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ABSTRACT

BRST operators for two-dimensional theories with spin-2 and spin-s currents, generalising the
W3 BRST operator of Thierry-Mieg, have previously been obtained. The construction was
based on demanding nilpotence of the BRST operators, making no reference to whether or not
an underlying W algebra exists. In this paper, we analyse the known cases (s = 3, 4, 5 and
6), showing that the two s = 4 BRST operators are associated with the WB2 algebra, and that
two of the four s = 6 BRST operators are associated with the WG2 algebra. We discuss the
cohomology of all the known higher-spin BRST operators, the Weyl symmetry of their physical
states, and their relation with certain minimal models. We also obtain the BRST operator for
the case s = 7.
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1 Introduction

In 1987 Thierry-Mieg [1] constructed a BRST operator for the Zamolodchikov W3 algebra [2].
The new feature of this BRST operator, as compared with the one for the standard Virasoro
algebra, is that the W3 algebra is nonlinear. This nonlinearity is reflected in the fact that the
matter currents are present in the ghost currents. Subsequently it was shown by Romans [3]
that all scalar realisations of the W3 algebra can be expressed in terms of an energy-momentum
tensor T eff together with a scalar field ϕ which commutes with T eff . Later it was shown that
by performing a nonlinear redefinition involving ϕ and the spin-2 and spin-3 ghost fields, the
BRST operator could be simplified and written in the form QB = Q0 + Q1, where Q0 has
grade (1, 0) and Q1 has grade (0, 1), with (p, q) denoting the grading of an operator with ghost
number p for the redefined spin-2 (b, c) ghost system and ghost number q for the redefined spin-
3 (β, γ) ghost system [4]. In particular Q1 only involves ϕ, β, γ. This leads to an immediate
generalisation [5], in which the BRST operator has similar form except that the (β, γ) system
is that for a spin-s current rather than a spin-3 current. In [5], two different BRST operators
were found in the case s = 4; one in the case s = 5; and four in the case s = 6. In this paper
we shall investigate the properties of these various BRST operators in some detail, including a
discussion of their cohomologies and their relation with certain minimal models. We also extend
the previous results to the case s = 7, and find that there is just one BRST operator for this
case.

The BRST operator for the spin-2 plus spin-s string takes the form [5]:

QB = Q0 +Q1, (1)

Q0 =

∮

dz c
(

T eff + Tϕ + Tγ,β + 1

2
Tc,b

)

, (2)

Q1 =

∮

dz γ F (ϕ, β, γ), (3)

where the energy-momentum tensors are given by

Tϕ = − 1

2
(∂ϕ)2 − α∂2ϕ, (4)

Tγ,β = −s β ∂γ − (s − 1) ∂β γ, (5)

Tc,b = −2 b ∂c− ∂b c, (6)

T eff = − 1

2
ηµν ∂X

µ ∂Xν − iaµ ∂
2Xµ. (7)

The operator F (ϕ, β, γ) has spin s and ghost number zero. Because of the grading discussed
above, it follows that one will have the nilpotency conditions Q2

0 = Q2
1 = {Q0, Q1} = 0. The

first of these conditions is satisfied provided that the total central charge vanishes, i.e.

0 = −26− 2(6s2 − 6s + 1) + 1 + 12α2 + ceff , (8)

where ceff is the central charge for T eff . The remaining two nilpotency conditions determine
the precise form of the operator F (ϕ, β, γ) appearing in (7). Solutions for s =4, 5 and 6 were
found in [5]. Together with the s = 7 case which we find in this paper, the list of known W2,s

BRST operators is
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α2 a2 cmin

W2,3
49

8

49

24

1

2

W2,4
243

20

121

60

4

5

361

30

32

15
− 3

5

W2,5
121

6
2 1

W2,6
845

28

167

84

8

7

1681

56

361

168
− 11

14

5041

168

121

56
− 13

14

361

12

25

12
0

W2,7
675

16

95

48

5

4

Table 1: The W2,3–W2,7 BRST operators

In the above table, cmin is the central charge of Tϕ + Tγ,β, and is related to ceff by cmin =

26 − ceff . The column labelled by a2 gives the value of the background charge for T eff in the

case where it is realised in terms of a single scalar field X:

T eff = − 1

2
(∂X)2 − a ∂2X . (9)

For each s, the first BRST operator listed in the above table corresponds to a general

sequence of BRST operators with α2 = (s− 1)(2s+ 1)2/(4(s+ 1)) and cmin = 2(s− 2)/(s+ 1).

In these cases, as discussed in [6], the (ϕ, β, γ) system provides a realisation of the lowest non-

trivial unitary minimal model for the Ws−1 algebra. In the case of a multi-scalar realisation

for Teff , this sequence of BRST operators is associated with a unitary string theory. In this

paper, the principal focus will be on the remaining exceptional BRST operators. Although in a

multi-scalar realisation these would in general correspond to non-unitary string theories, they

nevertheless provide explicit realisations for certain minimal models.

In section 2 we study the W2,4 BRST operators, paying particular attention to the second

case with α2 = 361

30
. We shall study its relation to the (3,5) Virasoro minimal model, the Weyl

symmetry of its physical states, and the complete cohomology of its BRST operator, using the

method developed in [7]. In section 3 we study the s = 6 BRST operators, especially the last

three W2,6 BRST operators in table 1. We shall study their connection to minimal models, the

Weyl symmetry of the physical states, and comment on their physical spectra. In section 4 we

bosonise the spin-s ghosts, and discuss the new features of the BRST operators. The paper

ends with a summary.

2 The W2,4 BRST operators

In general, the W2,s BRST operators are not associated with closed algebras of spin-2 and

spin-s currents at the quantum level. However, there is such an association in certain special

cases, such as W2,3 (i.e. the usual W3 algebra). There are two further examples where there

are underlying W algebras, namely for s = 4, which we shall discuss in this section, and s = 6,

which will be discussed in section 3. These BRST operators were all obtained by imposing the
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requirement of nilpotence on the ansatz in equations (1)–(7), without making any reference to

any possible underlying W algebra. It is in fact not easy to extract the currents of such an

algebra from this form of the BRST operator, and so in order to uncover the relation with the

W algebra we find it simpler to adopt a more indirect approach. This was done already for

the W2,4 BRST operator with α2 = 243

20
in [8], where we showed that the physical states in the

two-scalar case form representations under the B2 Weyl group. This indicates that the BRST

operator is one for the WB2 algebra, which is generated by an energy-momentum tensor and a

spin-4 primary current.

We shall now examine the second W2,4 BRST operator, with α2 = 361

30
. This is given by

(1)–(7), with s = 4 and

F (β, γ, ϕ) = (∂ϕ)4 + 4α ∂2ϕ (∂ϕ)2 + 253

30
(∂2ϕ)2 + 39

5
∂3ϕ∂ϕ + 41

570
α∂4ϕ

+8(∂ϕ)2 β ∂γ − 26

19
α∂2ϕβ ∂γ − 66

19
α∂ϕβ ∂2γ

− 26

15
β ∂3γ + 29

5
∂2β ∂γ. (10)

Physical states are defined in the usual way by the requirement that they be BRST closed, but

not exact. Using the method developed in [7], we shall now discuss this cohomology problem

for the two-scalar case.

From the pattern of the explicit low-level physical states that we have obtained, we have

observed that, just as in the case of the two-scalar W3 string, the momenta (p1, p2) of all

physical states are quantised in rational multiples of the background charges (α, a) for the

scalars (ϕ, X). Specifically, in this case, we find

p1 =
k1
19

α, p2 =
k2
8

a , (11)

where k1 and k2 are integers. All physical states satisfy a mass-shell condition,

5(12ℓ + 1) = (k1 + 19)2 + (k2 + 8)2 , (12)

where ℓ is the level number.

The method used in [7] to solve the cohomology consists of finding two particular physical

operators, which we shall call x and y, which have the property that they have inverses, x−1 and

y−1, in the sense that the normal-ordered products (x−1 x) and (y−1 y) are non-vanishing con-

stants. These operators have the further property that they have well-defined normal-ordered

products with all physical operators, and so they map physical operators into other BRST non-

trivial physical operators. They may therefore be used to generate the entire cohomology from

a basic set of physical operators whose momenta lie in a fundamental unit cell.

The simplest candidates for the x and y operators in the present case have momenta (k1, k2)

given by

x : (15, 15) x−1 : (−15, −15)

y : (15, −15) y−1 : (−15, 15) (13)

It is easy to see from the mass-shell condition (12) that operators with these momenta have

well-defined normal-ordered products with those for all integer solutions of (12), and hence in
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particular with all physical operators. One can also see from (12) that x and x−1 have level

numbers ℓ = 28 and ℓ = 1; whilst y and y−1 have level numbers ℓ = 20 and ℓ = 9. We have

been able to construct the operators x−1 and y explicitly. We find that the x−1 operator has

ghost number G = 3, which implies that the x operator has G = −3. The y operator has

ghost number G = −1, which implies that y−1 has G = 1. Although we have been unable to

construct the x and y−1 operators explicitly, owing to their complexity, we have accumulated

considerable evidence that supports their existence and invertibility. Assuming for now that

this is the case, one can easily see that the fundamental cell may be taken as a 30×15 rectangle

in the (k1, k2)-plane. There are 40 integer solutions to the mass-shell condition (12) in any such

rectangle, of which 36 turn out to correspond to physical states. The remaining four, which can

be characterised by k1 = 1, 6mod 15, do not correspond to physical states. For our calculations

we chose the fundamental cell to be the rectangle with −34 ≤ k1 ≤ −5, −15 ≤ k2 ≤ −1. All

the physical operators in this cell have level numbers ℓ ≤ 4 and it is straightforward to find

them explicitly. The complete cohomology can be obtained by normal-ordering xm yn with all

the physical operators in this fundamental cell, for arbitrary integers m and n.

Although, as we remarked above, we were unable to construct explicitly the x and y−1

operators, we have found numerous examples of pairs of physical states whose momenta and

ghost numbers are consistent with their existence as cohomology generating operators.

We now turn to the consideration of the B2 Weyl group and its action on physical states.

For the W2,4 BRST operator with α2 = 243

20
, this was discussed extensively in [8]. For the present

case, with α2 = 361

30
, we first define the shifted momenta k̂1 = k1 +19, and k̂2 = k2 +8. The B2

Weyl group is generated by

S1 : (k̂1, k̂2) −→ (k̂1, −k̂2) ,

S2 : (k̂1, k̂2) −→ (k̂2, k̂1) . (14)

The eight elements of the Weyl group are given by 1, S1, S2, S1S2, S2S1, S1S2S1, S2S1S2,

S1S2S1S2. It is clear that the Weyl group leaves the mass-shell condition (12) invariant.

Furthermore it maps the momentum of any physical operator into the momentum of an-

other physical operator [7]. For example, the eight tachyons c∂2γ∂γ γep1ϕ+p2X have momenta

(k̂1, k̂2) = (±1, ±2), (±2, ±1), where the ± signs are independent. These manifestly form a

multiplet under the Weyl group.

The existence of this Weyl group symmetry indicates that the BRST operator is based on

the WB2 algebra. The explicit realisation of the WB2 algebra is given in [9, 8]. Owing to the

fact that B2 is a non-simply-laced algebra, there are two inequivalent choices of the background

charge for ϕ that give the same critical value of the central charge. As was shown in [8], these

two values are α2 = 243

20
and α2 = 361

30
; i.e. precisely the two values that were found for the W2,4

BRST operators.

In previous studies of W string theories, it has been found that the physical states in the

case of a multi-scalar realisation can be associated with the primary fields of certain minimal

models. To be more specific, the physical operators take the form

cU(ϕ, β, γ)R(Xµ) , (15)
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where U(ϕ, β, γ) is a primary field of the minimal model, and R(Xµ) is a highest weight state

under T eff . The cohomology of a multi-scalar W string can be associated with a subset of the

cohomology of the two-scalar W string in a way that has been extensively discussed in [7, 8].

In the case of the W2,4 string with α2 = 361

30
, we find that the weights of primary operators

U(ϕ, β, γ) are h = (− 1

20
, 0, 1

5
, 3

4
). Noting that the central charge of the (ϕ, β, γ) system is

cmin = − 3

5
, we recognise that the minimal model in this case is the (3, 5) Virasoro minimal

model.

3 The W2,6 BRST operators

There is just one further W2,s algebra that exists for arbitrary central charge (and, in particular,

for the value that is needed for criticality), namely WG2, which is generated by an energy-

momentum tensor and a spin-6 primary current [10]. Since G2 is non-simply laced, there will

again be two inequivalent realisations, with different background charges, that give rise to

nilpotent BRST operators. The form of the energy-momentum tensor is

T = − 1

2
(∂~ϕ)2 − (t ~ρ+

1

t
~ρ∨) · ∂2~ϕ , (16)

where ~ρ = ( 3

2
,

√

3

6
) is the G2 Weyl vector and ~ρ∨ = (5,

√
3) is the co-Weyl vector. Solving

for the critical central charge c = 388 gives two solutions for t2, namely t2 = 7

2
and t2 = 24

7
.

These correspond to a background charge α given by α2 = 1681

56
and α2 = 5041

168
. Thus we see

that the second and third W2,6 BRST operators listed in table 1 correspond to BRST operators

of the WG2 algebra. We shall demonstrate below that indeed the physical states of these two

BRST operators display a symmetry under the action of the Weyl group of G2. The other two

W2,6 BRST operators, with α2 = 845

28
and α2 = 361

12
, are not associated with any underlying W

algebra, and in fact as we shall show, there is no Weyl-group symmetry in these cases.

First, we shall consider the two BRST operators associated with the WG2 algebra. The

low-level physical spectra of the two-scalar realisation indicate that the momenta of all physical

states are quantised in rational multiples of the background charges α and a. For the case

α2 = 5041

168
, we find that the momenta have the form

p1 =
( k̂1
71

− 1
)

α , p2 =
( k̂2
11

− 1
)

a , (17)

where k̂1 and k̂2 are integers. (We find it convenient to work directly with the shifted momentum

variables here.) The mass-shell condition in this case is

28(12ℓ + 1) = k̂21 + 3k̂22 . (18)

It is easy to see that this equation is invariant under the twelve-element G2 Weyl group generated

by

S1 : (k̂1, k̂2) −→ (k̂1, −k̂2) ,

S2 : (k̂1, k̂2) −→ ( 1

2
(−k̂1 + 3k̂2), 1

2
(k̂1 + k̂2)) . (19)
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We find that the tachyons, which are given by c ∂4γ ∂3γ ∂2γ ∂γ γ ep1ϕ+p2X , have momenta

(k̂1, k̂2) = (±1, ±3), (±4, ±2) and (±5, ±1), where the ± signs are independent. These twelve

momenta of tachyons do indeed form a multiplet under the Weyl group.

For the W2,6 BRST operator with α2 = 1681

56
, we find that the momenta of all physical states

take the form

p1 =
( k̂1
41

− 1
)

α , p2 =
( k̂2
19

− 1
)

a , (20)

where k̂1 and k̂2 are again integers. The mass-shell condition is

28(12ℓ + 1) = 3k̂21 + k̂22 . (21)

This is invariant under the twelve-element G2 Weyl group generated by

S1 : (k̂1, k̂2) −→ (k̂1, −k̂2) ,

S2 : (k̂1, k̂2) −→ ( 1

2
(k̂1 + k̂2), 1

2
(3k̂1 − k̂2)) . (22)

The tachyons here have momenta (k̂1, k̂2) = (±1, ±5), (±2, ±4) and (±3, ±1), where the ±
signs are independent. The momenta of these twelve tachyons again form a multiplet under the

Weyl group.

We expect that these results should generalise to higher-level physical states. In order to

investigate this completely, one would like to find the cohomology-generating operators x, x−1,

y and y−1 in each case. We have not attempted to do this here, because of the complexity of

the BRST operators. However, it is very plausible that they exist.

Like the W strings previously studied, we would expect that the physical states of the multi-

scalar WG2 strings have the form given in (15). The physical states of this form are relatively

easy to construct, and we have studied all the low-level examples for both the BRST operators of

WG2. For the case with α2 = 5041

168
, we find that the weights of the primary operators U(ϕ, β, γ)

are given by h = (− 1

14
, − 5

112
, 0, 1

7
, 27

112
, 9

14
, 13

16
, 10

7
, 5

2
). The central charge of the (ϕ, β, γ) system

is cmin = − 13

14
. These weights and central charge are precisely those of the (4, 7) Virasoro

minimal model. It is interesting to note that this value of central charge is exactly the one

found by Zamolodchikov to be necessary for the associativity of the W2, 5
2

algebra, which is

generated by the energy-momentum tensor and a spin- 5
2
current [2].

For the case with α2 = 1681

56
, the central charge of the (ϕ, β, γ) system is cmin = − 11

14
. We can

expect in this case that the operators U(ϕ, β, γ) should correspond to the primary fields of the

(7, 12) Virasoro minimal model. In fact this central charge is also equal to that for one of the

WB2 minimal models. At level ℓ = 19 and G = 1, there exists a physical state with momentum

p1 = 0, whose operator U(ϕ, β, γ) has weight h = 4, given by

U = (∂ϕ)4 + 4α∂2ϕ(∂ϕ)2 + 21557

532
(∂2ϕ)2 + 425

38
∂ϕ∂3ϕ+ 727

9348
α∂4ϕ

+24(∂ϕ)2 β ∂γ + 2154

133
(∂ϕ)2∂β γ + 3036

133
∂ϕ∂2ϕβγ + 30360

5453
α∂ϕ∂β ∂γ

+ 18975

5453
α∂ϕ∂2βγ + 79584

5453
α∂2ϕβ ∂γ + 11679

779
α∂2ϕ∂γ γ + 1518

779
α∂3ϕβγ

− 1325

133
β ∂3γ + 2650

133
∂β ∂2γ + 21729

931
∂2β ∂γ + 11205

1064
∂3β γ + 7632

133
∂β β ∂γ γ (23)
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The energy-momentum tensor Tmin of the (ϕ, β, γ) system is given by

Tmin = − 1

2
(∂ϕ)2 − α∂2ϕ− 6β ∂γ − 5∂β γ . (24)

We have explicitly verified that currents Tmin and U provide a realisation of the WB2 alge-

bra at central charge cmin = − 11

14
(up to appearance of the BRST trivial terms in the OPE of

U(z)U(w)). This indicates that the U(ϕ, β, γ) operators, which give a representation of the

(7, 12) Virasoro minimal model, can be viewed as the primaries and descendants of the WB2

minimal model with cmin = − 11

14
. The (7, 12) Virasoro minimal model has 33 primaries, 21

of which are primaries of the WB2 minimal model, with weights (− 1

14
, − 1

16
,− 1

21
,− 3

112
, 0, 11

336
,

13

112
, 1

6
, 25

112
, 2

7
, 3

7
, 25

42
, 11

16
, 11

14
, 299

336
, 153

112
, 3

2
, 44

21
, 125

48
, 187

42
, 23

3
). The remaining 12 are U descendants with

weights ( 125

112
, 17

7
, 333

112
, 377

112
, 4, 25

14
, 69

14
, 91

16
, 697

112
, 58

7
, 159

16
, 25

2
). This is an explicit example of the phe-

nomenon where the set of highest weight fields of a W minimal model gives rise to a larger set

of highest weight fields with respect to the Virasoro subalgebra. In this example, although not

in general, the set of Virasoro primaries is finite.

Finally, we turn to the last of the W2,6 BRST operators, with α2 = 361

12
. In this case the

(ϕ, β, γ) system has central charge cmin = 0. This BRST operator does not seem to corre-

spond to any known algebra. Nevertheless the low-level examples indicate that the momenta of

physical states are quantised in rational multiple of α and a. We find that p1 and p2 are given

by

p1 =
( k̂1
95

− 1
)

α , p2 =
( k̂2
25

− 1
)

a , (25)

where k̂1 and k̂2 are integers. The mass-shell condition in this case is

50(12ℓ + 1) = k̂21 + k̂22 . (26)

The twelve tachyons have momenta given by (k̂1, k̂2) = (±5, ±5), (±1, ±7) and (±7, ±1).

There is no discrete group of order 12 that maps these momenta into each other and preserves

the mass-shell condition (26). Thus we conclude that there is no Weyl group in this case. (Note

that (26) is similar to (12), and is therefore invariant under theB2 Weyl group generated by (14).

However, this does not act transitively on the 12 tachyons; those with momenta (±5, ±5) are

mapped into one another, and the remaining 8 tachyons form a multiplet amongst themselves.)

In the multi-scalar case, the weights of the primary operators U(ϕ, β, γ) have values including

h = (− 1

25
, 0, 1

25
, 4

25
, 11

25
, 14

25
, 21

25
) [5]. It is unclear whether these weights can be associated with

any “minimal model” of the cmin = 0 system realised by (ϕ, β, γ).

4 Bosonisation of the β, γ ghosts

It was recently observed in [11, 12] that by bosonising the β and γ ghosts, so that they are

written in terms of a free scalar field ρ, one can, after performing a non-local transformation

involving ρ and ϕ, cast the W3 string into the form of a parafermionic theory.

For the general sequence of W2,s BRST operators with α2 = (s− 1)(2s+1)2/(4(s+1)), one

can perform the following bosonisation of β and γ:

β = e−iρ , γ = eiρ . (27)

7



After the field redefinition

ϕ = −i
√

s2 − 1φ1 + s φ2 ,

ρ = −s φ1 − i
√

s2 − 1φ2 , (28)

the Q1 BRST operator can be written as

Q1 =

∮

dz : (∂seiφ1)e−i(s+1)φ1 : e
√
s2−1φ2 . (29)

The case s = 3 was proved in [12]; we have explicitly verified the result for the cases of s = 4,

5 and 6. In addition, we have constructed the W2,7 BRST operator according to the general

ansatz (1)–(7) and verified that in this case also, Q1 can be written in this form. Note that in

(29) we have indicated the normal ordering for the φ1 terms explicitly, to emphasise that there

are no contractions between the fields of the two φ1–dependent exponentials.

In [12], the following non-local transformation from φ1 to φ̂1 was then performed:

eiφ̂1 = −∂e−iφ1 , eiφ1 = ∂e−iφ̂1 . (30)

One can easily verify that under this, (29) becomes

Q1 =

∮

dz eisφ̂1 e
√
s2−1φ2 . (31)

(In this equation, and in (29), we have dropped an unimportant overall constant factor.)

Although the transformation (30) is canonical, i.e. φ̂1 satisfies the same OPE as φ1, it has a

significant effect on the cohomology of the BRST operator QB. In fact, all the original physical

states become BRST trivial. Actually one can prove an even stronger result, namely that after

the transformation (30) the cohomology of QB becomes trivial. To see this, it is convenient to

perform a further canonical transformation, from the fields (φ̂1, φ2) to (φ̃1, φ̃2), defined by

φ̃1 = s φ̂1 − i
√

s2 − 1φ2 ,

φ̃2 = i
√

s2 − 1 φ̂1 + s φ2 . (32)

The Q1 BRST operator then becomes simply Q1 =
∮

dz eiφ̃1 . If we perform the fermionisation

β̃ = e−iφ̃1 , γ̃ = eiφ̃1 , we may write QB as

QB = Q0 +Q1 ,

Q0 =

∮

dz c(Tm + ∂β̃ γ̃ + 1

2
Tc,b) , Q1 =

∮

dz γ̃ , (33)

where Tm = T eff + T
φ̃2

is a matter energy-momentum tensor with central charge 28. Note that

γ̃ has spin 1, and β̃ has spin 0.

To see that QB defined in (33) has no non-trivial cohomology, we write an arbitrary physical

state |χ〉 in the form |χ〉 = β̃|χ1〉+ |χ2〉, where |χ1〉 and |χ2〉 contain no undifferentiated β̃ field.

It is easy to see that the physical-state condition QB|χ〉 = 0 implies that |χ1〉 = −Q0|χ2〉, and
hence that QB β̃|χ2〉 = Q0β̃|χ2〉 + Q1β̃|χ2〉 = −β̃ Q0|χ2〉 + |χ2〉 = |χ〉. Thus any state that

8



satisfies the physical-state condition QB |χ〉 = 0 is BRST trivial. Since the transformation (32),

and the subsequent fermionisation that we performed above, will preserve the cohomology of

QB , it follows that the original cohomology of QB had already collapsed at the stage of the

parafermionic formulation in (31), owing to the non-locality of the transformation (30).

It is remarkable that despite the non-locality of the transformation (30), the original physical

operators can apparently all be re-expressed in terms of the (φ̂1, φ2) fields. We have checked

this in several non-trivial examples for the W3 string, for various levels up to ℓ = 14. The reason

why these operators, which are BRST trivial in the (φ̂1, φ2) parametrisation, are nevertheless

BRST non-trivial prior to the transformation (30) is that they are written as QB acting on

operators built from (φ̂1, φ2) that cannot themselves be re-expressed in terms of the original

fields, owing to the non-locality of (30).

One of the striking features of the transformation (28) is that for the general sequence of

BRST operators that we have just been discussing, one can, by adding total derivatives, express

Q1 in a form where φ2 appears only in the exponential, with monomials involving derivatives

only of φ1 in the prefactor. Furthermore, all these terms can then be expressed in the simple

form given in (29). It is of interest to see how much of this can be carried through for the

remaining exceptional BRST operators for W2,4 and W2,6. We find that the first step, namely

eliminating all the φ2 dependence from the prefactor, can be achieved for all the remaining

BRST operators. For example, in the case of the W2,4 BRST operator with α2 = 361

30
, we can

perform the following transformation:

ϕ = −i
√
120φ1 + 11φ2 ,

ρ = −11φ1 − i
√
120φ2 , (34)

leading to

Q1 =

∮

dz
(

6 (∂φ1)
4−i

√
96 (∂φ1)

2 ∂2φ1−13 (∂2φ1)
2+∂φ1 ∂

3φ1−
i√
6
∂4φ1

)

e−i
√
6φ1+

√
5φ2 . (35)

It is not possible to write this in the simple form (29). It is unclear whether there is nevertheless

some more general kind of non-local transformation analogous to (30) that could transform Q1

into a parafermionic form such as (31). Our findings for the exceptional W2,6 BRST operators

are similar, in that we obtain analogous expressions to (35), which again cannot be expressed

in a form such as (29).

5 Summary

In this paper, we have studied all the W2,s BRST operators up to s = 7, paying particular

attention to the execeptional W2,s BRST operators for s = 4 and s = 6 that have not been

previously investigated in any detail. These BRST operators would describe non-unitary string

theories in multi-scalar realisations. However, the cohomologies of these BRST operators in

multi-scalar realisation give rise to explicit realisations of certain minimal models. In two-scalar

realisation, the cohomologies of these BRST operators are much richer. Since the momenta of
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all the physical states seem to be quantised in rational multiples of the background charges, we

would expect that there exist cohomology-generating operators in all the exceptional cases, and

thus one would obtain the corresponding complete cohomologies, using the method developed

in [7]. In this paper, we carried out the task for the exceptional W2,4 BRST operator.

We also identified the W symmetries that underlie certain of the W2,s BRST operators.

The two W2,4 BRST operators are associated with WB2 algebra, and two of the W2,6 BRST

operators are associated with WG2 algebra. None of the other W2,s BRST operators with s ≥ 5

are associated with any underlying quantum W algebras. With the possible exception of W2,6

with α2 = 361

12
, all the W2,s BRST operators give rise to explicit realisations of certain minimal

models. In particular, W2,6 BRST operator with α2 = 1681

56
is associated with WB2 minimal

model with cmin = − 11

14
. TheW2,6 BRST operator with α2 = 361

12
has the central charge cmin = 0.

It is unclear whether this BRST operator is associated with any “minimal” model.

We also explicitly verified field redefinition proposed in [12] in order to simplify the BRST

operators for the general sequence of W2,s BRST operators with s = 4, 5, 6, and 7. We showed

that after the non-local field transformation (30) and some further field redefinitions, all these

BRST operators can be transformed into an s-independent form (33), whose cohomology is

trivial. For the exceptional W2,s BRST operators, it is unclear whether the above procedure

can be carried out.

It was recently proposed that the bosonic string could be viewed as a special vacuum of the

N = 1 superstring, which could in turn be viewed as a special vacuum of the N = 4 superstring

[13]. It was also suggested that the bosonic string might be viewed as the lowest member of

a hierachy of WN strings [13, 14]. In fact, as observed in [8], there is a sense in which this is

already seen in the usual multi-scalar W3 string, where physical states are those of c = 25 1

2

bosonic strings tensored with the Ising model. Another proposal was made recently [12], in

which a sequence of field transformations was made in order to arrive at a theory with the

cohomology of the ordinary bosonic string, starting from the W3 string. However, one step

along the sequence involved the non-local transformation (30), which yields the form (31) for

Q1 and, as we have seen, gives an empty cohomology for QB. Although in the subsequent

transformations in [12] a theory with the cohomology of the bosonic string is obtained, it would

seem that one should not interpret the result as showing that this bosonic string is a special

vacuum of the original W3 string, since at an intermediate stage all the cohomology was lost.

It would be interesting to see whether there is any way to bypass the step (30), and find a

non-singular projection from the states of the W string to those of the bosonic string.
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