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Abstract: Dynamical properties of counterpropagating (CP) mutually 
incoherent self-trapped beams in optically induced photonic lattices are 
investigated numerically. A local model with saturable Kerr-like 
nonlinearity is adopted for the photorefractive media, and an optically 
generated two-dimensional fixed photonic lattice introduced in the crystal. 
Different incident beam structures are considered, such as Gaussians and 
vortices of different topological charge. We observe spontaneous symmetry 
breaking of the head-on propagating Gaussian beams as the coupling 
strength is increased, resulting in the splitup transition of CP components. 
We see discrete diffraction, leading to the formation of discrete CP vector 
solitons. In the case of vortices, we find beam filamentation, as well as 
increased stability of the central vortex ring. A strong pinning of filaments 
to the lattice sites is noted. The angular momentum of vortices is not 
conserved, either along the propagation direction or in time, and, unlike the 
case without lattice, the rotation of filaments is not as readily observed.     
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1. Introduction 

An intense interest was generated recently in the propagation and interactions of self-focused 
light in photonic lattices imbedded in photorefractive (PR) crystals, giving rise to the discrete 
diffraction and offering intriguing waveguiding possibilities [1-3]. Periodic two-dimensional 
(2D) arrays of optically induced waveguides allowed for the observation of novel self-trapped 
optical structures – the so-called discrete or lattice solitons, including the discrete vortex 
solitons [4-6]. In principle, different phenomena are observed if one considers propagation 
along the invariant (axial) lattice direction or perpendicular to it, in the plane of symmetry 
direction. Typically, one is more interested in the waveguiding aspects (i.e. propagating 
modes) of the lattice array in the former case, and more in the bandgap aspects (i.e. 
nonpropagating modes) of the photonic crystal in the latter case. 

Of special concern are the modes connected with defects embedded in a perfect infinite 
or finite lattice [5-7]. An especially interesting geometry from the applications point of view is 
the photonic crystal fiber (PCF), in which a finite hexagonal lattice of holes is infused into a 
silica fiber, with the central hole absent [8]. Such a 2D PCF with a central defect, also referred 
to as the “holey fiber”, offers a different scenario of waveguiding from the perfectly periodic 
infinite photonic crystal (PC) with dielectric rods or beams of light, in that it displays huge 
refractive index step, and that the light is pinned to the defect. 

The formation and interactions of spatial solitons, within or without lattice, have been 
studied mostly in the copropagation geometry, with a few exceptions [9-13]. In these 
references the counterpropagating (CP) solitons were considered theoretically in one 
transverse dimension (1D), in Kerr and local PR media, and in the steady state. In Refs. [14-
16] we studied numerically 2D CP vector solitons and displayed some novel dynamical beam 
structures in PR crystals. In Refs. [17-19] experimental results are presented, and in Ref. [20] 
numerical study of CP vortices is performed. Nowhere in the literature could we find 
reference to the CP lattice solitons.  

Here we introduce, to the best of our knowledge for the first time, 2D CP vector lattice 
solitons in an optically induced photonic lattice, and present some of their intriguing 
properties. We display stable transverse symmetry-breaking splitup transitions of CP lattice 
solitons, as well as dynamically symmetry-broken splitup transitions, where no definitive 
patterns are visible. We demonstrate that CP vortices generally break up into filaments that 
are pinned to the lattice sites, but also that the stability of vortex cores can be enhanced in the 
presence of lattice defects. The angular momentum of vortices is not conserved, as it should 
not be in a symmetry-breaking transition. For some values of the coupling strength an 
indefinite rotation of the central vortex filaments is observed.  

2. The model  

To understand the behavior of CP vector solitons we formulated a time-dependent model for 
the formation of self-trapped CP optical beams [14, 15], based on the theory of PR effect. The 
model consists of wave equations in the paraxial approximation for the propagation of CP 
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beams and a relaxation equation for the generation of the space charge field in the PR crystal, 
in the isotropic approximation. The model equations in the computational space are of the 
form:  

           EFFFi z Γ+Δ−=∂  ,          EBBBi z Γ+Δ−=∂−   ,                          (1) 
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1

τ   ,                                                  (2) 

where F and B are the forward and the backward propagating beam envelopes, Δ is the 
transverse Laplacian, Г is the dimensionless coupling constant, and E the homogenous part of 
the space charge field. The relaxation time of the crystal τ also depends on the total intensity, 
τ=τ0/(1+I). The quantity I=|F|2+|B|2 is the laser light intensity, measured in units of the 
background intensity. A scaling x/x0 → x, y/x0 → y, z/LD → z, is utilized in the writing of 
dimensionless propagation equations, where x0 is the typical FWHM beam waist and LD is the 
diffraction length. The assumption, appropriate to the experimental conditions at hand, is that 
the mutually incoherent CP components interact only through the intensity-dependent space 
charge field. To make matters simple, we did not account for the temperature (diffusion) 
effects, although they are found to influence the interaction of CP beams [13]. In the 
experiment [17-19], these effects were compensated for by focusing the input B beam at the 
place of the exit and in the direction of the output F beam.  

When the propagation in photonic lattices is considered, Eq. (2) is modified, to include 
the transverse intensity distribution of the optically induced lattice array Ig: 
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where Ig is formed by positioning Gaussian beams at the sites of the lattice, normalized by the 
dark irradiance Id . For the lattice array we choose a hexagonal arrangement of beams, with 
variable intensities, and with the central beam absent. Such an arrangement is reminiscent of 
the holey fibers [8], except that there are no holes here, but laser beams that modulate the 
index of refraction. The beams are assumed to be degenerate and incoherent with the forward 
and backward components. We also assume that the array beams are far enough from each 
other, so that the interaction between them can be neglected, and that the influence of CP 
beams on the lattice beams is negligible.                                                                                                                             

The propagation equations are solved numerically, concurrently with the temporal 
equations, in the manner described in Ref. [16] and references cited therein. The dynamics is 
such that the space charge field builds up towards the steady state, which depends on the light 
distribution, which in turn is slaved to the change in the space charge field. As it will be seen, 
this simple type of dynamics does not preclude a more complicated dynamical behavior.  

3. Counterpropagating Gaussian beams 

A striking feature of CP self-trapped beams is noted as soon as the beams are launched in a 
PR medium with sufficient nonlinearity – the spontaneous transverse splitup instability [15, 
16]. Providing for an explanation of the nature and the cause of the splitup transition turned 
out to be a more difficult problem. In Refs. [15, 16] we presented a simple theory of beam 
displacement - derived in two independent ways - that can account for such transverse shifts. 
In Ref. [18] we attempted to utilize the standard theory of modulational instabilities (MI) to 
obtain a threshold curve for the CP beams splitup that at least qualitatively agrees with the 
experimental and numerical results. In doing so, we were aware of the fact that, although both 
are symmetry-breaking phenomena, the pattern forming MI represents a spontaneous breaking 
of the translational symmetry of a homogeneous state, whereas the splitup transition is the 
breaking of the rotational symmetry of an isolated CP soliton. Thus, MI involves an 
appearance of transverse waves at a critical value of kc, whereas the splitup instability 
involves a jump of the peaked structure in the transverse inverse space for some value of kc. 
The two values of kc might, but need not be connected.  
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An optical waveguide array embedded in a PR crystal considerably changes the behavior 
of CP beams, as compared to the wave behavior in bulk media, however the splitup instability 
stays there. The continuous O(2) rotational symmetry of the system in the transverse plane is 
substituted by a discrete point symmetry, and that has bearing on the symmetry-breaking 
splitup transition. Ours is an axially-invariant photonic lattice, with a planar D6 symmetry and 
a central defect, and the axially-propagating beams undergoing symmetry breaking must 
comply with the sub-symmetries of the plane group. In our case the symmetry breaking 
usually proceeds along the D2 – C1 subgroup chain. In addition, the presence of a central 
defect introduces further differences in the discrete self-focusing, as compared to the infinite 
lattice, in that the localized optical structures are helped by and pinned to the defect.  

 

Fig. 1. Movies of the intensity distributions of the backward field at its output face, for various 
FWHM of input beams: (a) 11 µm (768 KB), (b) 9 µm (745 KB), (c) 7 µm (602 KB), (d) 5 µm 
(1.1 MB). For FWHM=5 µm no steady state is observed. Parameters: lattice spacing 28 µm, 
FWHM of lattice beams 9 µm, maximum lattice intensity Ig=10Id , Γ=19.3, L=2LD=8 mm, 
|F0|

2=|BL|2=10.    
   

A typical example of the splitup symmetry-breaking transition in our photonic lattice is 
presented in Fig. 1. A relatively wide lattice is chosen, lattice spacing 28 µm, with relatively 
narrow beams of 9 µm. The width of CP components is varied. It is decreasing from 11 µm in 
Fig. 1(a) to 5 µm in Fig. 1(d). It is seen that the splitted component of the widest CP beam 
focused at the two adjacent lattice sites (Fig. 1(a)), whereas the components of more narrow 
CP beams focused in-between the two sites (Figs. 1(b)-(c)). The narrowest CP beam did not 
focus at all (Fig. 1(d)). It turned out to be unstable from the beginning, exciting initially the 
three 1D discrete solitonic modes, along the three main symmetry directions. It remained 
centrally-symmetric for awhile, with a clear hexagonal symmetry, but then became 
dynamically broken to C1. Thereafter, the beam discretely diffracts in asymmetric bursts, at 
irregular times, along the two of the same 3 symmetry directions. This behavior is the 
analogue of the dynamic splitup transition observed earlier in CP vector solitons [18], but now 
with a strong discrete diffraction visible.  

The similar tendency to focus on or in-between the lattice sites is noted if, instead of the 
component width, the coupling strength ΓL is increased (Fig. 2). Such even and odd discrete 
solitons are commonplace in periodic arrays of optical waveguides. The choice of the 
particular pair of adjacent lattice sites among the 6 is incidental, although the direction of the 
polarization of CP beams is horizontal. The situation here is steady-state, however the initial 
transient behavior lasts shorter with the increasing ΓL. Initially the beam jumps transversally 
and then rotates, until settling into a steady-state structure, accommodating the lattice’s 
(sub)symmetry. Both CP beams execute the same dynamics, mirror-image of each other. 

The splitup transition depicted in Fig. 2(b) is shown again in Fig. 2(c), as a three-
dimensional picture along the crystal. It clearly displays the splitup of the forward and 
backward beams, depicted in green and red, into a discrete vector soliton that focuses onto the 
same two adjacent hexagonal sites on both ends of the crystal. The white rods represent the 
lattice beams. The green, forward beam enters from the left, in the middle of the central  
defect, and the red, backward beam enters from the right. In the middle of the crystal they 
cross each other and split into two beams, that focus onto the two adjacent lower lattice cites.     
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Fig. 2.  Movies of the intensity distributions of the backward field at its output face for various 
coupling strengths: (a) Γ=16.6, L=1.3LD, (755 KB) (b) Γ=19.3, L=2.5LD (603 KB). (c) 
Isosurface plots at 10% of maximum intensity for the case presented in Fig. 2(b) and in the 
steady state; green - forward beam, red - backward beam, white – lattice beams. Other 
parameters are as in Fig. 1(a).    

4. Counterpropagating vortices 

Concerning CP vortices, our general conclusion is that, similar to the propagation in bulk 
media, they can not remain stable over indefinite propagation distances [20]. They do not 
display transverse splitup transitions either, but break up into filaments. When the breakup 
occurs, the filaments conform to the symmetry of the lattice. Figure 3 represents head-on 
counterpropagation of two centered vortices, with different topological charges, overlapping 
with the waveguiding lattice. The values of charges are given in the parenthesis (forward, 
backward) on the top of each figure, and the width of input vortices is relatively large (26.2 
µm). The filamented structures remain steady-state and strongly pinned to the lattice. The 
transient dynamics lasts relatively short. The angular momentum of CP vortices is not 
conserved. The system experiences a considerable loss of angular momentum, owing to the 
presence of the lattice.  

Fig. 3. Intensity (upper row) and phase (lower row) distributions of the backward field at its 
output face in the steady state, for different topological charges, recorded on the top of each 
figure. Parameters are as in Fig. 1, input FWHM of vortices is 26.2 µm.      

 
The filaments of low-order (1, ±1) vortices focus onto the first-order lattice sites, 

whereas the filaments of higher-order vortices mostly focus in-between the higher-order 
lattice sites. The size of the discrete-diffracted structures increases with the topological 
charge, however the phase distribution among the filaments reveals the typical vortex linear 
increase of phase, with branch-cut lines. There is practically no difference in intensity 
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between the discrete (1, 1) and (1, –1) vortices, and only slight differences between the 
higher-order vortices. The plane symmetry of all these structures is C6. Note the well-
preserved core vortex at the central defect of (1, ±1) structures. This feature remains robust, 
even as the length of the crystal is increased. Stable vortices pinned to the defect could not be 
observed in the case without lattice, at such high values of the coupling strength ΓL. 

The filamented structures could not be made to rotate as readily as in the case of CP 
vortices propagating in the absence of lattice. For this to happen, it was necessary to consider 
vortices of opposite charge, at higher values of ΓL, and at lower values of Ig. In Fig. 4 we 
present a tripole-like structure, produced from the (1,-1) vortices, that rotates indefinitely. The 
central core vortex has broken into 3 rotating filaments, while the other filaments remain 
pinned to and oscillate about their lattice sites. Unlike the case of CP vortices propagating in 
the absence of lattice [20], the angular momentum of the filamented structure is not conserved 
in time. Owing to the strong interaction with the lattice it oscillates back and forth, in 
accordance with the oscillatory motion about the lattice sites.  

 

 

Fig. 4. Rotating vortex, backward field: (a) Movie of the intensity distribution in the real space 
(1.603 MB). (b) Movie of the time evolution of the total angular momentum of the backward 
beam (441 KB). (c) Movie of the time evolution of the sum of angular momenta of both fields 
(498 KB). (d) Movie of the time evolution of the angular momentum of the total field F+B 
(629 KB). Total angular momentum is normalized to the total beam intensity. Parameters: 
lattice spacing 28 µm, FWHM of lattice beams 9 µm, maximum lattice intensity Ig=5Id, 
Γ=16.55, L=2.5LD=10 mm, |F0|

2=|BL|2=5, input FWHM of vortices 26.2 µm.      

5. Conclusions 

In summary, we report on the various aspects of counterpropagation of self-trapped beams in 
isotropic local saturable photorefractive media, in the presence of an optically-induced 
photonic lattice. We display axial propagation of solitonic CP beams and vortices in an optical 
lattice with a central waveguiding defect. A peculiar dynamic behavior of localized beams is 
observed, in that the CP components suddenly change their transverse positions, and from an 
attracting interaction switch to repelling. Although sharing some common features with the 
counterpropagation in the absence of lattice, such as the splitup transition, the discrete 
diffraction brings novel moments into the picture, such as the appearance of discrete solitons, 
the discrete symmetry breaking, and the pinning to the central defect. In the case of CP 
vortices we observe the filamentation of beams. A strong pinning of filaments to the lattice is 
found, with an accompanying loss of angular momentum, and an improved stability of the 
vortex core. However, the vortex core can be destabilized at higher values of ΓL and lower 
values of Ig, sometimes producing a steady rotation of the resulting filaments. 
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