). In particular
our interest focuses on finding reliable descriptions for transfer and breakup reactions
involving relatively light, loosely bound nuclei, which are used in indirect methods
in nuclear astrophysics. A range of RNB studies were made at energies around 10
MeV/nucleon, where the reactions are peripheral, with the intent to obtain informa-
tion about stellar reaction rates. These reactions use DWBA techniques to extract
nuclear structure information. However, the well known existence of many ambigu-
ities in the optical potential model (OMP) extracted from elastic scattering can raise
questions about the accuracy of these determinations. Experimental studies using
RNBs have, heretofore, not been suitable for detailed elastic scattering analyses. The
best information comes from studying the elastic scattering of stable loosely bound
nuclei with similar mass. We chose here to study the elastic scattering of 6Li at low
energy, a fragile projectile (loosely bound), with a pronounced cluster structure and
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2 Refractive versus resonant diffraction scattering of loosely bound nuclei 107

with low Z. At this energy a range of phenomena, involving absorption, resonant
diffraction and refraction, mostly of nuclear nature, can be exhibited.

Previously we have carried out a study of elastic scattering around 10 MeV/nu-
cleon for a range of projectile-target combinations involving p-shell nuclei [3,4]. We
found a relatively simple method to predict OMP for loosely bound nuclei, based
on the renormalization of the independent real and imaginary terms obtained from
a double folding procedure using the JLM nucleon-nucleon (NN ) effective interac-
tion. The procedure successfully described the data for all projectile-target combina-
tions and energies in the study for most of the angular ranges measured.

Recent work [5,6] has established that elastic scattering of light, tightly-bound
heavy ion systems such as 16O+12C and 16O+16O show sufficient transparency for
the cross section to be dominated by the far-side scattering. Intermediate angle struc-
tures appearing in the elastic scattering distributions at angles beyond the Fraunhofer
diffractive region have been identified as Airy minima of a nuclear rainbow, i.e. a
destructive interference between two far-side trajectories which samples the interior
of the potential. A number of high order Airy minima have been identified by ob-
serving that such structures are largely insensitive to an artificial reduction of the
absorption in the optical potential, and therefore they appear as a manifestation of
the refractive power of the nuclear potential. While at high energy [7] this picture
was well substantiated by a semiclassical nonuniform decomposition of the scatter-
ing function [8], at lower energies the situation is more difficult to understand. It has
been shown by Anni [9], that such structures could be explained by the interference
of two amplitudes appearing in different terms of a multireflection uniform series
expansion of the scattering amplitude and therefore the interpretation using rainbow
terminology is not appropriate.

For loosely bound nuclei at low energy the situation is even more intricate.
The corresponding components in the optical potential are expected to be more dif-
fuse as compared to normal nuclei, leading to a competition between the increased
refractive power of the real potential and the increased absorption at the nuclear sur-
face. The small separation energy implies also that the dynamic polarization poten-
tial (DPP) [10] arising from the coupling to breakup states may be strong and have
a complicated energy and radial dependence. Thus the DPP cannot be treated as a
small perturbation for loosely bound nuclei and the usual phenomenological proce-
dure in renormalizing the folding potential form factor may be questioned. It has
been estimated that the DPP is strongly repulsive at the nuclear surface in the case of
6Li [11]. This prompted Mahaux, Ngo and Satchler [12] to conjecture that for loosely
bound nuclei the barrier anomaly may be absent due to the cancellation between the
repulsive (DPP) and attractive (dispersive) components of the optical potential.

In the specific case of 6,7Li scattering on light targets, a large body of data has
been accumulated in the range 4-50 MeV/nucleon. At high energy, Nadasen and his
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group [13,14] have been able to derive a unique optical potential which was essential
to assess the quality of the folding model. At lower energies, ambiguities found in
the analysis of data prevented any definite conclusion about the strength and energy
dependence of the optical potential. A study by Trcka et al. [15] on 6Li+12C elastic
scattering at 50 MeV, found an exotic feature (”plateau”) in the angular distribution
of the elastic scattering at intermediate angles which resembles similar structures
found in more bound systems. They interpreted the structure as a diffractive effect
arising from an angular momentum dependent absorption. There are experimental
hints that such structures also appear in neighboring systems, 6Li+16O and 6Li+9Be,
as a possible manifestation of the average properties of the interaction potential.

In this paper we present an analysis of elastic scattering of 6Li on 16O at 4
MeV/nucleon. Accurate angular distribution has been measured over an almost com-
plete angular range [16]. This angular distribution displays a complex structure at
intermediate and large angles pointing to strong refractive effects.

Folding model analysis using the complex, density and energy dependent NN
interaction of Jeukenne, Lejeune and Mahaux (JLM) [17], as well as other G-matrix
effective interactions, where corrections due to the strong DPP have been included,
confirmed that the elastic distribution could be described using deep and extremely
transparent potentials. The intermediate angle structures have been discussed us-
ing the semiclassical uniform approximation for the scattering function of Brink and
Takigawa [18]. We explain the intermediate angle structure as a coherent interfer-
ence effect of two subamplitudes corresponding to trajectories reflected at the barrier
and interfering with trajectories which sample the nuclear interior. Thus, this re-
fractive effect appears as a signature of a highly transparent interaction potential. A
completely different picture emerges using a phenomenological Regge pole analy-
sis [19], pointing to a resonant effect present in surface waves.

The paper is structured in the following way: after this introduction, the anal-
ysis of the elastic scattering data using phenomenological and microscopic optical
model potentials is presented in Sect. 2. In Sect. 3 we present a discussion of the
decomposition of the far-side scattering amplitude into barrier and internal barrier
components responsible for the exotic structure at intermediate angles. Finally we
perform a Regge pole analysis in Sect. 4), and conclude our work in Sect. 5).

2. OPTICAL-MODEL ANALYSIS

The ratio of the measured elastic scattering data to the Rutherford cross section
at Elab=25.7 MeV [16], covers a large angular range, see Fig.2. These data show
complex forms with characteristic rapid oscillations at small angles followed by a
marked change in shape at intermediate angles: a plateau develops at θ = 75◦−135◦

which is followed by a significant increase of the cross section at larger angles, re-
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membering the well known ALAS. Assuming pure Fraunhofer scattering at forward
angles, we extract a grazing angular momentum, lg ≈ 12, from the angular spacing
∆θ = π/(lg + 1/2).
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Fig. 1 – (Color online) Discrete ambiguities in the WS optical potential obtained from a grid search on
the real volume integral. There are no acceptable solutions with JV < 200 MeV fm3. Best solutions
are tabulated in Table 1.

The data are analyzed using optical potentials with conventional Woods-Saxon
(WS) form factors for the nuclear term, supplemented with a Coulomb potential gen-
erated by a uniform charge distribution with a reduced radius fixed to rc=1 fm. No
preference has been found for volume or surface localized absorption and throughout
the paper only volume absorption is considered. In the absence of any spin depen-
dent observables, spin-orbit or tensor interactions have been ignored. Ground state
reorientation couplings also have been neglected. The potential is defined by six pa-
rameters specifying the depth and geometry of the real and imaginary terms, with
the standard notations, the same as used in Ref. [3]. The number of data points is
N=99 and therefore the usual goodness of fit criteria (χ2) normalized to N has been
used. The averaging associated with the finite angular resolution has mostly an effect
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Fig. 2 – (Color online) Woods-Saxon optical model analysis (full lines) of elastic scattering data (open
points) at 4 MeV/nucleon (Table 1). Far-side (red line)and near-side(blue line) cross sections are also
shown.

on the depth of sharp minima. A few exploratory calculations showed that allow-
ing the normalization to vary did not result in any qualitative changes and did not
indicate that any renormalization of the data by more than a few percent would be
preferred. Optical parameter sets obtained in our previous paper [4] were used as
starting values for the search procedure. Guided by these potentials and by our ear-
lier analysis [3] a number of some 104 potentials with real volume integrals in the
range JV = 200−600 MeV fm3 have been generated, thus exploring the functional
Woods-Saxon space in full detail. Local minima were identified and a complete
search on all six parameters determined the best fit potentials. The complex structure
at intermediate angles and the increase of the cross section at large angles could be
described only with deep potentials with real volume integrals (per pairs of interact-
ing nucleons) exceeding a critical value JV crit ≈ 240 MeV fm3. We did not find any
acceptable solution with JV < 200 MeV fm3 (see Fig. 1). There is a consistent pref-
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Fig. 3 – (Color online) Evolution of the far side component with the nominal absorption in the VO1
parametrization of the WS potential The stable minimum at θ ≈ 65◦ may be interpreted as a primary
Airy minimum of a nuclear rainbow.

erence for potentials with very weak imaginary parts, with values of W around 5-7
MeV. We systematically find rV < rW and large diffuseness parameters aV ' aw '
0.8 fm in agreement with theoretical expectations for loosely bound nuclei [20, 21].
A grid search procedure on the real depth of the potential allowed us to identify dis-
crete ambiguities. Parameters for the first four discrete families are given in Table 1.
These are identified by a jump of ∆JV ≈ 100 MeV fm3 from one family to the next
and an almost constant imaginary volume integral. As a consequence, the total reac-
tion cross section seems to be a well determined observable. Grinding on other WS
parameters revealed a continuous ambiguity of the form JVRV ≈ const, whereRV is
the rms radius of the potential. The larger the volume integral, the smaller the radius
that is required to fit the data. This is a clear manifestation of a complicated radial de-
pendence of the dynamic polarization potential (DPP) which may lead to radii much
smaller than the minimal value implied by the folding model (e.g., R2

F = R2
1 +R2

2,
for a zero range NN effective interaction). However, for each discrete family rather
precise values of the rms radii were required to fit both forward and intermediate
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Fig. 4 – (Color online) Phase shift analysis. The fluctuations in the near side cross section arise from
the noise present in the data.

angle cross sections.
As mentioned already, it was shown in Refs. [5–7] that the elastic scattering of

light heavy ion systems such as 16O+12C and 16O+ 16O shows sufficient transparency
for the cross section to be dominated by far-side scattering. Structures appearing in
the elastic scattering angular distributions at intermediate angles have been identified
as Airy minima of a nuclear rainbow, due to a destructive interference between two
far-side trajectories which sample the interior of the potential. At 4 MeV/nucleon the
6Li scattering data show rapid, diffractive Fraunhofer oscillations at forward angles
due to the strong near-far amplitude interference (Fig. 2). At θ≈ 48◦ the far side and
near side components of the scattering amplitude are almost equal, producing the first
Fraunhoffer deep minimum. Beyond this ”crossover” the near-side amplitude makes
a negligible contribution and the cross section is dominated by the far side compo-
nent. There is no dark side exponential decay of the far side component. The deep
minimum seen at θ ≈ 65◦ in the far side component is stable against the strength of
the absorption (Fig. 3) and may be interpreted as a primary Airy minimum of a nu-
clear rainbow. It is followed by a broad Airy maximum and a structureless increase of
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Fig. 5 – (Color online) Argand diagrams for the WS S-matrix. Optical potentials are from Table 1. For
low angular momentum l < 10, the trajectory for S-matrix rotates clockwise several times around the
origin, suggesting the presence of several Regge poles.

the far side cross section at large angles. Low amplitude oscillation of the total cross
section at intermediate and large angles are due to far side /near side interference.
The total cross section reaches a maximum near θ = 180◦ where both components
became again equal. Clearly, far-side dominance may be interpreted as a possible
manifestation of refractive effects. However, this simple dominance does not explain,
by itself the structure of the far side component. In fact the above picture has already
been challenged by Anni [9] and by Michel et al. [22] for the simple reason that
the far-side amplitude has never been decomposed in subamplitudes which would
explain the interference. We come back to this topic in Section 3. For the moment
we adopt the interpretation of Michel et al. [22] and denote the complex structure
at intermediate angles in the data as pre-rainbow oscillations. A model independent
analysis in which the diagonal S-matrix elements are extracted directly from the data
through a complex phase shift analysis confirm that the Airy oscillation at θ ≈ 65◦

is a real effect (see Fig. 4). Further information can be obtained by looking at the
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Fig. 6 – (Color online) Discrete ambiguities for folding potentials. The FOLDD and M3YZR models
predict several solutions which describe equally well the data, while GOGNY and M3YFR predict a
unique solution with JV ∼ 280 MeV fm3.

Argand diagrams displayed in Fig. 5. It demonstrates that the discrete potentials VOi
(i=1-4) Table 1 are fully equivalent since the Argand patterns are almost identically
for all potentials. It means that the Drisko ambiguity [23], δl → δl +nπ holds not
only for low angular momenta but for all momenta when going from one potential to
another. Furthermore, for low angular momentum l < 10, the trajectory for S-matrix
rotates clockwise several times around the origin, suggesting the presence of several
Regge poles. We will come back to this effect in the following sections.

2.1. FOLDING MODEL ANALYSIS

In the this section we discuss the ability of the folding model to describe the
pre-rainbow oscillation seen in our data.

We start by a quite simple model, dubbed here FOLDD in which the form
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Fig. 7 – (Color online) Cross sections calculated with a simple zero range double folding potential
Strengths and ranges are tabulated in Table 3

factors of the OMP are given by a simple δ-folding potential,

Vfold(R) =

∫
d~r1d~r2ρ1(r1)ρ2(r2)δ(~s) (1)

where ~s = ~r1 + ~R− ~r2. No exchange terms are included in this model which is
intended mainly to check the single particle densities and the mechanism behind the
discrete ambiguities found with the WS model. Then the OMP is given by,

U(R) =NV V (R,tV ) +NWW (R,tW ) (2)

where NV,W are normalization constants and tV,W are range parameters of a smear-
ing function g,

g(~s) =
1

t3π3/2
exp(−s2/t2) (3)
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Fig. 8 – (Color online) Cross sections calculated with the zero range version of the M3Y effective
interaction. . Renormalization parameters and rages are given in Table 3.

With this function, the form factors of the OMP are given by,

V (R,tV ) =

∫
d~R′Vfold(R

′)g(~R− ~R′) (4)

and similarly forW (R,tW ). Note that the normalized function g goes to a δ function
in the limit t→ 0. The rms radius of the OMP form factor is given by,

< r2 >V =< r2 >ρ1 +< r2 >ρ2 +
3

2
t2 (5)

Thus the volume integral of the form factor is controlled by the parameters NV,W .
Based on Eq.(5) one may estimate in an average way the importance of the dynamic
polarization potential and finite range effects. Throughout this paper we use single
particle densities obtained from a spherical Hartree-Fock calculation based on the
density functional of Beiner and Lombard [24]. The obtained rms charge radii are
< r2 >

1/2
6Li

= 2.33 fm and < r2 >
1/2
16O

= 2.71, which should be compared with the
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Fig. 9 – (Color online) Cross sections calculated with the finite range version of the M3Y effective
interaction. Renormalization parameters and rages are given in Table 3.

experimental values of 2.53 fm and 2.70 fm, respectively [25]. A grid search on the
real volume integral reveals the same ambiguity obtained with the WS form factors,
see Fig.6. The real volume integrals match quite well solutions found with the WS
parametrization. Again imaginary volume integrals are quite small pointing to a large
transparency of the potential. Correction due to the finite range effects are quite large,
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of the order of ∆r ≈ 0.4 fm for the real potential and even larger for the imaginary
potential. Far side / near side decomposition of the scattering amplitude reveals the
same features: a minimum in the far side component develops at θ = 65◦ which
becomes deeper with the increased real volume integral of the interaction.

Finite range effects can be conveniently taken into account by using the M3Y
parametrization of theG-matrix obtained from the ParisNN interaction [26]. In this
case the direct term reads

Vfold(R) =

∫
d~r1d~r2ρ1(r1)ρ2(r2)vM3Y (s) (6)

In the zero range approximation, the exchange term is simulated by a zero-range
pseudo-potential in the form of Eq. (1) with a strength slightly energy dependent,

J00(E) =−276(1−0.005E/A) (7)

Results of these calculations are dubbed M3YZR and displayed in Table 3 and Fig.
8. The same pattern emerges as in the case of the FOLDD model except that we did
not found acceptable solutions with JV > 400 MeV fm3.

A more elaborate calculation lead to a nonlocal knock-on exchange kernel,

Uex(~R+, ~R−) = µ3vex(µR−)

∫
d ~X1ρ1(X1)ĵ1(kf1(X1)

(A1−1)A2

A1 +A2
R−)

×ρ2(|~R+− ~X1|)ĵ1(kf2(|~R+− ~X1|)
(A2−1)A1

A1 +A2
R−) (8)

where A1,2 are mass numbers, µ is the reduced mass of the system, kf1,2 are Fermi
momenta, R+,− are the usual nonlocal coordinates and vex is the exchange compo-
nent of the interaction including the long range OPEP tail. In the lowest order of the
Perey-Saxon approximation, the local equivalent of the nonlocal kernel is obtained
by solving the nonlinear equation,

UL(R) = 4π

∫
d~r1d~r2ρ1(r1)ρ2(r2)

×
∫
s2dsvex(s)ĵ1(kf1(r1)β1s)ĵ1(kf2(r1)β2s)j0(

1

µ
K(R)s)δ(~r2−~r1 + ~R) (9)

Above βi = (Ai−1)/Ai are recoil corrections and the local momentum for the rela-
tive motion is given by,

K2(R) =
2µ

~2
(Ec.m.−UD(R)−UL(R)) (10)

where UD is the total direct component of the potential including the Coulomb term.
In Eq. (10) we assumed a purely real local momentum of the relative motion since the
absorptive component of the OMP is small compared with the real part. The effective
mass correction [27], µ?

µ = 1− ∂U
∂E is of the order of a few percent for this system
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and is absorbed in the renormalization parameter NW . Some tens of iterations are
needed to solve eq.(9) in order to obtain a precision of 10−7 in the entire radial range.
Calculations with this model are dubbed M3YFR. As in the case of other interactions
it is possible to find several solution. Two of them are displayed in Fig. 9. However, a
careful calculation reveals that in fact there is an unique solution with JV = 280 MeV
fm3 (Fig. 6). Thus the approximate calculation of the knock-on exchange component
changes completely the volume integral and the rms radius of the real component
such that a unique solution survives in the range JV = 250−300 MeV fm3.

At this point we want to make a comment on the effect of coupling with the
breakup states. Sakuragi [11] performed a CCDC calculation of 6Li scattering in a
large range of incident energies and target mass. He found that coupling with α−d
breakup states brings a repulsive DPP potential in the nuclear surface in such a way
that reasonable fits can be obtained by fixing the normalization constant NV = 1 and
NW = 0.4−0.7 when using the M3Y effective interaction supplemented by a pseudo
zero range knock-on potential as we did in our model M3YZR. First of all he assumes
implicitly that M3Y is a perfect interaction and the renormalizationNV should be ex-
actly one. This is not the case for several reasons. Absence of any explicit density
dependence and of three body effects leads to a collapse of nuclear matter equation
of state at least at the HF level. The pseudo potential used for the knock-on exchange
is a poor approximation. The odd components (SO and TO) of the interaction are
largely ambiguous. We have seen that in a single channel calculation there are dis-
crete ambiguities with real volume integrals JV = 200− 350 MeV fm3. The bare
(unnormalized) potential has a volume integral of 425 MeV fm3 and a rms radius of
3.86 fm. It means that the DPP potential coming from coupling to breakup should
correct simultaneously the volume integral by ∆JV = 225,165,80 MeV fm3 and
for ∆RV = 0.1− 0.2 fm which is evidently impossible. Furthermore, in line with
our previous analyses [3, 4] we found systematically ∆R=RW −RV ≈ 1.4 fm and
therefore it is a bad approximation to use the same geometry for real and absorptive
components of the OMP.

Is this unique solution an accidental feature of the M3YFR model? In a recent
paper [28] we successfully described the hindrance in the sub-barrier fusion of 48Ca
with several targets using optical potentials generated with two parametrization of the
Gogny effective interaction. Neglecting the spin-orbit component, the Gogny NN
interaction can be expressed as a sum of central, finite range term and a zero range
density dependent term,

v(~r12) =
2∑
i=1

(Wi+BiPσ−HiPτ −MiPσPτ )e(−r2
12/µ

2
i )

+ t3(1 +Pσ)ρα(~R12)δ(~r12) (11)
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Fig. 10 – (Color online) Cross sections calculated with D1 parametrization of the Gogny effective
interaction. Renormalization parameters and rages are given in Table 2.

where ~r12 = ~r1−~r2 , ~R12 = (~r1 +~r2)/2 and standard notations have been used for
strengths parameters and spin-isospin exchange operators. The strengths and the
ranges are taken from [29]. Antisymmetrization of the density dependent term is

(c) RJP 57(Nos. 1-2) 106–137 2012



16 Refractive versus resonant diffraction scattering of loosely bound nuclei 121

10
-4

10
-3

10
-2

10
-1

1

10

0 50 100 150

F N

σ/
σ R

16O(6Li,6Li) E=25.7 MeV

JLM1O_1

10
-4

10
-3

10
-2

10
-1

1

10

0 50 100 150

F N

JLM1O_2

10
-4

10
-3

10
-2

10
-1

1

10

0 50 100 150

F N

θc.m.(deg)

σ/
σ R

JLM1O_3

10
-4

10
-3

10
-2

10
-1

1

10

0 50 100 150

F N

θc.m.(deg)

JLM1O_4

Fig. 11 – (Color online) Cross sections calculated with JLM1O effective interaction. Renormalization
parameters and rages are given in Table 2.

trivial, so that the sum of direct and exchange term reads,

vρD(r12) +vρex(r12) =
3t3
4
ραδ(~r12) (12)

The local equivalent of the finite range knock-on exchange is calculated with eq. (9).
Two approximations were used for the overlap density,

ρ= (ρ1(r1)ρ2(r2))1/2 (13)

and

ρ=
1

2
(ρ1(r1) +ρ2(r2)) (14)

The first approximation eq.(13) has the merit that the overlap density goes to zero
when one of the interacting nucleons ar far from the bulk. The calculated OMP po-
tentials are dubbed GOGNY1 and GOGNY3 respectively. Both definitions represent
crude approximations of the overlap density but are widely used in the estimation of
the density effects in the folding model. Several solutions have been found with this
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Fig. 12 – (Color online) Cross sections calculated with JLM3O effective interaction. Renormalization
parameters and rages are given in Table 2.

model, but in fact only one give a fit comparable with best solutions found with other
form factors (Fig. 6 and Fig.10). Estimation with the overlap density defined in eqs.
(13) or (14) do not make too much difference (table 2). Both approximations lead to
the same volume integrals and rms radii.

We further examine the density dependence effects by using the nuclear mat-
ter approach of Jeukenne, Lejeune and Mahaux (JLM) [17] which incorporates a
complex, energy and density dependent parametrization of the NN effective inter-
action obtained in a Brueckner Hartree-Fock approximation from the Reid soft core
nucleon-nucleon potential. The systematic study [3] of the elastic scattering between
p-shell nuclei at energies around 10 MeV/nucleon led to the surprising result that on
average, the imaginary part of the folded JLM potential was perfectly adequate to
describe such reactions and did not need any renormalization (NW = 1.00± 0.09),
while the real component needed a strong renormalization, in line with other effective
interactions used in folding models. We do not expect this property to be conserved
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at much lower energy (4 MeV/A in this case). Calculations with this model are
dubbed JLM1O and JLM3O, depending on which definition we use for the overlap
density(eqs.(9) and (10) respectively) and the results are tabulated in Table 2 and
displayed in Figs. 11 and 12. There are no exchange components included in this
model and as a consequence several discrete solutions are found. Renormalization
parameter NV lies in the range 0.4-0.7 in line with all other calculations. Values
close to NV =0.9 tend to underestimate the shoulder at θ ≈ 100◦ since the near side
component of the amplitude has a deep minimum in this region.

To conclude this section, we find that folding potentials describe well the cross
section in the entire angular range, comparable with the more flexible WS form fac-
tors. Inclusion of the more elaborated knock-on exchange potential reduces the num-
ber of discrete ambiguities, while the dynamical content of the S-matrix remains the
same, with strong resonant effect in the low partial waves (see Fig. 13).

-0.2
-0.1

0
0.1
0.2
0.3
0.4
0.5
0.6

0 0.5 1

6Li+16O 25.7 MeV

VO1

ℑ
 S

(l
)

-0.2
-0.1

0
0.1
0.2
0.3
0.4
0.5
0.6

0 0.5 1

M3YFR6

-0.2
-0.1

0
0.1
0.2
0.3
0.4
0.5
0.6

0 0.5 1

GOGNY1

ℜ S(l)

ℑ
 S

(l
)

-0.2
-0.1

0
0.1
0.2
0.3
0.4
0.5
0.6

0 0.5 1

GOGNY3

ℜ S(l)

Fig. 13 – (Color online) Argand diagrams for VO1, M3YFR6, GOGNY1 and GOGNY3 parametriza-
tions of the optical potential.
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Fig. 14 – Semiclassical deflection function using the VO1 parametrization of the bare WS potential. The
shape is asymmetric and has a logarithmic singularity at the orbiting momentum l ≈ 10. The dashed
line at θ = −65◦ marks the position of the Airy minimum. The arrow marks the orbiting angular
momentum.

3. SEMICLASSICAL BARRIER AND INTERNAL BARRIER AMPLITUDES

Once we have established the main features of the average OM potential, we
turn now to study the reaction mechanism using semiclassical methods. The far-side
dominance observed in the angular distributions is not able to explain the behaviour
of the S-matrix elements at low angular momentum. The reason is of course that the
far/near (F/N) decomposition method does not perform a dynamic decomposition of
the scattering function, but merely decomposes the scattering amplitude into travel-
ing waves. The intermediate angle structures, such as those observed in our angular
distribution, have been repeatedly interpreted as arising from the interference of two
ranges in angular momenta, `< and `>, contributing to the same negative deflection
angle. However, the corresponding cross sections, σF< and σF>, cannot be isolated
because their dynamic content (S-matrix) is not accessible.

The semiclassical uniform approximation for the scattering amplitude of Brink
and Takigawa [18] is well adapted to describe situations in which the scattering is
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Fig. 15 – (Color online) Trajectories of complex turning points for the potential VO1,Table 1. Inactive
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controlled by at most three active, isolated, complex turning points. An approximate
multireflection series expansion of the scattering function can be obtained, the terms
of which have the same simple physical meaning as in the exact Debye expansion
for the scattering of light on a spherical well. The major interest in this theory comes
from the fact that it can give precious information on the response of a nuclear system
to the nuclear interior. Recent application [9] of this technique helped to clarify the
controversial problem of the ”Airy oscillation” seen in low energy 16O+12C scatter-
ing [5].

We take as an example the potential VO1 in Table 1. We discard the absorptive
term and define the effective potential as,

Veff (r) = V (r) +
~2

2µ

λ2

r2
, λ= `+

1

2
(15)

where the Langer prescription has been used for the centrifugal term. This guarantees
the correct behavior of the semiclassical wave function at the origin [30]. Then we
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calculate the deflection function,

Θ(λ) = π−2

∫ ∞
r1

√
~2

2µλdr

r2
√
Ec.m.−Veff

(16)

where r1 is the outer zero of the square root, i.e. the radius of closest approach to the
scatterer and µ is the reduced mass. Note that with the replacement ~λ = b

√
2µE,

Eq. 16 becomes identical with the classical deflection function Θ(b), where b is the
impact parameter. The result is shown in Fig. 14. The behavior of Θ(λ) is the one
expected for a strong nuclear potential in a near orbiting kinematical situation in
which the c.m. energy approximately equals that of the top of the barrier for some
specific angular momentum. All the measured angular range is classically illumi-
nated. The deflection function exhibit no genuine minima, but rather a pronounced
cusp close to an orbiting logarithmic singularity. Therefore any interpretation of
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structures in angular distributions in terms of Airy oscillations can be discarded.
Rather we need an interpretation appropriate for orbiting, a well documented situ-
ation in classical physics [31]. We identify the cusp angular momentum as orbiting
momentum (λo) since this is related to the coalescence of two (barrier) turning points
and the innermost turning point given by the centrifugal barrier becomes classically
accessible. There are two branches that can be distinguished, an internal branch for
low active momenta λ < λo related to semiclassical trajectories which penetrate into
the nuclear pocket and a less developed external (barrier) branch (λ > λo) related to
trajectories deflected at the diffuse edge of the potential.

However this simple calculation cannot determine the relative importance of
these branches and provides no information about the interference effects of the cor-
responding semiclassical trajectories. To clarify these points it is best to go into the
complex r-plane and look for complex turning points, i.e. the complex roots of the
quantity Ec.m.−Veff − iW . This is an intricate numerical problem, because, for a
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components are shown separately.

WS optical potential, the turning points are located near the potential singularities
and there are an infinite number of such poles. The situation for integer angular mo-
menta is depicted in Fig. 15. Active turning points nearest the real axis are plotted
with color symbols. We observe an ideal situation with three, well isolated, turning
points for each partial wave.

The multireflection expansion of the scattering function in the Brink-Takigawa
approach reads,

SWKB(`) =
∞∑
q=0

Sq(`) (17)

where,

S0(`) =
exp(2iδ`1)

N(S21/π)
(18)
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and for q 6= 0,

Sq(`) = (−)q+1 exp[2i(qS32 +S21 + δ`1)]

N q+1(S21/π)
(19)

In these equations δ`1 is the WKB (complex) phase shift corresponding to the turning
point r1, N(z) is the barrier penetrability factor,

N(z) =

√
2π

Γ(z+ 1
2)

exp(z lnz−z) (20)

and Sij is the action integral calculated between turning points ri and rj ,

Sij =

∫ rj

ri

dr{2µ

~2
[Ec.m.−Veff − iW ]}1/2 (21)

S21 and S32 are independent of the integration path provided they lie on the first
Riemann sheet and collision with potential poles is avoided. Each term in Eq. 17
has a simple physical interpretation. The first term (the barrier term, denoted also
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10
-3

10
-2

10
-1

1

0 50 100 150

σ/
σ R 6Li+16O 25.7 MeV

R2PO3

10
-4

10
-3

10
-2

10
-1

1

10

0 50 100 150

σtot

F

N

10
-4

10
-3

10
-2

10
-1

1

10

0 50 100 150

θ (deg)

 σ
/σ

R

σbkg

F
10

-4

10
-3

10
-2

10
-1

1

10

0 50 100 150

θ (deg)

σpole

F

N
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SB) retains contributions from trajectories reflected at the barrier, not penetrating
the internal region. The qth term corresponds to trajectories refracted q times in the
nuclear interior with q-1 reflections at the barrier turning point r2. Summation of
terms q ≥ 1 can be recast into a single term,

SI =
exp[2i(S32 +S21 + δ`1)]

N(S21/π)2

1

1 + exp[2iS32]/N(S21/π)
(22)

and is known as the internal barrier scattering function. When the absorption in
the nuclear interior is large, the second factor in the above equation reduces to one
and we are left with the expression used in [22]. Since the semiclassical scatter-
ing function is decomposed additively, SWKB = SB +SI , the corresponding total
scattering amplitude is decomposed likewise as fWKB = fB + fI and conveniently
the corresponding barrier and internal barrier angular distributions are calculated as
σB,I = |fB,I |2, using the usual angular momentum expansion of the amplitudes.

The accuracy of the semiclassical calculation has been checked by comparing
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Fig. 21 – (Color online) Absorption profile for the WS potential VO1 compared with the results fro two
pole calculation. The Grühn-Wall deep at l ∼ 9 is due to the pole component in the S-matrix.

the barrier and internal barrier absorption profiles with the exact quantum-mechanical
result in Fig. 16. First, one observes that the semiclassical B/I expansion is an exact
decomposition of the quantum result. They are virtually identical at the scale of the
figure. The internal component gets significant values up to the grazing angular mo-
mentum (`g=12) and is negligibly small beyond this value. The barrier component
resembles a strong absorption profile and this justifies the interpretation that it cor-
responds to that part of the flux not penetrating into the nuclear interior. For values
near the orbiting angular momentum (`o ≈10), the two components interfere and a
downward spike appears in the total profile, in complete agreement with the quantum
result. This is the famous Grühn-Wall spike [32] introduced phenomenologically to
explain ALAS for α particle scattering, and appears here as a strong interference
between barrier and internal barrier amplitudes. Second, the B/I components are al-
most decoupled in the angular momentum space and therefore they will contribute in
different angular ranges.

Semiclassical cross sections are compared with the data in Fig. 17 . Better
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Fig. 22 – (Color online) Argand diagrams for the S-matrix calculated with WS potential VO1 compared
with two Regge pole approximation. (parameter set R2PO3).

insight into this technique is obtained by further decomposing the B/I components
into far and near (BF/BN and IF/IN) subcomponents. Clearly, the barrier component
dominates the forward angle region. Fraunhofer diffractive oscillations appear as the
result of BF and BN interference. At large angles, the internal contribution accounts
for the full cross section.

Thus, the intermediate angle exotic structure in angular distributions for the
elastic scattering of 6Li on 16O can be understood as a result of coherent interference
of two far-side subamplitudes generated by different terms in the uniform multire-
flection expansion of the scattering function (terms q=0 and q=1 in Eq. 17), corre-
sponding to the scattering at the barrier and the internal barrier. This interference
effect appears as a signature of a surprisingly transparent interaction potential for
loosely bound nucleus 6Li at this low energy which allows part of the incident flux
to penetrate the nuclear interior and reemerge with significant probability.

The Argand diagrams corresponding to the B/I decomposition is displayed in
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Fig. 18. Evidently, only the internal barrier amplitude is responsible for the resonant
behaviour of the low momentum partial waves.

4. REGGE POLES

We have seen in the preceding sections that the data could be described by
highly transparent potentials, such that the low absorption is not able to suppress the
resonant effects in the low partial waves. Semiclassically, these effects appear as a
consequence of multiple reflexions of the internal amplitude between the most inter-
nal complex turning points of the potential. A common property of the WS potentials
which describe well the data, they all posses several narrow shape (molecular) res-
onances located in the most active waves l = 8,9,10 (see Fig.19) In this section we
examine this effect in terms of a purely phenomenological Regge pole approxima-
tion.

For this purpose we adopt the ”product” representation of the S-matrix [19],

S(l) = Sbkg(l)Spole(l) (23)

where the background (bkg) component is borrowed from the strong absorption
model of Ericson [33],

Sbkg =

[
1 +β exp(−iα)exp

(
L− l

∆

)]−1

(24)

For the pole term we adopt the expression,

Spole(l) =
2∏
i=1

[
1 + i

Di(l)

l−Li− iΓ̂i(l)/2

]
(25)

This term describes resonances in l centered at Li with total width Γ̂i. In line with
McVoy [19] we assume the zeros and the widths slowly l dependent and vanishing
small as l→∞,

Di(l) =
Di

1 + exp( l−L∆i
)

(26)

Γ̂i(l) =
Γi

1 + exp( l−L∆i
)

(27)

Clearly, D measures the distance between the pole (p = 1/2Γ) and the zero
(z = 1/2Γ−D). The model has 12 parameters, twice as much as the WS model.
The reason is that we were not able to find a single pole unitary solution. Since the
problem is highly nonlinear there is no guarantee for the uniqueness of the solution.
We used a Monte Carlo procedure to generate input parameters and then minimized
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the usual χ2 objective function. From the numerous solution we found, we choose
to show only one set of parameters (Table 4) which has the merit that both Sbkg and
Spole are unitary. The poles are located in the upper complex l near L≈ 9,10, in line
with what we found from the other analyses. The cross sections obtained with this
model are plotted in Fig.20. The background component is important only at for-
ward angles, while the pole component contributes significantly at all angles. Only
the pole component contributes to the far side amplitude which displays only a shal-
low minimum near θ = 50◦. The nearby deep minimum, interpreted previously as a
Fraunhofer minimum, appears here as a result of the strong destructive interference
between far and near side amplitudes of the pole component alone. The background
absorption profile shown in Fig.21 is typical for strong absorption regime while the
the Grühn-Wall deep appears here as carried out by the pole component alone. The
corresponding Argand diagram displayed in Fig. 22 show clearly the resonant con-
tribution of the pole component.

5. CONCLUSIONS

We have analyzed the elastic scattering 6Li+16O at of 4 MeV/A in an effort
to obtain systematic information on the interaction of p-shell nuclei with light tar-
gets. Optical potentials for these nuclei are needed for studies where highly periph-
eral transfer reactions involving radioactive nuclei are used as indirect methods for
nuclear astrophysics and are an important factor in the accuracy and reliability of
these methods. At the present time, the best information on the optical potentials for
radioactive nuclei can be obtained only by extrapolation from adjacent less exotic
nuclei. Our intention is to narrow the ambiguities in the optical model potentials by
systematic studies of the scattering of loosely bound projectiles over a large range of
angles and energies, and extract information that can be used for systems involving
radioactive projectiles, for which elastic scattering data of very good quality are not
easily available.

The data, confirms the existence of an exotic intermediate angle structure, ob-
served previously [4] at higher energy. We interpret these structures as refractive
effects arising from a fine balance between the real and imaginary components of the
optical potential. We have performed a traditional analysis of the data in terms of
Woods-Saxon and microscopic folded potentials. On the other hand a range of effec-
tiveNN interactions have been used to generate folding potentials. Both approaches
lead to the conclusion that the optical potential is deep and surprisingly transpar-
ent, in agreement with findings for other more bound systems. Folding model form
factors have been renormalized in the usual way in order to account for the energy
and radial dependence of the dynamic polarization potential. The intermediate angle
structures could be reproduced only with potentials approaching a critical volume
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integral of about 280±10 MeV fm3 and a rms radius RV = 4.05± 0.1 fm and,
consequently, are severely selective, limiting the ambiguities in the determination
of the OMP. The remaining discrete ambiguities could be removed by including an
exact local representation of the knock-on exchange kernel within the Perey-Saxon
localization procedure. Our analysis does not confirm the eventuality of a canceling
effect between the repulsive dynamic polarization potential due to the coupling with
breakup channels and the attractive, dispersive component of the optical potential.
As a consequence all folding potentials require a renormalization NV < 1 to match
the required critical value of the real volume integral.

The present analysis shows that in order to reproduce the structures observed
at intermediate angles in this case, one needs to allow for a more complicated radial
dependence of the dynamic polarization potential, which can be energy and target
dependent, and requires deep real potentials.

In an effort to clarify the reaction mechanism responsible for the intermediate
angle structures, we performed extensive semiclassical calculations within the uni-
form multireflection expansion of the scattering function of Brink and Takigawa. It
has been shown that using complex trajectories, the (external) barrier/internal barrier
expansion is an exact realization of the dynamic decomposition of the quantum result
into components responsible for that part of the incident flux reflected at the barrier
and the part of the flux which penetrates into the nuclear interior and reemerges
with significant probability. By combining the B/I decomposition with the usual far-
side/near-side expansion, we explain the intermediate angle structure as a coherent
interference effect of two subamplitudes (BF and IF). Thus, this refractive effect ap-
pears as a signature of a highly transparent interaction potential. This decomposition
allows to isolate dynamically the resonant component of the S-matrix which is due to
multiple reflections of the low angular momentum waves between the most internal
complex turning points of the potential.

A completely different picture emerges by using a slight generalization of the
”product” Regge pole representation of the full S-matrix. Seeking for a unitary so-
lution, we found that the pole component is entirely responsible for the intermediate
angle structure and the oscillatory behaviour of the cross section at large angles.
Thus it is a matter of taste if we interpret intermediate angle structure as a resonant
refraction of equally well as a resonant diffraction.
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Table 1.

Best fit Woods-Saxon parameters. Reduced radii are defined in the heavy ion convention. Coulomb

reduced radius is fixed to rc=1 fm. RV and RW are the rms radii of the real and imaginary potentials,

respectively. The normalized χ2 is calculated assuming uniform 10% error.

Pot. V0 W0 rV rW aV aW χ2 σR JV RV JW RW

[MeV] [MeV] [fm] [fm] [fm] [fm] [mb] [MeV fm3] [fm] [MeV fm3] [fm]
VO1 162.21 5.02 0.53 1.47 0.993 0.654 9.81 1434 248 4.087 63 5.502
VO2 224.00 5.98 0.54 1.41 0.911 0.687 9.27 1430 318 3.839 68 5.397
VO3 282.22 7.00 0.57 1.37 0.844 0.719 9.59 1436 402 3.670 73 5.319
VO4 350.50 8.24 0.58 1.31 0.796 0.755 10.13 1438 496 3.551 78 5.229

Table 2.

Best fit JLM parameters. The notations are those from the text.

Pot. tV tW NV NW χ2 σR JV RV JW RW

[fm] [fm] [mb] [MeV fm3] [fm] [MeV fm3] [fm]
JLM1O-1 1.663 2.580 0.309 0.374 14.8 1429 200 4.314 56 5.162
JLM1O-2 1.096 2.959 0.417 0.389 13.1 1533 271 4.029 59 5.327
JLM1O-3 0.646 2.795 0.543 0.429 11.5 1513 354 3.879 64 5.327
JLM1O-4 0.136 2.652 0.685 0.474 14.0 1521 452 3.801 71 5.216

JLM3O-1 1.148 2.998 0.452 0.488 13.5 1541 269 4.021 58 5.485
JLM3O-2 0.733 2.763 0.588 0.532 11.6 1509 351 3.871 64 5.296
JLM3O-3 0.097 2.696 0.710 0.591 12.8 1525 442 3.767 71 5.243
JLM3O-4 0.090 3.523 0.890 0.757 21.3 1816 555 3.766 90 5.938

GOGNY-1 0.383 2.944 0.426 0.092 12.6 1540 284 4.072 60 5.427
GOGNY-3 0.083 2.844 0.520 0.114 12.3 1534 289 4.100 61 5.386

Table 3.

Best fit FLDD and M3Y parameters. The notations are those from the text.

Pot. tV tW NV NW χ2 σR JV RV JW RW

[fm] [fm] [mb] [MeV fm3] [fm] [MeV fm3] [fm]
FO1 1.969 3.026 -186.4 -53.3 14.6 1438 199 4.315 56 5.189
FO2 1.500 3.378 -248.3 -54.5 14.6 1542 266 4.019 57 5.479
FO3 1.182 3.163 -320.5 -58.9 12.8 1508 344 3.856 62 5.282
FO4 0.887 3.078 -400.0 -64.9 12.8 1513 431 3.733 68 5.205

M3YZR1 1.491 2.739 0.438 0.125 14.6 1438 199 4.315 56 5.159
M3YZR2 0.778 3.127 0.584 0.128 14.6 1463 266 4.022 57 5.482
M3YZR3 0.090 2.799 0.737 0.139 14.4 1499 352 3.908 62 5.208
M3YZR4 0.104 3.890 0.950 0.196 24.9 2025 451 3.908 87 6.177

M3YFR1 1.245 2.657 0.357 0.103 15.1 1463 202 4.313 58 5.190
M3YFR2 0.364 2.904 0.492 0.105 13.3 1532 279 4.056 59 5.387
M3YFR3 0.093 3.585 0.641 0.138 22.2 1877 380 4.034 77 5.974
M3YFR4 0.108 4.126 0.840 0.173 27.3 2238 494 4.035 96 6.480
M3YFR6 0.321 2.956 0.490 0.106 13.2 1536 278 4.052 59 5.429
M3YFR7 1.249 2.635 0.358 0.103 14.9 1447 202 4.315 57 5.173

Table 4.

Parameters for a two Regge pole unitary solution. The first 4 columns define the background S-matrix

and the next ones define the pole component. The approximate pole and zero positions predicted by the

model in the complex l-plane are given by Li+ ipi and Li+ izi respectively. See text for notations

Set L ∆ α β L1 ∆1 D1 Γ1 L2 ∆2 D2 Γ2 χ2 σR

R2PO3 14.73 3.08 -1.57 0.29 9.82 1.72 3.10 5.03 8.97 1.02 0.41 1.19 4.32 1437
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