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In the United States the preferred method of obtaining dietary
intake data is the 24-hour dietary recall, yet the measure of most
interest is usual or long-term average daily intake, which is impos-
sible to measure. Thus, usual dietary intake is assessed with con-
siderable measurement error. Also, diet represents numerous foods,
nutrients and other components, each of which have distinctive at-
tributes. Sometimes, it is useful to examine intake of these com-
ponents separately, but increasingly nutritionists are interested in
exploring them collectively to capture overall dietary patterns. Con-
sumption of these components varies widely: some are consumed daily
by almost everyone on every day, while others are episodically con-
sumed so that 24-hour recall data are zero-inflated. In addition, they
are often correlated with each other. Finally, it is often preferable to
analyze the amount of a dietary component relative to the amount
of energy (calories) in a diet because dietary recommendations of-
ten vary with energy level. The quest to understand overall dietary
patterns of usual intake has to this point reached a standstill. There
are no statistical methods or models available to model such com-
plex multivariate data with its measurement error and zero inflation.
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This paper proposes the first such model, and it proposes the first
workable solution to fit such a model. After describing the model,
we use survey-weighted MCMC computations to fit the model, with
uncertainty estimation coming from balanced repeated replication.
The methodology is illustrated through an application to estimating
the population distribution of the Healthy Eating Index-2005 (HEI-
2005), a multi-component dietary quality index involving ratios of
interrelated dietary components to energy, among children aged 2–8
in the United States. We pose a number of interesting questions about
the HEI-2005 and provide answers that were not previously within
the realm of possibility, and we indicate ways that our approach can
be used to answer other questions of importance to nutritional science
and public health.

1. Introduction. This paper presents statistical models and methodol-
ogy to overcome a major stumbling block in the field of dietary assessment.
More nutritional background is provided in Section 2: a summary of the key
conceptual issues follows:

• Nutritional surveys conducted in the United States typically use 24-hour
(24 h) dietary recalls to obtain intake data, that is, an assessment of what
was consumed in the past 24 hours.

• Because dietary recommendations are intended to be met over time, nu-
tritionists are interested in “usual” or long-term average daily intake.

• Dietary intake is thus assessed with considerable measurement error.
• Consumption patterns of dietary components vary widely; some are con-

sumed daily by almost everyone, while others are episodically consumed
so that 24-hour recall data are zero-inflated. Further, these components
are correlated with one another.

• Nutritionists are interested in dietary components collectively to capture
patterns of usual dietary intake, and thus need multivariate models for
usual intake.

• These multivariate models for usual intakes, taking into account episodi-
cally consumed foods, do not exist, nor do methods exist for fitting them.

One way to capture dietary patterns is by scores, although our work is
not limited to scores. The Healthy Eating Index-2005 (HEI-2005), described
in detail in Section 2, is a scoring system based on a priori knowledge of di-
etary recommendations, and is on a scale of 0–100. Ideally, it consists of the
usual intake of 6 episodically consumed and thus 24 h-zero inflated foods,
6 daily-consumed dietary components, adjusts these for energy (caloric) in-
take, and gives a score to each component. The total score is the sum of the
individual component scores. Higher scores indicate greater compliance with
dietary guidelines and, therefore, a healthier diet. Here are a few questions
that nutritionists have not been able to answer, and that our approach can
address:
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• What is the distribution of the HEI-2005 total score, and what % of
Americans are eating a healthier diet defined, for example, by a total
score exceeding 80?

• What is the correlation between the individual score on each dietary com-
ponent and the scores of all other dietary components?

• Among those whose total HEI-2005 score is >50 or ≤50, what is the dis-
tribution of usual intake of whole grains, whole fruits, dark green and
orange vegetables and legumes (DOL) and calories from solid fats, alco-
holic beverages and added sugars (SoFAAS)?

• What % of Americans exceed the median score on all 12 HEI-2005 com-
ponents?

In this paper, to answer public health questions such as these that can
have policy implications, we build a novel multivariate measurement error
model for estimating the distributions of usual intakes, one that accounts
for measurement error and zero-inflation, and has a special structure asso-
ciated with the zero-inflation. Previous attempts to fit even simple versions
of this model, using nonlinear mixed effects software, failed because of the
complexity and dimensionality of the model. We use survey-weighted Monte
Carlo computations to fit the model with uncertainty estimation coming
from balanced repeated replication. The methodology is illustrated using
the HEI-2005 to assess the diets of children aged 2–8 in the United States.
This work represents the first analysis of joint distributions of usual intakes
for multiple food groups and nutrients.

The paper is outlined as follows. In Section 2 we give the background
for the data we observe. In particular, we provide more information about
the HEI-2005. Section 3 describes our model which is a highly nonlinear,
zero-inflated, repeated measures model with multiple latent variables. The
model also has a patterned covariance matrix with structural zeros and ones.
We derive a parameterization that allows estimated covariance matrices to
be actual covariance matrices. We also define technically what we mean by
usual intake, and illustrate the use of simulation methods used to answer
the questions posed above, as well as many others.

Section 4 describes our estimation procedure. Previous attempts using
nonlinear mixed effects models to estimate the distribution of episodically
consumed food groups [Tooze et al. (2006); Kipnis et al. (2009)] do not
work here because of the high dimensionality of the problem. We instead
develop a Monte Carlo strategy based on the idea of Gibbs sampling; al-
though because of sampling weights, we treat the method as a frequentist
(non-Bayesian) one. This section describes some of the basics of the method-
ology; the full technical details of implementation are given in the Appendix.

Section 5 describes the analysis of the HEI-2005 components using the
2001–2004 National Health and Nutrition Examination Survey (NHANES)
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for children ages 2–8. Important contextual points arise because of the nature
of the data. For example, if whole grains are consumed, then necessarily total
grains are consumed with probability one, a restriction that a naive use of
our model cannot handle. We develop a simple novel device to uncouple
consumption variables that are tightly linked in this way. Finally, in this
section we provide the first answers to the four questions we have posed. In
Section 6 we discuss various additional aspects of the problem and the data
analysis. Concluding remarks and a policy application are given in Section 7.

There are a number of general reviews of the measurement error field
[Fuller (1987); Gustafson (2004); Carroll et al. (2006); Buonaccorsi (2010)].
Recent papers that focus on estimating the density function of a univariate
continuous random variable subject to measurement error include Delaigle
(2008), Delaigle and Hall (2008, 2011), Delaigle and Meister (2008), Delaigle,
Hall and Meister (2008), Staudenmayer, Ruppert and Buonaccorsi (2008)
and Wand (1998). The field of measurement error in regression continues
to expand rapidly, with some recent contributions including Küchenhoff,
Mwalili and Lesaffre (2006), Guolo (2008), Liang et al. (2008), Messer and
Natarajan (2008) and Natarajan (2009). There is also a large statistical
literature on measurement error as it relates to public health nutrition: some
recent papers relevant to our work include Carriquiry (1999, 2003), Ferrari
et al. (2009), Fraser and Shavlik (2004), Kott et al. (2009), Nusser et al.
(1996), Nusser, Fuller and Guenther (1997), Prentice (1996, 2003), Tooze,
Grunwald and Jones (2002) and Tooze et al. (2006).

2. Data and the HEI-2005 scores. Here we give more detail about the
nutrition context that motivates this work.

In surveys conducted in the United States, the preferred method of ob-
taining intake data is the 24-hour dietary recall because it limits respondent
burden and facilitates accurate reporting; yet the measure of greatest in-
terest is “usual” or long-term average daily intake. Thus, dietary intake is
assessed with considerable measurement error. Also, diets are comprised of
numerous foods, nutrients and other components, each of which may have
distinctive attributes and effects on nutritional health. Sometimes, it is use-
ful to examine intake of these components separately, but increasingly nu-
tritionists are interested in exploring them collectively to capture patterns
of dietary intake. Consumption patterns of these components vary widely;
some are consumed daily by almost everyone, while others are episodically
consumed so that 24-hour recall data are zero-inflated. In addition, these
various components are often correlated with one another. Finally, it is of-
ten preferable to analyze the amount of a dietary component relative to the
amount of energy (calories) in a diet because dietary recommendations often
vary with energy level, and this approach provides a way of standardizing
dietary assessments.
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One of the US Department of Agriculture’s (USDA’s) strategic objec-

tives is “to promote healthy diets” and it has developed an associated

performance measure, the Healthy Eating Index-2005 (HEI-2005, http://

www.cnpp.usda.gov/HealthyEatingIndex.htm). The HEI-2005 is based on

the key recommendations of the 2005 Dietary Guidelines for Americans

(http://www.health.gov/dietaryguidelines/dga2005/document/default.htm).

The index includes ratios of interrelated dietary components to energy. The

HEI-2005 comprises 12 distinct component scores and a total summary score.

See Table 1 for a list of these components and the standards for scoring, and

see Guenther, Reedy and Krebs-Smith (2008) for details. Intakes of each

Table 1
Description of the HEI-2005 scoring system. Except for saturated fat and SoFAAS,

density is obtained by multiplying usual intake by 1000 and dividing by usual intake of
kilocalories

Component Units HEI-2005 score calculation

Total fruit cups min (5,5× (density/0.8))
Whole fruit cups min (5,5× (density/0.4))
Total vegetables cups min (5,5× (density/1.1))
DOL cups min (5,5× (density/0.4))
Total grains ounces min (5,5× (density/3))
Whole grains ounces min (5,5× (density/1.5))
Milk cups min (10,10× (density/1.3))
Meat and beans ounces min (10,10× (density/2.5))
Oil grams min(10,10× (density/12))
Saturated fat % of if density≥ 15 score = 0

energy else if density≤ 7 score = 10
else if density> 10 score = 8− (8× (density− 10)/5)
else, score = 10− (2× (density− 7)/3)

Sodium milligrams if density≥ 2000 score = 0
else if density≤ 700 score = 10
else if density≥ 1100
score = 8−{8× (density− 1100)/(2000− 1100)}
else score = 10−{2× (density− 700)/(1100− 700)}

SoFAAS % of if density≥ 50 score = 0
energy else if density≤ 20 score = 20

else score = 20−{20× (density− 20)/(50− 20)}

For saturated fat, density is 9× 100 usual saturated fat (grams) divided by usual calo-
ries, that is, the percentage of usual calories coming from usual saturated fat intake. For
SoFAAS, the density is the percentage of usual intake that comes from usual intake of
calories, that is, the division of usual intake of SoFAAS by usual intake of calories. Here,
“DOL” is dark green and orange vegetables and legumes. Also, “SoFAAS” is calories from
solid fats, alcoholic beverages and added sugars. The total HEI-2005 score is the sum of
the individual component scores.

http://www.cnpp.usda.gov/HealthyEatingIndex.htm
http://www.cnpp.usda.gov/HealthyEatingIndex.htm
http://www.health.gov/dietaryguidelines/dga2005/document/default.htm
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food or nutrient, represented by one of the 12 components, are expressed as
a ratio to energy intake, assessed, and ascribed a score.

The HEI-2005 is used to evaluate the diets of Americans to assess compli-
ance with the 2005 Dietary Guidelines, yet use of the HEI-2005 is limited by
the challenges described above. Until recently, there have been no solutions
to these challenges, so published evaluations have been limited to analyses
of mean scores for the population and various subgroups. Freedman et al.
(2010) have described a method of estimating the population distribution
of a single component of HEI-2005, and the prevalence of high or low scores
on that component; but there has been to date no satisfactory way to de-
termine the prevalence of high or low total HEI-2005 scores, considering all
of its interrelated components simultaneously. In addition, answers to the
complex questions posed in the Introduction remain unavailable. This paper
aims to provide a means to do these crucial evaluations.

The 12 HEI-2005 components represent 6 episodically consumed food
groups (total fruit, whole fruit, total vegetables, dark green and orange veg-
etables and legumes or DOL, whole grains and milk), 3 daily-consumed food
groups (total grains, meat and beans and oils) and 3 other daily-consumed
dietary components (saturated fat; sodium; and calories from solid fats, al-
coholic beverages and added sugars, or SoFAAS). The classification of food
groups as “episodically” and “daily” consumed is based on the number of
individuals who report them on 24 h recalls. If there are only a few zeros for
a component, we treat that as a daily-consumed food, and replace all zeros
with 1/2 the minimum value of the nonzeros for that food. However, the
crucial statistical aspect of the data is that six of the food groups are zero-
inflated. The percentages of reported nonconsumption of total fruit, whole
fruit, whole grains, total vegetables, DOL and milk on any single day are
17%, 40%, 42%, 3%, 50% and 12%, respectively.

We are interested in the usual intake of foods for children aged 2–8. The
data available to us, described in more detail in Section 5, came from the
National Health and Nutrition Examination Survey, 2001–2004 (NHANES).
The data used here consisted of n= 2,638 children, each of whom had a sur-
vey weight wi for i = 1, . . . , n. In addition, one or two 24 h dietary recalls
were available for each individual. Along with the dietary variables, there
are covariates such as age, gender, ethnicity, family income and dummy vari-
ables that indicate a weekday or a weekend day, and whether the recall was
the first or second reported for that individual.

Using the 24 h recall data reported, for each of the episodically consumed
food groups, two variables are defined: (a) whether a food from that group
was consumed; and (b) the amount of the food that was reported on the 24 h
recall. For the 6 daily-consumed food groups and nutrients, only one variable
indicating the consumption amount is defined. In addition, the amount of
energy that is calculated from the 24 h recall is of interest. The number of
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dietary variables for each 24 h recall is thus 12 + 6 + 1 = 19. The observed
data are Yijk for the ith person, the jth variable and the kth replicate,
j = 1, . . . ,19 and k = 1, . . . ,mi. In the data set, at most two 24 h recalls were
observed, so that mi ≤ 2. Set Ỹik = (Yi1k, . . . , Yi,19,k)

T, where

• Yi,2ℓ−1,k = Indicator of whether dietary component #ℓ is consumed, with
ℓ= 1,2,3,4,5,6.

• Yi,2ℓ,k =Amount of food #ℓ consumed. This equals zero, of course, if none
of food #ℓ is consumed, with ℓ= 1,2,3,4,5,6.

• Yi,ℓ+6,k =Amount of nonepisodically consumed food or nutrient #ℓ, with
ℓ= 7,8,9,10,11,12.

• Yi,19,k =Amount of energy consumed as reported by the 24 h recall.

3. Model and methods.

3.1. Basic model description. Our model is a generalization of work by
Tooze et al. (2006) and Kipnis et al. (2009) for a single food and Kipnis et al.
(2011) and Zhang et al. (2011) for a single food and nutrient. Observed data
will be denoted as Y , and covariates in the model will be denoted as X . As
is usual in measurement error problems, there will also be latent variables,
which will be denoted by W .

We use a probit threshold model. Each of the 6 episodically consumed
foods will have 2 sets of latent variables, one for consumption and one
for amount, while the 6 daily-consumed foods and nutrients as well as en-
ergy will have 1 set of latent variables, for a total of 19. The latent ran-
dom variables are εijk and Uij , where (Ui1, . . . ,Ui,19) = Normal(0,Σu) and
(εi1k, . . . , εi,19,k) = Normal(0,Σε) are mutually independent. In this model,
food ℓ = 1, . . . ,6 being consumed on day k is equivalent to observing the
binary Yi,2ℓ−1,k, where

Yi,2ℓ−1,k = 1
(3.1)

⇐⇒ Wi,2ℓ−1,k =XT
i,2ℓ−1,kβ2ℓ−1 +Ui,2ℓ−1 + εi,2ℓ−1,k > 0.

If the food is consumed, we model the amount reported Yi,2ℓ,k as

[gtr(Yi,2ℓ,k, λℓ)|Yi,2ℓ−1,k = 1] =Wi,2ℓ,k
(3.2)

=XT
i,2ℓ,kβ2ℓ +Ui,2ℓ + εi,2ℓ,k,

where gtr(y,λ) =
√
2{g(y,λ)−µ(λ)}/σ(λ), g(y,λ) is the usual Box-Cox trans-

formation with transformation parameter λ, and {µ(λ), σ(λ)} are the sample
mean and standard deviation of g(y,λ), computed from the nonzero food
data. This standardization is simply a convenient device to improve the nu-
merical performance of our algorithm without affecting the conclusions of
our analysis.
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The reported consumption of daily consumed foods or nutrients ℓ =
7, . . . ,12 is modeled as

gtr(Yi,ℓ+6,k, λℓ) =Wi,ℓ+6,k =XT
i,ℓ+6,kβℓ+6 +Ui,ℓ+6 + εi,ℓ+6,k.(3.3)

Finally, energy is modeled as

gtr(Yi,19,k, λ13) =Wi,19,k =XT
i,19,kβ19 +Ui,19 + εi,19,k.(3.4)

As seen in (3.2)–(3.4), different transformations (λ1, . . . , λ13) are allowed to
be used for the different types of dietary components; see Section A.12.

In summary, there are latent variables W̃ik = (Wi1k, . . . ,Wi,19,k)
T, latent

random effects Ũi = (Ui1, . . . ,Ui,19)
T, fixed effects (β1, . . . , β19), and design

matrices (Xi1k, . . . ,Xi,19,k). Define ε̃ik = (εi1k, . . . , εi,19,k)
T. The latent vari-

able model is

Wijk =XT
ijkβj +Uij + εijk,(3.5)

where Ũi = Normal(0,Σu) and ε̃ik = Normal(0,Σε) are mutually indepen-
dent.

3.2. Restriction on the covariance matrix. Two necessary restrictions are
set on Σε. First, following Kipnis et al. (2009, 2011), εi,2ℓ−1,k and εi,2ℓ,k,
(ℓ = 1, . . . ,6) are set to be independent. Second, in order to technically
identify β2ℓ−1 and the distribution of Ui,2ℓ−1 (ℓ= 1, . . . ,6), we require that
var(εi,2ℓ−1,k) = 1, because otherwise the marginal probability of consump-
tion of dietary component #ℓ would be Φ{(XT

i,2ℓ−1,kβ2ℓ−1 + Ui,2ℓ−1)/

var1/2(εi,2ℓ−1,k)}, and thus components of β and Σu would be identified

only up to the scale var1/2(εi,2ℓ−1,k).
So that we can handle any number of episodically consumed dietary com-

ponents and any number of daily consumed components, suppose that there
are J episodically consumed dietary components, and K daily consumed
dietary components, and in addition there is energy. Then the restrictions
defined above lead to the covariance matrix

Σε =




1 0 s13 s14 . . .
0 s22 s23 s24 . . .
s13 s23 1 0 . . .
s14 s24 0 s44 . . .
...

...
...

...
. . .

s1,2J+1 s2,2J+1 s3,2J+1 s4,2J+1 . . .
...

...
...

...
...

s1,2J+K+1 s2,2J+K+1 s3,2J+K+1 s4,2J+K+1 . . .




(3.6)
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×




. . . s1,2J+1 . . . s1,2J+K+1

. . . s2,2J+1 . . . s2,2J+K+1

. . . s3,2J+1 . . . s3,2J+K+1

. . . s4,2J+1 . . . s4,2J+K+1

. . .
... . . .

...
. . . s2J+1,2J+1 . . . s2J+1,2J+K+1
...

...
. . .

...
. . . s2J+1,2J+K+1 . . . s2J+K+1,2J+K+1




.

The difficulty with parameterizations of (3.6) is that the cells that are not
constrained to be 0 or 1 cannot be left unconstrained, otherwise (3.6) need
not be a covariance matrix, that is, positive semidefinite.

We have developed an unconstrained parameterization that results in the
structure (3.6). Consider an unconstrained lower triangular matrix V and
define Σε = V V T. This is positive semidefinite and therefore qualifies Σε as
a proper covariance matrix. The form of V is

V =




v11 0 . . . 0
v21 v22 . . . 0
...

...
. . .

...
v2J+K+1,1 v2J+K+1,2 . . . v2J+K+1,2J+K+1


 .

To achieve the desired pattern (3.6), we derive the following four restrictions:

v11 = 1;

v21 = 0;

q∑

p=1

v2qp = 1; q = 3,5, . . . ,2J − 1;

q∑

p=1

vqpvq+1,p = 0; q = 3,5, . . . ,2J − 1.

The third restriction can be ensured by the further parameterization

v31 = r1 sin(θ1);

v32 = r1 cos(θ1);

v33 =
√

1− r21;

v2q+1,1 = rq sin(θ1+(q−1)2);

v2q+1,p = rq cos(θ1+(q−1)2)× · · · × cos(θp−1+(q−1)2) sin(θp+(q−1)2),

p= 2, . . . ,2q − 1;
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v2q+1,2q = rq cos(θ1+(q−1)2)× · · · × cos(θq2);

v2q+1,2q+1 =
√

1− r2q ,

where q = 2,3, . . . , J − 1, |rt| ≤ 1, t = 1, . . . , J − 1, and |θs| ≤ π, s = 1, . . . ,
(J − 1)2.

Similarly, the fourth restriction can be further expressed by setting

vq+1,q =−
q−1∑

p=1

vqpvq+1,p/vqq =−
q−1∑

p=1

vqpvq+1,p/
√

1− r2(q−1)/2,

where q = 3,5, . . . ,2J − 1.
Note that |Σε|= |V |2 =∏2J+K+1

q=1 v2qq =
∏J

q=1 v
2
2q,2q

∏2J+K+1
q=2J+1 v2q,q

∏J−1
q=1 (1−

r2q).

3.3. The use of sampling weights. As described in the Appendix, we
used the survey sample weights from NHANES both in the model fitting
procedure and, after having fit the model, in estimating the distributions of
usual intake.

While not displayed here, we redid the model fitting calculations without
weighting, because the covariates we use are major players in determining
the sampling weights, hence, it is reasonable to believe that the model in
Section 3 holds both in the sample and in the population. When we did this,
the parameter estimates were essentially unchanged.

Thus, we use the sampling weights only for estimation of the population
distributions. We actually did this for the purpose of handling the cluster-
ing in the sample design. For such a complex statistical procedure as ours,
we knew we could not do theoretical standard errors, so we thought about
the bootstrap, and realized that putting together a bootstrap for the com-
plex survey would be nearly impossible. However, we already had developed
a set of Balanced Repeated Replication (BRR) weights [Wolter (1995)]; see
Section 5.7 for details. These BRR weights have the property that, in the
frequentist survey sampling sense, they appropriately reflect the clustering
in the standard error calculations.

Of course, the use of sampling weights in the modeling provide unbiased
estimates of the (super) population parameters of interest. In addition, the
use of sampling weights in the distribution estimation provides an estimated
distribution that is representative of the US population, not just the sample.

3.4. Distribution of usual intake and the HEI-2005 scores. We assume
here that estimates of Σu, Σε and βj for j = 1, . . . ,19 have been constructed;
see Section 4. Here we discuss what we mean by usual intake for an individ-
ual, how to estimate the distribution of usual intakes, how to convert usual
intakes into HEI-2005 scores, and how to assess uncertainty.
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Consider the first episodically consumed dietary component, a food group,
with reporting being done on a weekend. Set Xi1,wkend and Xi2,wkend to be
the versions of Xi1k and Xi2k where the dummy variable has the indicator
of the weekend and that the recall is the first one. Following Kipnis et al.
(2009), we define the usual intake for an individual on the weekend to be
the expectation of the reported intake conditional on the person’s random
effects Ũi. Let the (q, p) element of Σε be denoted as Σε,q,p. As in Kipnis
et al. (2009) define

g∗tr{v,λ,Σε,q,p}= g−1
tr (v,λ) +

1

2
Σε,q,p

∂2g−1
tr (v,λ)

∂v2
.(3.7)

Detailed formulas for this are given in Appendix A.11. Then, following the
convention of Kipnis et al. (2009), the person’s usual intake of the first
episodically consumed dietary component on the weekend is defined as

Ti1,wkend =Φ(XT
i1,wkendβ1 +Ui1)g

∗
tr(X

T
i2,wkendβ2 +Ui2, λ1,Σε,2,2).

Similarly, let Xi1,wkday and Xi2,wkday be as above but the dummy variable
is appropriate for a weekday. Then the person’s usual intake of the first
episodically consumed food group on weekdays is defined as

Ti1,wkday =Φ(XT
i1,wkdayβ1 +Ui1)g

∗
tr(X

T
i2,wkdayβ2 +Ui2, λ1,Σε,2,2).

Finally, the usual intake of the first episodically consumed food for the in-
dividual is

Ti1 = (4Ti1,wkday + 3Ti1,wkend)/7,

since Fridays, Saturdays and Sundays are considered to be weekend days.
Usual intake for the other episodically consumed food groups is defined
similarly.

A person’s usual intake of a daily-consumed food group/nutrient and en-
ergy on the original scale is defined similarly. Consider, for example, energy,
which is the 13th dietary component and the 19th set of terms in the model.
Let Xi,19,wkend and Xi,19,wkday be the versions of Xi,19,k where the dummy
variable has the indicator of the weekend or weekday, respectively, and that
the recall is the first one. Then

Ti,13,wkend = g∗tr(X
T
i,19,wkendβ19 +Ui,19, λ13,Σε,19,19);

Ti,13,wkday = g∗tr(X
T
i,19,wkdayβ19 +Ui,19, λ13,Σε,19,19);

Ti,13 = (4Ti,13,wkday + 3Ti,13,wkend)/7.

Similar formulae are used for the other daily-consumed foods and nutrients.
Finally, the energy-adjusted usual intakes and the HEI-2005 scores are

then obtained as in Table 1, using the estimated usual intakes of the dietary
components.



12 S. ZHANG ET AL.

To find the joint distribution of usual intakes of the HEI-2005 scores, it
is convenient to use Monte Carlo methods. Recall that wi is the sampling
weight for individual i. Let B be a large number: we set B = 5000. Generate
b= 1, . . . ,B observations Ũbi =Normal(0,Σu) and then obtain T̃bi = (Tbiℓ)

13
ℓ=1

by replacing Uij in their formulae by Ubij . With appropriate sample weight-

ing, the T̃bi can be used to estimate joint and marginal distributions. Thus,
for example, consider the total HEI-2005 score, which is a deterministic func-
tion of the usual intakes, say, G(T̃i). Its cumulative distribution function is
estimated as

F̂ (x) =

∑n
i=1

∑B
b=1 I{G(T̃bi)≤ x}wi∑n
i=1

∑B
b=1wi

.(3.8)

Frequentist standard errors of derived quantities such as mean, median and
quantiles can be estimated using the Balanced Repeated Replication (BRR)
method [Wolter (1995)]; see Section 5.7 for details.

4. Comments on the approach to estimation. Our model (3.2)–(3.4) is
a highly nonlinear, mixed effects model with many latent variables and non-
linear restrictions on the covariance matrix Σε. As seen in Section 3.4, we
can estimate relevant distributions of usual intake in the population if we
can estimate Σu, Σε and βj for j = 1, . . . ,19. We have found that work-
ing within a pseudo-likelihood Bayesian paradigm is a convenient way to do
this computation. We emphasize, however, that we are doing this only to get
frequentist parameter estimates based on the well-known asymptotic equiv-
alence of frequentist likelihood estimators and Bayesian posterior means,
and especially the consistency of both [Lehmann and Casella (1998)]. We
are specifically not doing Bayesian posterior inference, since valid Bayesian
inference in a complex survey such as NHANES is an immensely challenging
task, and because frequentist estimation and inference are the standard in
the nutrition community.

Kipnis et al. (2009) were able to get estimates of parameters separately
for each food group using the nonlinear mixed effects program NLMIXED in
SAS with sampling weights. While this gives estimates of βj for j = 1, . . . ,19,
it only gives us parts of the covariance matrices Σu and Σε, and not all
the entries. Using the 2001–2004 NHANES data, we have verified that our
estimates and the subset of the parameters that can be estimated by one food
group at a time using NLMIXED are in close agreement, and that estimates
of the distributions of usual intake and HEI-2005 component scores are also
in close agreement. We expect this because of the rather large sample size in
our data set. Zhang et al. (2011) have shown that even considering a single
food group plus energy is a challenge for the NLMIXED procedure, both
in time and in convergence, and using this method for the entire HEI-2005
constellation of dietary components is impossible.
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Full technical details of the model fitting procedure are given in Appen-
dices A.1–A.10.

Of course, our model has assumptions, for example, additivity and ho-
moscedasticity on a transformed scale for observed and latent variables,
normality of person-specific random effects and normality of day-to-day vari-
ability on the transformed scale. These assumptions are clearly not exactly
correct, although our marginal model-checking suggests to us that they are
mostly not disastrously wrong. Some reasons for this conclusion include the
facts that we reproduce the marginal distributions of the components, that
comparison with 24 h recalls shows differences that decrease when moving
from one 24 h recall to two 24 h recalls, that q-q plots of the data are fairly
satisfactory, etc. Thinking, as we do, of our work as a first step, and not
a last step, it would be extremely interesting to make the model more gen-
eral, for example, skew-normal, skew-t or Dirichlet process distributions after
transformation, and possibly directly modeling heteroscedasticity. Such gen-
eralizations will require effort to implement, but will speak to the robustness
of the results and would be a useful future step.

5. Empirical work.

5.1. Basic analysis. We analyzed data from the 2001–2004 National
Health and Nutrition Examination Survey (NHANES) for children ages 2–8.
The study sample consisted of 2638 children, among whom 1103 children
have two 24 h recalls and the rest have only one. We used the dietary intake
data to calculate the 12 HEI-2005 components plus energy. In addition, be-
sides age, gender, race and interaction terms, two covariates were employed,
along with an intercept. The first was a dummy variable indicating whether
or not the recall was for a weekend day (Friday, Saturday or Sunday) because
food intakes are known to differ systematically on weekends and weekdays.
The second was a dummy variable indicating whether the 24 h recall was
the first or second such recall, the idea being that there may be systematic
differences attributable to the repeated administration of the instrument.

5.2. Contextual information. When we ran our program based on the
variables in Table 1, the results were disastrous. Mixing of the MCMC sam-
pler was very poor, with long sojourns in different regions.

The reason for this failure to converge depends on the context of the di-
etary variables. For example, whole grains are a subset of total grains. Thus,
if someone consumes any whole grains, then necessarily, with probability 1.0,
that person also consumes total grains. Such a restriction cannot be handled
by our model, because it would force one of the random effects U to equal
infinity. A similar thing happens for energy. Calories coming from saturated
fat are a subset of total calories, as are calories from SoFAAS, so there is
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a restriction that total calories must be greater than calories from saturated
fat and also greater than calories from SoFAAS. Since the latter sum makes
up a significant portion of calories, this restriction is not something that our
model can handle well.

Luckily, there is an easy and natural context-based solution. Instead of
using total grains in the model, we used grains that are not whole grains,
that is, refined grains, thus decoupling whole grains and total grains, and
removing the restriction mentioned above. Similarly, instead of using total
fruit, we use fruit that is not whole fruits, that is, fruit juices. Additionally,
instead of using total vegetables, we use total vegetables excluding dark
green and orange vegetables and legumes. Finally, instead of total energy,
we use total energy minus the sum of energy from saturated fat (11% of
mean energy) and from SoFAAS (35% of mean energy). We recognize that
there is overlap of energy from saturated fat and energy from solid fat, but
this has no impact on our analysis since total energy has sources other than
these two. An alternative, of course, would have been to simply use total
energy minus energy from SoFAAS,

This is sufficient to estimate the distributions of interest. If, for example,
in the new data set Ti1 represents usual intake of nonwhole fruits, and Ti2 is
usual intake of whole fruits, then the usual intake of total fruits is Ti1 +Ti2.
Similar remarks apply for total grains and total vegetables.

With these new variables, our model mixed well and gave reasonable
looking answers that, as mentioned in Section 4, give similar results to other
methods employed with smaller parts of the data set.

5.3. Estimation of the HEI-2005 scores. In the Introduction we posed 4
questions to which answers had not been possible previously. The first open
question concerned the distribution of the HEI total score. Along the way
toward this, Table 2 presents the energy-adjusted distributions of the dietary
components used in the HEI-2005. Table 3 presents the distributions of the
HEI-2005 individual component scores and the total score, with a graphical
view given in Figure 1.

Table 3 presents the first estimates of the distribution of HEI-2005 scores
for a vulnerable subgroup of the population, namely, children aged 2–8 years.
A previous analysis of 2003–2004 NHANES data, looking separately at 2–5
year olds and 6–11 year olds, was limited to estimates of mean usual HEI-
2005 scores [59.6 and 54.7, respectively; see Fungwe et al. (2009)]. The mean
scores noted here are comparable to those and reinforce the notion that chil-
dren’s diets, on average, are far from ideal. However, this analysis provides
a more complete picture of the state of US children’s diets. By including
the scores at various percentiles, we estimate that only 5% of children have
a score of 69 or greater and another 10% have scores of 41 or lower. While
not in the table, we also estimate that the 99th percentile is 74. This analysis
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Table 2
Estimated distributions of energy-adjusted usual intakes for children aged 2–8;

NHANES, 2001–2004

Percentile

Component Units Mean 5th 10th 25th 50th 75th 90th 95th

Total fruit cups/(1000 kcal) 0.70 0.14 0.21 0.37 0.62 0.95 1.30 1.54
0.02 0.02 0.02 0.02 0.02 0.03 0.05 0.07

Whole fruit cups/(1000 kcal) 0.31 0.04 0.07 0.14 0.26 0.42 0.61 0.73
0.02 0.01 0.01 0.02 0.02 0.03 0.04 0.06

Total vegetables cups/(1000 kcal) 0.47 0.23 0.27 0.36 0.46 0.58 0.69 0.77
0.01 0.02 0.02 0.02 0.01 0.02 0.03 0.03

DOL cups/(1000 kcal) 0.05 0.00 0.01 0.02 0.03 0.07 0.11 0.15
0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01

Total grains ounces/(1000 kcal) 3.32 2.35 2.54 2.87 3.28 3.72 4.16 4.45
0.05 0.08 0.07 0.06 0.05 0.06 0.08 0.10

Whole grains ounces/(1000 kcal) 0.27 0.05 0.07 0.13 0.23 0.36 0.52 0.64
0.01 0.01 0.01 0.02 0.01 0.02 0.03 0.04

Milk cups/(1000 kcal) 0.97 0.28 0.38 0.60 0.90 1.26 1.64 1.90
0.02 0.03 0.03 0.02 0.02 0.03 0.05 0.07

Meat and beans ounces/(1000 kcal) 1.84 1.06 1.21 1.48 1.80 2.16 2.51 2.73
0.04 0.09 0.08 0.06 0.04 0.04 0.05 0.07

Oil grams/(1000 kcal) 7.13 4.05 4.60 5.63 6.93 8.41 9.90 10.89
0.23 0.24 0.21 0.17 0.20 0.35 0.54 0.68

Saturated fat % of energy 11.71 8.56 9.20 10.33 11.64 13.01 14.32 15.13
0.15 0.25 0.20 0.15 0.15 0.22 0.32 0.38

Sodium grams/(1000 kcal) 1.49 1.16 1.23 1.34 1.48 1.63 1.77 1.86
0.01 0.02 0.02 0.01 0.01 0.02 0.03 0.03

SoFAAS % of energy 36.93 27.19 29.28 32.87 36.90 40.96 44.61 46.77
0.48 0.93 0.81 0.63 0.48 0.49 0.64 0.75

For each dietary component, the first line = estimate from our model, while the second line
is its BRR-estimated standard error. Here, “DOL” is dark green and orange vegetables
and legumes. Also, “SoFAAS” is calories from solid fats, alcoholic beverages and added
sugars. Total Fruit, Whole Fruit, Total Vegetables, DOL and Milk are in cups. Total
Grains, Whole Grains and Meat and Beans are in ounces. Oil and Sodium are in grams.
Saturated Fat and SoFAAS are in % of energy. Further discussion of the size of the BRR-
estimated standard errors is given in the supplementary material [Zhang et al. (2011)].

suggests that virtually all children in the US have suboptimal diets and that
a sizeable fraction (10%) have alarmingly low scores (41 or lower.)

We have also considered whether our multivariate model fitting procedure

gives reasonable marginal answers. To check this, we note that it is possible
to use the SAS procedure NLMIXED separately for each component to fit
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Table 3
Estimated distributions of the usual intake HEI-2005 scores

Percentile

Component Mean 5th 10th 25th 50th 75th 90th 95th

Total fruit 3.55 0.87 1.31 2.33 3.90 5.00 5.00 5.00
0.09 0.13 0.14 0.15 0.15 0.00 0.00 0.00

Whole fruit 3.14 0.49 0.82 1.71 3.24 5.00 5.00 5.00
0.14 0.12 0.16 0.21 0.26 0.03 0.00 0.00

Total vegetables 2.16 1.02 1.24 1.63 2.10 2.62 3.15 3.48
0.06 0.10 0.10 0.07 0.06 0.07 0.12 0.16

DOL 0.62 0.05 0.09 0.21 0.45 0.86 1.38 1.76
0.04 0.02 0.03 0.04 0.05 0.06 0.08 0.13

Total grains 4.81 3.92 4.23 4.79 5.00 5.00 5.00 5.00
0.03 0.13 0.12 0.09 0.00 0.00 0.00 0.00

Whole grains 0.90 0.16 0.24 0.43 0.75 1.21 1.74 2.13
0.04 0.04 0.05 0.05 0.05 0.05 0.10 0.14

Milk 6.77 2.15 2.96 4.62 6.91 9.67 10.00 10.00
0.12 0.23 0.22 0.18 0.17 0.25 0.00 0.00

Meat and beans 7.22 4.23 4.83 5.91 7.21 8.64 10.00 10.00
0.16 0.34 0.30 0.23 0.17 0.15 0.11 0.00

Oil 5.92 3.37 3.83 4.69 5.77 7.01 8.25 9.07
0.18 0.20 0.18 0.14 0.17 0.29 0.45 0.57

Saturated fat 5.16 0.00 1.09 3.18 5.38 7.48 8.53 8.96
0.21 0.35 0.51 0.35 0.24 0.23 0.13 0.16

Sodium 4.52 1.25 2.05 3.31 4.62 5.83 6.85 7.44
0.09 0.30 0.24 0.15 0.09 0.11 0.16 0.19

SoFAAS 8.73 2.15 3.60 6.02 8.73 11.42 13.81 15.21
0.32 0.50 0.42 0.33 0.32 0.42 0.54 0.62

Total Score 53.50 37.42 40.74 46.73 53.68 60.36 65.87 68.96
0.81 1.45 1.34 1.09 0.83 0.82 0.96 1.08

For each component score, the first line = estimate from our model, while the second
line is its BRR-estimated standard error. The total score is the sum of the individual
scores. Here, “DOL” is dark green and orange vegetables and legumes. Also, “SoFAAS”
is calories from solid fats, alcoholic beverages and added sugars. Further discussion of the
size of the BRR-estimated standard errors is given in the supplementary material [Zhang
et al. (2011)].

a model with one episodically consumed food group or daily consumed di-
etary component together with energy. The marginal distributions of each
such component done separately are quite close to what we have reported
in Table 3, as is our mean, which is 53.50 compared to the mean of 53.25
based on analyzing one HEI-2005 component at a time with the NLMIXED
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Fig. 1. The estimated percentiles of the HEI-2005 total score. The horizontal axis is the
percentile of interest, for example, 0.5 refers to the median, while the vertical axis gives
percentile of the HEI-2005 scores. Standard error estimates are given in Table 2.

procedure. The only case where there is a mild discrepancy is in the esti-
mated variability of the energy-adjusted usual intake of oils, likely caused
by the NLMIXED procedure itself, which has an estimated variance 9 times
greater than our estimated variance.

Of course, it is the distribution of the HEI-2005 total score that cannot
be estimated by analysis of one component at a time.

There are other things that have not been computed previously that are
simple by-products of our analysis. For example, the correlations among
energy-adjusted usual intakes involving episodically consumed foods have
not been estimated previously, but this is easy for us; see Table 4. The esti-
mated correlation of −0.64 between energy-adjusted total fruit and energy-
adjusted SoFAAS, and the −0.47 correlation between DOL and SoFAAS are
surprisingly high.

5.4. Component scores and other scores. As described in the Introduction,
an open problem has been to estimate the correlation between the individual
score on each dietary component and the scores of all other dietary compo-
nents. In their Table 3, Guenther et al. (2008) consider this problem, but
of course they did not have a model for usual energy adjusted intakes, and
instead they used a single 24 h recall. In Table 5 we show the resulting cor-
relations using (a) a single 24 h recall; (b) the mean of two 24 h recalls for
those who have two 24 h recalls; and (c) our model for usual intake. The
numbers for the former differ from that of Guenther et al. (2008) because we
are considering here a different population than do they. A striking and not
unexpected aspect of this table is that for those components with nontrivial
correlations, the correlations all increase as one moves from a single 24 h
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Table 4
Estimated correlation matrix for energy-adjusted usual intakes

Component TF WF TV DOL TG WG Milk Meat Oil SatFat Sodium SoFAAS

TF 1 0.76 0.07 0.41−0.10 0.33 0.16 0.08−0.35 −0.38 −0.25 −0.64
WF 1 0.14 0.49 0.03 0.35 0.10 0.05−0.17 −0.30 −0.20 −0.51
TV 1 0.51−0.25−0.23−0.09 0.51−0.08 0.08 0.42 −0.16
DOL 1 −0.08 0.11 0.14 0.25−0.06 −0.23 0.01 −0.47
TG 1 0.30−0.30−0.13 0.44 −0.36 0.17 −0.22
WG 1 0.18−0.18−0.11 −0.29 −0.17 −0.46
Milk 1 −0.37−0.21 0.21 −0.27 −0.21
Meat and beans 1 −0.06 −0.08 0.39 −0.19
Oil 1 −0.06 0.11 0.05
SatFat 1 0.09 0.46
Sodium 1 0.04
SoFAAS 1

Here TF = Total Fruits, WF = Whole Fruits, TV = Total Vegetables, WG = Whole
Grains, TG = Total Grains, SatFat = Saturated Fat. Here, “DOL” is dark green and
orange vegetables and legumes. Also, “SoFAAS” is calories from solid fats, alcoholic bev-
erages and added sugars.

Table 5
Estimated correlations between each individual HEI-2005 component score and the sum
of the other HEI component scores, that is, the difference of the total score and each

individual component

First 24 h Two 24 h Model BRR s.e.

Total fruit 0.38 0.44 0.62 0.05
Whole fruit 0.31 0.37 0.59 0.10
Total vegetables 0.09 0.11 0.10 0.11
DOL 0.18 0.24 0.41 0.07
Total grains 0.00 0.00 0.06 0.11
Whole grains 0.12 0.16 0.53 0.08
Milk −0.07 −0.01 0.01 0.08
Mean and beans −0.03 −0.01 −0.03 0.15
Oil 0.08 0.05 −0.17 0.08
Saturated fat 0.21 0.23 0.36 0.06
Sodium −0.03 0.05 0.07 0.12
SoFAAS 0.52 0.59 0.72 0.04

The column labeled “Two 24 h” is the naive analysis that uses the mean of the two 24 h
recalls, while the column labeled “First 24 h” is the naive analysis that uses the first 24
h recall. The column labeled “Model” is our analysis, and the column labeled “BRR s.e.”
is the estimated standard error of our estimates. Here, “DOL” is dark green and orange
vegetables and legumes. Also, “SoFAAS” is calories from solid fats, alcoholic beverages
and added sugars.
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recall to the mean of two 24 h recalls and then finally to estimated usual
intake. Thus, for example, the correlation between the HEI-2005 score for
total fruit and its difference with the total score is 0.38 for a single 24 h
recall, 0.44 for the mean of two 24 h recalls and then finally 0.62 for usual
intake.

5.5. Distributions of intakes for subsets of HEI total scores. A third
open question is as follows: among those whose total HEI-2005 score is
>50 or ≤50, what is the distribution of energy-adjusted usual intake of
whole grains, whole fruits, dark green and orange vegetables and legumes
(DOL) and calories from solid fats, alcoholic beverages and added sugars
(SoFAAS)? This follows naturally from our method. Following (3.8), let

G1(T̃bi) be energy adjusted usual intake and let G2(T̃bi) be the HEI total
score. Then the distributions in question for when the total HEI-2005 score
is >50 can be estimated as F̂ (x) =

∑n
i=1

∑B
b=1wiI{G1(T̃bi)≤ x}I{G2(T̃bi)>

50}/∑n
i=1

∑B
b=1wiI{G2(T̃bi)> 50}.

The results are provided in Table 6, with a graphical view in Figure 2.
The results show that those who have poorer diets with usual HEI-2005 total
score ≤ 50 are consistently eating poorer diets, that is, less whole fruits, less
whole grains and less DOL, but higher SoFAAS.

Table 6
Estimated distributions of energy-adjusted usual intake for those whose total HEI-2005

total scores are ≤50 and >50

Percentile

Component Mean s.d. 5th 10th 25th 50th 75th 90th 95th

Whole fruit
Total score ≤50 0.15 0.12 0.02 0.03 0.07 0.12 0.21 0.30 0.38
Total score >50 0.39 0.22 0.11 0.15 0.23 0.35 0.51 0.68 0.80

Whole grains
Total score ≤50 0.18 0.13 0.03 0.05 0.09 0.15 0.25 0.36 0.44
Total score >50 0.32 0.20 0.07 0.10 0.17 0.28 0.42 0.59 0.70

DOL
Total score ≤50 0.02 0.02 0.00 0.00 0.01 0.02 0.03 0.05 0.07
Total score >50 0.06 0.05 0.01 0.01 0.03 0.05 0.09 0.13 0.17

SoFAAS
Total score ≤50 42.43 3.97 36.40 37.59 39.66 42.16 44.92 47.67 49.42
Total score >50 33.83 4.44 26.01 27.89 30.97 34.15 36.98 39.28 40.57

Total Score 53.50 9.58 37.42 40.74 46.73 53.68 60.36 65.87 68.96

Here, “DOL” is dark green and orange vegetables and legumes. Also, “SoFAAS” is calories
from solid fats, alcoholic beverages and added sugars. Units of measurement are given in
Table 2.
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Fig. 2. The estimated percentiles of the energy-adjusted usual intakes for Whole fruits
(top left) in cups/(1,000 kcal), Whole grains (top right) in ounces/(1,000 kcal), DOL
(bottom left) in cups/ (1,000 kcal) and calories from SoFAAS (bottom right) in % of
Energy. The solid lines are for those whose usual HEI-2005 total score is ≤50, that is,
poorer diets, while the dashed lines are for those whose usual HEI-2005 total score is >50,
that is, better diets.

5.6. Dietary consistency. We stated in the Introduction that it is in-
teresting to understand the percentage of children whose usual intake HEI
score exceeds the median HEI score on all 12 HEI components. Those me-
dian scores, say, (κ1, . . . , κ12), are estimated in Table 3. If Gj(T̃bi) is the HEI
component score for episodically consumed food j, then following (3.8) the

quantity in question can be estimated as
∑n

i=1

∑B
b=1wi

∏6
j=1 I{Gj(T̃bi) ≥

κj}/
∑n

i=1

∑B
b=1wi. We estimate that the percentage is 6%, woefully small.

The percentage of children whose usual intake HEI score exceeds the median
HEI score on all 12 HEI components is 0.24%. Figure 3 gives the estimated
probabilities of exceeding the κ percentile on all 12 HEI components simul-
taneously, for κ= 1,2, . . . ,99.



A NEW MULTIVARIATE MODEL FOR DIETARY DATA 21

Fig. 3. The Y-axis gives the estimated probabilities of exceeding the κ (X-axis) percentile
on all 12 HEI components, for κ= 1,2, . . . ,99; see Section 5.6.

5.7. Uncertainty quantification. The BRR standard errors of HEI-2005
components’ adjusted usual intakes and scores are shown in Tables 2 and 3.
The BRR weights are only used in variance calculations. Once we have
estimated some quantity, say, θ̂, from the sample using sample weight, we
will need to compute the same quantity using, in succession, the 32 BRR
weights. This will give us 32 estimates θ̂1, θ̂2, . . . , θ̂32. The BRR estimate for
the variance of θ̂ is (32× 0.49)−1

∑32
p=1(θ̂p− θ̂)2. The 32 in the denominator

is for the 32 different estimates from the 32 different sets of weights, and
the 0.49 is the square of the perturbation factor used to construct the BRR
weight sets [Wolter (1995)].

6. Further discussion of the analysis.

6.1. Never consumers. An aspect of the modeling that we have not dis-
cussed is the possibility that some people never, ever consume an episodically
consumed dietary component. Our model does not allow for this, for general
reasons and for reasons that are specific to our data analysis.

It is in principle possible to add an additional modeling step for non-
consumers, via fixed effects probit regression, but we do not think this is
a practical issue in our case, for two reasons:

• The first is that the HEI-2005 is based on 6 episodically consumed dietary
components, namely, total fruit, whole fruit, whole grains, total vegeta-
bles, DOL and milk, the latter of which includes cheese, yogurt and soy
beverages. None of these are “lifestyle adverse,” unlike, say, alcohol. While
40% of the responses for whole fruits, for example, equal zero, the per-
centage of children who never eat any whole fruits at all is likely to be
minuscule.
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• Even if one disputes whether there are very few individuals who never
consume one of the dietary components, then it necessarily follows that we
have overestimated the HEI-2005 total scores, and, hence, the estimates of
the proportion of individuals with alarmingly low HEI scores are deflated,
and not inflated. The reason is that our model suggests everyone has
a positive usual intake of the 6 episodically consumed dietary components.
Since the HEI-2005 score components are nondecreasing functions of usual
intake of the episodically consumed dietary components, this would mean
that we overestimate the HEI-2005 total score.

6.2. Computing and data. Our programs were written in Matlab. The
programs, along with the NHANES data we used, are available in the An-

nals of Applied Statistics online archive. Although a much smaller amount
of computing effort yields similar results, using 70,000 MCMC steps with
a burn-in of 20,000 takes approximately 10 hours on a Linux server.

We also estimated the Monte Carlo standard error which is defined by
Flegal, Haran and Jones (2008) as σ̂g/

√
n, where n is the total of iterations,

and n = ab, where a is the number of blocks and b is the block size, and
where

Ȳj = b−1
jb∑

i=(j−1)b+1

g(Xi) for j = 1, . . . , a.

The batch means estimate of σ2
g is

σ̂2
g =

b

a− 1

a∑

j=1

(Ȳj − ḡn)
2.

The ratio of the Monte Carlo standard error to the estimated standard
deviation of the estimated parameters averages 3.4% for Σu and 1.7% for β.

Because of the public health importance of the problem, the National Can-
cer Institute has contracted for the creation of a SAS program that performs
our analysis. It will allow any number of episodically and daily consumed
dietary components. The first draft of this program, written independently
in a different programming language, gives almost identical results to what
we have obtained, at least suggesting that our results are not the product
of a programming error.

7. Discussion.

7.1. Transformations. In Appendix A.12 we describe how we estimated
the transformation parameters as a separate component-wise calculation.
We have done some analyses where we simultaneously transform each com-
ponent, and found very little difference with our results. However, the comp-
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uting time to implement this is extremely high, because of the fact that dif-
ferent transformations make data on different scales, so we have to compute
the usual intakes at each step in the MCMC, and not just at the end.

7.2. What have we learned that is new. There are many important ques-
tions in dietary assessment that have not been able to be answered because of
a lack of multivariate models for complex, zero-inflated data with measure-
ment errors and a lack of ability to fit such multivariate models. Nutrients
and foods are not consumed in isolation, but rather as part of a broader pat-
tern of eating. There is reason to believe that these various dietary compo-
nents interact with one another in their effect on health, sometimes working
synergistically and sometimes in opposition. Nonetheless, simply character-
izing various patterns of eating has presented enormous statistical challenge.
Until now, descriptive statistics on the HEI-2005 have been limited to exam-
ination of either the total scores or only a single energy-adjusted component
at a time. This has precluded characterization of various patterns of dietary
quality as well as any subsequent analyses of how such patterns might relate
to health.

This methodology presented in this paper presents a workable solution
to these problems which has already proven valuable. In May 2010, just as
we were submitting the paper, a White House Task Force on Childhood
Obesity created a report. They had wanted to set a goal of all children
having a total HEI score of 80 or more by 2030, but when they learned we
estimated only 10% of the children ages 2–8 had a score of 66 or higher, they
decided to set a more realistic target. The facility to estimate distributions of
the multiple component scores simultaneously will be important in tracking
progress toward that goal.

7.3. In what other arenas will our work have impact? There are many
other important problems where multivariate models such as ours will be
important. One such problem arises when studying the relationship between
multiple dietary components or dietary patterns and health outcomes. Tra-
ditionally, for cost reasons, large cohort studies have used a food frequency
questionnaire (FFQ) to measure dietary intake, sometimes with a small cal-
ibration study including short-term measures such as 24 h recalls. However,
there is a new web-based instrument called the Automated Self-administered
24-hour Dietary Recall (ASA24TM) (see http://riskfactor.cancer.gov/
tools/instruments/asa24), which has been proposed to replace or at least
supplement the FFQ and which is currently undergoing extensive testing.
The dietary data we will see then is what we have called Yijk, that is, 24 h
recall data. In order to correct relative risk estimates for the measurement
error inherent in the ASA24TM, regression calibration [Carroll et al. (2006)]
will almost certainly be the method of choice, as it is in most of nutritional

http://riskfactor.cancer.gov/tools/instruments/asa24
http://riskfactor.cancer.gov/tools/instruments/asa24
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epidemiology. This method attempts to produce an estimate of the regres-
sion of usual intake on the observed intakes, and then to use these estimates
in Cox and logistic regression for the health outcome. In order to perform
this regression, a multivariate measurement error model will be required,
since the regression is on all the observed dietary intake components in the
regression model measured by the ASA24TM, and not on each individual
component. Our methodology is easily extended to address this problem.

APPENDIX: DETAILS OF THE FITTING PROCEDURE

In this Appendix we give the full details of the model fitting procedure.

A.1. Notational convention. In our example, age was standardized to
have mean 0.0 and variance 1.0, to improve numerical stability.

As described in Section 3.1, the observed, transformed nonzero 24 h re-
calls were standardized to have mean 0.0 and variance 2.0. More precisely, for
ℓ= 1,2, . . . ,6, we first transformed the nonzero food group data as Zi,2ℓ,k =

g(Yi,2ℓ,k, λℓ), and then we standardized these data as Qi,2ℓ,k =
√
2{Zi,2ℓ,k −

µ(λℓ)}/σ(λℓ), where {µ(λℓ), σ(λℓ)} are the mean and standard deviation of
the nonzero food intakes Zi,2ℓ,k. Similarly, for nonepisodically consumed di-
etary components and energy we transformed to Zi,6+ℓ,k = g(Yi,6+ℓ,k, λℓ) for

ℓ= 7, . . . ,13, and then standardized toQi,6+ℓ,k =
√
2{Zi,6+ℓ,k−µ(λℓ)}/σ(λℓ).

Of course, whether the food group is consumed or not is Qi,2ℓ−1,k = Yi,2ℓ−1,k

for ℓ= 1, . . . ,6. Collected, the data are Q̃ik = (Qijk)
19
j=1. The terms {µ(λℓ),

σ(λℓ)} are not random variables but are merely constants used for standard-
ization, and we need not consider inference for them. Back-transformation
is discussed in Appendix A.11.

A.2. Prior distributions. Because the data were standardized, we used
the following conventions:

• The prior for all βj were normal with mean zero and variance 100.
• The prior for Σu was exchangeable with diagonal entries all equal to 1.0

and correlations all equal to 0.50. There were 21 degrees of freedom in the
inverse Wishart prior, that is, mu = 21. Thus, the prior is IW{(mu− 19−
1)Σu,prior,mu}. We experimented with this prior by using zero correlation,
and the results were essentially unchanged.

• The prior for rk is Uniform[−1,1]. Set the initial value: rk = 0, k = 1, . . . ,5.
• The prior for θk is Uniform[−π,π]. Set the initial value: θk = 0, k =

1, . . . ,25.
• The priors for v22, v44, . . . , v12,12 and v13,13, . . . , v19,19 were Uniform[−3,3].

Set the initial values: v22 = v44 = · · ·= v12,12 = v13,13 = · · ·= v19,19 = 1.
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• For the rest of the nondiagonal vij ’s which could not be determined by
the restrictions, we used Uniform[−3,3] priors. Set the initial values to
be 0.

The constraints on Σε are nonlinear, and our parameterization enforces
them easily without having to have prior distributions for the original pa-
rameterization that satisfy the nonlinear constraints.

The key thing that makes things work well with the other components
of the matrix V with Σε = V V T is that we have standardized the data as
described in Appendix A.1. With this standardization, things become much
nicer. For example, the variance of the ε’s for energy is

∑19
j=1 v

2
19,j . However,

since the sample variance for energy is standardized to equal 2.0, we simply
just need to make priors for v19,j be uniform on a modest range to have real
flexibility.

A.3. Generating starting values for the latent variables. While we ob-
serve Q̃ik, in the MCMC we need to generate starting values for the latent

variables W̃ik = (Wijk)
19
j=1 to initiate the MCMC:

• For nutrients and energy, Qijk = Wijk, no data need be generated, j =
13, . . . ,19.

• For the amounts, Qi2k, Qi4k, Qi6k, Qi8k, Qi,10,k and Qi,12,k, we set Wi2k =
Qi2k,Wi4k =Qi4k,Wi6k =Qi6k,Wi8k =Qi8k,Wi,10,k =Qi,10,k andWi,12,k =
Qi,12,k.

• For consumption, we generate Ũi as normally distributed with mean zero
and covariance matrix given as the prior covariance matrix for Σu. For ℓ=
1, . . . ,6, we also compute zik = |XT

i,2ℓ−1,kβ2ℓ−1,prior +Ui,2ℓ−1 +Zik|, where
Zik =Normal(0,1) are generated independently. We then set Wi,2ℓ−1,k =
zikQi,2ℓ−1,k − zik(1−Qi,2ℓ−1,k).

• Finally, we then updated W̃ik by a single application of the updates given
in Appendix A.9.

A.4. Complete data loglikelihood. Let J = 19. The complete data in-
clude the indicators of whether a food was consumed, the W variables and
the random effect U variables. The loglikelihood of the complete data is

6∑

ℓ=1

n∑

i=1

mi∑

k=1

log{Qi,2ℓ−1,kI(Wi,2ℓ−1,k > 0)

+ (1−Qi,2ℓ−1,k)I(Wi,2ℓ−1,k < 0)}

+

(
n∑

i=1

wi/2

)
log(|Σ−1

u |)− (1/2)
n∑

i=1

wiŨ
T
i Σ

−1
u Ũi
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− (1/2)

J∑

j=1

(βj − βj,prior)
TΩ−1

β,j(βj − βj,prior)

+ {(mu + J +1)/2} log(|Σ−1
u |)−{(mu − J − 1)/2} trace(Σu,priorΣ

−1
u )

− (1/2)

n∑

i=1

wimi log{(v222v244v266v288v210,10v212,12v213,13 · · ·v2JJ)
5∏

q=1

(1− r2q)}

− (1/2)

n∑

i=1

wi

mi∑

k=1

{W̃ik − (XT
i1kβ1, . . . ,X

T
iJkβJ)

T − Ũi}TΣ−1
ε

×{W̃ik − (XT
i1kβ1, . . . ,X

T
iJkβJ)

T − Ũi}.

We used Gibbs sampling to update this complete data loglikelihood, the
details for which are given in subsequent appendices. The weights wi are
integers and are used here in a pseudo-likelihood fashion. One can also
think of this as expanding each individual into wi individuals, each with
the same observed data but different latent variables. For computational
convenience, since we are only asking for a frequentist estimator and not do-
ing full Bayesian inference, the latent variables in the process are generated
once for each individual. Estimates of Σu, Σε and βj for j = 1, . . . , J were
computed as the means from the Gibbs samples. Once again, we emphasize
that we are not doing a proper Bayesian analysis, but only using MCMC
techniques to obtain a frequentist estimate, with uncertainty assessed using
the frequentist BRR method.

A.5. Complete conditionals for rq , θq and vpq. Except for irrelevant
constants, the complete conditional for rq (q = 1, . . . ,5) is

log[rq|rest] =−1

2

n∑

i=1

wimi log(1− r2q)

− 1

2

n∑

i=1

wi

mi∑

k=1

{W̃ik − (XT
i1kβ1, . . . ,X

T
i,19,kβ19)

T − Ũi}T

×Σ−1
ε {W̃ik − (XT

i1kβ1, . . . ,X
T
i,19,kβ19)

T − Ũi}.

Except for irrelevant constants, the complete conditionals for vqq (q =
2,4,6,8,10,12,13, . . . ,19) are

log[vqq|rest] =−1

2

n∑

i=1

wimi log(v
2
qq)
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− 1

2

n∑

i=1

wi

mi∑

k=1

{W̃ik − (XT
i1kβ1, . . . ,X

T
i,19,kβ19)

T − Ũi}T

×Σ−1
ε {W̃ik − (XT

i1kβ1, . . . ,X
T
i,19,kβ19)

T − Ũi}.
Except for irrelevant constants, the compete conditionals for θq (q =

1, . . . ,25) and nondiagonal free parameters vpq are

log[x|rest] =−1

2

n∑

i=1

wi

mi∑

k=1

{W̃ik − (XT
i1kβ1, . . . ,X

T
i,19,kβ19)

T − Ũi}T

×Σ−1
ε {W̃ik − (XT

i1kβ1, . . . ,X
T
i,19,kβ19)

T − Ũi}.
The full conditionals do not have an explicit form, so we use a Metropolis–
Hastings within a Gibbs sampler to generate it:

• rq (q = 1, . . . ,5). We discretize the values of rq to the set {−0.99 + 2×
0.99(j − 1)/(M − 1)}, where j = 1, . . . ,M and we choose M = 41.

Proposal: The current value is rq,t. The proposed value of rq,t+1 is
selected randomly from the current value and the two nearest neighbors
of rq,t. Then rq,t+1 is accepted with probability min{1, g(rq,t+1)/g(rq,t)},
where

g(y)∝ (1− y2)−1/2
∑

n

i=1 wimi

× exp

[
−1

2

n∑

i=1

wi

mi∑

k=1

{W̃ik−(XT
i1kβ1, . . . ,X

T
i,19,kβ19)

T−Ũi}TΣ−1
ε (•)

]
,

where here and in what follows, for any A, ATΣ−1
ε (•) =ATΣ−1

ε A.
• θq (q = 1, . . . ,25). We discretize similarly as above.

Proposal: The current value is θq,t. The proposed value θq,t+1 is selected
randomly from the current value and the two nearest neighbors of θq,t.
Then θq,t+1 is accepted with probability min{1, g(θq,t+1)/g(θq,t)}, where

g(y)∝ exp

[
−1

2

n∑

i=1

wi

mi∑

k=1

{W̃ik − (XT
i1kβ1, . . . ,X

T
i,19,kβ19)

T− Ũi}TΣ−1
ε (•)

]
.

• vqq (q = 2,4,6,8,10,12,13, . . . ,19). Proposal: The current value is vqq,t.
A candidate vqq,t+1 is generated from the Uniform distribution of length
0.4 with mean vqq,t. The candidate value vqq,t+1 is accepted with proba-
bility min{1, g(vqq,t+1)/g(vqq,t)}, where

g(y)∝ y−
∑

n

i=1wimi

× exp

[
−1

2

n∑

i=1

wi

mi∑

k=1

{W̃ik−(XT
i1kβ1, . . . ,X

T
i,19,kβ19)

T−Ũi}TΣ−1
ε (•)

]
.
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• Nondiagonal free parameters vpq. Proposal: The current value is vpq,t.
The candidate value vpq,t+1 is generated from the Uniform distribution of
length 0.4 with mean vpq,t. The candidate value is accepted with proba-
bility min{1, g(vpq,t+1)/g(vpq,t)}, where

g(y)∝ exp

[
−1

2

n∑

i=1

wi

mi∑

k=1

{W̃ik − (XT
i1kβ1, . . . ,X

T
i,19,kβ19)

T− Ũi}TΣ−1
ε (•)

]
.

A.6. Complete conditionals for Σu. The dimension of the covariance
matrices is J = 19. By inspection, the complete conditional for Σu is

[Σu|rest] = IW

{
(mu − J − 1)Σu,prior +

n∑

i=1

wiŨiŨ
T
i , n+mu

}
,

where here IW= the Inverse-Wishart distribution. The density of IW(Ω,m)
for a J × J random variable is

IW(Ω,m) = f(Q|Ω,m)∝ |Q|−(m+J+1)/2 exp{−1
2 trace(ΩQ

−1)}.
This has expectation Ω/(m− J − 1).

A.7. Complete conditionals for β. Let the elements of Σ−1
ε be σjℓ

ε . For
any j, except for irrelevant constants,

log[βj |rest] =−1

2
(βj − βj,prior)

TΩ−1
β,j(βj − βj,prior)

− 1

2

n∑

i=1

wi

mi∑

k=1

(Wijk −XT
ijkβj −Uij)

2σjj
ε

−
n∑

i=1

wi

mi∑

k=1

∑

ℓ 6=j

σjℓ
ε (Wijk −XT

ijkβj −Uij)(Wiℓk −XT
iℓkβℓ −Uiℓ)

= CT
1 βj −

1

2
βT
j C−1

2 βj ,

which implies [βj |rest] = Normal(C2C1,C2), where

C2 =
(
Ω−1
β,j +

n∑

i=1

wiσ
jj
ε

mi∑

k=1

XijkX
T
ijk

)−1

;

C1 =Ω−1
β,jβj,prior +

n∑

i=1

wi

mi∑

k=1

σjj
ε Xijk(Wijk −Uij)

+

n∑

i=1

wi

mi∑

k=1

∑

ℓ 6=j

σjℓ
ε (Wiℓk −XT

iℓkβℓ −Uiℓ)Xijk.
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A.8. Complete conditionals for Ũi. The NHANES 2001–2004 weights
are integers, representing the number of children that each sampled child
represents. Thus, as described therein, the loglikelihood in Section A.4 could
also be rewritten equivalently by developing wi pseudo-children, each with
the same observed data values. It thus does not make sense to use the
weights to generate an individual Ũi. Instead, as described in Section A.4,
for computational convenience for generating a Ũi to represent wi children,
we set the weight for that child temporarily = 1.0. Then, except for irrelevant
constants,

log[Ũi|rest] =−1

2
wiŨ

T
i Σ

−1
u Ũi

− 1

2
wi

mi∑

k=1

{W̃ik − (XT
i1kβ1, . . . ,X

T
i,19,kβ19)

T − Ũi}TΣ−1
ε

× {W̃ik − (XT
i1kβ1, . . . ,X

T
i,19,kβ19)

T − Ũi}

= CT
1 Ũi −

1

2
ŨT
i C−1

2 Ũi.

Remembering that for purposes of this section we are setting wi = 1.0, this
implies that [Ũi|rest] = Normal(C2C1,C2), where

C2 = (Σ−1
u +miΣ

−1
ε )−1;

C1 =
mi∑

k=1

Σ−1
ε {W̃ik − (XT

i1kβ1, . . . ,X
T
i,19,kβ19)

T}.

A.9. Complete conditional for Wiℓk, ℓ = 1,3,5,7,9,11. Here we do
the complete conditional for Wiℓk with ℓ= 1,3,5,7,9,11. Except for irrele-
vant constants,

log[Wiℓk|rest] = log{QiℓkI(Wiℓk > 0) + (1−Qiℓk)I(Wiℓk < 0)}

− 1

2
wi(Wi1k −XT

i1kβ1 −Ui1, . . . ,Wi,19,k −XT
i,19,kβ19 −Ui,19)

×Σ−1
ε (•)T

= log{QiℓkI(Wiℓk > 0) + (1−Qiℓk)I(Wiℓk < 0)}

− 1

2
wiσ

ℓℓ
ε (Wiℓk −XT

iℓkβℓ −Uiℓ)
2

−wi

∑

j 6=ℓ

σℓj
ε (Wiℓk −XT

iℓkβℓ −Uiℓ)(Wijk −XT
ijkβj −Uij)

= log{QiℓkI(Wiℓk > 0) + (1−Qiℓk)I(Wiℓk < 0)}+ C1Wiℓk

− 1

2
W 2

iℓkC−1
2 ,
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where, using the convention of Appendix A.8,

C2 = 1/(σℓℓ
ε )

C1 = σℓℓ
ε (X

T
iℓkβℓ +Uiℓ)−

∑

j 6=ℓ

σℓj
ε (Wijk −XT

ijkβj −Uij).

If we use the notation TN+(µ,σ, c) for a normal random variable with

mean µ and standard deviation σ that is truncated from the left at c, and

similarly use TN−(µ,σ, c) when truncation is from the right at c, then it

follows that with µ= C2C1 and σ = C1/2
2 ,

[Wiℓk|rest] =QiℓkTN+(µ,σ,0) + (1−Qiℓk)TN−(µ,σ,0)

= µ+QiℓkTN+(0, σ,−µ) + (1−Qiℓk)TN−(0, σ,−µ)

= µ+QiℓkTN+(0, σ,−µ)− (1−Qiℓk)TN+(0, σ,µ)

= µ+ σ{QiℓkTN+(0,1,−µ/σ)− (1−Qiℓk)TN+(0,1, µ/σ)}.

Generating TN+(0,1, c) is easy: if c < 0, simply do rejection sampling of

a Normal(0,1) until you get one that is > c. If c > 0, there is an adaptive

rejection scheme [Robert (1995)].

A.10. Complete conditionals for Wi2k, Wi4k, Wi6k, Wi8k, Wi,10,k and

Wi,12,k when not observed. For p = 2,4,6,8,10,12, the variable Wipk is

not observed when Qi,p−1,k = 0, or, equivalently, when Wi,p−1,k < 0. Except

for irrelevant constants,

log[Wipk|rest] =−1

2
wi

∑

j

∑

ℓ

σjℓ
ε (Wijk −XT

ijkβj −Uij)(Wiℓk −XT
iℓkβℓ −Uiℓ)

=−1

2
W 2

ipkC−1
2 + C1Wipk,

where, using the convention of Appendix A.8,

C2 = 1/(σpp
ε );

C1 = σpp
ε (XT

ipkβp +Uip)−
∑

ℓ 6=p

σpℓ
ε (Wiℓk −XT

iℓkβℓ −Uiℓ).

Therefore,

[Wipk|rest] =QipkQi,p−1,k + (1−Qi,p−1,k)Normal(C2C1,C2).
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A.11. Usual intake, standardization and transformation. Here we present
detailed formulas for functions defined in Section 3.4. When λ= 0, the back-
transformation is

g−1
tr (z,0) = exp{µ(0) + σ(0)z/

√
2};

∂2g−1
tr (z,0)/∂z2 =

σ2(0)

2
g−1
tr (z,0).

When λ 6= 0, the back-transformation is

g−1
tr (z,λ) = [1 + λ{µ(λ) + σ(λ)z/

√
2}]1/λ;

∂2g−1
tr (z,λ)/∂z2 =

σ2(λ)

2
(1− λ)[1 + λ{µ(λ) + σ(λ)z/

√
2}]−2+1/λ.

A.12. Transformation estimation. As part of an earlier project [Freed-
man et al. (2010)], we estimated the transformations for one food/nutrient
at a time using the method of Kipnis et al. (2009), both for the data and
also for each BRR weighted data set. To facilitate comparison with the one
food/nutrient at a time analysis, in our analysis of all HEI-2005 components,
we used these transformations as well. Of course, our methods can be gen-
eralized to allow for estimation of the transformations as well. By allowing
a different transformation for each BRR weighted data set, we have captured
the variation due to estimation of the transformations.

SUPPLEMENTARY MATERIAL

Supplement A: Additional tables (DOI: 10.1214/10-AOAS446SUPPA).

Supplement B: Data files of the NHANES data used in the analysis (DOI:
10.1214/10-AOAS446SUPPB; .zip).

Supplement C: Matlab programs for the data analysis

(DOI: 10.1214/10-AOAS446SUPPC; .zip).
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Küchenhoff, H., Mwalili, S. M. and Lesaffre, E. (2006). A general method for
dealing with misclassification in regression: The misclassification SIMEX. Biometrics

62 85–96, 315–316. MR2226560

Lehmann, E. L. and Casella, G. (1998). Theory of Point Estimation, 2nd ed. Springer,
New York. MR1639875

Liang, H., Thurston, S. W., Ruppert, D., Apanasovich, T. and Hauser, R.

(2008). Additive partial linear models with measurement errors. Biometrika 95 667–

678. MR2443182
Messer, K. and Natarajan, L. (2008). Maximum likelihood, multiple imputation and

regression calibration for measurement error adjustment. Stat. Med. 27 6332–6350.

Natarajan, L. (2009). Regression calibration for dichotomized mismeasured predictors.
Int. J. Biostat. 5 Art. 1143, 27. MR2504959

Nusser, S. M., Fuller, W. A. and Guenther, P. M. (1997). Estimating usual dietary

intake distributions: Adjusting for measurement error and nonnormality in 24-hour
food intake data. In Survey Measurement and Process Quality (L. Lyberg, P. Biemer,

M. Collins, E. Deleeuw, C. Dippo, N. Schwartz and D. Trewin, eds.) 670–689.

Wiley, New York.
Nusser, S. M., Carriquiry, A. L., Dodd, K. W. and Fuller, W. A. (1996). A semi-

parametric approach to estimating usual intake distributions. J. Amer. Statist. Assoc.

91 1440–1449.
Prentice, R. L. (1996). Measurement error and results from analytic epidemiology: Di-

etary fat and breast cancer. J. Natl. Cancer Inst. 88 1738–1747.

Prentice, R. L. (2003). Dietary assessment and the reliability of nutritional epidemiology
reports. Lancet 362 182–183.

Robert, C. P. (1995). Simulation of truncated normal variables. Statistics and Computing

5 121–125.
Staudenmayer, J., Ruppert, D. and Buonaccorsi, J. P. (2008). Density estimation

in the presence of heteroscedastic measurement error. J. Amer. Statist. Assoc. 103 726–

736. MR2524005
Tooze, J. A., Grunwald, G. K. and Jones, R. H. (2002). Analysis of repeated measures

data with clumping at zero. Stat. Methods Med. Res. 11 341–355.

Tooze, J. A., Midthune, D., Dodd, K. W., Freedman, L. S., Krebs-Smith, S. M.,
Subar, A. F., Guenther, P. M., Carroll, R. J. and Kipnis, V. (2006). A new

statistical method for estimating the usual intake of episodically consumed foods with

application to their distribution. J. Am. Diet. Assoc. 106 1575–1587.

Wand, M. P. (1998). Finite sample performance of deconvolving density estimators.
Statist. Probab. Lett. 37 131–139. MR1620450

Wolter, K. M. (1995). Introduction to Variance Estimation. Springer, New York.
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