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Abstract

experimentally tested.

Background: In an effort to reconstitute the NAD" synthetic pathway in Escherichia coli (E. coli), we produced a
set of gene knockout mutants with deficiencies in previously well-defined NAD" de novo and salvage pathways.
Unexpectedly, the mutant deficient in NAD" de novo and salvage pathway | could grow in M9/nicotinamide medium,
which was contradictory to the proposed classic NAD* metabolism of £ coli. Such E. coli mutagenesis assay suggested
the presence of an undefined machinery to feed nicotinamide into the NAD™ biosynthesis. We wanted to verify
whether xanthosine phophorylase (xapA) contributed to a new NAD™ salvage pathway from nicotinamide.

Results: Additional knockout of xapA further slowed down the bacterial growth in M9/nicotinamide medium,
whereas the complementation of xapA restored the growth phenotype. To further validate the new function of xapA,
we cloned and expressed E. coli xapA as a recombinant soluble protein. Biochemical assay confirmed that xapA was
capable of using nicotinamide as a substrate for nicotinamide riboside formation.

Conclusions: Both the genetic and biochemical evidences indicated that xapA could convert nicotinamide to
nicotinamide riboside in E. coli, albeit with relatively weak activity, indicating that xapA may contribute to a second
NAD" salvage pathway from nicotinamide. We speculate that this xapA-mediated NAD" salvage pathway might be
significant in some bacteria lacking NAD" de novo and NAD" salvage pathway | or I, to not only use nicotinamide
riboside, but also nicotinamide as precursors to synthesize NAD'. However, this speculation needs to be
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Background

Nicotinamide adenine dinucleotide (NAD*) and NAD™
phosphate (NADP"') are two of the most important
coenzymes in cells. They act as either electron donors
or electron acceptors in more than 300 enzymatically
catalyzed oxidoreductions [1,2]. NAD" also plays an
essential role in producing ATP, and is involved in
various cellular processes as a substrate for a number
of degradation enzymes [3-9]. Abnormal regulation of
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NAD" metabolism may result in or is associated with
serious metabolic disorders and diseases, such as diabetes,
cancers, neurological disorders and cardiovascular disease
[2,10-17]. Furthermore, the disruption of NAD" synthesis
can cause growth suppression and cell death [18-21].
NAD" can be synthesized de novo from simple amino
acid precursors such as tryptophan or aspartate, or con-
verted from intermediates such as nicotinamide (NAM),
nicotinic acid (NA) or nicotinamide riboside (NR) via
salvage pathways, which are designated as salvage path-
ways I (ie., (NAM—) NA — NaMN [nicotinic acid mo-
nonucleotide] — deNAD [deamino-NAD] — NAD"), II
(i.e., NAM — NMN [nicotinamide mononucleotide] —
NAD"), and III (ie., NR — NMN — NAD"), respectively
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(Figure 1A) [1,2,12,22-26]. All three pathways are in fact
interconnected. However, some organisms (e.g., humans
and other vertebrates) may lack a nicotinamidase (pncA;
EC 35.1.19) to prevent NAM from entering pathway I
whereas others (e.g., Escherichia coli) lack a nicotinamide
phosphoribosyl transferase (NMPRT; EC 2.4.2.12) to
prevent NAM from entering pathway II [13,27]. In yeast,
pathway I may be extended by first converting NR to
NAM [23].

Some NAD'-consuming enzymes may break down
NAD" to form various types of ADP-ribosyl groups, in
which the NAM moiety is the most common end-product
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[28,29]. In a variety of physiological events, some of these
enzymes (e.g., poly ADP ribose polymerases [PARPs]) can
be significantly activated, such as during the regulation
of apoptosis, DNA replication, and DNA repair [30], thus
potentially leading to the rapid depletion of intracellular
NAD", and associated accumulation of NAM [21]. Since
NAM is also known as a strong inhibitor of several NAD
(P)"-consuming enzymes, uncontrolled NAM accumula-
tion may negatively affect not only NAD" metabolism,
but also cellular functions such as gene silencing, Hst1-
mediated transcriptional repression, and life span of cells
[31-34]. Therefore, NAD" salvage pathways I and II are
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Figure 1 lllustration of NAD" synthetic pathways. A) NAD" de novo synthetic and salvage pathways in Escherichia coli. Dots indicate gene
deletions generated by mutagenesis on the pathway. B) Comparison of NAD" synthetic pathways between E. coli that is able to synthesize NAD" via de

novo and salvage pathways 1 and Il and pathogenic bacterium Pasteurella multocida that is potentially capable of synthesizing NAD" via salvage pathway
I and 1. The xapA/PNP-mediated pathway lllb may enable P. multocida and similar pathogenic bacteria to use NAM as a precursor for NAD" biosynthesis.
C) Chemical structures of NAD* and relevant intermediates (R = Ribose sugar, P = Phosphoric acid, Ad = Adenine). Abbreviations of compounds: NA,
nicotinic acid; NaAD, nicotinic acid adenine dinucleotide (Deamino-NAD); NAD™, nicotinamide adenine dinucleotide; NAM, nicotinamide; NaMN, nicotinic
acid mononucleotide; NMN, nicotinamide mononucleotide; NR, nicotinamide riboside; QA, quinolinic acid; Abbreviations of enzymes: nadD,
NaMNAT, nicotinic acid mononucleotide adenylyltransferase; nadE, NADS, NAD™ synthase; nadF, NAD" kinase; nadR/nadM, nicotinamide-nucleotide
adenylyltransferase (NMNAT); NMPRT, nicotinamide phosphoribosyltransferase; NRK, ribosylnicotinamide kinase; pncA, nicotinamidase; pncB, NAPRTase,
nicotinic acid phosphoribosyltransferase; pncC, NMN deamidase; nadC, QAPRTase, quinolinic acid phosphoribosyltransferase.
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important not only in regenerating NAD", but also in pre-
venting the accumulation of NAM. While NAM may be
converted to NMN by NMPRT (pathway II) or NA by
pncA (pathway I), there were no reports on other enzymes
that might act on NAM.

In the present study, we have discovered by genetic and
biochemical approaches that xanthosine phosphorylase
(xapA; also known as purine nucleoside phosphorylase II
[PNP-II], EC 2.4.2.1) is also capable of converting NAM to
NR in E. coli. XapA was originally identified from E. coli,
and known to catalyze the reversible ribosyltransfer on
purine nucleosides including xanthosine, inosine and
guanosine [35-37]. Our data has not only assigned a novel
function to xapA, but also uncovered a potential new
route in the NAD" salvage, in which the pathway III is
extended by using NAM as an alternative precursor in
xapA-possessing organisms.

Results

Genetic disruption of NAD* de novo biosynthesis and
NAD™ salvage pathway | in Escherichia coli

In an effort to uncover the new function of E. coli xapA in
NAD" salvage pathway from nicotinamide, we produced
a set of gene knockout mutants deficient in previously
defined NAD™ synthetic pathways, including NAD" de
novo and NAD" salvage pathways I and III for genetic
investigation purpose (see Table 1, Additional file 1:
Figure S1 and Additional file 2: Table S1). We first
generated a mutant strain deficient in NAD" de novo
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pathway (BW25113AnadC) that was unable to survive in
the M9 minimal medium, but could restore the growth
to a level comparable to the wild-type BW25113 when
NA or NAM was supplied to allow NAD" synthesized
via NAD" salvage pathway I (Figure 2 and Table 2).

We then generated double-deletion mutant BW25113A
nadCApncA to also interrupt the conversion from NAM to
NA in NAD" salvage pathway L. This mutant was expected
to only survive in the absence of NA, but not NAM due to
the lack of NAD" salvage pathway II in E. coli (Figure 1).
The growth of BW25113AnadCApncA mutant in the
absence of NA was confirmed as expected, but we also
unexpectedly observed its survival in M9/NAM medium,
albeit with a much slower growth rate (i.e., 380.8 min gen-
eration time vs. 53.4 min for BW25113AnadC mutant)
(Table 2 and Figure 2). This result suggested the presence
of another unknown salvage pathway can participate in
the conversion of NAM from medium into NAD".

Genetic evidence on the involvement of xapA in NAD*
salvage pathway

The ability for BW25113AnadCApncA to grow in M9/
NAM medium implied a previously undefined enzyme
(s) might be involved in feeding NAM into the NAD"
synthesis. The poor efficiency in utilizing NAM was in-
dicative of the presence of an enzyme that might use
NAM as an atypical substrate, but the activity was suffi-
cient for bacterial growth when other NAD" intermediates
were unavailable. Based on the substrate preference of

Table 1 Escherichia coli strains and plasmids used in this study

Strains or plasmids

Genotypes and comments

Source or reference

Strain

DH5a Routine cloning host In-house collection
BW25113 B3 AlacZ4787 hsdR514 A(araBAD)567 A(rhaBAD)568 rph-1 CGSC
BW25113AnadC BW25113 with chromosomal nadC deletion This study
BW25113AnadCApncA BW25113 with chromosomal nadC and pncA deletion This study
BW25113AnadCApncAAxapA BW25113 with chromosomal nadC, pncA, and xapA deletion This study
BW25113AnadCApncAAnadR BW25113 with chromosomal nadC, pncA, and nadR deletion This study
BW25113AnadCApncAAxapAAnadR BW25113 with chromosomal nadC, pncA, xapA and nadR deletion This study

Plasmid

pKD13 Gene knockout procedure CGSC

pKD46 Gene knockout procedure CGSC

pCP20 Gene knockout procedure CGSC

PBAD-hisA bla* In-house collection
pBAD-EGFP pBAD-hisA with EGFP gene This study
pBAD-xapA pBAD-hisA with xapA gene This study

pET28a Kana™ In-house collection
pET28-xapA pET28a with xapA gene This study
PEGFP-N2 Template for PCR amplification of EGFP gene In-house collection

“CGSC is the E. coli Genetic Stock Center of Yale University.
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Figure 2 Growth of wild-type Escherichia coli (BW25113) and mutants in LB or M9 agar plates supplied with NAM or NA. Strains in area
|-Vl represent BW25113, BW25113AnadC, BW25113AnadCApncA, BW25113AnadCApncAAxapA, BW25113AnadCApncAAnadR and
BW25113AnadCApncAAxapAAnadR, respectively. See Figure 1 for abbreviations.

NAM NA

xapA towards purine nucleosides and the fact that its
sister enzyme deoD (PNP-I) is able to use NR as a non-
typical substrate to form NAM in vitro [38], we hypothe-
sized that xapA might be a candidate enzyme responsible
for converting NAM to NR. To test this hypothesis, we
developed three multiple gene deletion mutants, namely,
BW25113AnadCApncAAxapA, BW25113AnadCApncA
AnadR, and BW25113AnadCApncAAxapAAnadR (Table 1).
Among them, the growth of BW25113AnadCApncAAxapA
was worse than that of BW25113AnadCApncA in the
M9/NAM medium (i.e., 620.4 min generation time in
BW25113AnadCApncAAxapA vs. 380.8 min in BW2
5113AnadCApncA) (Figure 2 and Table 2). When a com-
plementary plasmid pBAD-xapA (but not the control
vector pPBAD-EGFP) was reintroduced into this triple-
deletion mutant, its growth rate was restored to a similar
level of that of BW25113AnadCApncA (Table 2). We also
assessed the growth of this triple-deletion strain in
M9/NAD" medium, and observed its normal growth in a
dose-dependent manner (Figure 3). The potential involve-
ment of other unknown pathway(s) in making NAD"
could be ruled out, since this triple-deletion trans-
formed with pBAD-xapA was unable to growth in the
M9 minimal medium (Table 2).

The contribution of xapA in NAD" salvaging was fur-
ther tested by generating mutants with additional dele-
tion of nadR (i.e., BW25113AnadCApncAAnadR and

BW25113AnadCApncAAxapAAnadR). Both mutants
were able to grow in M9/NA medium, but not in M9
or M9/NAM medium (Figure 2 and Table 2), indicat-
ing that NR produced by xapA from NAM was connected
to the nadR-mediated NAD" salvage pathway IIIL. Collect-
ively, these observations implied the capability for xapA to
use NAM as a less efficient substrate to produce NR that
could be routed into the pathway III (i.e, NAM — NR —
NMN — NAD") in vivo.

Biochemical evidence on the conversion of NR from NAM

by E. coli xapA

The genetic data on the involvement of xapA in converting
NAM to NR was further validated by biochemical assays
using recombinant xapA protein that was expressed using
an E. coli expression system and purified into homogeneity
(see Additional file 1: Figure S2). Standard NR sample used
in these assays was prepared by a hydrolysis of 5'-phos-
phate groups from NMN by CIAP. The ability for xapA to
convert NAM to NR was first confirmed by HPLC-ESI-
MS/MS assay. In reactions catalyzed by recombinant xapA
and CIAP (positive control), selected-ion monitoring chro-
matogram (SIM) detected a single peak at the retention
time corresponding to NR (Figure 4A and 4C). Further posi-
tive MS/MS analysis at m/z 255 detected two major peaks
with m/z at 255 and 123, representing NR (255 Da) and the
NAM (123 Da) moiety, respectively (Figure 4B and 4D),

Table 2 Generation time (minutes) of Escherichia coli strains in different culture media*

No. Strain Pathway Medium M9 M9 + NA M9 + NAD* M9 + NAM
Deficiency Expected Observed Expected Observed Expected Observed Expected Observed

1 BW25113 None + 65.8 + 498 + 50.5 + 494

2 AnadC dn - - + 494 + 494 + 534

3 AnadCApncA dn, | - - + 503 + 492 - 380.8

4 AnadCApncAAxapA dn, | - - + 492 + 50.0 - 6204

5 AnadCApncAAxapA/pBAD-xapA  dn, | - NT + NT + + - 3764

6 AnadCApncAAxapA/pBAD-EGFP  dn, | - NT + NT + + - 626.8

7 AnadCApncAAnadR dn, I, 1l - - + 51.1 + NT - -

8 AnadCApncAAxapAAnadR dn, I, 1ll - - + 49.7 + NT - -

*Notes: NA, nicotinic acid; NAM, nicotinamide; NAD*, nicotinamide adenine dinucleotide; NT, not tested; —, No proliferation; +, proliferation; dn, de novo NAD*

synthesis; I, NAD" salvage pathway I; Ill, NAD* salvage pathway IIl.
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Figure 3 Dose-dependent effects of NAD* on the growth of Escherichia coli mutant with triple-deletion (BW25113AnadCApncAAxapA).
A) Growth curve of the mutant in M9 minimal medium supplied with various concentration of NAD*. B) The relationship of the inverse of the
NAD* concentration (from 0.1 to 1 ug/ml) to the bacterial generation time in M9/NAD* medium for 7 h. C) The relationship of the NAD"
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Figure 4 Biochemical evidence on the synthesis of NR from NAM catalyzed by E. coli xapA as determined by HPLC-ESI-MS/MS.

A) Selected-ion monitoring (SIM) chromatogram at m/z 254.3-255.3 Da of NR converted from NAM by recombinant xapA. B) Positive ES-MS/MS spectrum
of the NR peak produced by xapA and eluted from HPLC showing an ion fragmentation pattern characteristic to NR, including two major peaks
representing NR and the NAM moiety with m/z at 255 and 123, respectively. C) SIM chromatogram of NR converted from NAM by CIAP as positive
control. D) Positive ESI-MS/MS spectrum of the NR peak produced by CIAP and eluted from HPLC. The retention time and MS/MS spectra were
identical to those produced by standard NR control, confirming the synthesis of NR from NAM by xapA. See Figure 1 for abbreviations.
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which confirmed the xapA-catalyzed production of NR
from NAM.

Further kinetic analysis showed that the K, value
towards NAM was 5.81 mM, and the V., was at
400 nmol/min/mg protein. The kinetic data indicated
that xapA in E. coli was much less efficient in using
NAM to synthesize NR than using typical substrate
(K at 5.81 mM on NAM vs. 72 uM on xanthosine) [37],
or when compared with other NAD" salvaging enzymes
(e.g., K, values at 70 uM and 2 puM for pncA and pncB on
NAM and NA, respectively) [39,40], but similar to those
of deoD (PNP-I) from calf and E. coli (i.e., 1.48 mM
and 0.62 mM, respectively) in converting the non-typical
substrate NR to NAM [38].

The contribution of xapA in NAD" salvaging was also
confirmed in bacterial mutants cultured in M9/NAM
medium, in which the consumption of extracellular NAM
by the triple-deletion (BW25113AnadCApncAAxapA)
was reduced by 95% in comparison to that by the
double-deletion BW25113AnadCApncA (Figure 5A). The
consumption of extracellular NAM was restored when
vector expressing xapA (but not the EGFP control) was
reintroduced to the triple-deletion (Figure 5A). The
level of intracellular NAD" was detectable in BW2511
3AnadCApncA (150 ng), but virtually undetectable in
BW25113AnadCApncAAxapA (Figure 5B). Again, the
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Figure 5 Consumption of extracellular NAM (A) to form
intracellular NAD* (B) by four strains of Escherichia coli derived
from BW25113 cultured in M9/NAM medium until the strain
BW25113AnadCApncA reached the mid-log phase. Strain 1,
BW25113AnadCApncA; strain 2, BW25113AnadCApncAAxapA; strain 3,
BW25113AnadCApncAAxapA/pBAD-xapA; and strain 4, BW25113A
nadCApncAAxapA/pBAD-EGFP.
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intracellular NAD" level could be restored by reintroducing
xapA into the triple-deletion, but not by EGFP (Figure 5B).

Discussion

Contribution of xapA to an alternative NAD* salvage
pathway from NAM

Xanthosine phosphorylase (xapA, EC 2.4.2.1) is a second
purine nucleoside phosphorylase (PNP-II) in E. coli. Simi-
lar to PNP-I (deoD), it mainly functions in the purine
metabolism by carrying out both phosphorylation and
synthesis of purine and purine deoxy-/ribonucleosides
[41]. Here we first obtained genetic evidence that xapA
was probably involved in NAD" salvage in E. coli. We also
provided more direct biochemical evidences that xapA
was able to synthesize NR from NAM. Both bacterial
growth experiments and enzyme kinetic data indicated
that xapA used NAM in a much less efficient way than
using its typical substrates (i.e., purine analogs), suggesting
that NAM served only as a non-typical substrate, which
was comparable to the PNP-I. Therefore, the capability
to convert NAM to NR appeared to be a “side effect”
for xapA. However, such a side-effect was sufficient to
maintain the survival of E. coli by feeding NAM into
the salvage pathway III when all other NAD" synthetic
pathways were unavailable and only NAM was present
in the minimal medium. For clarity, we designated the
xapA-mediated extension of NAD" salvage pathway III as
the salvage pathway IIIb (ie, NAM — NR— NMN —
NAD") (Figure 1).

Potential uses of xapA-mediated salvage pathway in drug
development

The true biological function of pathway IIIb may be less
significant in E. coli, as this bacterium is able to synthesize
NAD" via multiple routes (ie., de novo, NAD" salvage
pathways I and III). However, we speculate that it may be
highly significant for some other pathogenic bacteria that
lack NAD" de novo, NAD" salvage pathway I and/or II
for NAD" synthesis. One of the examples might be the
gram-negative coccobacillus Pasteurella multocida that
causes a range of diseases in humans and animals. It
appears to be V-factor-independent, indicating its cap-
ability to utilize NAM as the pyridine nucleotide, as
well as NAD, NMN and NR to synthesize NAD" [42].
Analysis of NAD" biosynthesis pathways reveals that
P. multocida lacks NAD" de novo and NAD" salvage
pathway I but possesses NAD" salvage pathway II and
NAD" salvage pathway III for the presence of nadV,
NMPRT homolog in bacteria, and nadR [26] (Figure 1B).
Furthermore, a PNP homologue (see Additional file 3:
Text S1) is also present in the P. multocida genome.
Accordingly, it seems reasonable to speculate that P.
multocida may synthesize NAD" from NAM through
NAD" salvage pathway II and/or NAD" salvage pathway
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IIIb. However, the hypothesis on the potential contribu-
tion of NAD" salvage pathway IIIb to NAD" biosynthesis
in such bacteria remains to be tested. If the hypothesis is
confirmed, the xapA or its isoenzyme(s) may be explored
as a novel target for developing therapeutics.

In fact, the NAD" salvage pathways of human is similar
to that of P. multocida in that humans lack NAD" salvage
pathway I, but possess NMPRT-mediated NAD" salvage
pathway II and NRK (isozyme of nadR)-mediated NAD"
salvage pathway III (Figure 1A) [23,24,43]. NMPRT is
highly expressed in many types of tumor cells, including
human hematologic malignancies, to maintain adequate
levels of NAD" [44-46]. Inhibitor(s) of NMPRT, such as
FK866, has been in Phase II clinical trials [47,48]. How-
ever, NAM was found to have an antidote potential for
the cellular effects of FK866 [49], which indicates that
the NAD" synthesis pathways from NAM may be not
completely disrupted. As the PNP-mediated new salvage
pathway is also present in mammals (see Additional file 2:
Table S2 and Additional file 3: Text S2), it remains to be
tested whether human PNP (counterpart of xapA) is also
able to utilize NAM to synthesize NR as an alternative to
pathway II (i.e., via pathway IIIb), thus responsible for the
slow anti-cancer action of FK866. In fact, the enzymes
involved in the pathway IIIb, such as human PNP and
NRK, are all effective anticancer drug targets [50,51].
When the inhibitors of PNP and/or NRK are used in
combination with FK866, rapid NAD" depletion and
NAM accumulation may occur, hopefully increase the
anticancer efficacy or widen the antitumor spectra, or
even conquer the drug resistance.

Contribution of xapA to a new pyridine nucleotide cycle
Additionally, this newly discovered pathway IIIb may
also be significant in the pyridine nucleotide cycles (PNCs)
that are mediated by the breakdown and re-synthesis of
NAD" [52]. PNCs are economic and efficient approaches
to recycle NAD" intermediates back into NAD" without
the actual consumption of NAD", which ensures the
homeostatic balance between NAD" degradation and
replenishment. Thus far, PNCs are found to consist of
three to seven reaction steps, which are correspondingly
named as PNC III-VII (see Additional file 1: Figure S3)
[52]. When NAD" is broken down to NAM by the
NAD"-consuming enzymes, the NAM-based NAD" re-
synthetic pathways involved in PNCs are identical to
the NAD" salvage pathways. More specifically, the
salvage pathway I and II are the same as the NAD" re-
synthesis routes of PNC V and PNC III, respectively.
Therefore, the presence of xapA-mediated NAD" salvage
pathway IIIb would also extend the related PNC IV,
which is proposed here as PNC IV-B to distinguish it
from the existing PCN-IV cycle (see Additional file 1:
Figure S3).
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Conclusions

We have provided genetic and biochemical evidences
showing that xanthosine phosphorylase (xapA) in E. coli
is able to utilize nicotinamide (NAM) as an atypical sub-
strate to synthesize nicotinamide riboside (NR), which
extends the NAD" salvage pathway III to use NR as an
alternative precursor (i.e., pathway IIIb). This unexpected
discovery not only assigns a new function to xapA, but
also increases our current knowledge on the NAD"
biosynthesis and pyridine nucleotide cycles.

Methods

Bacterial strains, plasmids, media and reagents

The BW25113 strain of E. coli served as a parent strain for
generating mutants with single to multiple gene deletions
within the NAD" synthetic pathways (see Table 1 for a
list of strains and plasmids used in this study). Bacteria
were cultured in lysogeny broth (LB), LB agar, M9 broth
or M9 agar as described [53]. When required, supple-
ments were typically used at the following final concen-
trations: 100 pg/ml of ampicillin, 50 pg/ml of kanamycin,
1 mmol/liter of L-arabinose, 10 pg/ml of NAM, 10 pg/ml
of NA, and 10 pug/ml of NAD". All chemicals were pur-
chased from Sigma-Aldrich (St. Louis, MO) with purity
at 299%. NAM was further purified with high-performance
liquid chromatography (HPLC) to remove minor con-
taminating NA.

Genetic construction of various NAD" synthesis
pathway-deficient mutants

A series of E. coli mutants with single to multiple gene
deletions in the NAD" de novo and salvage pathways
were constructed from the wild-type BW25113 stain
using a A Red-mediated recombination system as described
(Table 1) [53,54]. Briefly, PCR products were generated
from template plasmids carrying a kanamycin resistant
(Km®) gene flanked by FLP-recognition target sites using
primers with 36-nucleotide extensions that were homolo-
gous to regions adjacent to the genes to be inactivated and
(see Additional file 2: Table S3 for primer sequences). The
chromosomal genes were replaced by the corresponding
PCR products via the A Red-mediated recombination sys-
tem. The resulting Km® colonies were selected and verified
by PCR and sequencing of the PCR products, and the
kanamycin resistant cassette was removed by introducing
pCP20 helper plasmid that carried the yeast Flp recombin-
ase and ampicillin resistant gene (Amp"). The Red and
FLP helper plasmids were subsequently cured by growth at
37°C because they are temperature-sensitive replicons.

Phenotypic determination of NAD" synthesis deficiency
by selective media

The phenotypic deficiencies of mutants were validated
by their capabilities to utilize different precursors to
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synthesize NAD" in various selective media. All strains
were washed twice in M9 minimum medium to remove
trace amounts of nutrients and resuspended in specified
selective media. For plate growth assay, 0.2 ul suspensions
of the E. coli strains (ODgp = 0.1) were dotted onto agar
plates containing M9 alone or M9 plus either NA or
NAM. Plates were incubated at 37°C for 12 h or longer.
For determining growth rates, strains were diluted in
specified liquid media (ODggg = 0.005), cultured at 37°C
and ODggp values were measured every hour as described
[53]. The generation times (T4) were calculated during
the exponential phase of growth according to the formula:
Tq=(to-t) x {log(2)/[log(q2/q1)]}, where t; and t, repre-
sented times, and q; and q, represented the number of
cells at t; and t,, respectively. Additionally, the dose-
dependent effect of NAD™ on the triple-deletion strain
(BW25113AnadCApncAAxapA) was measured in M9
medium containing NAD" at various concentrations (i.e.,
0, 0.1, 0.33, 1, 3.3, and 10 pg/ml). The growth rate
and generation time of this mutant were determined
as described above.

Genetic validation on the involvement of xapA in NAD*
salvage pathway

To further validate the involvement of xapA in NAD*
salvage pathway, a genetic complementation experiment
was performed by reintroducing xapA into the triple-
deletion mutant (BW25113AnadCApncAAxapA). The xapA
ORF was amplified and reconstructed into pBAD-hisA at
the EcoRI and Xhol sites. The same pBAD-hisA vector
carrying the enhanced green fluorescence protein (EGFP)
gene (pBAD-EGFP) was constructed as control. The
plasmids were then transformed into the BW25113A
nadCApncAAxapA strain. Transformed cells were cul-
tured on LB plates containing ampicillin, and the positive
clones were selected for growth phenotypic examination.
The growth rates of the transformed cells in M9/NAM
medium were determined as described above.

Cloning, expression and purification of recombinant

E. coli xapA

The open reading frame (ORF) of xapA was amplified by
PCR (see Additional file 2: Table S3 for primer sequences)
from E. coli genomic DNA using the high-fidelity Pfu
DNA polymerase, and cloned into pET28a expression
vector (Novagen) flanking the EcoRI and Hindlll sites as
described [53]. The resulting pET28-xapA was sequenced
to ensure the absence of undesired mutations. For ex-
pressing fusion proteins, the Rosetta (DE3) strain of E.
coli transformed with pET28-xapA was grown at 37°C
with constant shaking until ODgg reached to 0.8. After
adding 0.1 mM isopropyl B-D-1-thiogalactopyranoside
(IPTG) into the media to induce protein expression,
bacteria were allowed to grow for 8 h at 16°C and harvested

Page 8 of 10

by centrifugation. Cell pellets were stored at -80°C, or
immediately resuspended in lysis buffer, followed by the
purification of soluble xapA proteins using the QIA
express Ni-NTA Protein Purification System according
to the manufacturer’s protocol (Qiagen, Hilden, Germany).
Purified protein was washed with phosphate buffered
saline (PBS, pH 7.4) and concentrated by ultrafiltration
membrane with a molecular weight cutoff (MWCO) at
10 kDa. The protein purity was generally greater than
99% as evaluated by SDS-PAGE (see Additional file 1:
Figure S2).

Enzyme assays for xapA activity

The activity for xapA to convert NAM to NR was assayed
similarly as described [55]. Briefly, the reaction (100 pL
volume) was performed in 50 mM MES buffer (pH 6.0)
containing 10 pg xapA protein, 1 mM NAM and 1 mM
ribose-1-phosphate (R1P) at 37°C for 60 min. In the
meantime, a positive control used calf intestinal alkaline
phosphatase (CIAP, 1000 U) (Sigma) to convert NMN
(12.4 mg) to NR under the same reaction condition to
validate the detection of NR [24]. Reactions were stopped
by chilling on ice.

The product NR was determined by HPLC-electrospray
ionization tandem mass spectrometry (HPLC-ESI-MS/
MS) using an Agilent 1200 HPLC system coupled with
a Thermo Finnigan LCQ Deca XP Electrospray lon Trap
Mass Spectrometer (Thermo Quest-Finnigan Co., San Jose,
CA) [56]. Briefly, HPLC used a reversed-phase Venusil
XBP C18 column (100 mm Length x 2.1 mm id., 5 pm)
(Agela Technologies, China). The mobile phase was
composed of 5 mM ammnonium formate (A) and metha-
nol (B) with the linear gradient elution: 0-10 min, A from
98% to 90% and B from 2% to 10%; 10-15 min, A from
90% to 30% and B from 10% to 70%. The mobile phase
was then returned to 98% A at 15.1 min, and the column
was re-equilibrated with 98% A for 7 min. Other settings
include: constant flow rate at 0.25 ml/min; injection
volume at 5 pl; ESI-MS spray voltage at 5.5 kV, and the
capillary voltage at —15.0 V, and capillary temperature
at 285°C. Nitrogen was used as both the sheath gas and
auxiliary gas at 50 and 5 units, respectively. Helium was
used as the collision gas in MS/MS. Multiple positive
scanning modes were cyclically alternated during the
analyses in a data-dependent fashion as follows: 1) the
full first scan event was operated in a range of m/z
from 110 — 2,000 Da; 2) the selected ion monitoring
(SIM) scans were set at m/z 254.8 for NR, m/z 123.0 for
NAM, and m/z 334.8 for NMN; and 3) the MS/MS scans
were set at 254.8@cid 18 for NR, 123.0@cid 30.0 for NAM,
and 334.8@cid 19 for NMN. The isolation width was set to
1.0 Da, and the ejected ions were detected by the electron
multiplier with a gain at 5x 10°. Data were analyzed by
Xcalibur Software version 1.4 (Thermo Scientific).
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Kinetic parameters for xapA enzyme were determined
by measuring the decreased absorbance of NAM at
262 nm with a Synergy H1 microplate reader (BioTek,
USA) as described [55]. The reaction was performed in
50 mM MES buffer (pH 6.0) containing 20 mM R1P,
0.1 mg/ml xapA protein and varied concentrations of
NAM at 37°C for 30 min. Michaelis-Menten plots and
the linear transformations (Lineweaver-Burk, Hanes-Woolf
and Eadie-Hofstee) were used for determining the kinetic
parameters.

Quantitative analysis of NAD" synthesis on the
xapA-mediated NAD" salvage pathway from NAM

We also directly tested the utilization of NAM by xapA in
the bacterial mutants by measuring their consumption of
extracellular NAM and the production of NAD" in cells.
In this experiment, four mutants (i.e., BW25113AnadCA
pncA, BW25113AnadCApncAAxapA, BW25113AnadCA
pncAAxapA/pBAD-xapA and BW25113AnadCApncAAxa
PA/pBAD-EGFP) were cultured in the M9/NAM medium.
The cultures were maintained until the BW25113AnadC
ApncA strain reached the mid-log phase. A volume of the
bacterial suspensions containing approximately 1 x 10’
BW25113AnadCApncA cells was collected by centrifuga-
tion at 15,000 xg for 10 min. Equal volumes of the other
three strains were also collected. After centrifugations,
bacterial pellets and supernatants were separately col-
lected. The supernatants were freeze-dried for measuring
extracellular NAM. The pellets were resuspended in 2 ml
of deionized water and ultrasonicated for 10 min. After
centrifugation at 15,000 xg for 15 min at 4°C, supernatants
were collected and freeze-dried for measuring intracellular
NAD". The concentrations of NAD" and NAM were deter-
mined by HPLC-ESI-MS as described above.

Statistical analysis

All experiments were performed independently for at least
three times. Statistically significant differences were calcu-
lated by two-tailed Student’s t-test using SPSS software
(version 19.0) (http://www-01.ibm.com/software/analytics/
spss/).

Additional files

Additional file 1: Figure S1. PCR verification of gene deletions in the E.
coli mutants. ST1-ST6 represents BW25113, BW25113AnadC, BW25113AnadC
ApncA, BW25113AnadCApncAAxapA, BW25113AnadCApncAAnadR and
BW25113AnadCApncAAxapAAnadR. Figure S2. SDS-PAGE (12%) analysis of
recombinant xapA protein expressed in E. coli. Lanes 1: protein marker; lane 2:
cellfree extract before induction with IPTG; lane 3: cell-free extract after IPTG
induction; lane 4: recombinant xapA protein. Figure S3. Potential contribution
of xapA-mediated conversion from NAM to NR (marked by an asterisk) in

the pyridine nucleoside cycles (PNCs). Pathways unique to E. coli or
vertebrates are marked.

Additional file 2: Table S1. The expected product sizes (bp) for PCR of
the four specified genes in different strains used in the study. Table S2.
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The presence of nicotinamide riboside kinase (NRK) gene and purine
nucleoside phosphorylase (PNPase) gene in vertebrates. Table S3.
List of primers and applications.

Additional file 3: Text S1. Protein sequence of predicted purine
nucleoside phosphorylase (PNPase) in Pasteurella multocida. Text S2.
Protein sequences of nicotinamide riboside kinase (NRK) and purine
nucleoside phosphorylase (PNPase) in vertebrates.
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