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ABSTRACT

We show that the N = 2 superstring in d = 2D ≥ 6 real dimensions,
with criticality achieved by including background charges in the two real
time directions, exhibits a “coordinate-freezing” phenomenon, whereby the
momentum in one of the two time directions is constrained to take a specific
value for each physical state. This effectively removes this time direction
as a physical coordinate, leaving the theory with (1, d − 2) real spacetime
signature. Norm calculations for low-lying physical states suggest that the
theory is ghost free.
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The N = 2 superstring is usually considered to be unattractive physically for a number of

reasons. One of these is that although its critical dimension is 4, the N = 2 supersymmetry

implies the existence of a complex structure [1], which means that the spacetime signature

cannot be Minkowskian; instead it must be (0, 4), (2, 2) or (4, 0). The critical dimension

4 reflects the fact that the critical central charge for the N = 2 super-Virasoro algebra is

c = 6. This can be realised by two N = 2 superfields without background charges, thus

giving the usual N = 2 superstring in two complex dimensions [2,3]. In this paper, we study

more general realisations with arbitrary numbers of N = 2 superfields and with background

charges which are fixed so that the theories are critical. This gives rise to critical N = 2

superstrings in arbitrary numbers of complex dimensions. We show that the existence of

background charges will freeze one real coordinate, i.e. the momentum component in that

direction is constrained by the physical-state conditions to take a specific value for each

state. If we start from a theory with one complex time and choose the background charge

to lie in that direction, then the result of the coordinate freezing is to give a theory that

effectively has only one real time direction. Thus although N = 2 superstrings suffer from a

number of phenomenological defects, the spacetime signature of the critical theories in more

than four real dimensions can, at least, effectively be Minkowskian, i.e. (1, 2m) with m ≥ 2.

Therefore we shall assume in the rest of this paper that the background charge is taken to

lie in the complex time direction. We also show in this paper that the norms of low-lying

physical states are non-negative, suggesting that the theories are ghost free.

In component form, the currents for the N = 2 super-Virasoro algebra are given by

J = −ψµψ̄µ − α0 ∂φ0 + α0 ∂φ̄0 ,

G+ =
√

2(∂φ̄µψµ − α0 ∂ψ0) ,

G− =
√

2(∂φµψ̄µ − α0 ∂ψ̄0) ,

T = 1
2
ψµ∂ψ̄µ − 1

2
∂ψµψ̄µ − ∂φµ∂φ̄µ + 1

2
α0 ∂

2φ0 + 1
2
α0 ∂

2φ̄0 ,

(1)

where we have chosen the background charge to lie in the µ = 0 direction. The index µ runs

over 0, 1, . . . , D − 1. The central charge of this realisation is

c = 3(D − 2α2
0) . (2)

The anomaly-freedom condition c = 6 therefore requires that

α2
0 = 1

2
(D − 2) . (3)

A physical state |p
〉

satisfies the physical-state conditions

Lm

∣∣p
〉

= 0 = Jm

∣∣p
〉

m ≥ 0 ,

G+
r

∣∣p
〉

= 0 = G−
r

∣∣p
〉

r > 0 .
(4)
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(Since the intercepts of J0 and L0 are zero for the N = 2 super-conformal algebra, we include

these in the physical-state conditions (4).) Physical states can be constructed by acting on

an SL(2, C)-invariant vacuum
∣∣0

〉
with ground-state operators P (z), i.e.

∣∣p
〉
≡ P (0)

∣∣0
〉
. The

ground-state operators take the form

P (z) = R(z)eβ·φ̄+β̄·φ . (5)

(Normal ordering is understood.) The operators R(z) can be classified by their eigenvalues

ℓ and n under J0 and L0 respectively. The eigenvalue ℓ measures the fermion charge of

the operator R(z); each ψµ in a monomial in R(z) contributes +1, each ψ̄µ contributes −1,

and ∂φµ and ∂φ̄µ contribute 0. The eigenvalue n measures the conformal dimension of the

operator R(z), i.e. the level number.

At level n = 0, R is just the identity operator, with ℓ = 0, and P (z) is the “tachyon”

ground-state operator. At level n = 1
2
, R can be ξ̄µψ

µ, with ℓ = +1; or ξµψ̄
µ, with ℓ = −1.

At level n = 1, ℓ can be −2, 0, +2. In general, at level n, ℓ takes the values

ℓ = −2n, −2n+ 2, . . . , 2n− 2, 2n . (6)

It is convenient to work with 2D real coordinates ϕµ and ϕ̃µ, rather than the D complex

coordinates φµ, where µ = 0, 1, . . . , D − 1. Thus we define

φµ =
1√
2

(
ϕµ + iϕ̃µ

)
,

φ̄µ =
1√
2

(
ϕµ − iϕ̃µ

)
.

(7)

Correspondingly, we can introduce 2D parameters kµ and k̃µ which are defined by

βµ =
i√
2

(
kµ + ik̃µ

)
,

β̄µ =
i√
2

(
kµ − ik̃µ

)
.

(8)

It follows that

eβ̄·φ+β·φ̄ = eik·ϕ+ik̃·ϕ̃ . (9)

Thus kµ and k̃µ are the momenta conjugate to ϕµ and ϕ̃µ respectively.

For physical states with level number n and fermion charge ℓ, the J0 and L0 constraints

in (4) give

J0 : 0 = ℓ+ α0 (β0 − β̄0)

= ℓ−
√

2α0 k̃0 , (10a)

L0 : 0 = n− βµβ̄µ + 1
2
α0 (β0 + β̄0)

= n + 1
2
kµkµ + 1

2
k̃µk̃µ + i√

2
α0 k0 . (10b)
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In the usual discussion of the N = 2 superstring, for which D = 2 and hence from (2)

the background charge α0 is zero, equation (10a) implies that for all physical states the

fermionic charge of R(z) must be zero. This implies that in this case there are no physical

states occurring at levels with n a half-integer. (In fact, as discussed in [2,3], all the higher-

level physical states are longitudinal, and hence have no physical degrees of freedom.)

We are interested in the case where D is greater than 2, which implies, from (2), that

α0 is real. It follows from equation (10a) that the momentum component k̃0 is “frozen” to

the value

k̃0 =
ℓ√

2 α0

. (11)

(A similar momentum-freezing phenomenon was found for the bosonic W3 string in [4]. In

fact it seems to be the case that momentum freezing occurs for any string theory based on

an extended conformal algebra with additional bosonic currents, when background charges

are present.)

The hermiticity conditions for L0 and J0 imply that

k∗i = ki i = 1, 2, . . . , D − 1 ,

k̃∗µ = k̃µ µ = 0, 1, . . . , D − 1 ,
(12)

where “∗” denotes complex conjugation; whilst k0 must satisfy a condition that is modified

by the background charge:

k∗0 = k0 − i
√

2α0 . (13)

For this, it is convenient to introduce a shifted momentum k̂0 that is real:

k̂0 = k0 −
i√
2
α0 , (14)

It follows that the complex-conjugation relations for βµ and β̄µ are

β∗
i = −β̄i ; β̄∗

i = −βi , (15a)

β∗
0 = −β̄0 − α0 ; β̄∗

0 = −β0 − α0 , (15b)

where the index i = 1, 2, · · · , D − 1.

For the theory to be unitary, the norms of the physical states should all be non-negative.

For the case of the N = 2 superstring in D = 2 complex dimensions, for which background

charges vanish, the no-ghost theorem has been discussed in [3,5]. For the case of interest in

this paper, D > 2, we shall show explicitly that at the levels n = 1
2

and n = 1, the norms for

the physical states are non-negative, too. Usually, it seems to be the case that the absence

of negative-norm states at low-lying levels provides a reliable indication of the ghost freedom

of the theory.
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At level n = 1
2
, there are vector states which have fermion charge ℓ equal to +1 or −1.

Without loss of generality, we shall focus on the ℓ = +1 states, for which the ground-state

operator is given by (5) with

R(z) = ξ̄µψ
µ(z) . (16)

In addition to the J0 and L0 constraints, as given in (10a,b), there is, in this case, one other

nontrivial constraint implied by the physical-state conditions (4), namely G−
1/2

∣∣p
〉

= 0. This

implies

ξ̄µβ
µ − ξ̄0α0 = 0 . (17)

From this, we can solve for ξ̄0 in terms of ξ̄i:

ξ̄0 =
ξ̄iβi

β0 + α0

. (18)

The norm N of these states is

N = ξ̄∗µξ̄
µ = −ξ̄∗0 ξ̄0 + ξ̄∗i ξ̄i . (19)

Substituting (18) into (19), we can write N as

N = ξ̄∗i

(
δij − V ∗

i Vj

)
ξ̄j

≡ ξ̄∗iNij ξ̄j ,
(20)

where i = 1, 2, . . . , D − 1 and

Vi =
βi

β0 + α0

. (21)

It is easy to see that there are D−2 transverse eigenvectors of Nij with eigenvalue +1, whilst

the eigenvector parallel to Vi has eigenvalue 1 − V ∗
i Vi, which is zero by virtue of the J0 and

L0 constraints given in (10a) and (10b). It follows that of the D − 1 independent complex

polarisation states, one has zero norm, whilst the remaining D−2 states have positive norm.

A completely analogous discussion can be given for the ℓ = −1 vector states at level n = 1
2
,

leading to the same result for the numbers of postive-norm and zero-norm states.

At level n = 1 we know from equation (6) that the fermion charge ℓ can be −2, 0, or +2.

The ℓ = −2 case essentially gives the same result for the norms as the ℓ = +2 case; we shall

therefore just consider the ℓ = +2 and ℓ = 0 cases. For ℓ = +2, the ground-state operator

R(z) in equation (5) takes the form

R(z) = ξ̄µνψ
µψν . (22)

In addition to the J0 and L0 constraints, there is again just one other nontrivial constraint,

namely G−
1/2

∣∣p
〉

= 0. This implies that the antisymmetric polarisation tensor ξ̄µν must

satisfy the following transversality condition:

β̄∗
0 ξ̄0ν + βiξ̄iν = 0 . (23)
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Thus we can solve for ξ̄0i in terms of ξ̄ij, and substitute this into the norm ξ̄∗µν ξ̄
µν to show

that it is positive semi-definite: Of the 1
2
(D − 1)(D − 2) independent complex components

of the polarisation tensor ξ̄µν, we find that D − 2 give rise to zero-norm states, whilst the

the remaining 1
2
(D − 2)(D − 3) give states of positive norm.

For ℓ = 0 states at level n = 1, R(z) of equation (5) takes the form

R(z) = εµνψ
µψ̄ν + ξ̄µ∂φ

µ + ξµ∂φ̄
µ . (24)

In this case, in addition to the J0 and L0 constraints, we have three other independent

nontrivial constraints, coming from J1, G
+

1/2
and G−

1/2
. They give, respectively,

εµ
µ = α0 (ξ0 − ξ̄0) , (25a)

ξ̄µ = β∗
ν ε

µν , (25b)

ξµ = −β̄∗
ν ε

νµ . (25c)

The norm N for these states is given by

N = ε∗µνε
µν + ξ̄∗µξ̄

µ + ξ∗µξ
µ . (26)

From (25b) and (25c) we may eliminate ξ̄µ and ξµ in (26), and express the norm purely in

terms of εµν , subject to the constraint implied by (25a). It is convenient to decompose εµν

into irreducible transverse and traceless parts, in the following manner:

εµν = εTT
µν + ε̄T

µβν + β̄µε
T
ν + λβ̄µβν + κηµν , (27)

where
εTTµ
µ = 0 , εTT

µν β
ν∗ = 0 , β̄µ∗εTT

µν = 0 ;

εT
µβ

µ∗ = 0 , β̄µ∗ε̄T
µ = 0 .

(28)

Substituting (27) into (25a-c), we find that κ and λ are related by

1
3
(c− 6)κ+ (λ+ 2κ)

(
1 − 1

2
α0 (β0 + β̄0)

)
= 0 , (29)

where we have made use of equations (2), (10a,b) and (15a,b). Thus λ and κ are not

independent, and together represent just one complex state. Now we find that the norm N
is given by

N = εTT∗
µν εTTµν + 1

3
(6 − c)κ∗κ− (λ+ 2κ)∗(λ+ 2κ) . (30)

The criticality condition c = 6 implies, from equation (29), that λ + 2κ = 0. Consequently,

the last two terms in (30) vanish, showing that the corresponding state has zero norm. The

absence of εT
µ and ε̄T

µ in (30) implies that these components of the decomposition (27) of εµν

are associated with zero-norm states, numbering 2D − 2 in all.
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Solving for εTT
00 , εTT

0i and εTT
i0 , using (28), the remaining terms in (30) give

N = εTT∗
ij εTT

ij − εTT∗
ij εTT

ik V̄ ∗
j V̄k − εTT∗

ji εTT
ki V

∗
j Vk + εTT∗

ij εTT
kl V

∗
i V̄

∗
j VkV̄l , (31)

where i, j, k, l = 1, 2, . . . , D − 1, Vi is given in (21) and V̄i is given by an analogous

expression with βµ replaced by β̄µ. It is straightforward to see that of the (D− 1)2 complex

states, the (D−2)2 transverse states have positive norm, whilst the remaining 2D−3 states

have zero norm.

With these results, we have demonstrated the absence of negative-norm states at levels

n = 1
2

and n = 1. Although we have not considered a general no-ghost theorem here, we

would expect that if negative-norm states were to occur, they would have arisen already at

the levels that we have examined. The theories we are considering here differ qualitatively

from the usual D = 2 superstring, for which the no-ghost theorem has been discussed [3,5],

since the extra spatial dimensions allow the existence of positive-norm as well as zero-norm

physical states at levels n > 0. As usual in string theory, the occurrence of the zero-norm

states indicates that the physical states at level n > 0 describe gauge fields. Note also that

when D > 2 not only do positive-norm excited states occur, but also the level number n can

take half-integer as well as integer values. This contrasts with the D = 2 case where, since

α0 = 0, equations (6) and (10a) imply that n can take only integer values.

The most striking feature arising in the D > 2 case is that the momentum component k̃0

in the direction of the real time coordinate ϕ̃0 is frozen to a specific value for each physical

state, as given by (11). Because of this, the coordinate ϕ̃0 does not describe an observable

spacetime dimension. (This is somewhat analogous to Kaluza-Klein dimensional reduction,

where one truncates to the zero-momentum mode in the Fourier expansion of the coordinate

dependence for a compactified coordinate, thereby obtaining a theory in one less spacetime

dimension.) Thus we are effectively left with just one real time dimension, parametrised by

the coordinate ϕ0. Note that this momentum-freezing phenomenon does not occur in the

usual N = 2 superstring in D = 2 complex dimensions, since then α0 is zero and so the

momentum component k̃0 will not be constrained by (10a).

In a system which is Poincaré invariant, mass is defined by the Poincaré Casimir operator

−PµPµ. For N = 2 superstring theories, the spacetime has a complex structure, and the

Lorentz subgroup SO(2, 2D − 2) is replaced by U(1, D − 1). When D > 2, the presence

of the background charges will break this symmetry further. Thus one cannot have a clear

definition of the “mass” such as the Poincaré Casimir operator. In this case, from the mass-

shell condition (10b) there are two natural mass-type operators that one might define [4]:

M and M̃, given by

M2 ≡ −k∗µkµ − k̃∗i k̃i , (32a)

M̃2 ≡ k̂0k̂0 − k∗i ki − k̃∗i k̃i . (32b)
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It follows from (10a) and (10b) that the spectra for M and M̃ are

M2 = 2n− ℓ2

2α2
0

, (33a)

M̃2 = 2n− ℓ2

2α2
0

− 1
2
α2

0 . (33b)

For now, we reserve judgement on which, if either, of these provides a useful generalisation of

the notion of mass. Note that these formulae would suggest that the theories would contain

infinite numbers of arbitrarily massive tachyonic states corresponding to sufficiently large ℓ

values, within the range given by (6), at given level n. This problem could be overcome by

truncating the states of the theory to just the ℓ = 0 sector. It is worth noting that this

truncation would have the consequences that only levels with n equal to an integer would

survive, and also that the momentum k̃0 of all surviving physical states would be frozen to

the value zero.

ACKNOWLEDGMENT

We are very grateful to HoSeong La for his meticulous reading of the manuscript.

REFERENCES
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