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Abstract. We present an improved, near-optimal hp error estimate for a non-conforming finite ele-
ment method, called the mortar method (M0). We also present a new hp mortaring technique, called
the mortar method (MP), and derive h, p and hp error estimates for it, in the presence of quasiuniform
and non-quasiuniform meshes. Our theoretical results, augmented by the computational evidence we
present, show that like (M0), (MP) is also a viable mortaring technique for the hp method.
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1. Introduction

The complexity of domains encountered in problems solved by the finite element method often necessitates the
separate meshing of individual components or subdomains. The resulting submeshes are generally incompatible
along interfaces, since it is quite cumbersome to impose conformity. A similar situation also arises when pre-
existing meshes are to be used in a calculation, or when local refinement (say near singularities) is to be imposed
in selected regions of a mesh.

Mortaring techniques are non-conforming methods that were developed to piece together such incompatible
meshes (see [10,15]). The original paper [14] discussed two methods, the first being the “h–mortar finite element
method” (which we denote in this paper as (M0)), where it was assumed that the meshes were quasiuniform but
incompatible and the degree p was fixed (h version). In addition, a second method called the “mortar spectral
element method” was also introduced (denoted here by (MP)). For this method the mesh was fixed, and only
the degrees were allowed to vary. The non-conformity is due either to the incompatibility of polynomial degrees
within each element, to the non-matching meshes, or to their combined effect. It was established that (M0)
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had optimal convergence properties with respect to the mesh size, and (MP) with respect to the degree. These
results were generalized to three dimensions in [7]. See also [1–3,8, 9], for related results.

In [25–27] the hp version of method (M0) was considered. The practical motivation was an implementation
of mortaring techniques in the hp commercial code MSC-NASTRAN. The method (M0) was analyzed for the
case that the meshes were non-quasiuniform (e.g. for radical and geometrical meshes, see [5]) and for the case
that both the meshes and the degrees were allowed to vary. (Such hp techniques are essential if singularities are
to be well-approximated). In particular, it was shown that: (1) the h version is optimal for non-quasiuniform
meshes as long as a minor meshing condition is satisfied; (2) the p version satisfies an error estimate that is
suboptimal by O(p

3
4 ); (3) the hp version with geometrical meshes gives exponential convergence.

Experimental results supported the above conclusions, except that the O(p
3
4 ) suboptimality was not observed.

In [25,28], two variations of (M0), called (M1) and (M2) were introduced, which had a simpler formulation than
(M0), generalized more easily to three dimensions, and satisfied similar estimates.

Our goal in this paper is two-fold. First of all, we show that the O(p
3
4 ) suboptimality in [26, 27] may be

removed, to be replaced by an O(pε) loss (ε > 0 arbitrary). Hence the method (M0) is essentially optimal in h
and p.

Second, we extend the method (MP) to the case of incompatible meshes (possibly non-quasiuniform) where
both h and p are allowed to vary, i.e. we consider it in the context of hp implementation. Our results show that
(MP) is optimal in p even when the meshes are incompatible, and again yields exponential hp convergence with
geometrical meshes. In terms of h, the method can suffer a loss of upto O(h

1
2 ) for solutions that are sufficiently

smooth (the loss did not appear very significant in our numerical results in Section 6). Hence (MP) could be
considered as another viable candidate for hp implementation, though in light of the optimality of (M0) proved
here, the latter may be a better choice.

The plan of our paper is as follows. In Section 2, we describe the (M0) method, and establish the O(pε)
optimality for this method. In Section 3, we introduce the method (MP), while Section 4 contains a proof of
the hp error estimate for quasiuniform meshes. Section 4.1 extends this optimal result to the case of weakly
regular solutions. In Section 5, we prove improved convergence results for non-quasiuniform meshes. Essentially,
we show here that the “mortar projection operator” for (MP) is bounded as O(pε) in the appropriate norm,
independently of the mesh (for (M0) it was shown that the corresponding projection operator is bounded as
O(p

3
4 +ε) provided the mesh was no more than geometrically refined). Finally, Section 6 contains the results of

numerical experiments.

1.1. Notations

Let us assume that we have a Lipschitz domain C ⊂ R2 and the generic point of C is denoted x. The classical
Lebesgue space of square integrable functions L2(C) is endowed with the inner product:

(ϕ,ψ) =
∫
C
ϕψ dx.

We assume standard Sobolev space notations, Hm(C), m ≥ 1, provided with the norm:

‖ψ‖Hm(C) =
( ∑

0≤|α|≤m
‖∂αψ‖2L2(C)

) 1
2
,

where α = (α1, α2) is a multi–index in N2 and the symbol ∂α represents a partial derivative. The fractional
Sobolev space Hτ (C), τ ∈ R+ \ N, is defined by its norm (see [22])

‖ψ‖Hτ(C) =

‖ψ‖2Hm(C) +
∑
|α|=m

∫
C

∫
C

(∂αψ(x)− ∂αψ(y))2

|x− y|2+2θ
dx dy

 1
2

,
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where τ = m+θ, m and θ ∈]0, 1[ being the integer part and the fractional part of τ respectively. The closure in
Hτ (C) of the set D(C) of indefinitely differentiable functions whose support is contained in C is denoted Hτ

0(C).
We will also use the spaces Hτ (J ),Hτ

0(J ), where J ⊂ R.
For any portion of the boundary γ ⊂ ∂C, the space H

1
2 (γ) is the set of the traces over γ of all the functions

of H1(C) and H−
1
2 (γ) is its topological dual space. The duality pairing between H−

1
2 (γ) and H

1
2 (γ) is 〈·, ·〉∗,γ .

The special space H
1
2
00(γ) is the subspace of H

1
2 (γ) of the traces of all functions belonging to H1

0(C, γc) =
{
ψ ∈

H1(C), ψ|γc = 0
}

, where γc = ∂C \ γ. It is endowed with the quotient norm,

‖ϕ‖
H

1
2
00(γ)

= inf
ψ∈H1

0(C,γc)
‖ψ‖H1(C).

1.2. Model problem

Let Ω be a bounded polygonal domain in R2 with boundary Γ = ∂Ω divided into ΓD and ΓN . Given
f ∈ L2(Ω) and g ∈ L2(ΓN ), consider the Poisson’s problem with mixed boundary conditions: Find u such that,

−∆u = f in Ω,
u = 0 on ΓD,
∂u

∂n
= g on ΓN .

(1.1)

The standard variational formulation which is based on a Green’s integration formula for this problem becomes:
Find u ∈ H1

D(Ω) = H1
0(Ω,ΓD) such that∫

Ω

∇u . ∇v dx =
∫

Ω

f v dx +
∫

ΓN

g v dΓ ∀v ∈ H1
D(Ω). (1.2)

Problem (1.1) is well posed and has a unique solution u ∈ H1
D(Ω). Moreover, the following stability condition

holds:

‖u‖H1(Ω) ≤ C(‖f‖L2(Ω) + ‖g‖L2(ΓN )).

Remark 1.1. The hypothesis g ∈ L2(ΓN ) is made only for the clarity of the presentation. The results however

can be easily extended to the more general case where g ∈ (H
1
2
00(ΓN ))′ without much difficulty.

2. The non-conforming finite element method (M0)

We assume that the domain Ω is broken arbitrarily into k∗ non-overlapping polygonal subdomains (Ωk)1≤k≤k∗ .
The edges of Ωk are denoted by (Γk,j)1≤j≤j∗k and the vertices of each Γk,j are denoted as ν1

k,j and ν2
k,j . Such a

restriction on the shape of the subdomains and the global domain Ω is made only for the sake of simplicity. Also,
to avoid technical concerns we assume that the portion of ∂Ωk contained in ∂Ω is a union of complete edges,
and that the boundary condition does not change type in the interior of any edge of Ωk. The outward normal
on the whole boundary ∂Ωk will be denoted as nk, when required. The decomposition is called geometrically
conforming if Γk,j ∩ Γ`,i 6= ∅ implies either that the two edges are identical, or that the intersection contains
a single common vertex. Otherwise, the decomposition is called geometrically non-conforming. Following the
terminology of [14] the skeleton is defined to be

S =

(
k∗⋃
k=1

∂Ωk

)
\ ∂Ω.
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—

Figure 1. Example of the shape of the M δ(Γk,j)-functions for pk = 2.

Among several possible choices, we select a set of edges γm which we call mortars such that

S =
m∗⋃
m=1

γm, γm ∩ γn = ∅ if m 6= n, γm = Γk(m),j(m).

The mortar approximation of the Poisson problem we use is based on the p and hp finite elements (see [4–6,20,
23,24]). The elements used in the subdomain Ωk are specified by the parameter δk = (hk, pk), where hk goes to
zero and/or pk tends to infinity. For any k (1 ≤ k ≤ k∗), let T δ

k be a partition of Ωk into triangulations with
a maximum size hk. This mesh is assumed regular in the classical sense [18]. Since the (T δ

k)k are generated
independently, the meshes do not have to conform at the interface. For any κ ∈ T δ

k and any r ∈ N,Pr(κ)
denotes the set of polynomials of total degree ≤ r. The local spaces are then chosen to be

Xδ(Ωk) =
{
vδk ∈ (C (Ωk))2, ∀κ ∈ T δ

k, v
δ
k|κ ∈ Ppk(κ), vδk|∂Ωk∩ΓD

= 0
}
.

We denote by W δ(Γk,j), the space of the traces on Γk,j of all the functions of Xδ(Ωk). In particular, for any
m, 1 ≤ m ≤ m∗, the local mortar space is W δ(γm) = W δ(Γk(m),j(m)) while the global mortar space is defined
to be

W δ(S) =
{
ϕδ = (ϕδm)m ∈ C (S), ∀m, 1 ≤ m ≤ m∗, ϕδm ∈W δ(γm)

}
.

Given these tools, the approximation functions vδ are taken locally in Xδ(Ωk) and glued together through the
interfaces by some suitable matching conditions. First, we consider method (M0), investigated in [7, 10,14,26].
Each edge Γk,j inherits from T δ

k a one–dimensional partition tδk,j on which is built the space (see Fig. 1)

M δ(Γk,j) =
{
ψδ ∈ C (Γk,j), ∀t ∈ tδk,j , ψδ|t ∈ Ppk(t),

ψδ|t ∈ Ppk−1(t) if t is the first or the last element of Γk,j
}
.

The global approximation space is given by

Xδ(Ω) =

{
vδ = (vδk)k ∈

k∗∏
k=1

Xδ(Ωk) such that: ∃ϕδ ∈W δ(S),∀k, j}

vδk(ν) = ϕδ(ν), for ν = ν1
k,j or ν = ν2

k,j

∀ψδ ∈M δ(Γk,j),
∫

Γk,j

(vδk − ϕδ)ψδ dΓ = 0

}
.
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Note that the Dirichlet boundary conditions are incorporated in Xδ(Ωk). Since it is not embedded in H1
0(Ω),

the space Xδ(Ω) is equipped with the Hilbertian broken norm,

‖vδ‖∗ =

(
k∗∑
k=1

‖vδk‖2H1(Ωk)2

) 1
2

.

The discrete problem obtained by a Galerkin procedure then becomes: Find uδ ∈ Xδ(Ω) satisfying,

a(uδ, vδ) =
∫

Ω

f vδ dx +
∫

ΓN

g vδ dΓ, ∀vδ ∈ Xδ(Ω) < (2.1)

where

a(uδ, vδ) =
k∗∑
k=1

∫
Ωk

∇uδk . ∇vδk dx.

The discretization is nonconforming, however, the discrete solution uδ approximates the exact one u in an
optimal way (see [14, 26]). More precisely, for fixed (pk)k there exists a constant C = C((pk)k) not depending
on (hk)k such that, if uk = u|Ωk ∈ Hτk(Ωk), we have

‖u− uδ‖∗ ≤ C
k∗∑
k=1

hηk−1
k | loghk|

1
2 ‖uk‖Hηk(Ωk), (2.2)

with ηk = min(τk, pk + 1). Under the same hypothesis, doing a full hp analysis gives the following result for the
method (M0) (see [25,26]),

‖u− uδ‖∗ ≤ C
k∗∑
k=1

hηk−1
k

pτk−1
k

p
3
4
k | loghk|

1
2 ‖uk‖Hτk (Ωk). (2.3)

Below, we show how this estimate can be improved to replace the factor p
3
4
k by pεk.

Remark 2.1. Estimate (2.2) is proved in [12], it is a correction of that firstly given in [14] where | loghk|
1
2

was missing. This term appears when handling the consistency error when the decomposition is geometrically
non-conforming and is removed otherwise.

Remark 2.2. In [25, 26], is also considered the case of non-quasiuniform meshes T δ
k, where it is shown that

the h-convergence remains optimal and that exponential convergence is obtained when the hp method is used
over meshes geometrically refined near singularity points such as corners.

2.1. Improved hp estimate for (M0)

We use an interpolation argument to improve (2.3). For clarity alone, we take g = 0, but the result easily
extends to this case as well.

Theorem 2.3. Assume the exact solution u ∈ H1
D(Ω) of problem (1.1) is such that uk = u|Ωk ∈ Hτk(Ωk), τk ≥ 1.

Then, for any ε > 0 there exists C(ε) > 0 such that for uδ, the solution of (M0), with g = 0,

‖u− uδ‖∗ ≤ C(ε)
k∗∑
k=1

hηk−1
k

pτk−1
k

pεk| loghk|
1
2

(
‖uk‖Hτk (Ωk) + ‖fk‖L2(Ωk)

)
. (2.4)

where ηk = min(τk, pk + 1).
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Proof. Let τ = (τk)k and ε be given. For simplicity, we prove the theorem where τk = τ, hk = h, pk = p,∀k(1 ≤
k ≤ k∗). Define the space Y σ(Ω) by

Y σ(Ω) =
{
v ∈ H1

D(Ω), vk ∈ Hσ(Ωk), ∆u ∈ L2(Ω)
}
, (2.5)

with the mesh-dependent norm,

‖u‖Y σ(Ω) =
hξ−1

p(σ−1)α
| logh| 12

k∗∑
k=1

(
‖uk‖Hσ(Ωk) + ‖∆u‖L2(Ωk)

)
. (2.6)

Here α = 1− ε
τ−1 and ξ = min(σ, p+ 1). By Theorem 3.1 of [11], we have the following interpolation result

[
Y σ(Ω), Y 1(Ω)

]
1−θ

= Y θ(σ−1)+1(Ω). (2.7)

Then, consider the linear operator T : u 7→ uδ. The stability condition says that T is continuous from Y 1(Ω)
into

∏k∗

k=1H
1
D(Ωk) (−∆uk = fk and g = 0),

‖u− T (u)‖∗ ≤ C
k∗∑
k=1

(‖uk‖H1(Ω1) + ‖∆uk‖L2(Ωk)) ≤ C‖u‖Y 1(Ω). (2.8)

Next, choose τ such that

3
4
≤ σ − 1
τ − 1

ε, i.e. σ ≥ 3(τ − 1)
4ε

+ 1.

Then

p−(σ−1)α = p−(σ−1)+ε σ−1
τ−1 ≥ p−(σ−1)+ 3

4 ,

so that by (2.3), we have

‖u− T (u)‖∗ ≤ C‖u‖Y σ(Ω). (2.9)

Now let θ = τ−1
σ−1 , so that 1 + θ(σ − 1) = τ. Interpolating (2.8), (2.9), we have with η = min(τ, p+ 1),

‖u− T (u)‖∗ ≤ C‖u‖[Y σ(Ω),Y 1(Ω)]1−θ ≤ C‖u‖Y τ (Ω)

≤ C hη−1

p(τ−1)α
| logh| 12

k∗∑
k=1

(
‖uk‖Hτ (Ωk) + ‖∆u‖L2(Ωk)

)
.

But (τ − 1)α = (τ − 1)− ε, which gives the result.

Remark 2.4. Estimate (2.4) can be sharpened further. Indeed, it is readily proven that the log-extra-term
is actually | loghk|

τ−1
2(p−1) , so that for large values for p this term has not significant effect on the numerical

experiences.
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3. The hp mortar finite element method (MP)

We now define a different mortar method (MP), which enforces a different hp mortar matching condition as
follows. On each face Γk,j , that is not a mortar, a projection operator πδk,j , which is more specific to the p version
is defined. For clarity, we will study its properties on the reference segment A = (−1, 1) and so the projection
will simply be denoted πδ, where δ = (h, p). Similar results can be deduced on πδk,j in a straightforward way.
Let tδ be the triangulation of A characterized by the subdivision (ξi)0≤i≤i∗ with ξ0 = −1 and ξi∗ = 1 for the
vertices ν1 and ν2 respectively and (ti =]ξi, ξi+1[)0≤i≤i∗−1 for its elements. The space W δ(A) is then defined
as,

W δ(A) =
{
χδ ∈ C (A), ∀t ∈ tδ, χδ|t ∈ Pp(t)

}
.

Next, we consider the operator

πδ : H1(A)→W δ(A)

such that: ∀χ ∈ H1(A),

∀i(0 ≤ i ≤ i∗), πδχ(ξi) = χ(ξi), (3.1)

∀ψδ ∈ Pp−2(t),
∫
ti

(χ− πδχ)ψδ dA = 0. (3.2)

Then, we have the following two technical lemmas.

Lemma 3.1. The operator πδ is such that: ∀χ ∈ H1(A),∫
A

(χ− πδχ)′(ψδ)′ dA = 0, ∀ψδ ∈W δ(A).

Proof. Writing ∫
A

(χ− πδχ)′(ψδ)′ dA =
i∗−1∑
i=0

∫
ti

(χ− πδχ)′(ψδ)′ dA,

and integrating by parts, we have,∫
A

(χ− πδχ)′(ψδ)′ dA =
i∗−1∑
i=0

[(χ− πδχ)(ψδ)′]ξi+1
ξi
−
∫
ti

(χ− πδχ)(ψδ)′′ dA.

The lemma follows by observing the fact that (ψδ|ti)
′′ ∈ Pp−2(t).

Lemma 3.2. For any τ ≥ 1, the following estimates hold: ∀χ ∈ Hτ (A),

(
h

p
)−1‖χ− πδχ‖L2(A) + ‖(χ− πδχ)′‖L2(A) ≤ C

hη−1

pτ−1
‖χ‖Hτ(A), (3.3)

‖χ− πδχ‖
H

1
2
00(A)

≤ Ch
η− 1

2

pτ−
1
2
‖χ‖Hτ(A). (3.4)

where η = min(τ, p+ 1).
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Proof. By Lemma (3.1) we obtain,

‖(χ− πδχ)′‖L2(A) ≤ inf
ψδ∈W δ(A)

‖(χ− ψδ)′‖L2(A),

From the hp finite element we deduce,

‖(χ− πδχ)′‖L2(A) ≤ C
hη−1

pτ−1
‖χ‖Hτ (A).

The L2–estimate in 3.3 is then derived by the Aubin-Nitsche duality argument.
The H

1
2
00 estimate in 3.4 is proved by using a Hilbertian interpolation argument of the L2 and H1 estimates.

Actually we have local estimates: ∀i(0 ≤ i ≤ i∗),

‖χ− πδχ‖
H

1
2
00(ti)

≤ Ch
η− 1

2

pτ−
1
2
‖χ‖Hτ(ti).

We now revisit the mortar discretization and use all the ingredients to define the new approximation space,

X̃δ(Ω) =
{
vδ = (vδk)k ∈

k∗∏
k=1

Xδ(Ωk) such that: ∃ϕδ ∈W δ(S),

∀k(1 ≤ k ≤ k∗), ∀j(1 ≤ j ≤ j∗k), vδk|Γk,j = πδk,jϕ
δ
}
.

It is clear that the stability of the mortar method (MP) is maintained, meaning that any function vδ is associated
with only one mortar function:

∀m(1 ≤ m ≤ m∗), ϕδm = vδk(m)|γm .

The discrete problem (MP) is then formulated in the same terms as in (2.1) where Xδ(Ω) is replaced by X̃δ(Ω).
This problem is well posed and has a unique solution uδ ∈ X̃δ(Ω) that satisfies

‖uδ‖∗ ≤ C
(
‖f‖L2(Ω) + ‖g‖L2(ΓN )

)
.

It remains to carry out the numerical analysis of our technique.

4. hp Error estimate for (MP)

We need the Berg-Scott-Strang Lemma (see [16]) better known as the second Strang Lemma currently used
for non conforming methods (see [18,29]).

Lemma 4.1. We have the following error estimate for uδ, the discrete solution computed by the (MP)-mortar
method,

‖u− uδ‖∗ ≤ C
{

inf
vδ∈X̃δ(Ω)

‖u− vδ‖∗ + sup
wδ∈X̃δ(Ω)

1
‖wδ‖∗

( k∗∑
k=1

〈
∂u

∂nk
, wδk

〉
∗,∂Ωk

−
∫

ΓN

gwδ dΓ
)}

.

The evaluation of the consistency error should be done with a little care, even though we follow the methodology
developed in [14].
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Lemma 4.2. Assume uk = u|Ωk ∈ Hτk(Ωk), τk > 3
2 , then

sup
wδ∈X̃δ(Ω)

1
‖wδ‖∗

(
k∗∑
k=1

〈
∂u

∂nk
, wδk

〉
∗,∂Ωk

−
∫

ΓN

gwδ dΓ

)
≤ C

k∗∑
k=1

hηk−1
k

pτk−1
k

∣∣∣∣log
pk
hk

∣∣∣∣ 1
2

‖uk‖Hτk (Ωk),

with ηk = min(τk, pk + 1
2 ).

Proof. Only for simplicity we examine the case where (hk, pk) = (h, p),∀k(1 ≤ k ≤ k∗). Since ∂u
∂nk
|∂Ωk ∈

L2(∂Ωk) we have: ∀wδ ∈ X̃δ(Ω),

k∗∑
k=1

〈
∂u

∂nk
, wδk

〉
∗,∂Ωk

−
∫

ΓN

gwδ dΓ =
∑

(k,j)6=(k(m),j(m))

∫
Γk,j

∂u

∂nk

(
wδk − ϕδ

)
dΓ

where ϕδ is the mortar function associated to wδ and (k, j) 6= (k(m), j(m)) indicates that Γk,j is not a mortar.
Assuming the matching conditions we derive: ∀ψδ ∈ L2(Γk,j) such that ψ|t ∈ Ppk−2(t),∀t ∈ tδk,j ,

k∗∑
k=1

〈
∂u

∂nk
, wδk

〉
∗,∂Ωk

−
∫

ΓN

gwδ dΓ =
∑

(k,j)6=(k(m),j(m))

∫
Γk,j

(
∂u

∂nk
− ψδ

)
(wδk − ϕδ) dΓ,

≤
∑

(k,j)6=(k(m),j(m))

∥∥∥∥ ∂u∂nk
− ψδ

∥∥∥∥
(H

1
2−ε(Γk,j))′

‖wδk − ϕδ‖H 1
2−ε(Γk,j)

.

(4.1)

Then, as
∂u

∂nk
|Γk,j ∈ Hτk− 3

2 (Γk,j), we have

inf
ψδ ;ψδ|t∈Pp−2(t)

∥∥∥∥ ∂u∂nk
− ψδ

∥∥∥∥
(H

1
2−ε(Γk,j))′

≤ Ch
ηk−1

pτk−1

h−ε

p−ε

∥∥∥∥ ∂u∂nk

∥∥∥∥
Hτk−

3
2 (Γk,j)

with ηk = min(τk, pk + 1
2 ). Substituting this in (4.1) we get,

k∗∑
k=1

〈
∂u

∂nk
, wδk

〉
∗,∂Ωk

−
∫

ΓN

gwδ dΓ

≤ C
∑

(k,j)6=(k(m),j(m))

hηk−1

pτk−1

h−ε

p−ε

∥∥∥∥ ∂u∂nk

∥∥∥∥
Hτk−

3
2 (Γk,j)

∥∥wδk − ϕδ∥∥H
1
2−ε(Γk,j)

.

(4.2)

Proceeding as in [12], we observe that

∑
(k,j)6=(k(m),j(m))

‖wδk − ϕδ‖H 1
2−ε(Γk,j)

≤ C√
ε
‖wδ‖∗∥∥∥∥ ∂u∂nk

∥∥∥∥
Hτk−

3
2 (Γk,j)

≤ C‖uk‖Hτk (Ωk).

Inserting this in (4.2) and choosing ε = (log p
h )−1 completes the proof.

Remark 4.3. As in the case of estimates for method (M0), the log term in Lemma 4.2 can be eliminated for
the case that the subdomains form a geometrically conforming partition (see [12]). This also holds for all log
terms present in estimates in the sequel.
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Remark 4.4. The limitation ηk ≤ pk+ 1
2 is intrinsically connected to the h version finite element approximation

results (in (4.1) the degree of ψδ|t is at most pk − 2). However, for concrete situations the exact solution is
often singular so that for p large enough (as is often the case in practice), we will have τk ≤ pk + 1

2 , so that no
effective deterioration will occur. Even when the solution is smooth, we observe that the deterioration may not
be very apparent, as observed from the computations in Section 6.

We are left with the best approximation error which turns out to be optimal. The proof of such results
requires us to proceed as in [14].

Lemma 4.5. Assume uk = u|Ωk ∈ Hτk(Ωk), τk > 3
2 , then we have

inf
vδ∈X̃δ(Ω)

‖u− vδ‖∗ ≤ C
k∗∑
k=1

hηk−1
k

pτk−1
k

‖uk‖Hτk (Ωk),

with ηk = min(τk, pk + 1).

Proof. The proof takes two steps, we build up a mortar function ϕδ ∈ W δ(S) that is close to u|S , then we
construct vδ associated with ϕδ that satisfies the expected error estimate.

i. For any m(1 ≤ m ≤ m∗) let us define ϕδm = πδk(m),j(m)(u|γm) and set ϕδ = (ϕδm)m. It is clear that ϕδ is
continuous and belongs to W δ(S). Moreover, by Lemma 3.2 the following holds

m∗∑
m=1

‖u− ϕδ‖
H

1
2
00(γm)

≤ C
k∗∑
k=1

hηk−1
k

pτk−1
k

‖uk‖Hτk (Ωk).

ii . For any k(1 ≤ k ≤ k∗) there exists wδ = (wδk)k with wδk ∈ Xδ(Ωk) satisfying (see [4]),

‖u− vδ‖H1(Ωk) ≤ C
hηk−1
k

pτk−1
k

‖uk‖Hτk (Ωk).

Then, we need to modify wδ in order to enforce the matching conditions. It is realized as follows

vδk = wδk + rδk,

where the correcting term rδk ∈ Xδ(Ωk) and: ∀j(1 ≤ j ≤ j∗k),

rδk|Γk,j = (πδk,jϕ
δ − wδk)|Γk,j .

It remains to prove that

‖rδ‖∗ ≤ C
k∗∑
k=1

hηk−1
k

pτk−1
k

‖uk‖Hτk (Ωk),

which is done following the same lines as in [14] and using estimate (3.4).

Putting together Lemmas 4.1, 4.2 and 4.5 produces the concluding result of the final convergence rate.

Theorem 4.6. Assume the exact solution u ∈ H1
D(Ω) of problem (1.1) is such that uk = u|Ωk ∈ Hτk(Ωk),

τk ≥ 3
2 . Then, the discrete solution uδ ∈ X̃δ(Ω) computed by the hp-version of the (MP)–mortar finite element

verifies the following error estimate

‖u− uδ‖∗ ≤ C
k∗∑
k=1

hηk−1
k

pτk−1
k

∣∣∣∣log
pk
hk

∣∣∣∣ 12 ‖uk‖Hτk (Ωk), (4.3)

with ηk = min(τk, pk + 1
2 ).
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Remark 4.7. The continuity matching at the vertices of the elements of ∂Ωk can be relaxed as in [7] and [8],
and the global error estimate is preserved. As shown in [9] (see also [8]) this is very advisable when carrying
computations on parallel machines, as the communication time between different processors is reduced.

Remark 4.8. When, pk = 1, corresponding to the h-finite elements, we recover the convergence rate O(
√
hk)

of the interpolation matching analyzed in [10]. Of course, in such a case it is better to use the mortar space
Xδ(Ω). In fact, in the regions where the h–version is more efficient, we can use the matching conditions of
Xδ(Ω), and if for some reason the p–version should be privileged we use those specified in X̃δ(Ω).

Remark 4.9. For the p–version of the finite element method estimate (4.2) becomes

‖u− uδ‖∗ ≤ C
k∗∑
k=1

| log pk|
1
2

pτk−1
k

‖uk‖Hτk (Ωk),

and is then optimal (up to | log pk|
1
2 ) as for the mortar spectral element method (see [12]).

4.1. Convergence results for weakly regular solutions

When the regularity exponent (τk)k is lower than or equal to 3
2 , deriving the error estimate requires some

more technical work as it resorts to Hilbertian interpolation argument. We need to assume that the domain Ω
is star-shaped with respect to a ball. For clarity alone, we take g = 0.

Theorem 4.10. Assume the exact solution u ∈ H1
D(Ω) of problem (1.1) is such that uk = u|Ωk ∈ Hτk(Ωk),

τk ≤ 3
2 . Then, the following estimate holds for method (MP)

‖u− uδ‖∗ ≤ C
k∗∑
k=1

hτk−1
k

pτk−1
k

∣∣∣∣log
pk
hk

∣∣∣∣ 12 (‖uk‖Hτk (Ωk) + ‖fk‖L2(Ωk)). (4.4)

We leave the proof to the reader as it is made using a Hilbertian interpolation argument exactly as in Theo-
rem 2.3.

5. Improved convergence rates for non-quasiuniform meshes

So far, the analysis carried out, though still valid for non quasi-uniform meshes, does not provide sharp
estimates for some interesting categories of such meshes. Indeed, when the domain has corners, or has points
where the type of boundary condition changes, the solution will possess rα type singularities at such points (r
being the distance to the corner under consideration). To deal with such singularities, highly graded meshes
should be used in each domain in the vicinity of such points. For instance, radical meshes are the optimal ones
to use in the h version, while geometrical meshes are optimal for the hp version (see e.g. [5]). To be a suitable
candidate for hp implementation, the mortaring technique should be robust when such meshes lie along the
interface. We therefore now consider these kind meshes for the (MP)-method.

Accordingly, let us consider the mortar projection πδ on A = (−1, 1) again, as defined by (3.1)-(3.2), but
with the triangulation tδ on A now being non-quasiuniform. (The degree p is assumed uniform on tδ). Then
the following stability estimate on πδ is the key result of this section (compare with (3.4)).

Proposition 5.1. Given ε > 0, there exists C(ε) independent of p such that: ∀χ ∈ H
1
2 +ε
0 (A),

‖πδχ‖
H

1
2
00(A)

≤ C(ε)p
1
4 ‖χ‖

H
1
2 +ε(A)

.
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The proof of Proposition 5.1 requires some preliminary technical lemmas. Let us consider the operator πδti = πδ|ti ,
it coincides with πδ when the mesh tδ is reduced to only one element.

Lemma 5.2. The following holds: ∀χ ∈ H
1
2 +ε
0 (ti)

‖πδtiχ‖H 1
2
00(ti)

≤ Cp 1
4 |χ|

H
1
2 +ε(ti)

. (5.1)

The constant C is independant of ti.

Proof. By scaling we can consider ti = (−1, 1) and πδti is then denoted by πp. The operator πp satisfies the
following stability inequalities (see [13], Lemma A.1): ∀ϕ ∈ D(−1, 1)

‖πpχ‖L2(−1,1) ≤ Cp 1
2 ‖χ‖L2(−1,1)

‖πpχ‖H1(−1,1) ≤ C|χ|H1(−1,1)

Using density, Hilbertian interpolation arguments and observing that H
1
2
00(−1, 1) ⊂ H

1
2 +ε(−1, 1) completes the

proof (actually back to ti we should have a bound like Cp
1
4hεi ).

Lemma 5.3. Let ϕ ∈ H
1
2 +ε
0 (A) and let ϕh denote its piecewise linear interpolant on tδ. Then for any 0 < ε < 1

2 ,
there exists a constant C(ε) such that

‖ϕh‖
H

1
2 +ε(A)

≤ C(ε)‖ϕ‖
H

1
2 +ε(A)

. (5.2)

Proof. We construct the square Q = (−2, 2)× (−2, 2) with A = (−1, 1) imbedded along the side y = −2. Let
T δ(Q) denote a regular mesh on Q whose trace on A is tδ. Extend ϕ by a norm-preserving operator to ϕe
defined on ∂Q such that

‖ϕe‖
H

1
2 +ε(∂Q)

≤ C‖ϕ‖
H

1
2 +ε(A)

,

and let Φ ∈ H1+ε(Q) be a stable extension of ϕe ∈ H
1
2 +ε(∂Q), satisfying

‖Φ‖H1+ε(Q) ≤ C‖ϕe‖H 1
2 +ε(∂Q)

≤ C‖ϕ‖
H

1
2 +ε(A)

. (5.3)

Define Φh to be the piecewise linear interpolant at mesh points of T δ(Q). Then by [17], for 0 < ε < 1
2 ,

‖Φh‖H1+ε(Q) ≤ C‖Φ‖H1+ε(Q)

so that by (5.3),

‖Φh‖H1+ε(Q) ≤ C‖ϕ‖H 1
2 +ε(A)

.

The result then follows by the trace theorem since Φh|A = ϕh.

Proof of Proposition 5.1: Let χ be in H
1
2 +ε
0 (A), and let χh be the linear interpolant of χ at the nodes (ξi)i of

tδ. Then we may write

πδχ = χh + πδ(χ− χh)
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Consequently, we have

‖πδχ‖
H

1
2
00(A)

≤ ‖χh‖
H

1
2
00(A)

+ ‖πδ(χ− χh)‖
H

1
2
00(A)

≤ ‖χh‖
H

1
2
00(A)

+
(i∗−1∑
i=0

‖πδ(χ− χh)‖2
H

1
2
00(ti)

) 1
2

≤ ‖χh‖
H

1
2
00(A)

+
(i∗−1∑
i=0

‖πδti(χ− χ
h)‖2

H
1
2
00(ti)

) 1
2
.

Using estimate (5.1)

‖πδχ‖
H

1
2
00(A)

≤ ‖χh‖
H

1
2
00(A)

+ Cp
1
4

(i∗−1∑
i=0

‖χ− χh‖2
H

1
2 +ε(ti)

) 1
2

≤ ‖χh‖
H

1
2
00(A)

+ Cp
1
4 (‖χ‖

H
1
2 +ε(A)

+ ‖χh‖
H

1
2 +ε(A)

).

The proposition follows from the stability (5.2).
Using Proposition 5.1, together with an hp extension theorem that allows us to stably lift piecewise poly-

nomials from the boundary into the interior of a meshed domain (Theorem 3.2 of [26]), we then obtain the
following estimate. The proof is similar to that of Theorem 3.3 of [26]. For any ε > 0, there exists constants
C1, C2 = C2(ε), independent of u, h and p such that

‖u− uδ‖∗ ≤ C2p
1
4 inf
vδ∈X̆δu(Ω)

k∗∑
k=1

‖u− vδ‖H1+ε(Ωk) + C1

∑
Γk,jnon mortar

inf
ψδ;ψδ∈Pp−2(tδk,j)

∥∥∥∥∂u∂n
− ψδ

∥∥∥∥
H

1
2
00(Γk,j))′

.

(5.4)

where

X̆δ
u(Ω) =

{
vδ = (vδk) ∈

k∗∏
k=1

Xδ(Ωk), vδk(ν) = u(ν),∀ν vertex of Ωk
}

Note that the first term in (5.4) is simply the consistency error, and the bound in (5.4) for this term is established
in the proof of Lemma 4.2.

Theorem 5.4. Suppose that the hp version of the (MP) method is used, with meshes refined geometrically in
the vicinity of vertices of the domain Ω. Then, the exact solution u of (1.2) and the discrete solution uδ of (2.1)
satisfy the following estimate

‖u− uδ‖∗ ≤ Ce−γN
1
3 , (5.5)

where N is the total number of degrees of freedom and γ is independant of N .

Proof. It follows from (5.4) and from the best approximation error of the rα type singularities by hp finite
elements when geometrical meshes are used (see [5]).

Remark 5.5. Using (5.4), it may be shown, as was done for (M0) in [26], that the h version with radical meshes
gives an optimal O(N−

p
2 ) asymptotic rate for the approximation error when polynomials of degree p are used,

even if the solution has rα type singularities. However, the consistency error in this case will not be optimal,
but will be O(N−

p
2 + 1

4 ).
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Ω1

θ
Ω2

O

A

C

r

Figure 2. (a) L-Shaped Domains (b) Tensor product mesh for m = n = 2.

Remark 5.6. We note that although an optimal convergence estimate can be proved for (MP) in terms of the
hp version (estimate (4.2)), there is also a small loss of stability of O(p

1
4 ), as suggested by Proposition 5.1 (this

loss is only in p, with full stability being observed in h). A similar situation occurs for (M0), where we have
established the optimal convergence estimate (2.4), but the analog of Proposition 4.1 in [26] shows a stability
loss of O(p

3
4 +ε) (which cannot be avoided, see [27]). The explanation of this apparent contradiction emerges

when we consider (M0) and (MP) as mixed methods, with the mortar matching condition taken care by a
Lagrange Multiplier. Following the analysis in [8], it is seen that the inf-sup condition of the mixed method
behaves essentially like ‖πδ‖−1

L(H
1
2
00(A),H

1
2
00(A))

= p−
1
4 for (MP) (p−

3
4 for (M0)). Hence while this loss of stability

does not affect the primary unknown uδ in the mixed method formulation, it may be expected to affect the
auxiliary Lagrange multiplier unknown.

6. Numerical Results

We present here the results of the numerical experiments performed by solving the model problem (1.1)
on the L-shaped domain shown in Figure 2. We assume that this domain is subdivided in two rectangular
subdomains Ω1 and Ω2, by the interface AO. For our experiments we impose a Dirichlet boundary condition
at the single point C (ΓD = {C}) and Neumann boundary conditions on ΓN = ∂Ω\ΓD. We employ a mixed
method framework (see [8]), and implement the method by relaxing the nodal matching constraints (see Remark
4.3). This is reasonable to do as the approximation error on the primary variable u improves because we have
a larger space to choose the infimum. Since the Lagrange multipliers are still approximated by discontinuous
piecewise polynomials of degree p− 2, the consistency error also does not deteriorate.

We test our method with two different exact solutions, one being smooth and the other unsmooth. For our
computations, we consider tensor product meshes where Ω2 is divided into n2 rectangular finite elements and
Ω1 is divided into 2m2 rectangular finite elements (see Figure 2). In all the graphs, we have plotted (on a
log–log scale) the percentage relative broken H1 error ‖.‖∗ versus the total number of degrees of freedom of the
solution. These plots compare our new method (MP) to the conforming method (CF) as well as the mortar
method (M0).

We first choose f so that the exact solution is smooth, and is given by

u(r, θ) = r4 cos
(

2θ
3

)
− 1.

We fix the grid with (m,n) = (4, 6) (uniform mesh) and perform a p version by increasing the polynomial degree
3 ≤ p ≤ 10, for both (M0) and (MP). Figure 3 shows that (MP) performs as good as (M0) and the conforming
method.

In Figure 4, are plotted the results for which the polynomial degree is fixed at p = 3 and different choices
of (m,n) ∈ {(2, 3), (4, 6), ..., (12, 18)} are taken, keeping the mesh uniform in both subdomains. We observe
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Figure 3. p-version for smooth solution.
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Figure 4. h-version for smooth solution, p = 3.

that both (M0) and (MP) give optimal O(hp) rate like the conforming method, though (MP) shows a small
deterioration, due to a degraded consistency error.

We now consider our exact solution to be unsmooth, given by,

u(r, θ) = r
2
3 cos

(
2θ
3

)
− 1.

It is well-known that the domain in Figure 2 will result in a strong r
2
3 singularity which occurs at the corner

O. The above solution models this. This limits the convergence to O(h
2
3 ) when the quasiuniform h version is

used. Figure 5 shows that this is the rate observed when degree p = 3 elements are used on a uniform mesh.
To improve convergence, we refine the mesh more strongly around O. Let (xi, yi) be the coordinates of the

mesh points along OC and OA. Then in the radical mesh we choose

xi = yi =
( i
n

)β
i = 0, 1, · · · , n,
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Figure 5. h version for unsmooth solution.
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Figure 6. p version for unsmooth solution.
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Figure 7. hp version for unsmooth solution.
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where for p = 3, the optimum β is determined experimentally to be 3. (We repeat on Ω1 with m rather than n).
Figure 5 shows that even for such meshes, (MP) (and (M0)) still preserve the improved convergence observed
with the conforming method.

Next, we consider geometric meshes, where the grid on Ω2 is designed so that

x0 = y0 = 0, xi = yi = σn−i2 , i = 1, · · · , n.

On the region Ω1, we take m = n, but use a different σ1 6= σ2 to induce non-conformity. The optimal value
of σ1, σ2 is 0.15 (see [23]), but we take σ1 = 0.13 and σ2 = 0.17. Figure 6 shows the typical p convergence for
increasing p for fixed number of layers n.

Finally, in Figure 7 we perform the hp version for (MP). Here, we plot different p versions, using different
number of layers n in the geometric mesh. We see the typical exponential hp behavior if we take the envelope
of these curves.
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Professors S. Brenner and J. Xu for helpful discussions concerning Lemma 5.3.
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Sci. Paris Série I 322 (1996) 185–190.

[2] Y. Achdou, Y. Maday and O.B. Widlund, Iterative substructuring preconditioners for the mortar finite element method in
two dimensions. SIAM J. Num. Anal. 36 (1999) 551–580.

[3] Y. Achdou and O. Pironneau, A fast solver for Navier-Stokes equations in the laminar regime using mortar finite element
and boundary element methods. SIAM J. Num. Anal. 32 (1995) 985–1016.

[4] I. Babuška and M. Suri, The h-p–version of the finite element method with quasi–uniform meshes. Modél. Math. et Anal.
Numér. 21 (1987) 199–238.
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[15] C. Bernardi, Y. Maday and G. Sacchi-Landriani, Non conforming matching conditions for coupling spectral and finite element

methods. Appl. Numer. Math. 54 (1989) 64–84.
[16] A. Berger, R. Scott and G. Strang, Approximate boundary conditions in the finite element method. Symposia Mathematica

10 (1972) 295–313.
[17] S. Brenner, A non-standard finite element interpolation estimate. Research Report 1998:07, Department of Mathematics,

University of South Carolina (1998).
[18] P.-G. Ciarlet, The finite element Method for Elliptic Problems. North Holland (1978).



608 F. BEN BELGACEM, P. SESHAIYER AND M. SURI
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