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EDGEWORTH EXPANSIONS FOR STUDENTIZED STATISTICS

UNDER WEAK DEPENDENCE1

By S. N. Lahiri

Texas A & M University

In this paper, we derive valid Edgeworth expansions for studen-
tized versions of a large class of statistics when the data are generated
by a strongly mixing process. Under dependence, the asymptotic vari-
ance of such a statistic is given by an infinite series of lag-covariances,
and therefore, studentizing factors (i.e., estimators of the asymptotic
standard error) typically involve an increasing number, say, ℓ of lag-
covariance estimators, which are themselves quadratic functions of
the observations. The unboundedness of the dimension ℓ of these
quadratic functions makes the derivation and the form of the expan-
sions nonstandard. It is shown that in contrast to the case of the
studentized means under independence, the derived Edgeworth ex-
pansion is a superposition of three distinct series, respectively, given

by one in powers of n−1/2, one in powers of [n/ℓ]−1/2 (resulting from
the standard error of the studentizing factor) and one in powers of
the bias of the studentizing factor, where n denotes the sample size.

1. Introduction. Studentized statistics (or t-statistics, in short) play a
fundamental role in statistical inference about an unknown parameter. For
example, construction of a confidence interval for a parameter θ and testing
of hypotheses about θ are typically based on studentized statistics. However,
in spite of its critical importance and uses, a complete understanding of the
higher-order properties of studentized statistics for dependent observations
remained elusive to date. As explained below in some details, a primary
reason for this is that the standard Edgeworth expansion (EE) theory does
not easily apply to the case of a studentized statistic under dependence. This
paper develops the necessary tools and establishes valid EEs of a general
order for a large class of studentized statistics under weak dependence. Such
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2 S. N. LAHIRI

EE results are important for investigating higher-order properties of tests
and confidence intervals, such as coverage accuracy of one and two-sided
block bootstrap confidence intervals and their iterated versions, power levels
of tests under contiguous alternatives, etc., and for constructing inference
procedures with higher-order accuracy.

To highlight the major theoretical issues associated with the problem, let
{Zi}∞i=−∞ be a sequence of stationary random variables with EZ1 = 0 and

EZ2
1 = σ2 ∈ (0,∞). Let Z̄n = n−1

∑n
i=1Zi, n ≥ 1. When the Zi’s are inde-

pendent and identically distributed (i.i.d.), n1/2Z̄n is asymptotically normal
with mean zero and variance σ2. In this case, n1/2Z̄n may be studentized
using the scaling random variable

σ̂i.i.d.n =

[

n−1
n
∑

i=1

Z2
i − Z̄2

n

]1/2

,

and therefore, the studentized sample mean

T i.i.d.
n = n1/2Z̄n/σ̂

i.i.d.
n

may be expressed as a smooth function of the sample mean, n−1
∑n

i=1(Zi,Z
2
i )

′,
of the bivariate random vectors (Zi,Z

2
i )

′, i = 1, . . . , n. Here and in the fol-
lowing, let A′ denote the transpose of a matrix A. An Edgeworth expansion
for T i.i.d.

n can be derived using the well-known results on EEs for sums of
i.i.d. random vectors and the transformation technique of Bhattacharya and
Ghosh (1978).

The problem of deriving EEs for studentized sample mean becomes con-
siderably more difficult when the Zi’s are dependent. In the dependent case,
under suitable moment and mixing conditions on the Zi’s [cf. Ibragimov and
Linnik (1971), Athreya and Lahiri (2006)], n1/2Z̄n is asymptotically normal
with zero mean and variance

σ2∞ = γ(0) + 2
∞
∑

k=1

γ(k),(1.1)

where γ(k) = Cov(Z1,Zk+1), k ∈ Z and Z = {0,±1,±2, . . .} is the set of
all integers. Thus, for studentizing Z̄n, one needs to estimate all the lag-
covariances γ(k)’s, eventually, as the sample size n goes to infinity. In prac-
tice, one typically estimates a (large) number ℓ (say) of the lag-covariance
terms and let ℓ = ℓn tend to infinity with n suitably. For example, with
γ̂n(k) ≡ n−1

∑n−k
i=1 ZiZi+k − Z̄2

n, 1 ≤ k < n, a studentized version of n1/2Z̄n

may be defined as

T DEP
n = n1/2Z̄n/σ̂

DEP
n ,(1.2)

where σ̂DEP
n = max{γ̂n(0) + 2

∑ℓ
k=1 γ̂n(k), n

−1}1/2 (or a suitable variant of
it). However, note that unlike the i.i.d. case, the studentized statistic T DEP

n
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is now a function of (ℓ + 2) means, viz., Z̄n, n
−1
∑n−k

i=1 ZiZi+k,0 ≤ k ≤ ℓ,
where ℓ→ ∞ as n→ ∞. It is precisely because of the unbounded dimen-
sionality of the means in the definition of T DEP

n that the standard techniques
of deriving EEs do not apply to the studentized statistics in the dependent
case. Using some specialized arguments, two-term EEs [with errors of order
o(n−1/2)] have been independently derived by Götze and Künsch (1996) and
Lahiri (1996a). In a recent work, Velasco and Robinson (2001) obtained a
third-order EE for the studentized sample mean for a Gaussian time series,
using an exact Fourier inversion formula that is available only under the
Gaussian assumption, but not in general. In this paper, we derive EEs of a
general order for studentized versions of a large class of estimators based on
different classes of commonly used studentizing factors under dependence.
In particular, as regularity conditions on the underlying process, we only re-
quire some moment and weak dependence conditions as in Götze and Hipp
(1983), but not Gaussianity. The arguments developed here builds upon
a recent work of Lahiri (2007) and the seminal paper of Götze and Hipp
(1983) (hereafter referred to as [L] and [GH], respectively) on EEs for sums
of dependent variables and also, critically relies on a representation result
of Bradley (1983).

To describe the main results of the paper, let {Xi}i∈Z be a sequence of Rd-
valued stationary random vectors with EX1 = µ, where d ∈ N ≡ {1,2, . . .},
the set of all positive integers. Let X̄n = n−1

∑n
i=1Xi denote the sample

mean of X1, . . . ,Xn. Suppose that θ̂n is an estimator of a parameter of
interest θ based on X1, . . . ,Xn such that

θ̂n =H(X̄n) and θ =H(µ)(1.3)

for some (smooth) function H :Rd → R. This is the smooth function model
of Bhattacharya and Ghosh (1978) [cf. Hall (1992)], which serves as a con-
venient, yet a general theoretical framework for studying EEs for a large
class of commonly used statistics. Examples of statistics that can be treated
under (1.3) include the sample mean, the sample auto-correlations and the
Yule–Walker estimators of autoregressive parameters in an auto-regression
model. The main results of the paper are also applicable to the class of
generalized M-estimators of Bustos (1982), which are given by measurable
solutions of estimating equations of the form

n−p
∑

i=1

ψ(Xi, . . . ,Xi+p−1; θ̂n) = 0(1.4)

for some ψ :Rdp+1 →R, p ∈N (see Remark 3.1 in Section 3 for details).

Note that under (1.3), the asymptotic variance of n1/2(θ̂n− θ) is given by

τ2∞ ≡ h(µ)′
[ ∞
∑

i=−∞
Γ(i)

]

h(µ),
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where Γ(i) = Cov(X0,Xi) =E(X0 −µ)(Xi−µ)′, i ∈ Z and where h(·) is the
d× 1 vector of first-order partial derivatives of H . Here, we consider a class
of studentizing factors of the form

τ̂2n =max

{

h(X̄n)
′
[

Γ̂n(0) +
ℓ
∑

k=1

wkn{Γ̂n(k) + Γ̂n(k)
′}
]

h(X̄n), n
−1

}

(1.5)
≡max{τ̂21n, n−1} say

(and also some of its commonly used variants; see Section 4), where wkn ∈
R,1 ≤ k ≤ ℓ are nonrandom weights, where for n ≥ 1, ℓ ≡ ℓn ∈ (1, n), are
integers such that ℓ−1

n + n−1ℓn = o(1) as n→∞, and where

Γ̂n(k)≡ n−1
n−k
∑

i=1

(Xi − X̄n)(Xi+k − X̄n)
′

is a version of the sample auto-covariance matrix at lag k, 1 ≤ k ≤ n − 1.
The studentized estimator is now given by

Tn ≡ n1/2(θ̂n − θ)/τ̂n.(1.6)

(For certain choices of wkn’s, the first term in the definition of τ̂2n can be
negative or zero, albeit with small probability. The factor n−1 in the defi-
nition of τ̂2n ensures positivity of the scaling factor and thereby makes the
studentized statistic Tn well defined.) The main results of the paper give
EEs for Tn (and its variants) of order s for any given integer s ≥ 3. Not
only are the arguments used for proving the EEs in the dependent case are
different from those in the independent case, the forms of the EEs are also
strikingly different. Recall that in the independent case, EEs for studentized
statistics are given by a series in powers of n−1/2:

P (T i.i.d.
n ≤ x) = Φ(x) + n−1/2p1(x)φ(x) + n−1p2(x)φ(x) + · · · ,(1.7)

uniformly in x ∈R, where Φ(·) and φ(·), respectively, denote the distribution
and the density functions of a N(0,1) variate, and pi(·)’s are some polyno-
mials. In contrast, the EEs in the dependent case are super-impositions of

three distinct series in powers of n−1/2, b
−1/2
n and a−1

n [cf. (3.8), Proposition
3.2 below]:

P (Tn ≤ x) = Φ(x) + a−1
n q1(x)φ(x) + n−1/2q2(x)φ(x)

(1.8)
+ b−1

n q3(x)φ(x) + · · · ,
where qi(·)’s are some polynomials, bn = n/ℓ and a−1

n is of the same order as
the bias of τ̂2n. In (1.8), the n−1/2-series results from the centered and scaled
sample mean n1/2(X̄n − µ) as in [GH]. The terms in the a−1

n -series and the
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b
−1/2
n -series result from the estimation of the asymptotic variance τ2∞ by the

“truncated series” estimator τ̂2n; Here, the b
−1/2
n -series is determined by the

stochastic part of τ̂2n and the a−1
n -series is determined by the determinis-

tic truncation error (or the bias of the estimator). We point out that the

coefficient of the b
−1/2
n -term in the EE of Tn in (1.8) is zero, but those of

the higher powers of b
−1/2
n typically are not. To provide further insight into

the interactions among the three series and for ready reference, we provide
explicit expressions for the terms in the EE for Tn with an error of order
o(n−1) in Section 3 below. It is evident from this explicit EE [cf. (3.8)] that

interactions between the n−1/2-series and the b
−1/2
n -series show up only in

the terms of order smaller than n−1/2, and hence, the existing second-order
EE results fail to provide any clue to the complex pattern of interactions
between these series. In addition to the general-order EE for Tn, we also
establish valid EEs of a general order under alternative forms of studenti-
zations, including those based on various block bootstrap and subsampling
methods.

The rest of the paper is organized as follows. We conclude this section
with a brief literature review. In Section 2, we introduce the theoretical
frameworks of [GH] and [L] and state the assumptions. Here, we also verify
these assumptions for a class of vector linear processes. In Section 3, we
present the main results under the smooth function model. EE results under
other commonly used choices of the studentizing factors are given in Section
4. Proofs of the main results are given in Sections 5 and 6.

There is a vast literature on EEs for the sample mean X̄n and for statis-
tics that are smooth functions of X̄n. For independent random vectors, a
detailed account of the EE theory for X̄n is given by Bhattacharya and
Ranga Rao (1986) (hereafter referred to as [BR]) and Petrov (1975), and
the theory under the “smooth function model” is given by Bhattacharya
and Ghosh (1978), Bhattacharya (1985), and Hall (1992), among others.
For weakly dependent random vectors, [GH] obtained EEs for X̄n under a
very flexible framework. Lahiri (1993) relaxed the moment condition used
by [GH] and settled a conjecture of [GH] on the validity of expansions for
expectations of smooth functions of X̄n. Applicability of [GH] results in dif-
ferent time series models have been verified in Götze and Hipp (1994). EEs
for X̄n under polynomial mixing rates have been given by Lahiri (1996b).
Second-order expansions for certain versions of studentized statistics under
weak dependence are given by Götze and Künsch (1996) and Lahiri (1996a).
Velasco and Robinson (2001) derived third-order edgeworth expansion for
a studentized version of the sample mean for a stationary Gaussian pro-
cess. EEs for sums of block-variables are recently given in [L]. The results
of this paper establish EEs for most commonly used versions of studentized
statistics under weak dependence and extend earlier results on the problem,
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where the complex pattern of interactions among the three series were not
very clear.

2. Theoretical framework and assumptions. For deriving EEs for the
studentized statistic Tn, we will adopt a general framework similar to the
one introduced by [GH] in the context of establishing valid asymptotic ex-
pansions for sums of weakly dependent random vectors. Suppose that the
stationary sequence of random vectors {Xi}i∈Z are defined on a probabil-
ity space (Ω,F , P ). Also, suppose that {Dj}∞j=−∞ is a given collection of

sub σ-fields of F . Let Dq
p ≡ σ〈Dj : j ∈ Z, p ≤ j ≤ q〉,−∞ ≤ p ≤ q ≤ ∞. For

any two sub-sigma-fields G,H of F , define the α-mixing coefficient between
G and H as α(G,H) = sup{|P (A ∩ B) − P (A)P (B)| :A ∈ G,B ∈ H}. For
notational simplicity, we set µ=EX1 = 0 in the statements of the assump-
tions below, unless there is some scope of confusion. [If in an application
µ 6= 0, then replace Xi’s in (A.1)–(A.6) below with (Xi−µ)’s.] For i ∈ Z, let

Xi = (Xi,1, . . . ,Xi,d)
′ and let Y #

in be a [d1 ≡ d(d+ 1)/2]-dimensional vector
with (p, q)th element

Y #
in (p, q) =Xi,pXi,q +

ℓ
∑

k=1

wikn[Xi,pXi+k,q +Xi+k,pXi,q],

(2.1)
1≤ p≤ q ≤ d,

where wikn = wkn for 1≤ i+ k ≤ n and wikn = 0 for i+ k > n. Next, define
the block variables

Wjn =

(

ℓ−1/2
jℓ∧n
∑

i=(j−1)ℓ+1

X ′
i; ℓ

−1
jℓ∧n
∑

i=(j−1)ℓ+1

Y ′
in

)′

, 1≤ j ≤ b0n,(2.2)

where Yin = Y #
in − EY #

in and b0n = ⌈n/ℓ⌉. Here and in the following, for
x ∈R, we write ⌈x⌉ to denote the smallest integer not less than x and ⌊x⌋
to denote the integer part of x. Also, we write ‖ · ‖ to denote the Euclidean
norm of a vector and the spectral norm of a matrix, i.e., ‖(x1, . . . , xk)′‖ =
[
∑k

i=1 x
2
i ]
1/2, (x1, . . . , xk)

′ ∈ R
k and ‖A‖ = sup{‖Ax‖ :x ∈ R

k,‖x‖ = 1} for
a r × k matrix A, where r, k ∈ N ≡ {1,2, . . .}. For a random vector U and
γ ∈ (0,∞), let ‖U‖γ = (E‖U‖γ)1/γ . Let f ≡ ((fij)) denote the (d×d matrix-
valued) spectral density function of the process {Xi}i∈Z. Set ι=

√
−1 and

δn = b
−(s−2)/2
n (logn)−2, n≥ 2.

We shall make use of the following assumptions for deriving an (s− 2)th
“order” EE for Tn, for a given integer s≥ 3. Note that an (s− 2)th “order”
EE here is interpreted as a uniform approximation to the distribution of

Tn with an error term o(b
−(s−2)/2
n ). This may be contrasted with the more
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familiar notion of order in classical EEs in the independent case (e.g., for
T i.i.d.
n ), where the error of an (s− 2)th-order EE is o(n−(s−2)/2). This dis-

tinction is important as the error of approximation in the dependent case

is determined by a coarser series (in powers of b
−1/2
n compared to a series

in powers of n−1/2), resulting from estimation of the infinite-dimensional
parameter f(0).

Assumptions.

(A.1) (i) There exists a constant κ ∈ (0,1) such that for all n≥ κ−1, κ logn <
ℓ < κ−1n1/2−κ.

(ii) The function H :Rd →R in (1.3) is [ν(s)+ 2]-times differentiable
in a neighborhood of µ=EX1 and h(µ) 6= 0, where

ν(s) = inf{r ∈N :n−r/2(logn)(r+1)/2 =O(δn) as n→∞}
and where recall that h(·) is the d× 1 vector of first-order partial
derivatives of H .

(A.2) (i) There exists a constant κ ∈ (0,1) such that sup{‖Wjn‖s+κ : 1≤
j ≤ b0n, n≥ 1}<κ−1.

(ii) The d×dmatrix f(0) is nonsingular and ∆∞ ≡ limn→∞Cov( 1√
nℓ
×

∑n
i=1 Yin) exists and is nonsingular.

(iii) sup{|wkn| : 1 ≤ k ≤ ℓ,n ≥ 1} <∞ and limn→∞|wkn − 1| = 0 for
each k ≥ 1.

(A.3) There exists a constant κ ∈ (0,1) such that for all m> κ−1 and for

all j ≥ 1, there exist a Dj+m
j−m-measurable X†

j,m such that

E‖Xj −X†
j,m‖ ≤ κ−1 exp(−κm).

(A.4) There exists a constant κ ∈ (0,1) such that for all n,m= 1,2, . . . ,

α(Dn
−∞,D∞

n+m)≤ κ−1 exp(−κm).

(A.5) There exists a constant κ ∈ (0,1) such that for all i, j, k, r,m= 1,2, . . .
with i < k < r < j and m> κ−1,

E
(

sup
A∈Dj

i

|P (A|Dj : j /∈ [k, r])−P (A|Dj : j ∈ [i−m,k)∪ (r, j +m])|
)

≤ κ−1 exp(−κm).

(A.6) There exists a constant κ ∈ (0,1) and a sequence {dn} ⊂ [1,∞) with
dn =O(ℓ) and d2n =O(b1−κ

n ) such that for all n≥ κ−1 and κ−1 <m≤
[logn]1/κ,

max
j0∈Jn

E

[

sup
t∈Bn

∣

∣

∣

∣

∣

E

{

exp

(

ιt′
j0+m
∑

j=j0−m

Wjn

)

∣

∣

∣

∣

D̃j0

}
∣

∣

∣

∣

∣

]

≤ 1− κ,(2.3)
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where Jn ≡ Jn(m) = {m + 1, . . . , b0n −m − 1}, Bn = {t ∈ R
d :κdn ≤

‖t‖ ≤ b
(s−2)/2+κ
n }, and D̃j0 ≡ D̃j0(m,ℓ) = σ〈{Dj : j ∈ Z, j /∈ [(j0−⌊m2 ⌋)ℓ+

1, (j0 + ⌊m2 ⌋+1)ℓ]}.

Now we comment on the assumptions. As in [GH], here we formulate the
assumptions in terms of the auxiliary σ-fields Dj ’s in order to allow for more
flexibility and generality in applications. (A.1)(i) is a growth condition on
the block length ℓ and allows ℓ to grow at a rate O(n[1/2]−κ) for an arbitrar-
ily small κ > 0. Most of the commonly used variance estimators use an ℓ in
the range specified by (A.1)(i). For example, for the overlapping or nonover-
lapping block bootstrap variance estimators based on blocks of length ℓ, the
(MSE-) optimal rate for ℓ is O(n1/3) [cf. Künsch (1989), Hall, Horowitz and
Jing (1995), Lahiri (2003)], for weights wkn’s based on symmetric kernels,
the optimal rate of ℓ is O(n1/5) [cf. Priestley (1981)], and for weights based
on flat-top kernels, the optimal rate of ℓ is O(logn) under exponential strong
mixing conditions [cf. Politis and Romano (1995)]. (A.1)(ii) is a smoothness
assumption on the function H . The order ν(s) is determined by the rela-
tive sizes of n and ℓ. In particular, if H is (s+ 1)-times differentiable in a
neighborhood of µ with h(µ) 6= 0, then (A.1)(ii) holds for all choices of ℓ
satisfying (A.1)(i).

Assumption (A.2)(i) is a moment condition on the block variables Wjn’s
and can be weakened slightly, where boundedness of the (s + κ)th abso-
lute moments of Wjn’s is replaced by sup{E‖Wjn‖s log(1 + ‖Wjn‖)α(s) : j =
1, . . . , b0n, n≥ 1}< κ−1 for some α(s)> 2s2 and κ ∈ (0,1) (cf. [L]). A simple
sufficient condition for (A.2)(i), assuming (A.2)(iii), is that E‖X1‖2(s+1)+κ <
∞ for some κ > 0. This can be proved using the arguments used in the proof
of Lemma 3.28 of [GH].

Next consider assumption (A.2)(ii). The two parts of (A.2)(ii) jointly im-

ply that the limiting covariance matrix of the normalized sum b
−1/2
0n

∑b0n
j=1Wjn

exists and is nonsingular. Note that when the weights wkn’s are generated
through a bounded weight function w : [0,1]→R as

wkn =w(k/ℓ), 0≤ k ≤ ℓ,(2.4)

simple sufficient conditions on w(·) guaranteeing the existence of ∆∞ are
known [cf. page 699, Priestley (1981)]. Also, in this case, (A.2)(iii) holds
if w(0) = 1. However, the main results of the paper remain valid for more
general weights, as long as assumption (A.2) holds, and therefore, it is not
necessary to assume that the weights be generated through (2.4).

Assumption (A.3) is an approximation condition that connects the vari-
ables Xi’s to the strong-mixing property (A.4) of the auxiliary σ-fields Dj ’s.
The exponential decay of the strong mixing co-efficient in (A.4) can be weak-
ened to a suitable polynomial rate as in Lahiri (1996b), but at the expense of
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a much longer proof. We do not pursue such refinements here to save space.
Assumption (A.5) is an approximate Markov condition and is a variant of
a similar condition used by [GH]. This condition holds if the original ran-
dom vectors Xi’s are generated by a Markov chain. Although assumptions
(A.3)–(A.5) may seem to have some overlap, in general, none of (A.3)–(A.5)
implies the other(s). However, in a specific application, it may be possible to
deduce one or more of these assumptions from the rest and can be dropped.
For example, if the random vectors {Xi}∞i=−∞ are strongly mixing at an
exponential rate and if we set Di = σ〈Xi〉 for all i, then assumption (A.4)
holds and (A.3) becomes redundant (by choosing Xi,m =Xi for all m≥ 1).

Finally, consider assumption (A.6), which is a stronger version of a condi-
tional Cramer’s condition on the block variables Wjn’s given in [L] (see also
condition (2.6) in [GH]). From the proof of the main result (Theorem 3.1),
it is evident that the studentized statistic under consideration is a smooth
function of a variable of the form b

−1/2
0n

∑b0n
j=1Wjn + b−1

n ξ1n, where the com-
ponents of ξ1n are certain quadratic functions of central and boundary block
variables. To handle the special structure of ξ1n, we employ a representa-
tion theorem of Bradley (1983) for strongly mixing random variables and
develop some iterated conditioning arguments to separate out the effects
of the boundary block variables from the central ones. It is worth noting
that typically, other versions of mean-corrected studentized statistic have
a similar structure and, therefore, the arguments developed here may be
of some independent interest in the context of studentization under weak
dependence. The stronger version of the standard conditional Cramer’s con-
dition (i.e., the uniformity requirement over t ∈Bn) is a consequence of the
iterated conditioning step in the proof.

Verification of assumptions (A.3)–(A.6) requires choosing the auxiliary
σ-fields Dj ’s and the sequence dn suitably. Typically, the naive choice Di =
σ〈Xi〉 is not the best to work with. As an illustration, we now consider the
important special case where {Xi}i∈Z is a vector linear process and provide
some simple sufficient conditions for (A.3)–(A.6).

Proposition 2.1. Let

Xi = µ+
∑

j∈Z
Ajεi−j, i ∈ Z,(2.5)

where {Ai : i ∈ Z} is a collection of nonrandom d× d matrices and {εi}i∈Z
is a sequence of Rd-valued i.i.d. random vectors with Eε1 = 0. Suppose that
sup{|wkn| : 1 ≤ k ≤ ℓ,n ≥ 1} <∞, limn→∞wkn = 1 for each k ≥ 1, ‖Ai‖ =
O(exp(−κ|i|)) as |i| → ∞, for some κ ∈ (0,1) and that A∞ ≡∑i∈ZAi is
nonsingular. Further, suppose that ε1 has a nonzero absolutely continuous
component with respect to the Lebesgue measure on R

d. Then, assumptions
(A.3)–(A.6) hold.
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Now, we indicate how (A.3)–(A.6) are verified for the linear process case
above. Under (2.5), we set Dj = σ〈εj〉, j ∈ Z. By the independence of the

εj ’s, assumptions (A.4) and (A.5) hold trivially. For (A.3), we take X†
i,m =

µ+
∑

|j|≤mAjεi−j , i ∈ Z,m≥ 1. Then, X†
i,m is Di+m

i−m-measurable and in view

of the exponential decay of ‖Ai‖, (A.3) holds. Verification of (A.6) requires
some additional work; see the proof of Proposition 2.1 in Section 6 for details.

3. Main results. For describing the form of the EE and for stating the
main results, we will introduce some notation and conventions at this point.
Let Z+ = {0,1,2, . . .}. For α= (α1, . . . , αd)

′ ∈ Z
d
+ and x= (x1, . . . , xd) ∈ R

d,

set |α|= α1+ · · ·+αd, α! =
∏d

k=1αk, and x
α =

∏d
k=1 x

αk
k , and let Dα denote

the differential operator ∂α1

∂x
α1
1

· · · ∂αd

∂x
αd
d

where ∂a

∂xa
i
denotes ath-order partial

derivative with respect to the ith coordinate of x. Write |I| to denote the
size of a finite set I . For a collection of variables {A(λ) :λ ∈ Λ} and for I ⊂ Λ,
set A(I) =

∏

λ∈I A(λ) if I 6= ∅ and A(I) = 1 if I = ∅. Unless otherwise
stated, (i) limits in the order symbols are taken by letting n→ ∞ and,
(ii) the components of a vector indexed by the elements of the set Λ0 ≡
{(p, q) :p, q ∈ N,1 ≤ p ≤ q ≤ d} follow the lexicographic ordering. Let 1(·)
denote the indicator function.

3.1. Definition of the EE. Using the smoothness of the function H , we
can use Taylor’s expansion to derive a stochastic expansion T1n (say) for
Tn such that T1n is a polynomial function of certain vector-valued block-
variables and such that the (s− 2)th-order EEs of Tn and T1n match up to

an error of o(b
−(s−2)/2
n ). In Section 6, we show that (a choice of) T1n is given

by

T1n =
h(µ)′Zn

τ1n
+

ν(s)
∑

j=1

n−j/2
∑

|α|=j+1

c1n(α)Z
α
n

(3.1)

+

s−2
∑

k=1

νk(s)
∑

j=0

n−j/2b−k/2
n

∑

|α|=j+1

∗k
∑

c2n(α, I)

3
∏

r=1

Zα
n Ârn(Ir),

where Zn ≡ n1/2(X̄n − µ), τ21n = h(µ)′[Γ(0) +
∑ℓ

k=1wkn{Γ(k) + Γ(k)′}]h(µ),
νk(s) = min{r ∈ Z+ :n−(r+1)/2b

−k/2
n (logn)(k+r)/2 =O(δn)}, and where {c1n(α)}

and {c2n(α, I)} are some bounded sequences of real numbers, Âkn = (Âkn(λ) :λ ∈
Λ0), k = 1,2,3 are certain d1 × 1 variables, as defined in (6.46), and sat-

isfy ‖Âkn‖ = Op(1). The sum
∑∗k in (3.1) extends over all I = (I1, I2, I3)

such that Ij ⊂ Λ0, j = 1,2,3 and |I1| + 2|I2| + 3|I3| = k, 1 ≤ k ≤ s − 2.
Let Xr,n denote the rth cumulant of T1n, r ∈ N (when it exists) and let
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τ2n = Var(h(µ)′Zn). Next, we expand the cumulants of T1n formally (i.e.,
assuming existence of all moments of the variables appearing in T1n) to get

Xr,n =
s−2
∑

k=0

νk(s)
∑

j=0

b−k/2
n n−j/2β

(r)
k,j + o(b−(s−2)/2

n ) for 1≤ r≤ s, r 6= 2,

(3.2)

X2,n =
τ2n
τ21n

+

s−2
∑

k=0

νk(s)
∑

j=0

b−k/2
n n−j/2β

(2)
k,j + o(b−(s−2)/2

n ) for r = 2,

where β
(r)
k,j ≡ β

(r)
k,j,n are real numbers satisfying β

(r)
k,j,n = O(1) for each j, k,

with β
(r)
0,0,n ≡ 0 for all n≥ 1 and r ∈ {1, . . . , s}, and where ν0(s) = ν(s)− 2.

Then define the polynomials πj,k,n(·) by the identity (in t ∈R)

exp

(

s
∑

r=1

[

s−2
∑

k=0

νk(s)
∑

j=0

b−k/2
n n−j/2β

(r)
k,j

]

(ιt)r
/

r!

)

= 1+

s−2
∑

k=0

νk(s)
∑

j=0

b−k/2
n n−j/2πj,k,n(ιt) + o(b−(s−2)/2

n ),

where π0,0,n(·) ≡ 0 and for (j, k) 6= (0,0), the coefficients of πj,k,n are func-

tions of β
(r)
k,j = β

(r)
k,j,n’s and are bounded [i.e., O(1) as n→ ∞]. (We show

the subscript n in πj,k,n to highlight the dependence on β
(r)
k,j,n’s.) The den-

sity ψ∗
s,n of the (s− 2)th-order preliminary EE for Tn (with respect to the

Lebesgue measure on R) is given by

ψ∗
s,n(u) =

[

1 +

s−2
∑

k=0

νk(s)
∑

j=0

b−k/2
n n−j/2πj,k,n

(

− d

du

)

]

φen(u), u ∈R,(3.3)

where π0,0,n(·) ≡ 0, e2n = τ2n/τ
2
1n and φa(u) = a−1φ(u/a), u ∈ R, a ∈ (0,∞).

Note that in (3.3), the approximating normal distribution is not N(0,1) but
N(0, e2n). Therefore, setting a−1

n = [e−1
n − 1], we further expand the terms

ψ∗
s,n(u) involving the factor en to write

ψ∗
s,n(u) =

[

1 +
s−2
∑

k=0

νk(s)
∑

j=0

rj,k(s)
∑

i=0

b−k/2
n n−j/2a−i

n pi,j,k,n(u)

]

φ(u) +O(δn)

(3.4)
≡ ψs,n(u) +O(δn) (say)

uniformly in u ∈R for some polynomials pi,j,k,n(·)’s with p0,0,0,n(·)≡ 0, where

rj,k(s) = min{i ∈ Z+ : b
−k/2
n n−j/2a

−(i+1)
n = o(b

−(s−2)/2
n )}. The (s− 2)th-order
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EE Ψs,n for Tn is defined as

Ψs,n(u0) =

∫ u0

−∞
ψs,n(u)du, u0 ∈R.

3.2. Main results. We are now ready to state the main result of this
section.

Theorem 3.1. Suppose that assumptions (A.1)–(A.6) hold. Then

sup
u∈R

|P (Tn ≤ u)−Ψs,n(u)|=O(b−(s−2)/2
n (logn)−2) as n→∞.

Theorem 3.1 establishes validity of a general-order EE for the studentized
statistic Tn. From (3.4), it is clear that the EE in the dependent case has
contributions from three sources, namely a series in powers of n−1/2 coming

from the estimation of θ (by θ̂n), a series in powers of b
−1/2
n , coming from

the stochastic error in estimating the asymptotic variance τ21n of θ̂n, and
a third series in powers of a−1

n , coming from the bias of the estimator τ̂2n.
This should be compared with the relatively simpler form of the EE in the
i.i.d. case [cf. (1.7)], where one is concerned with the estimation of finite-
dimensional parameters only. In general, it is not possible to simplify the
EE any further. Since the form of the EE is rather complicated, to provide
further insight, we now provide an explicit expression for the third-order EE
Ψs,n(·) with an error rate o(n−1) in Section 3.3 below.

Remark 3.1. The arguments developed here can be easily adapted to
establish valid EEs for studentized versions of a slightly more general class of
estimators than that given by the smooth function model [cf. (1.3)]. Specif-
ically, let θ̃n be an estimator of θ such that

n1/2(θ̃n − θ) = γ′X̄n +

a(s)
∑

k=1

n−k/2p̃kn(X̄n) +Rn(3.5)

for some (nonrandom) γ ∈ R
d \ {0} and for some polynomials p̃kn(·) with

bounded coefficients, where Rn satisfies the negligibility condition:

P (|Rn|>Cb−(s−2−κ)
n ) =O(δn)(3.6)

for some κ ∈ (0,1). Under suitable smoothness conditions on the score func-
tion ψ(·), the M-estimators in (1.4) admit such a representation, and hence
the EE techniques developed here can be readily applied to studentized M-
estimators in (1.4).
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3.3. Explicit expression for the third-order EE. To derive the explicit EE
formula with an error of order o(n−1), note that under (A.1), the terms of

order b
−r/2
n , r ≥ 4 are o(n−1). Hence, we restrict attention to the (s− 2)th-

order EE for Tn with s= 5. For s= 5, the constants νk(s) in (3.1) are given
by ν(s) = ν0(s) = 2, ν1(s) = 1 and νk(s) = 0 for k = 2,3. The explicit forms
of the EEs for T1n can now be obtained by carrying out the steps (3.1)–(3.4).
These steps involve long and tedious algebraic computations and are given
in in Section 6.3. Here, we state the resulting formulae only. To that end,
let Hk(·) denote the kth-order Hermite polynomial, k ≥ 0, defined by

Hk(x)φ(x) = (−1)k
dk

dxk
φ(x), x ∈R.

Proposition 3.2. Suppose that assumptions (A.1)–(A.6) of Section 2
hold with s = 5 if ℓ = O(n1/3) and with s = 6 if ℓ = O(n1/2−κ). Then, the
density of the preliminary EE ψ∗

n [cf. (3.3)] for Tn with an error of order
o(n−1) is given by

ψ∗
n(x) = φen(x)[1 + n−1/2q1n(x) + b−1

n q2n(x)
(3.7)

+ n−1q3n(x) + b−3/2
n q4n(x)], x ∈R,

where the polynomials qin’s are as in (6.57). If, in addition, a−1
n =O(n−1/3),

then

sup
x∈R

|P (Tn ≤ x)−Ψn,s(x)|=O(n−1(logn)−2),

where, for x ∈R,

Ψn,s(x) = Φ(x) +

[{

x

an
− x3

2a2n
+
x3H2(x)

6a3n

}

+ {n−1/2p1n(x) + n−1/2a−1
n p2n(x)}

(3.8)
+ {b−1

n p3n(x) + b−1
n a−1

n p4n(x)}

+ n−1p5n(x) + b−3/2
n p6n(x)

]

φ(x),

and where the coefficients of the polynomials pin’s are O(1) as n→∞. The
exact expressions for pin’s are given in (6.58).

Now, we discuss some of the implications of Proposition 3.2. The form

of the preliminary EE for Tn shows that the terms of order b
−1/2
n do not

appear in the EE, as also are the terms of order b
−1/2
n n−1/2. As a result,
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interactions between the n−1/2 series and the b
−1/2
n -series show up only in

the terms of order smaller than b
−1/2
n n−1/2. As a consequence, existing re-

sults in the literature on second and third-order EEs for the studentized
statistics fail to describe this interaction. Next, consider relation (3.8) which
gives the explicit third-order EE for the studentized statistic Tn, assuming
a−1
n = O(n−1/3). For most commonly used weights wkn’s [cf. discussion of

assumptions (A.1) and (A.2), Section 2], the bias of the studentizing factor
τ̂2n is O(n−1/3), so that a−1

n = O(n−1/3), and hence, this additional condi-
tion is not very restrictive. It is clear from (3.8) that it is the a−1

n series, but

not the b
−1/2
n series, that may slow down the rate of Normal approximation

to the distribution of Tn from the standard rate O(n−1/2) observed in the
i.i.d. case. Consequently, large sample confidence intervals for the parame-
ter θ based on Tn can have very poor coverage probability under dependence,
unless the weights wkn’s are chosen carefully to make the bias small.

Remark 3.2. The explicit EE results of Proposition 3.2 can also be
used to determine the optimal block size ℓ for minimizing the error of Normal
approximation to the distribution of the studentized statistic Tn. Suppose
that the weights wkn’s in the definition of the studentizing factor τ̂2n in (1.5)
is generated by a bounded taper function w : [0,1]→R as wkn =w(k/ℓ), 1≤
k ≤ ℓ [cf. (2.4)], with w(0+) = 1. Let r be the characteristic exponent of w(·),
i.e., r be the largest integer such that

w(r) ≡ lim
y→0+

1−w(y)

yr
(3.9)

exists and is nonzero. Then, it can be shown that the bias of τ̂2n is of the
order of ℓ−r and hence, a−1

n = crℓ
−r(1+o(1)) as n→∞, for some constant cr

[involving the constant w(r) and derivatives of the spectral density function
of the process {Z∗

i }i∈Z where Z∗
i = h(µ)′Xi]. From (3.8), it now follows that

the rate of Normal approximation is optimized provided a−1
n decays like

n−1/2, which in turn implies that the optimal choice of the block size is of the
order n1/(2r). Thus, for the Bartlett lag-window, w(y) = (1−y), y ∈ [0,1], we
have r = 1 in (3.9) and the optimal block size is of the order n1/2. Similarly,
for the studentization factor given by the Moving Block Bootstrap (MBB)
method (cf. Section 4.2 below), the weights are asymptotically equivalent to
those generated by the Bartlett lag-window and hence, the optimal choice

of the block size here is also of the order n1/2. [Although assumption (A.1)
rules out blocks of size n1/2 for a general-order EE, a second-order EE can
be established for ℓ=O(n1/2) with some additional work, which shows that
these are indeed the optimal order for the case r = 1.] Next, consider the

Daniell window, w(y) = sinπy
πy , and the Parzen window, w(y) = [1 − 6y2 +

6y3]1(0 ≤ y ≤ 1/2) + 2(1− y)31(1/2 ≤ y ≤ 1). For both of these, r = 2 and
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hence, the optimal block size is of the order n1/4. Finally, consider the flat-
top kernels of Politis and Romano (1995). For these, w(r) = 0 for all r ≥ 1,
and we have what are called the infinite-order windows. In such cases, under
(A.1)–(A.5), the bias of τ̂2n decays exponentially fast, and the optimal order
of ℓ is O(logn).

4. EEs under alternative studentizations. In this section, we give results
on general-order EEs for studentized statistics for various alternative choices
of the studentizing factor that have been proposed in the literature.

4.1. Lag covariance estimators with a different scaling. First, consider
the effects of replacing Γ̂n(k) by

Γ̂[1]
n (k) = (n− k)−1

n−k
∑

i=1

(Xi − X̄n)(Xi+k − X̄n)
′, 0≤ k ≤ ℓ,(4.1)

i.e., we replace the scaling factor n−1 in Γ̂n(k) by (n− k)−1. Let

T [1]
n =

√
n(θ̂n − θ)/τ̂ [1]n ,

where τ̂
[1]
n is defined by replacing Γ̂n(k)’s in the definition of τ̂n by Γ̂

[1]
n (k),

0 ≤ k ≤ ℓ. In this case, the basic EE results of Section 3 readily yield EEs

for T
[1]
n . Note that

Γ̂[1]
n (0) +

ℓ
∑

k=1

wkn(Γ̂
[1]
n (k) + Γ̂[1]

n (k)′) = Γ̂n(0) +

ℓ
∑

k=1

w̃kn(Γ̂n(k) + Γ̂n(k)
′),

where w̃kn ≡wkn[n/(n−k)],1≤ k ≤ ℓ. Therefore, it follows that an (s−2)th-

order EE for T
[1]
n is valid under the same regularity conditions as those

needed in the case of Tn with w̃kn’s replacing the wkn’s, and the correspond-
ing EE is given by Ψs,n(·), again with w̃kn’s replacing the wkn’s.

4.2. Block bootstrap variance estimators. A popular approach to finding
estimators of the standard error of θ̂n is through one of the many block
bootstrap and subsampling methods proposed in the literature [cf. Lahiri
(2003)]. In this section, we consider higher-order expansions for the studen-
tized statistic, when the studentizing factor is generated by different block re-
sampling methods. Let ℓ be an integer satisfying (A.1) and let N = n− ℓ+1.
Here, N denotes the number of overlapping blocks of size ℓ contained in
{X1, . . . ,Xn}. For i = 1, . . . ,N , define Vi =

∑i+ℓ−1
k=i wkn(Xk − X̄n), where

wkn’s are nonrandom weights satisfying
∑ℓ

k=1w
2
kn = 1. Then, the block re-

sampling estimator of Cov(Zn) (where Zn = n1/2[X̄n − µ]) is given by

Σ̂BR
n ≡N−1

N
∑

i=1

ViV
′
i .(4.2)
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Note that for wkn ≡ ℓ−1/2, this gives the MBB estimator of Cov(Zn) [Künsch
(1989), Liu and Singh (1992)]. Due to the linearity of the sample mean in the

Xi’s, Σ̂
BR
n with wkn ≡ ℓ−1/2 is also the overlapping subsampling estimator

of Cov(Zn) [cf. Politis and Romano (1994)]. Further, for suitable choices

of wkn’s, Σ̂
BR
n gives the tapered block bootstrap estimator of Cov(Zn) [cf.

Paparoditis and Politis (2001)].

With the block resampling estimator Σ̂BR
n of Cov(Zn) given by (4.2), we

now define the corresponding studentized version of θ̂n as

T [2]
n =

√
n(θ̂n − θ)/τ̂ [2]n ,

where τ̂
[2]
n = max{n−1, h(X̄n)

′[Σ̂BR
n ]h(X̄n)}1/2. A general-order EE for T

[2]
n

continue to hold under regularity conditions similar to (A.1)–(A.6). To state
the result, define

W
[2]
jn =

(

n1/2[X̄n − µ]′;

[

vec

(

ℓ−1
jℓ∧n
∑

i=(j−1)ℓ+1

U1iU1i

)]′)′

,

(4.3)
j = 1, . . . , b0n,

where U1i = nN−1
∑i+ℓ−1

k=i w(k−i+1)n(Xk − µ), i = 1, . . . ,N and U1i = 0 for
i=N + 1, . . . , n. Here and in the following, for a d× d matrix A= ((aij)),
vec(A) denotes the d1 = d(d+1)/2-dimensional vector, given by vec(A) =

(a11, . . . , a1d;a22, . . . , a2d; . . . ;add)
′. The collection of random vectors {W [2]

jn : j =

1, . . . , b0n} gives the basic block variables for the studentized statistic T
[2]
n

with the block resampling studentizing factor τ̂
[2]
n . The following result gives

the conditions for a valid (s− 2)th-order EE for T
[2]
n .

Theorem 4.1. Suppose that assumption (A.1)–(A.6) hold with Wjn’s

replaced by W
[2]
jn ’s. Then

sup
u∈R

|P (T [2]
n ≤ u)−Ψ[2]

s,n(u)|=O(δn) as n→∞,

where Ψ
[2]
s,n is obtained from the definition of Ψs,n by replacing Âkn, k = 1,2,3

with Â
[2]
kn, k = 1,2,3 in (3.1) and where Â

[2]
kn, k = 1,2,3 are as defined in

(6.59). Further, for the linear process in (2.5), assumptions (A.3)–(A.6)

[with Wjn =W
[2]
jn in (A.6)] continue to hold solely under the conditions of

Proposition 2.1.

4.3. Variance estimators without mean correction. In some limited appli-
cations, one can assume that the mean µ of the X1’s is known. For example,
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if the Xi’s are univariate and one is interested in testing hypotheses of the
form H0 :µ= µ0 against H1 :µ 6= µ0 for some given µ0, it may be reasonable
to use a studentizing factor without explicit estimation of the mean param-
eter µ. In such situations, one would simply make use of the hypothesized
value µ0 of µ to define a test-statistic. This often simplifies the proof and
derivation of the EE for the studentized statistic.

For the rest of this subsection, we suppose that µ is known. Further, for
notational simplicity, we set µ= 0 (otherwise, replace Xi in each occurrence
with Xi−µ). Then, each of the studentizing factors described above leads to
a simpler form where the X̄n’s are dropped from the corresponding formulae

for τ̂
[r]
n ’s. As a specific case, we consider the known-mean version of the

studentizing factor arising from τ̂
[2]
n , given by

τ̂ [3]n =max

{

n−1, h(X̄n)
′
[

N−1
N
∑

i=1

U1iU
′
1i

]

h(X̄n)

}1/2

,

where, from above, U1i = nN−1
∑i+ℓ−1

k=i w(k−i+1)nXk, i= 1, . . . ,N and U1i =

0 for i=N +1, . . . , n. Set T
[3]
n =

√
n(θ̂n−θ)/τ̂ [3]n . Then we have the following

result.

Theorem 4.2. Suppose that assumption (A.1)–(A.5) hold with Wjn’s

replaced byW
[2]
jn [cf. (4.3)], and the following weaker version of (A.6) holds:

(A.6)′ There exists a constant κ ∈ (0,1) and a sequence {dn} ⊂ [1,∞) with
dn =O(ℓ) and d2n =O(b1−κ

n ) such that for all n≥ κ−1 and κ−1 <m≤
[logn]1/κ,

max
j0∈Jn

sup
t∈Bn

E|E{exp(ιt′[W [2]
(j0−m)n + · · ·+W

[2]
(j0+m)n])|D̃j0}| ≤ 1− κ,(4.4)

where Jn, Bn, and D̃j0 are as in (A.6). Then

sup
u∈R

|P (T [3]
n ≤ u)−Ψ[3]

s,n(u)|=O(δn) as n→∞,

where Ψ
[3]
s,n is obtained from the definition of Ψs,n by replacing Âkn, k =

1,2,3 with Â
[3]
kn, k = 1,2,3 in (3.1) and where Â

[3]
1n = Â

[2]
1n, with Â

[2]
1n as in

(6.59), and where Â
[3]
kn = 0 for k = 2,3. Further, for the linear process in

(2.5), assumptions (A.3)–(A.5) and (A.6)′ hold solely under the conditions
of Proposition 2.1.

Note that Theorem 4.2 gives a valid EE for T
[3]
n under a slightly weaker

conditional Cramer condition (where E supt∈Bn
| · | is replaced by supt∈Bn

E| ·



18 S. N. LAHIRI

|). This is a consequence of not using an explicit mean correction in the stu-

dentizing factor τ̂
[3]
n . In this case, valid EE can be derived by combining the

EE results of [L] for sums of block variables and the transformation technique
of Bhattacharya and Ghosh (1978). No iterated conditioning arguments, like
those used in the proof of Theorem 3.1 (cf. Section 5 below) are needed. Ve-
lasco and Robinson (2001) proved a third-order EE for a mean-uncorrected
version of the studentized statistic, for Gaussian processes. Theorem 4.2 sup-
plements their results by dropping the Gaussianity requirement and giving
a general-order EE, under regularity conditions (A.1)–(A.5) and (A.6)′.

5. Edgeworth expansions for perturbed sums of block variables. It can
be shown (cf. Section 6) that the basic building block in the stochastic
approximation to the studentized statistics Tn is given by a perturbed sum
of block variables of the form:

R∗
n ≡

(

n1/2X̄ ′
n,

1√
nℓ

bn
∑

i=1

Y ′
in + b−1

n ξ′n

)′

,(5.1)

where, Yin’s are as in Section 2 and ξn is a quadratic form in n1/2X̄n and
the boundary blocks of length ℓ [cf. (6.2) below]. As a result, for deriving
the EEs in Section 4, we need to develop an EE theory for R∗

n, which we
address in this section.

Note that the second term in R∗
n has a nonstandard form which gives rise

to some difficult technical issues that must be resolved for deriving valid
EEs for such a statistic. Specifically, note that with d = 1 (for notational
convenience), ξn is a variable of the form

ξn = n1/2X̄n[3W1n + 3Wb0nn],

where 3Wjn, j = 1, b0n are certain boundary block variables (based on blocks
of size ℓ) that are asymptotically normal. Although it may appear reason-
able at the first glance, deriving an EE for R∗

n from the joint distribution

of n1/2X̄n,
1√
nℓ

∑bn
i=1 Yin and 3Wjn, j = 1, b0n is not very useful for our pur-

pose, as the EEs for 3Wjn, j = 1, b0n are in powers of ℓ−1/2, which can

be too slow to give an overall error rate of o(b
−(s−2)/2
n ), particularly when

ℓ ∼ (logn)C . This observation leads us to consider finding an EE for ξn
directly. But by taking the direct approach, we have to contend with a
complication that arises from the fact that the boundary block variables,
being common multipliers of all the Xi’s in n1/2X̄n, induce strong depen-
dence of among the product variables. To deal with this, here we develop
a conditioning argument with resect to suitable initial and end segments of
the variables X1, . . . ,Xn and derive a valid EE for the joint distribution of
n1/2X̄n and 1√

nℓ

∑bn
i=1 Yin+ b

−1
n ξn. A representation result of Bradley (1983)
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(cf. Lemma 6.1 below) for strongly mixing random variables plays a crucial
role in carrying out the conditioning step in the proof.

Next, we define the (s− 2)th-order EE Υs,n(·) for R∗
n through its Fourier

transform Υ̂s,n(t) ≡
∫

exp(ιt′x)Υ(dx), t ∈ R
d0 . Let S

[0]
n (t) = t′R∗

n, t ∈ R
d0 .

Note that ES
[0]
n (t) = b

−3/2
n t′Eξ1n and Var(S

[0]
n (t)) = t′Ξnt+2b

−3/2
n t′ESnξ′1nt+

b−3
n t′Eξ1nξ′1nt, where ξ1n = (0′ : ξ′n)

′. Also, by Lemma 6.3, for 3≤ r ≤ s, the

rth-order cumulant [cf. (6.4)] of S
[0]
n (t) is

K[0]
0 ([S[0]

n (t)]⋄r) =
∑

|a1|=1

· · ·
∑

|ar|=1

ta1+···+arK[0]
0 (S[0]

n (a1), . . . , S
[0]
n (ar))

= b−(r−2)/2
n

∑

|α|=r

tα

(

s−r
∑

j=0

b−j/2
n λ

(α)
j,n

)

for some constants λ
(α)
j,n ∈ R, with λ

(α)
j,n =O(1) for all j and α. Next, define

the EE polynomials {qr,nx : r= 1, . . . , s− 2} by the identity:

exp

(

b−3/2
n [ιt′Eξ1n − t′ESnξ

′
1nt]−

b−3
n

2
t′Eξnξ

′
1nt

+
s
∑

r=3

b
−(r−2)/2
n

r!

∑

|α|=r

(ιt)α

[

s−r
∑

j=0

b−j/2
n λ

(α)
j,n

])

= 1+

s−2
∑

r=1

b−r/2
n qr,n(ιt) + o(b(s−2)/2

n ).

The Fourier transform Υ̂s,n of Υs,n(·) is defined as

Υ̂s,n(t) = exp(−t′Ξnt/2)

[

1 +

s−2
∑

r=1

b−r/2
n qr,n(ιt)

]

, t ∈R
d0 .

With this, we now have the main result of this section.

Theorem 5.1. Let R∗
n be as defined in (5.1). Then under assumptions

(A.1)–(A.6),

sup
B∈B

|P (R∗
n ∈B)−Υs,n(B)|=O(b−(s−2)/2

n [logn]−2),(5.2)

where B is a class of Borel subsets of Rd0 satisfying

sup
B∈B

ΦΞ([∂B]ε) =O(ε) as ε ↓ 0.
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6. Proofs. For clarity of exposition, we shall switch the order of proofs
of the results from Sections 2, 3 and 4 and those from Section 5. In Section
6.1, we set forth some common notation and state some relevant facts that
are used in the rest of the section. The proof of Theorem 5.1 for a general
d ≥ 1 and various intermediate steps (cf. Lemmas 6.1–6.6) are presented
in Section 6.2. Proofs of the results from Sections 2, 3 and 4 are given in
Sections 6.3–6.5, respectively.

6.1. Notation and preliminaries. With a given d ≥ 1, let d0 = d1 + d,
where d1 = d(d+1)/2. Thus, d0 is the dimension of the block variablesWjn’s
in (2.2). For a d× d matrix A= ((ai,j)), let vec(A) be the d1-dimensional
vector, consisting of the on- and above-the-diagonal entries of A (with the
lexicographic ordering). Let svec(A) = vec(A) +vec(A′). Next, define the
reverse operation vec−1(·) from R

Λ0 into the class of d × d matrices by
setting

[vec−1(x)]i,j = xi,j ∈ ((i, j) ∈ Λ0).

Thus, vec−1(x) is an upper triangular matrix with the elements from x
filling in the on- and above-the-diagonal positions and with zeros below
the diagonal. Also, set svec−1(x) = vec−1(x) + [vec−1(x)]′. Note that for
t ∈R

Λ0 and x, y ∈R
d,

t′vec(xy′) = x′[vec−1(t)]y,

t′ svec(xy′) = x′[svec−1(t)]y and(6.1)

‖svec−1(t)x‖ ≤ C(d)‖t‖‖x‖.

Here and in the proofs below, let C,C(·) denote generic constants in (0,∞),
depending on their arguments (if any), but not on n and ℓ. For notational
simplicity, we will suppress the dependence of C,C(·) on the dimension
variables d0, d1 and d and the constant κ appearing in assumptions (A.1)–
(A.6). Let e1, . . . , ed denote the standard basis of Rd. Let ψ : [0,∞)→ [0,∞)
be an infinitely differentiable nondecreasing function satisfying ψ(u) = u for
0≤ u≤ 1 and ψ(u) = 2 for u≥ 2. For c > 0, define the truncation function
g(·; c) :Rk →R

k (for a k ∈N) by

g(x; c) =







cx

‖x‖ · ψ
(‖x‖

c

)

, if x 6= 0,

0, if x= 0.

Thus, g(x; c) = x for ‖x‖ ≤ c and ‖g(x; c)‖ ≤ 2c for all x ∈ R
k. For n ≥ 1,

set cn = b
1/2
n (log(n+ 1))−2 and let δn,C = b

−(s−2)/2
n (log[n+ 1])−C for some

C ∈ (0,∞). Note that δn = δn,2(1+o(1)). For a sequence of random variables
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{Wn}n≥1 and a sequence real numbers {xn}n≥1 ∈ (0,∞), we write Wn =

Õp(xn) if

P (|Wn|>Cxn) =O(δn) for some C > 0.

For notational simplicity, we will often drop the subscript n and write bn = b,
b0n = b0,ℓn = ℓ, etc., whenever this convention does not create confusion.
Also, unless otherwise stated, we set µ= 0 in all of the steps below. Thus, the
X-variables appearing in the expressions below are centered; in particular,
X̄n =Op(n

−1/2).
Let Wjn = (1W

′
jn, 2W

′
jn)

′, where 1Wjn is d× 1. Similarly, partition Sn ≡
b
−1/2
n

∑b0n
j=1Wjn as Sn = (1S

′
n, 2S

′
n)

′. Let

ξn ≡ n1/2 svec(X̄n[3W1n + 3Wb0n]
′),(6.2)

where 3W1n = ℓ−3/2
∑ℓ

i=1(
∑ℓ

k=iwkn)Xi and 3Wb0n = ℓ−3/2
∑ℓ

i=1(
∑ℓ

k=iwkn)×
Xn−i+1. Also, with 3Wjn = 0 for j = 2, . . . , b0n − 1, set

W
[0]
jn = (1W

′
jn; 2W

′
jn; 3W

′
jn)

′, j = 1, . . . , b0n.

Unless otherwise indicated, a check ( )̌ and a tilde ( )̃ on a random vector
(at stage n in the asymptotic argument) denote its truncated version (at cn)
and its centered truncated version, respectively. Thus, rW̌jn = g(rW̌jn; cn)

and rW̃jn = rW̌jn − ErW̌jn for r = 1,2,3 and j = 1, . . . , b0. Next (with a

slight abuse of the above notation), define W̌
[0]
jn and W̃

[0]
jn by replacing

{rWjn : r = 1,2,3} with {rW̌jn : r = 1,2,3} and {rW̃jn : r = 1,2,3}, respec-
tively. Set ξ̃n = svec(1S̃n[3W1n + 3Wb0nn]

′) and S̃
[0]
n (t) = t′S̃n + b

−3/2
n t′ξ̃1n,

with ξ̃1n = (0′, ξ̃′n)
′ ∈R

d0 . Note that for t= (t′1, t
′
2)

′ ∈R
d ×R

Λ0 ,

S̃[0]
n (t) = b−1/2

n

b0n
∑

j=1

[t′W̃jn + b−3/2
n (3W̃1n + 3W̃b0nn)

′[svec−1(t2)](1W̃jn)]

(6.3)

≡ b−1/2
n

b0n
∑

j=1

Ṽjn(t), say.

Next, for an integrable random variable V on (Ω,F , P ), define

EtV = [H [0]
n (t)]−1E[V exp(S̃[0]

n (ιt))], t ∈R
d0 ,

whereH
[0]
n (t) =E exp(ι[S̃

[0]
n (t)]), t ∈R

d0 . Also, letHn(t) =E exp(ιt′S̃n), t ∈R
d.

Define the semi-invariants K[0]
t (V1, . . . , Vp) in variables V1, . . . , Vp on (Ω,F, P ),

by

ιpK[0]
t (V1, . . . , Vp)
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=
∂

∂ε1
· · · ∂

∂εp

∣

∣

∣

∣

ε1=···=εp=0

(6.4)

× logE exp(ιt′S̃[0]
n + ι[ε1V1 + · · ·+ εpVp]), t ∈R

d0 .

Then, it is a well-known fact that (cf. (3.13) of [GH])

K[0]
t (V1, . . . , Vp) =

p
∑

j=1

∗
∑

c(I1, . . . , Ij)

j
∏

i=1

Et

∏

k∈Ii
Vk,(6.5)

where
∑∗ extends over all disjoint unions I1∪· · ·∪ Ij = {1, . . . , p} and where

c(I1, . . . , Ij)’s are combinatorial coefficients. Also, for any nonempty and
disjoint decomposition of {1, . . . , p} into the sets J1 and J2, one has (cf.
(3.14) of [GH]),

0 =

p
∑

j=1

∗
∑

c(I1, . . . , Ij)

j
∏

i=1

(

Et

∏

k∈Ii1
Vk

)(

Et

∏

k∈Ii2
Vk

)

,(6.6)

where Iir = Ii ∩ Jr,1≤ i≤ j, r = 1,2.

Next, write K[0]
t (V ⋄p

1 , V ⋄q
2 ) =K[0]

t (V1, . . . , V1, V2, . . . , V2) where, on the right-

hand side, V1 appears p-times and V2 appears q times. Expanding logH
[0]
n (t)

in the Taylor’s series, one has

logH [0]
n (t) =

s
∑

r=2

ιrK[0]
0 ([S̃[0]

n (t)]⋄r) +Rn(t),(6.7)

where Rn(t) = [
∫ 1
0 (1− η)sιs+1K[0]

ηt ([S̃
[0]
n (t)]⋄(s+1))dη]/s!.

6.2. Proof of the main result from Section 5. Before proving Theorem
5.1, we state and prove some of the intermediate steps in its proof as lemmas.
The first lemma is a variant of Bradley (1983)’s result on representation of
strongly mixing random variables that plays a crucial role in the rest of the
proof.

Lemma 6.1. Let X be a r-random vector and let Y = (Y1, . . . , Yk)
′ be

a k-random vector on a probability space with ‖Y ‖γ <∞ and with α0 =
α(σ〈X〉, σ〈Y 〉), where γ ∈ (0,∞) and k, r ∈N. Then there exist a k-random
vector Y ∗ (on a possibly enlarged probability space) such that (i) Y and Y ∗

have the same probability distribution on R
k, (ii) X and Y ∗ are independent

and (iii) for all t ∈ (0,minj=1,...,k ‖Yj‖γ ],

P
(

max
j=1,...,k

|Yj − Y ∗
j |> t

)

≤ 18k
(

α2
0 max
j=1,...,k

‖Yj‖γ · t−1
)γ/(2+γ)

.(6.8)
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Proof. For k = 1, this is a restatement of Theorem 3 of Bradley (1983).
For k ≥ 2, one can use finite subadditivity and apply Bradley (1983)’s result
term-wise to get (6.8). �

Lemma 6.2. Let Z1, . . . ,Zm be random vectors (of dimensions k1, . . . , km ∈
N, respectively) on a probability space with E‖Zi‖γ <∞ for some γ ∈ (0,∞).
Let α0j = α(σ〈Zj〉, σ〈Zj+1, . . . ,Zm〉) for j = 1, . . . ,m−1. Then there exist in-
dependent random vectors {Z∗

1 , . . . ,Z
∗
m} (on a possibly enlarged probability

space) such that (i) Zj and Z
∗
j have the same probability distribution on R

kj ,
j = 1, . . . ,m, (ii) Zm = Z∗

m, and (iii) for all j = 1, . . . ,m− 1, and t ∈ (0, t0j ],

P
(

max
i=1,...,kj

|Zji −Z∗
ji|> t

)

≤ 18kj

(

α2
0j max

i=1,...,kj
‖Zji‖γ · t−1

)γ/(2+γ)
,(6.9)

where t0j =min{‖Zji‖γ : i= 1, . . . , kj}, and Zji, i= 1, . . . , kj are the compo-
nents of Zj .

Proof. First, take Y = Z1 and X = (Z ′
2, . . . ,Z

′
m)′ in Lemma 6.1 to get

a copy Z∗
1 of Z1 that is independent of {Z2, . . . ,Zm} and that satisfies (6.9)

with j = 1. Next, set Y = Z2 and X = (Z ′
3, . . . ,Z

′
m;Z∗′

1 )
′ in Lemma 6.1. Using

the independence of Z∗
1 and Z2, . . . ,Zm, it is easy to check that

α(σ〈Y 〉, σ〈X〉) = sup
A,B

|P (Z2 ∈A,X ∈B)− P (Z2 ∈A)P (X ∈B)|

≤E
(

sup
A,B

|P·|Z∗
1=z1(Z2 ∈A, (Z ′

3, . . . ,Z
′
m; z1)

′ ∈B)

−P (Z2 ∈A)P·|Z∗
1=z1((Z

′
3, . . . ,Z

′
m; z1)

′ ∈B)|
)

≤ α0j .

Hence, by Lemma 6.1, there exists a copy Z∗
2 of Z2 that is independent of

X = (Z ′
3, . . . ,Z

′
m;Z∗′

1 )
′ and that satisfies (6.9) with j = 2. Now repeat this

process (m− 1)-times to get independent variables Z∗
1 , . . . ,Z

∗
m−1 satisfying

(6.9) that are all independent of Zm. Finally, set Z∗
m = Zm to complete the

proof of the lemma. �

Remark 6.1. Note that in Lemma 6.2, the bound in (6.9) involves the
dimensions of the first (m− 1) vectors only, but not the dimension of Zm.

Lemma 6.3. Suppose that assumptions (A.1)(i) and (A.2)–(A.5) hold.
Then, for any 2≤ r ≤ s a1, . . . , ar ∈R

d0 with ‖aj‖ ≤ 1, j = 1, . . . , r,

K0(S̃
[0]
n (a1), . . . , S̃

[0]
n (ar))≤Cb−(r−2)/2

n ,(6.10)

uniformly in a1, . . . , ar ∈R
d0 with ‖aj‖ ≤ 1, j = 1, . . . , r.
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Proof. Fix 2 ≤ r ≤ s and a1, . . . , ar ∈ R
d0 with ‖aj‖ ≤ 1. Let sr =

min{⌊(s− 2)/3⌋, r}. Note that for r ≥ ⌊(s− 2)/3⌋, b−3(sr+1)/2
n = o(b

−[s−2]/2
n ).

Also, note that for any random variables V1, . . . , Vr,

|K0(V1, . . . , Vr)| ≤C(r)

r
∏

j=1

{E‖Vj‖r}1/r and E‖S̃n‖r +E‖ξ̃1n‖r =O(1).

Hence, using the multilinearity property of the semiinvariants, we have

K0(S̃
[0]
n (a1), . . . , S̃

[0]
n (ar))

=

r
∑

j=0

∑

I⊂{1,...,r},|I|=j

b−3j/2
n K0({a′iS̃n : i ∈ Ic};{a′iξ̃1n : i ∈ I})

=

sr
∑

j=0

∑

I⊂{1,...,r},|I|=j

b−3j/2
n K0({a′iS̃n : i ∈ Ic};{a′iξ̃1n : i ∈ I})

+O(b−3(sr+1)/2
n ).

By Lemma 4.1(ii) of [L], the j = 0 term is O(b
−[r−2]/2
n ) under assumptions

(A.1)(i) and (A.2)–(A.5). Hence, consider 1≤ j ≤ r and fix an I ∈ {1, . . . , r}
with |I|= j. Then b

−3j/2
n |K0({a′iS̃n : i ∈ Ic};{a′iξ̃1n : i ∈ I})| is bounded above

by a sum of finitely many terms of the form

b−3j/2
n |K0({a′iS̃n : i ∈ Ic};{[3W̃1n + 3W̃b0nn]

αi [1S̃n]
βi : i ∈ I})|,(6.11)

where |αi|= 1= |βi| for all i ∈ I . To derive an upper bound on these terms,
we make use of some known results on the cumulants of polynomial functions
of a given set of random variables, for example, as given in Brillinger (1981).
Consider the two-dimensional array

(1,1) (1,2)
(2,1) (2,2)
· · · · · ·
(j,1) (j,2)
(j +1,1)
· · ·
(r,1)

(6.12)

and a partition P1 ∪ · · · ∪ PM of its entries. Following Brillinger (1981), we
say that the sets Pk and Pl of the partition hook if there exist (i1, j1) ∈ Pk

and (i2, j2) ∈ Pl with i1 = i2 and we say that Pk and Pl communicate if there
exists a sequence of sets Pk1 = Pk, Pk2 , . . . , PkN = Pl from the partition such
that Pki and Pki+1

hook for all i. A partition is said to be indecomposable
if all sets in the partition communicate. Then, for any collection of random
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variables {Xp,q}’s, indexed by the elements in the array (6.12), Theorem
2.3.2 of Brillinger (1981) yields

K0

({

2
∏

k=1

Xi,k : i= 1, . . . , j

}

;{Xi,1 : i= j +1, . . . , r}
)

(6.13)

=

∗
∑

K0({Xp,q : (p, q) ∈ P1}) · · ·K0({Xp,q : (p, q) ∈ PM}),

where the sum
∑∗ above extends over all indecomposable partitions P1 ∪

· · ·∪PM of the array (6.12). Note that if a partition of (6.12) is indecompos-
able, then all elements from the last (r− j) rows must belong to a single set
in the partition. W.l.g., we suppose that P1 contains all the elements from
these rows, i.e., {(i,1) : i= j + 1, . . . , r} ⊂ P1. Thus, by (6.11) and (6.13), it
is now enough to obtain a bound on terms of the form

b−3j/2
n K0({a′1i[3W̃1n + 3W̃b0nn] : i ∈ P11};

{a′2i[1S̃n] : i ∈ P12};{a′3iS̃n : i ∈ P13})(6.14)

×
M
∏

k=2

K0({x′ki[3W̃1n + 3W̃b0nn] : i ∈ Pk1};{y′ki[1S̃n] : i ∈ Pk2})

for nonrandom vectors api’s, xki’s and yki’s with vector-norm less than or
equal to 1, and for indecomposable partitions P1 ∪ · · · ∪PM of (6.12), where
P1 = P11 ∪P12 ∪P13 with |P13|= r− j and Pk = Pk1 ∪Pk2 for k = 2, . . . ,M .

Further,
∑M

k=2 |Pk|+ {|P11|+ |P12|}= 2j, the total number of terms in the

first j rows and
∑M

k=1 |Pk1|= j, the total number of [3W̃1n + 3W̃b0nn] terms
in (6.11), and |Pk| ≥ 2 for all k = 2, . . . ,M . Under (A.2)–(A.5), by arguments
in the proof of Lemma 4.1 of [L],

|K0({a′1i[3W̃1n + 3W̃b0nn] : i ∈ P11};
{a′2i[1S̃n] : i ∈ P12};{a′3iS̃n : i ∈ P13})|(6.15)

=O(b−[|P12|+|P13|−2]/2
n )

and for k = 2, . . . ,M ,

|K0({x′ki[3W̃1n + 3W̃b0nn] : i ∈ Pk1};{y′ki[1S̃n] : i ∈ Pk2})|
(6.16)

=O(b−(|Pk2|−2)+/2
n ).

Hence, it follows that the product in (6.14) is O(b
−3j/2
n × b−[|P12|+|P13|−2]/2

n ×
∏M

k=2 b
−(|Pk2|−2)+/2
n ). Using the conditions on Pkp’s, it can be shown that

the largest order of these terms is attained when |Pk| = 2 for at most
⌊(2j − 1)/2⌋-many k’s and |P1| ∈ {r− j + 1, r− j + 2} (so that P1 contains
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either one or two elements from the first j rows). (The term corresponding
to “|P1| = r − j + 1 and |Pk| = 2 for all k ≥ 2” actually does not appear
in the sum

∑∗ due to the indecomposability condition.) Thus, the product

in (6.14) is O(b
−3j/2
n × b

−(r−j−2)/2
n ) = o(b

−[r−2]/2
n ) for all j = 1, . . . , sr. This

completes the proof of the lemma. �

For the next lemma, set Ṽn(I) ≡ ∏

j∈I
∏rj

p=1 Ṽjn(ajp) and W̃n(I) ≡
∏

j∈I
∏rj

p=1 a
′
jpW̃jn, I ⊂ {1, . . . , bn} where ajp ∈ R

d0 with ‖ajp‖ ≤ 1, rj ∈ N.

Also, for r≥ 0, m≥ 3, and J ⊂ {1, . . . , b0n}, let

Hn,J(t) = E exp

(

ιt′
∑

j∈J
W̃jn

)

and

(6.17)
S
(r)
J ≡ S

(r)
J (t;m) = ιb−1/2

n

∑

j∈Jr
Ṽjn(t),

t ∈R
d0 , where Jr ≡ {j : |j − i|>mr for all i ∈ J}.

Lemma 6.4. Let I ⊂ {1, . . . , b0n} with 1≤ |I| ≤ s+d0+2 and diam(I)≤
m1 for some 1 ≤m1 ≤ C[logn]2. If assumptions (A.1)(i) and (A.2)–(A.5)
hold, then

|EtṼn(I)| ≤C[E|W̃n(I)| · |θn,I(t)|+ 2−K ]|H [0]
n (t)|−1(6.18)

for all ‖t‖ ≤ e1n, where e1n = [logn log logn]1/2, K ≡Kn = ⌈(logn)3/2⌉ and

θn,I(t) = sup{|Hn,J(t + (x′ svec−1(t2),0
′)′)| :‖x‖ ≤ 2cn/b

3/2
n , J ∈ Jn}, with

Jn being the collection of all subsets of {1, . . . , b0n} \ I of size greater than
[b0n −m1 − (K +1)m], m= 3⌈K log logn⌉+1.

Proof. Let m0n = ⌈K log logn⌉. Then, the following three cases are
possible:

(I) I ∩ {1}m0n 6=∅; (II) I ∩ {b0n}m0n 6=∅;

(III) I ∩ [{1}m0n ∪ {b0n}m0n ] =∅,

where {j}m = {i : |i − j| ≤ m}. We begin with case I. Note that in this
case, I ⊂ {1, . . . ,m0n + m1 + 1}. With J = {1, . . . ,m0n + m1 + 1} ∪ {bn}
and m= 3m0n+1, define ∆1,r = [exp(S

(r−1)
J −S(r)

J )−1], r ≥ 1 and Ṽ1n(J) =

Ṽn(I) exp(ιbn
−1/2∑

j∈J Ṽjn(t)). Then using the iterative method of Tikhomirov

(1980) as applied in the proof of Lemma 3.16 of [GH], one can show that

|H [0]
n (t)||EtṼn(I)|= |E[Ṽ1n(J) exp(S

(0)
J )]|
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≤
K
∑

r=1

∣

∣

∣

∣

∣

EṼ1n(J)

(

r−1
∏

j=1

∆1,j

)

exp(S
(r)
J )

∣

∣

∣

∣

∣

(6.19)

+

∣

∣

∣

∣

∣

EṼ1n(J)

(

K
∏

j=1

∆1,j

)

exp(S
(K)
J )

∣

∣

∣

∣

∣

.

Note that for any 1≤ j0 < j1 ≤ b, the variables {W̃ [0]
jn : j ≤ j0} and {W̃ [0]

jn : j ≥
j1} are functions {Xj : j ≤ j0ℓ+ ℓ} and {Xj : j ≥ j1ℓ+1}, respectively. Now,
approximating Xj ’s by X†

j,m0n
’s, we see that the corresponding variables

{W̃ [0]†
jn : j ≤ j0} and {W̃ [0]†

jn : j ≥ j1} are measurable with respect to the σ-

fields Dj0ℓ+ℓ+m0n
−∞ and D∞

j1ℓ−m0n+1, respectively. Next, approximate the vari-

ables Ṽ1n(J), ∆1,j ’s and S
(r)
J ’s using Xj,m0n ’s; call the approximating vari-

ables Ṽ †
1n(J) ∆†

1,j ’s and S
(r)†
J ’s, respectively. Then, by (A.4), the α-mixing

co-efficient between σ〈{∆†
1,j}〉 and σ〈{∆†

1,j+2}〉 (and also, that between

σ〈{∆†
1,j}〉 and σ〈{S

(j+1)†

J }〉) is O(exp(−κ× [(m− 1)ℓ− 2m0n])). Hence, the

last term in (6.19) is bounded above by

E|Ṽ (I)|
′
∏

|∆1,j|2K/2

(6.20)

≤ cr0n 2K/2E

( ′
∏

|∆†
1,j |
)

+O(cr0n K2K/2 exp(−κ ·m0n)),

where r0 =
∑

j∈I rj and where
′
∏

extends over all even indices j ∈ {1, . . . ,K}.
Next, note that by (A.2) and Lemma 6.2, there exist independent random

vectors W̃
[0]∗
1n , W̃

[0]∗
b0nn

, and {W̃ [0]∗
jn : j /∈ {1}m ∪ {b0n}m} ≡ {W̃ [0]†

jn : j /∈ {1}m ∪
{b0n}m} such that with un = exp(−κm0nℓ),

P (‖W̃ [0]∗
jn − W̃

[0]†
jn ‖> un)

≤C(d)(u−1
n exp(−κ[(m− 1)ℓ− 2m0n])E‖W̃ [0]†

jn ‖)1/2(6.21)

=O(exp(−C(κ)m0nℓ))

for j ∈ {1, b0n}. Next, define ∆∗
1,r by replacing W̃

[0]†
jn ’s in ∆†

1,r with W̃
[0]∗
jn ’s.

Note that for any function f :Rd0 ×R
k →C (k ∈N) with |f(x; z)−f(y; z)| ≤

C1‖x−y‖ and |f(x; z)| ≤C1 for all x ∈R
d0 , z ∈R

k and for some C1 ∈ (0,∞),

sup
z∈Rk

|f(W̃ [0]†
jn ; z)− f(W̃

[0]∗
jn ; z)|

= sup
z∈Rk

{|f(W̃ [0]†
jn ; z)− f(W̃

[0]∗
jn ; z)|1(‖W̃ [0]∗

jn − W̃
[0]†
jn ‖ ≤ un)
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+ |f(W̃ [0]†
jn ; z)− f(W̃

[0]∗
jn ; z)|1(‖W̃ [0]∗

jn − W̃
[0]†
jn ‖> un)}(6.22)

≤C1un +C1P (‖W̃ [0]∗
jn − W̃

[0]†
jn ‖> un)

≤C1[C(d,κ) exp(−C(κ)m0nℓ)]

for j ∈ {1, b0n}. Thus, by two applications of (6.22), we have E|∆†
1,r−∆∗

1,r|=
O(e1n exp(−C(κ)m0nℓ)) uniformly in t ∈ B1n ≡ {x :‖x‖ ≤ e1n} and in r ∈
{1, . . . ,K}. Hence, using the independence of the W

[0]∗
1n and W

[0]∗
b0nn

with the

rest of the W
[0]∗
jn ’s, the arguments in the proof of Lemma 3.16 of [GH] (for

the second inequality below) and the above bound, uniformly in t ∈B1n, we

have

|The last term in (6.19)|

≤ cr0n 2K/2E

( ′
∏

|∆[0]∗
1,j |
)

+O(cr0n e1nK2K/2[exp(−C(κ)m0nℓ) + exp(−κm0n)])

= cr0n 2K/2E

{

E

( ′
∏

|∆[0]∗
1,j ||W̃

[0]∗
1n , W̃

[0]∗
b0nn

)}

+O(exp(−C(κ)m0n))(6.23)

≤ cr0n 2K/2E

{ ′
∏

E(|∆[0]∗
1,j ||W̃

[0]∗
1n , W̃

[0]∗
b0nn

)

}

+O(exp(−C(κ)m0n))

≤ cr0n 2K/2[C(‖Σ‖)‖t‖m1/2b−1/2
n ]K/2 +O(exp(−C(κ)m0n))

≤C(r0,‖Σ‖)2−K +O(exp(−C(κ)m0n)),

where in the last inequality, with Jr = {j : |j− i|>mr for all i ∈ J}, we have
used the bound

E(|∆[0]∗
1,r ||W̃

[0]∗
1n , W̃

[0]∗
b0nn

)

≤ ‖t‖b−1/2
n

[

E

∥

∥

∥

∥

∑

j∈Jr−1\Jr
W̃

[0]†
jn

∥

∥

∥

∥

(6.24)

+ b−3/2
n cnE

∥

∥

∥

∥

∑

j∈Jr−1\Jr
W̃

[0]†
jn

∥

∥

∥

∥

]

≤ ‖t‖b−1/2
n C(‖Σ‖)m1/2.
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Next, consider the rth summand in the first term in (6.19) (1≤K). Note
that

S
(r)
J = ιt′

∑

j∈Jr
W̃jn + ιb−3/2

n [3W̃1n + 3W̃b0nn]
′svec−1(t2)

∑

j∈Jr
[1W̃jn],

where t = (t′1, t
′
2)

′ with t2 ∈ R
Λ0 . Use Lemma 6.2 to construct indepen-

dent copies of the random vectors {W̃ [0]†
jn : j ≤m0n +m1 + 1 + (r − 1)m},

{W̃ [0]†
jn : b0n − (r − 1)m ≤ j ≤ b0n}, and {W̃ [0]†

jn :m0n +m1 + 1 + (rm+ 1) ≤
j ≤ b0n − (rm+1)}. Then approximating W̃

[0]
jn ’s with W̃

[0]†
jn ’s first and then

W̃
[0]†
jn ’s with their independent copies W̃

[0]∗
jn ’s and using (6.21) and (6.22),

uniformly in t ∈B1n, we get

K
∑

r=1

∣

∣

∣

∣

∣

EṼ1n(J)

(

r−1
∏

j=1

∆1,j

)

exp(S
(r)
J )

∣

∣

∣

∣

∣

=

K
∑

r=1

∣

∣

∣

∣

∣

EṼ ∗
1n(J)

(

r−1
∏

j=1

∆∗
1,j

)

exp(S
(r)∗
J )

∣

∣

∣

∣

∣

+O(cr0n a0nK
22K [exp(−C(κ)m0nℓ) + exp(−κ ·m0n)])

=

K
∑

r=1

∣

∣

∣

∣

∣

EṼ ∗
1n(J)

(

r−1
∏

j=1

∆∗
1,j

)

E{exp(S(r)∗
J )|W [0]∗

1n ,W
[0]∗
b0nn

}
∣

∣

∣

∣

∣

+O(exp(−C(κ)m0n))(6.25)

≤
K
∑

r=1

E

∣

∣

∣

∣

∣

Ṽ ∗
n (I)

(

r−1
∏

j=1

∆∗
1,j

)
∣

∣

∣

∣

∣

× sup
‖x‖≤2cn/bn

|Hn,Jr(t+ (0′, x′ svec−1(t2))
′)|

+O(exp(−C(κ)m0n)).

Next, deleting the odd-j terms in the product as in (6.20), using the weak
dependence of the alternate sums as in (6.23), and the bound (6.24), one
can show that uniformly over t ∈B1n,

K
∑

r=1

E

∣

∣

∣

∣

∣

Ṽ ∗
n (I)

(

r−1
∏

j=1

∆∗
1,j

)
∣

∣

∣

∣

∣

≤CE|Ṽ ∗
n (I)|

K
∑

r=1

2r/2[C(‖Σ‖)‖t‖m1/2b−1/2
n ]r/2
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(6.26)
+O(exp(−C(κ)m0n))

≤CE|Ṽ ∗
n (I)|+O(exp(−C(κ)m0n)).

By (6.23), (6.25), (6.26), Lemma 6.4 is proved for case I.
The proofs of cases II and III are similar, with the set J in the two

cases now to be chosen as J = {1} ∪ {b0n − m0n −m1, . . . , b0n} and J =
I ∪ {1} ∪ {b0n}, respectively. We omit the routine details. �

Lemma 6.5. Suppose that (A.1)–(A.5) hold. Let I1, I2,⊂ {1, . . . , b} with
min{I2}−max{I1} ≥m1 for some integer C[logn]2 ≤m1 ≤ b0n− |I1| − |I2|.
Then there exists a constant C(γ) ∈ (0,∞) such that for all ‖t‖ ≤ e1n, and
n≥ 1,

|EtṼn(I1)Ṽn(I2)−EtṼn(I1)EtṼn(I2)| ≤C(γ)2−K |H [0]
n (t)|−2,(6.27)

where the variables Ṽn(Ik)’s are as defined above Lemma 5.4, γ =
∑2

k=1

∑

j∈Ik rj ,

and K = ⌈(logn)3/2⌉.

Proof. Let {W [0]∗∗
jn : j = 1, . . . , b0n} be an independent copy of {W̃ [0]

jn :

j = 1, . . . , b0n} and for a random vector U = f(W
[0]
jn : j = 1, . . . , b0n), let U

∗∗ =

f(W
[0]∗∗
jn : j = 1, . . . , b0n). Let i0 =min{I2}. Define the variables U1 = Ṽn(I1)−

Ṽ ∗∗
n (I1), U2 = Ṽn(I2)

∏b0n
j=i0

exp(ιb
−1/2
n [Ṽjn(t) + Ṽjn(t)

∗∗]) and U3 =
∏

1≤j<i0
exp(ιb

−1/2
n [Ṽjn(t) + Ṽ ∗∗

jn (t)]). Then it is easy to check that

|H [0]
n (t)|2 × |EtṼn(I1)Ṽn(I2)−EtṼn(I1)EtṼn(I2)|= |EU1U2U3|.

Like in (6.17), write Sn(r) = ιb
−1/2
n

∑

1≤j<i0−mr[Ṽjn+ Ṽ
∗∗
jn ], ∆2,r = [exp([Sn(r−

1) − Sn(r)]) − 1], 0 ≤ r ≤ K. Then, using Tikhomirov (1980)’s iterative
method as in (6.19) (see also, Lemma 3.1 of [L] and Lemma 3.17 of [GH]),
we get

EU1U2U3 =

K
∑

r=1

E

{

U1U2

(

r−1
∏

j=1

∆2,j

)

exp(Sn(r))

}

(6.28)

+E

{

U1U2

(

K
∏

j=1

∆2,j

)

exp(Sn(K))

}

.

Let m0n = ⌈logn log logn⌉ and let W
[0]†
jn be the [2d0]×1 random vector with

components W̃
[0]†
jn,m0n

and W̃
[0]∗∗†
jn,m0n

, j = 1, . . . , b0n. Next, consider the rth

term in the sum in (6.28), 1≤ r≤K. Note that by (A.4), the strong mixing
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coefficient between the variables {W[0]†
jn : j ≤ i0 −mr} and {W[0]†

jn : j ≥ i0 −
m(r−1)} is bounded above by 2κ−1 exp(−κ[(m−1)ℓ−2m0n]). Hence, using

(A.2)(ii) and Lemma 5.2, we can construct independent copies {W[0]∗
jn : j <

i0 −mr} and {W[0]∗
jn : j ≥ i0 −m(r − 1)} of these two sets of variables such

that [cf. (6.21)]

P
(

max
j≥i0−m(r−1)

‖W[0]∗
jn −W

[0]†
jn ‖> un

)

≤ nC(d)(u−1
n exp(−κ[(m− 1)ℓ− 2m0n])E‖W̃ [0]†

jn ‖)1/2(6.29)

=O(exp(−C(κ)m0nℓ)).

Hence, with the “natural” definition of the relevant [·]†- and [·]∗-variables
(defined in terms of W

[0]†
jn ’s and W

[0]∗
jn ’s, respectively), uniformly in 1≤ r≤

K and t ∈B1n, we have

E

{

U1U2

(

r−1
∏

j=1

∆2,j

)

exp(Sn(r))

}

=E

{

U †
1U

†
2

(

r−1
∏

j=1

∆†
2,j

)

exp(S†
n(r))

}

+O(cγnK2K exp(−κ ·m0n))

=E

{

U∗
1U

∗
2

(

r−1
∏

j=1

∆∗
2,j

)

exp(S∗
n(r))

}

+O(cγnK2K [exp(−κ ·m0n) + exp(−C(κ)m0nℓ)])

=E

[

E

(

U∗
1U

∗
2

(

r−1
∏

j=1

∆∗
2,j

)

exp(S∗
n(r))|{W

[0]∗
jn : j > i0 − [r− 1]m}

)]

+O(exp(−C(κ)m0n))

=O(exp(−C(κ)m0n)),

since the conditional expectation in the first term is zero due to (i) the
definition of U∗

1 and (ii) the symmetry of U∗
1U

∗
2 [
∏r−1

j=1∆
∗
2,j ] exp(S

∗
n(r)) in

the two d0 × 1 i.i.d. components of W∗
jn for all j. Next, using arguments

similar to the proof of (6.23), one can show that the last term in (6.28) is
O(exp(−C(κ)m0n)). Hence, (6.27) follows. �

Lemma 6.6. Suppose that assumptions (A.1)–(A.5) hold. Then, for any
I ⊂ {1, . . . , b0n} with |I| ≤ C, and for any 3 ≤m≤ b0n/C, there exists L≥
C[b/m] such that

|H [0]
n (t)||EtṼn(I)| ≤Ccγn[β1n(t)]

L−2 +C(|I|)Lcγn[1 + ‖t‖ℓm] exp(−C(κ)mℓ)
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for all t ∈ R
d, where β1n(t) = max{E|E(exp(ιb

−1/2
n

∑

|j−j0|≤m Ṽjn(t))|D̃j0)| :
m< j0 < b−m}, γ =∑j∈I rj and D̃j0 is as in assumption (C.6). Further,

β1n(t)≤
{

exp(−κm‖t‖2/[8bn]), for ‖t‖ ≤Cbn/m
2,

exp(−C(κ)(dnb
1/2
n )−2‖t‖2), for all ‖t‖ ≤ 2κb

1/2
n dn.

(6.30)

Proof. Let I = {j1, . . . , jr}, J0n = {1, . . . , b0n}, and J1n = {j ∈ J0n : |j−
jk| ≥ 2m+ 1 for all 1≤ k ≤ r}. Next, define the indices j01 , j

0
2 , . . . by

j01 = inf J1n,

j0p+1 = inf{j ∈ J1n : j ≥ j0p + 7m}, p= 1,2, . . . ,L− 1,

where L is the first integer p for which the infimum is taken over an empty
set. Then, it follows from the definitions of j01 , . . . , j

0
k that:

(i) ⌊(b0n − r(2m))/7m⌋ ≤K ≤ [b0n/7m],
(ii) [j0p −m,j0p +m]⊂ J0n, p= 2, . . . ,K − 1,

(iii) j0p+1 ≥ j0p + 7m,p= 1, . . . ,K, and

(iv) (I)m ∩ {j01 , . . . , j0K}=∅,

where (I)m = {j ∈ J0n: there exists i ∈ I with |j − i| ≤m}. Next, define the
variables Ap,Bp, p= 2, . . . ,L− 1 and the variable R by

Ap = exp

(

ιb−1/2
n

∑

|j−j0p|≤m

Ṽjn(t)

)

,

Bp = exp

(

ιb−1/2
n

∑

j0p+m+1≤j≤j0p+1−m−1

Ṽjn(t)

)

,

R= Ṽn(I) exp

(

ιb−1/2
n

∑

j∈J2n
Ṽjn(t)

)

,

where J2n = {j ∈ J0n : j < j01 +m or j ≥ j0L −m}. Then it follows that

H [0]
n (t)EtṼn(I) =E

[(

L−1
∏

p=2

ApBp

)

R

]

.

Next, define the variables A†
p,B

†
p and R† by approximating Xj ’s by X†

j,q

with q =mℓ for A†
p and with q =mℓ/12 for B†

p and R†. Then, by (A.3), for
all p= 2, . . . ,L− 1,

E|Ap −A†
p| ≤ C · b−1/2

n [1 + ‖t‖] · ℓm exp(−κmℓ)

E|Bp −B†
p|+E|R−R†

p| ≤ C(|I|) · cγn[1 + ‖t‖] · ℓm exp(−κmℓ/[12]).
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Hence,
∣

∣

∣

∣

∣

ER
K−1
∏

p=2

ApBp −ER†
K−1
∏

p=2

A†
pB

†
p

∣

∣

∣

∣

∣

(6.31)
≤C(κ, |I|)Kcγn‖t‖ℓm exp(−c(κ)mℓ).

Note that for any nonnegative function ψ(X,Y ) of random vectors X ∈R
k

and Y ∈R
p on (Ω,F , P ) and a σ-field C ⊂ F containing σ〈X〉, a version of

E[ψ(X,Y )|C] is given by

E[ψ(X,Y )|C](ω) = ψC(X(ω), ω), ω ∈Ω,

where ψC(x, ·) =
∫

ψ(x, y)µC(·;dy), x ∈R
k, and µC(·; ·) is the regular condi-

tional probability distribution of Y on R
p given C [cf. Chapter 12, Athreya

and Lahiri (2006)]. Hence, for any two σ-fields C and D containing σ〈X〉
and for ψ :Rk ×R

p → [0,M ], M ∈ (0,∞), we have

E|E[ψ(X,Y )|C]−E[ψ(X,Y )|D]|

=

∫

|ψC(X(ω), ω)−ψD(X(ω), ω)|P (dω)

=

∫
∣

∣

∣

∣

∫

ψ(X(ω), y)µC(ω,dy)−
∫

ψ(X(ω), y)µD(ω,dy)

∣

∣

∣

∣

P (dω)

≤
∫
∣

∣

∣

∣

∫ M

0
[µC(ω,ψ(X(ω), ·)−1([t,∞))

(6.32)

− µD(ω,ψ(X(ω), ·)−1([t,∞))]dt

∣

∣

∣

∣

P (dω)

≤
∫ M

0

∫

|[µC(ω,ψ(X(ω), ·)−1([t,∞))

− µD(ω,ψ(X(ω), ·)−1([t,∞))]|P (dω)dt

≤M ·E
[

sup
B∈B(Rp)

|P (Y ∈B|C)− P (Y ∈B|D)|
]

.

Next, for each p= 2, . . . ,L− 1, define

D̃p = σ〈{Dj : j ∈ Z, j /∈ [cp, dp]}〉
and

D∗
p = σ〈{Dj : j ∈ [ap −mℓ, cp)∪ (dp, bp +mℓ]}〉,

where ap = (j0p −m)ℓ+1−mℓ, bp = (j0p +m)ℓ+mℓ, cp = (j0p −⌊m2 ⌋)ℓ+1, dp =

(j0p + ⌊m2 ⌋+ 1)ℓ. Note that for each p= 2, . . . ,L− 1, {W̃ [0]†
jn : j = 1, b0n} are
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measurable w.r.t. both the σ-fields D̃p and D∗
p. Hence, using (6.32) repeat-

edly (4 times) and assumption (A.5), one can show that

max
p=2,...,L−1

|E(A†
p|D̃p)−E(A†

p|D∗
p)| ≤C exp(−C(κ)mℓ).(6.33)

Also, note that the variables R†(
∏q−1

p=2A
†
pB

†
p), B

†
q ,
∏L−1

p=q+1B
†
pE(A†

p|D∗
p) are

all measurable w.r.t. D̃q for every 2≤ q ≤L− 1. Hence, it follows that

∣

∣

∣

∣

∣

ER†
L−1
∏

p=2

A†
pB

†
p −ER†

L−1
∏

p=2

B†
pE(A†

p|D∗
p)

∣

∣

∣

∣

∣

≤
L−1
∑

q=2

∣

∣

∣

∣

∣

ER†
(

q−1
∏

p=2

A†
pB

†
p

)

B†
q [A

†
q −E(A†

q|D̃q)]

L−1
∏

p=q+1

B†
pE(A†

p|D∗
p)

∣

∣

∣

∣

∣

(6.34)

+Ccγn

L−1
∑

q=2

E|E(Aq |D̃q)−E(A†
q|D∗

q)|

≤C(κ)cγnL exp(−κmℓ),

since the first term vanishes. Now, using the fact that D∗
p and D∗

p+1 are
separated by a distance ≥ Cmℓ for all p, and using (6.31), (6.33), (6.34),
one can conclude that

|H [0]
n (t)EtṼn(I)|

≤CcγnE

∣

∣

∣

∣

∣

L−1
∏

p=2

E(A†
p|D∗

p)

∣

∣

∣

∣

∣

+C(|I|)Lcγn(1 + ‖t‖ℓm) exp(−C(κ)mℓ)

≤Ccγn

L−1
∏

p=2

E|E(Ap|D̃p)|+C(|I|)Lcγn(1 + ‖t‖ℓm) exp(−C(κ)mℓ).

The first part of Lemma 6.6 follows from this.
Next, we consider (6.30) and prove the first inequality. Let Z be a zero

mean R
k-valued random vector on (Ω,F , P ) with E‖Z‖3 <∞ and let C ⊂ F

be a σ-field. Denote the conditional distribution of Z given C on (Rk,B(Rk))
by µC(·; ·). Then

|E exp(
√
−1t′Z|C)|2

=

∫ ∫

exp(
√
−1t′(x− y))µC(·, dx)µC(·, dy)

≤ 1−E((t′Z)2|C) + 2E(|t′Z|3|C) a.s. (P )
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for all t ∈R
k. Hence, by (A.2), it follows that for all n >C,
[

E

∣

∣

∣

∣

E

{

exp

(

ι

[

b−1/2
n

∑

|j−j0|≤m

Ṽjn(t)

])
∣

∣

∣

∣

D̃j0

}
∣

∣

∣

∣

]2

≤ 1− b−1
1 E

(

∑

|j−j0|≤m

Ṽjn(t)

)2

+ 2b−3/2
n E

∣

∣

∣

∣

∑

|j−j0|≤m

Ṽjn(t)

∣

∣

∣

∣

3

≤ exp(−b−1
n [κ/2]m‖t‖2 +Cb−3/2

n ‖t‖3m3)

≤ exp

(

−κ
4
b−1
n m‖t‖2

)

for all ‖t‖ ≤Cb
1/2
n /m2, which proves the first bound on β1n(·) in (6.30).

Next, consider the second bound on β1n(·) in (6.30). Note that by iterating
the inequality “1− cos(2x)≤ 4(1− cosx) for all x ∈R” for r-times (r ∈N),
we have 1− cos(2rx)≤ 4r(1− cosx), x ∈R. Hence, for any random variable
Z and any σ-field C ⊂ F , if the conditional distribution of Z given C is
symmetric about the origin, then

1−E[exp(i2ruZ)|C]≤ 4r(1−E[exp(iuZ)|C])
for all u ∈R. Hence, for a random variable Z1 and a subsigma-field G of F ,
writing µG(·; ·) for the conditional distribution of Z1 given G, and employing
the above inequality, one can conclude (cf. page 223, [GH]) that

1− |E(exp(i2ruZ1)|G)|2

= 1−
∫ ∫

exp(i2ru[z1 − z2])µG(·, dz1)µG(·, dz2)

≤ 4r
[

1−
∫ ∫

exp(iu[z1 − z2])µG(·, dz1)µG(·, dz2)
]

= 4r[1− |E(exp(iuZ1)|G)|2]
for all u ∈R. Hence, it follows that

1−
∣

∣

∣

∣

E

(

exp

(

ι
∑

|j−j0|≤m

Ṽjn(t)

)∣

∣

∣

∣

D̃j0

)∣

∣

∣

∣

2

≥ 4−r

(

1−
∣

∣

∣

∣

E

(

exp

(

ι2r
∑

|j−j0|≤m

Ṽjn(t)

)
∣

∣

∣

∣

D̃j0

)
∣

∣

∣

∣

2)

(6.35)
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≥ 4−r

[

1− sup
‖t‖/

√
2≤‖y‖≤

√
2‖t‖

∣

∣

∣

∣

E

(

exp

(

ι2r
∑

|j−j0|≤m

y′W̃jn

)
∣

∣

∣

∣

D̃j0

)
∣

∣

∣

∣

2]

for all t ∈ R
d0 and n > C, where in the last step, we have used (6.1) to

conclude that there exists a C > 0 such that for all n >C,

2−1‖t‖2 ≤ ‖(t′1 + x′ svec−1(t2), t
′
2)

′‖2

≤ 2‖t‖2,

uniformly in ‖x‖ ≤ 2cnb
−3/2
n and in t= (t′1, t

′
2)

′ ∈R
d ×R

d1 .
Next, set κ1 = 2κ where κ as in (A.6). Then, given a t ∈ R

d0 with ‖t‖ ≤
κ1dn, let r≡ rt be such that

2r+1‖t‖√
2dn

> κ1 ≥
2r‖t‖√
2dn

.

Then, 4−r ≥ [‖t‖/{
√
2κ1dn}]2 and by (A.6),

E

[

sup
‖t‖/

√
2≤‖y‖≤

√
2‖t‖

∣

∣

∣

∣

E

(

exp

(

ι2r
∑

|j−j0|≤m

y′W̃jn

)
∣

∣

∣

∣

D̃j0

)
∣

∣

∣

∣

2]

≤E

[

sup
κ1dn/2≤‖x‖≤2κ1dn

∣

∣

∣

∣

E

(

exp

(

ι2r
∑

|j−j0|≤m

x′W̃jn

)
∣

∣

∣

∣

D̃j0

)
∣

∣

∣

∣

2]

≤E

[

sup
‖x‖≥κdn

∣

∣

∣

∣

E

(

exp

(

ι2r
∑

|j−j0|≤m

x′Wjn

)
∣

∣

∣

∣

D̃j0

)
∣

∣

∣

∣

2]

+2

j0+mn
∑

j=j0−mn

P (W̃jn 6=Wjn)

≤ (1− κ) + 2

j0+mn
∑

j=j0−mn

E‖Wjn‖3c−3
n

≤ (1− [κ/2])

for all n≥C. Hence, from (6.35), for all ‖t‖ ≤ 2κdn,

E

∣

∣

∣

∣

E

(

exp

(

ι
∑

|j−j0|≤m

Ṽjn(t)

)∣

∣

∣

∣

D̃j0

)∣

∣

∣

∣

≤
{

E

∣

∣

∣

∣

E

(

exp

(

ι
∑

|j−j0|≤m

Ṽjn(t)

)
∣

∣

∣

∣

D̃j0

)
∣

∣

∣

∣

2}1/2
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≤
(

1− ‖t‖2
2κ21d

2
n

· κ
2

)1/2

≤ exp(−C(κ)‖t‖2/d2n).
It is easy to see that this bound holds uniformly over j0 ∈ {m+1, . . . , b0n −
m} and therefore, for n> C, we have

β1n(t)≤ exp(−C(κ)(dnb
1/2
n )−2‖t‖2) for all ‖t‖< 2κb1/2n dn.(6.36)

This completes the proof of (6.30) and hence of Lemma 6.6. �

Proof of Theorem 5.1. In view of the moment condition (A.2), by
Lemma 4.1(i) of [L] and (the proof of) Lemma 6.3 above, and by Theorem
10.1, Corollary 11.5 and Lemma 11.6 of [BR] and by arguments similar to
the proof of relation (20.39) in [BR], it is enough to show that

sup
|α|≤d0+1

∫

‖δnt‖≤1
|Dα(H [0]

n (t)− Υ̃s,n(t))|dt=O(δn),(6.37)

where Υ̃s,n(·) is defined by replacing the cumulants of Sn+b
−3/2
n ξ1n in Υ̂s,n(·)

with those of the truncated and centered version S̃n + b
−3/2
n ξ̃1n.

First, consider the integral in (6.37) over the set B1n ≡ {t ∈ R
d0 :‖t‖ ≤

e1n}, where e1n = [logn][log logn]. By Lemma 9.7 in [BR] and the arguments
on pages 231 and 232 in the proof of Lemma 3.33 of [GH], it is enough to
show that there exists an η ∈ (0,1) such that

∣

∣

∣

∣

∂r

∂εr

∣

∣

∣

∣

ε=0

Rn(t+ εa)

∣

∣

∣

∣

≤C(η)(1 + ‖t‖s+1)b−η−(s−2)/2
n

for all r = 0, . . . , d0 + 1, t ∈ A1n, where Rn(t) = [
∫ 1
0 (1 − u)sK[0]

ut ([S̃
[0]
n (ι ×

t)]⋄(s+1))du]/s! is as in (6.7). In view of (6.3), (6.4), (6.7) and the multi-
linearity of the semi-invariants, it is enough to estimate the sums

b0n−r
∑

i=0

(i,r)
∑

|K[0]
t (Vj1n(a1), . . . , Vjrn(ar))|, r= s+1, . . . , s+ d0 +1,(6.38)

for t ∈B1n, where a1, . . . , ar ∈R
d0 with ‖ai‖ ≤ 1 for all 1≤ i≤ r and where

the sum
∑(i,r) extends over all indices 1 ≤ j1 ≤ · · · ≤ jr with maximal gap

i. Note that for any s+1≤ r ≤ s+ d0 + 1,

E‖W̃jn‖r ≤ cr−s−1
n [E‖W̃jn‖s+11(‖W̃jn‖ ≤ b1/4n )

+ cnE‖W̃jn‖s1(‖W̃jn‖> b1/4n )](6.39)

≤ C(r, s)cr−s−[κ/4]
n ,
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uniformly in 1≤ j ≤ b0n.
Also, by relation (6.1), Lemma 6.4 and (A.2), for any t= (t′1, t

′
2)

′ ∈ R
d ×

R
d1 , there exists a u ∈ [−1,1] such that

|H [0]
n (t)−Hn(t)|
≤ |b−3/2

n E(ιt′ξ̃1n exp(ιt
′S̃n + ιub−3/2

n t′ξ̃1n))|

≤ b−2
n

b0n
∑

j=1

|E{([3W̃1n] + [3W̃b0nn])
′

(6.40)
× svec−1(t2)[1W̃jn] exp(ιt

′S̃n + ιub−3/2
n t′ξ̃1n)}|

≤Cb−2
n ‖t‖

b0n
∑

j=1

max
I={1,j},{j,b0n}

|EW̃n(I) exp(ιt
′S̃n + ιub−3/2

n t′ξ̃1n)|

≤Cb−1
n ‖t‖{β2n(t) + 2−K},

where β2n(t) = max{|θn,I(t)| : I = {k, j}, k ∈ {1, b0n}, j ∈ {1, . . . , b0n}} and
θn,I(t) is as in Lemma 6.4. By arguments in the proofs of Lemma 3.33 of
[GH83] and Lemma 4.4 of [L] (with s= 3, q = 0), we have

sup{β2n(t)/|Hn(t)| : t ∈B1n} ≤ C for n> C and

Hn(t) = exp(−t′Σnt/2 +O(‖b−1/2
n t‖3))(6.41)

uniformly in t ∈B1n,

where Σn =Var(S̃n).
Next, let e2n = (logn)2 and fix r ∈ {s+1, . . . , s+ d0 +1}. Then, applying

(6.39), (6.40), (6.41), and Lemma 6.4 for i≤ e2n and applying (6.6), (6.40),
(6.41) and Lemma 6.5 for e2n ≤ i≤ b0n − 1, from (6.38), we get

b−r/2
n

b0n−r
∑

i=0

(i,r)
∑

|K[0]
t (Vj1n(a1), . . . , Vjrn(ar))|

≤ b−r/2+1
n

e2n
∑

i=0

ir−1
[

max
|I|=r

|EW̃n(I)| ·C + 2−K/ exp(−C‖t‖2)
]

+ b−r/2+1
n

b0n−1
∑

i=e2n+1

ir−1[2−K/ exp(−C‖t‖2)]

≤Cb−(r−2)/2
n cr−s−[κ/4]

n er2n +C2−K exp(Ce21n)

≤Cb−(r−2)/2
n cr−s−[κ/4]

n (logn)C ,
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uniformly in t ∈B1n, for n > C. Hence,

max
|α|≤d0+1

∫

t∈B1n

|Dα(H [0]
n (t)− Υ̂s,n(t))|dt=O(b−(s−2)/2

n [logn]−2).

Also, by (A.2),

max
|α|≤d0+1

∫

‖t‖≥e1n

|DαΥ̂s,n(t)|dt=O(b−a
n )

for any a > 0. Therefore, it remains to show that

max
|α|≤d0+1

∫

‖t‖≥e1n

|DαH [0]
n (t)|dt=O(b−(s−2)/2

n [logn]−2).(6.42)

Next, set m= logn if ℓ≤ n1/4 and set m=C =C(s, d, κ) (a large but finite
constant depending on s, d, κ), otherwise. Then, using the first bound of

(6.30) for e1n ≤ ‖t‖ ≤ Cb
1/2
n /m2, the second bound of (6.30) for b

1/2
n /m2 ≤

‖t‖ ≤ 2κb
1/2
n dn, and Lemma 6.6 and condition (A.6) for 2κb

1/2
n dn ≤ ‖t‖ ≤

b
(s−2)/2
n [logn]2, one gets (6.42). This completes the proof of the theorem.
�

6.3. Proof of the main result from Section 2.

Proof of Proposition 2.1. As indicated in Section 2, we set Dj =
σ〈εj〉, j ∈ Z. Let D∗

j0
= σ〈εj : j 6= j0ℓ〉, j0 ∈ Jn, where Jn is as in (A.6). Then,

D̃j0 ⊂ D∗
j0
, and hence, by the properties of the conditional expectation, it

is enough to show that (2.3) holds with D̃j0 replaced with D∗
j0
. Using the

independence of the εi’s, for any t = (t′1, t
′
2)

′ ∈ R
d × R

d1 and j0 ∈ Jn, after
some lengthy algebra, we get

∣

∣

∣

∣

∣

E

(

exp

(

ιt′
j0+m
∑

j=j0−m

Wjn

)∣

∣

∣

∣

∣

D∗
j0

)∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

E

{

exp

(

ι

(j0+m)ℓ
∑

j=(j0−m−1)ℓ+1

[ℓ−1/2t′1Xj + ℓ−1t′2Yjn]

)∣

∣

∣

∣

∣

{εj , j 6= j0ℓ}
}∣

∣

∣

∣

∣

(6.43)
= |E{exp(ι[ℓ−1/2t′1Ln + ℓ−1t′2Rn(j0)]εj0ℓ + ε′j0ℓMn(t2)εj0ℓ)}|,

say,

where

Ln =

mℓ
∑

j=−(m+1)ℓ

Aj,
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Mn(t2) = ℓ−1
mℓ
∑

j=−(m+1)ℓ

ℓ
∑

k=0

wkn[A
′
j vec

−1(t2)Aj+k +A′
j+k vec

−1(t2)Aj ]

and Rn(j0) is a D∗
j0
-measurable d1 × d matrix-valued random element sat-

isfying E‖Rn(j0)‖2 ≤ Cℓ. Here and in the following, the generic constants
and the order symbols do not depend on j0 ∈ Jn (i.e., uniform over j0 ∈ Jn).

Next, write ε̃= εj0ℓ (for notational simplicity). By interchanging the order
of summation in the second summand in Mn(t2) and using (6.1), one can
show that

ε′j0ℓMn(t2)εj0ℓ = ε̃′
[

mℓ
∑

j=−mℓ+1

A′
j vec

−1(t2)

(

∑

|k|≤ℓ

w̌knAj+k

)

+

(∗)
∑

Aj vec
−1(t2)w̌jknAj+k

]

ε̃

(6.44)

= t′2 vec

(

mℓ
∑

j=−mℓ+1

∑

|k|≤ℓ

w̌kn[A
′
j ε̃][Aj+kε̃]

′

+

(∗)
∑

w̌jkn[A
′
j ε̃][Aj+kε̃]

′
)

,

where w̌kn = 1 if k = 0 and w̌kn = wkn for all 1 ≤ k ≤ ℓ , and where the

sum
∑(∗) extends over all j, k satisfying j ∈ [−(m+ 1)ℓ+ 1,−mℓ] ∪ [mℓ+

1, (m+ 1)ℓ] and 1 ≤ k ≤ ℓ, and where w̌jkn’s some real numbers satisfying

|w̌jkn| ≤ C for all (j, k) under
∑(∗). Note that the vec(·)-term in (6.44)

is a linear combination of the random vector U ≡ vec(ε̃ε̃′); We write this
terms as DnU , where Dn is a d1 × d1 matrix. Next, using the condition
limn→∞wkn = 1 for every k ≥ 1 and the summability of ‖Ai‖’s, one can
show that for any x ∈R

d,
∥

∥

∥

∥

∥

(

mℓ
∑

j=−mℓ+1

∑

|k|≤ℓ

w̃kn[A
′
jx][Aj+kx]

′

+

(∗)
∑

wjkn[A
′
jx][Aj+kx]

′
)

−A∞xx
′A∞

∥

∥

∥

∥

∥

→ 0

as n→∞. This implies that the matrix Dn has a limit (say D), defined by

DU = vec(A∞ε̃ε̃
′A∞).

Next, let Q(·) and Qn(·) denote the probability distributions of V ≡ ([A∞ε̃]′;
[DU ]′)′ and Vn ≡ ([Lnε̃]

′, [DnU ]′)′, respectively. Since the distribution of ε̃
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has a nontrivial absolutely continuous component, by Lemma 2.2 of Bhat-
tacharya and Ghosh (1978), the k-fold convolution Q∗k of Q (where k = d0)
has an absolutely continuous component with respect to the Lebesgue mea-
sure on R

d0k, with density f (k) (say). By Lusin’s theorem [cf. Theorem
2.5.12, Athreya and Lahiri (2006)], without loss of generality, we may as-
sume that f (k) is continuous. (In fact, the continuity of f (k) holds over a
smaller set of positive measure, but that is enough for our purpose; we may
just consider the absolutely continuous component restricted to this set.)
Since Dn →D, Ln →A∞, and Q∗k

n is obtained from Q∗k by a linear trans-
formation that is nonsingular for n large, it follows that for large n, Q∗k

n has
an absolutely continuous component with respect to the Lebesgue measure

on R
d0k, with a density f

(k)
n (say). Now using the standard transformation

technique formula for the density f
(k)
n in terms of f (k), we conclude that

f (k)n → f (k) as n→∞ (a.e.).

Let ϕn(t) denote the characteristic function of Vn and write Q∗k
n,s for the

singular part of Q∗k
n . Then, it follows that for t ∈R

d0 ,

|ϕn(t)|k =
∣

∣

∣

∣

∫

exp(ιt′(x1 + · · ·+ xk))dQ
∗k
n (x)

∣

∣

∣

∣

[where x= (x′1, . . . , x
′
k)

′]

≤Q∗k
n,s(R

d0k) +

∣

∣

∣

∣

∫

exp(ιt′(x1 + · · ·+ xk))f
(k)
n (x)dx

∣

∣

∣

∣

≤Q∗k
n,s(R

d0k) +

∫

|f (k)n − f (k)|dx

+

∣

∣

∣

∣

∫

exp(ιt′(x1 + · · ·+ xk))f
(k)(x)dx

∣

∣

∣

∣

.

Hence, for every κ ∈ (0,∞), there exist a δ ∈ (0,1/2) and n0 = n0(κ) such
that for all n≥ n0,

sup
‖t‖≥κ

|ϕn(t)| ≤ 1− 2δ.(6.45)

Now using (6.43)–(6.45) and writing B1n = {‖Rn(j0)‖ ≤C1(δ)ℓ
1/2}, we have,

for n≥ n0,

E

(

sup
‖t‖≥Cℓ

∣

∣

∣

∣

∣

(

exp

(

ιt′
j0+m
∑

j=j0−m

Wjn

)
∣

∣

∣

∣

∣

D∗
j0

)
∣

∣

∣

∣

∣

)

=E
(

sup
‖t‖≥Cℓ

|ϕ(ℓ−1/2t1 + ℓ−1t′2Rn(j0), ℓ
−1t2)|

)

where t= (t′1, t
′
2)

′
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≤max
{

E
(

sup
‖t2‖≥κℓ

|ϕ(ℓ−1/2t1 + ℓ−1Rn(j0)
′t2, ℓ

−1t2)|
)

,

E
(

sup
‖t‖≥Cℓ,‖t2‖≤κℓ

{|ϕ(ℓ−1/2t1 + ℓ−1Rn(j0)
′t2,

ℓ−1t2)|1(B1n)}
)

+P (Bc
1n)
}

≤max

{

sup
‖s2‖≥κ,s1∈Rd

|ϕ(s1, s2)|,

sup
‖s1‖≥C(κ,δ)ℓ1/2,s2∈Rd1

|ϕ(s1, s2)|+
E‖Rn(j0)‖2
C1(δ)2ℓ

}

≤ 1− δ,

where in the step before the last one, we have used the fact that ‖t2‖ ≤
κℓ,‖t‖ ≥Cℓ⇒‖t1‖ ≥ (C − κ)ℓ which, in turn, implies that on the set B1n,
‖ℓ−1/2t1−ℓ−1Rn(j0)

′t2‖ ≥ ‖ℓ−1/2t1‖−ℓ−1‖Rn(j0)‖‖t2‖ ≥ (C−κ−C1(δ))ℓ
1/2.

Hence, assumption (A.6) holds with dn =Cℓ, n≥ 1. �

6.4. Proofs of the results from Section 3.

Proof of Theorem 3.1. Let Σ1n be the d× d symmetric matrix with

(p, q)th element given by E(n−1
∑n

i=1 Y
#
in (p, q)), (p, q) ∈ Λ0 where Y #

in is as
in (2.1). Also, let

Σ̂n =

[

Γ̂n(0) +
ℓ
∑

k=1

wkn{Γ̂n(k) + Γ̂n(k)
′}
]

.

Then, it can be shown after some algebra that for all (p, q) ∈ Λ0,

Σ̂n(p, q)−Σ1n(p, q)

= n−1
n
∑

i=1

Yin(p, q) + b−3/2ξn(p, q)

− 2

[

ℓ
∑

k=0

(1 + n−1k)wknX̄n,pX̄n,q

]

(6.46)

= b−1/2
n

[

1√
nℓ

n
∑

i=1

Yin(p, q)

]

+ b−1
n

(

−2ℓ−1
ℓ
∑

k=0

(1 + n−1k)wkn

)

Z
ep+eq
n + b−3/2ξn(p, q)
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≡ b−1/2
n Â1n(p, q) + b−1

n Â2n(p, q) + b−3/2
n Â3n(p, q), say,

where X̄n,p is the pth component of X̄n and where ξn(p, q) is the (p, q)th

element of ξn ≡ n1/2 svec(X̄n[3W1n + 3Wb0n]
′), where 3W1n =

ℓ−3/2
∑ℓ

i=1(
∑ℓ

k=iwkn)Xi and 3Wb0n = ℓ−3/2
∑ℓ

i=1(
∑ℓ

k=iwkn)Xn−i+1. Set

Âkn(p, q) = Âkn(q, p) for p > q. Then, Âkn are d × d symmetric matrices

with ‖Âkn‖ = Op(1) for k = 1,2,3. Next, by Taylor’s expansion, for any
p= 1, . . . , d,

e′ph(X̄n) =DepH(X̄n) +

ν(s)
∑

|α|=1

n−|α|/2Dα+epH(µ) · Z
α
n

α!
+R1n,(6.47)

where, on the set {‖X̄n−µ‖ ≤ δ0}, the remainder term R1n satisfies |R1n| ≤
sup{|DαH(x)| :‖x− µ‖ ≤ δ0, |α|= ν(s) + 2}‖Zn‖ν(s)+1n−[ν(s)+1]/2, for some
δ0 > 0 [determined by (A.1)(ii)]. In particular, R1n = Õp(δn,C).

Similarly, using assumptions (A.1)–(A.3) and moderate deviation inequal-
ities for X̄n [cf. Theorem 2.11, [GH], Theorem 2.4, Lahiri (1993)] and for
sums of block variables Wjn’s (cf. Theorem 2.4, [L]), and Taylor’s expansion,
we get

n1/2(θ̂n − θ) =

ν(s)
∑

j=1

n−(j−1)/2
∑

|α|=j

DαH(µ)

α!
Zα
n + Õp(δn,C),

τ̂−1
n = τ−1

1n +

s−2
∑

j=1

g(j)(τ21n)

j!
(τ̂2n − τ21n)

j + Õp(δn,C),



























(6.48)

where g(x) = x−1/2, x > 0, and g(j)(x) = (−1)j2j!
22jj!

x−
2j+1

2 is its jth derivative

at x ∈ (0,∞), j ≥ 1. Combining (6.46), (6.47) and (6.48), after some lengthy
algebra, we obtain

Tn = T1n + Õp(δn),

where T1n is as in (3.1). Thus, the (s− 2)th-order Edgeworth expansions of
Tn and T1n coincide, upto an error of order O(δn). It is clear that T1n is a

smooth (infinitely differentiable) function of ζn ≡ (n1/2X̄ ′
n,

1√
nℓ

∑bn
i=1 Y

′
in +

b−1
n ξ̃′n)

′. Hence, using Theorem 5.1 and the transformation technique of
Bhattacharya and Ghosh (1978), the (s − 2)th-order EE for T1n can be
derived from a (s− 2)th-order EE for ζn. This completes the proof of the
theorem. �

Proof of Proposition 3.2. Write Zjn =
∑

|α|=j+1D
αH(µ)Zα

n/(α!),

j ≥ 0. Then, using (6.46) and (6.47), after some lengthy algebraic manipu-
lations, one can show that

τ̂21n − τ21n = b−1/2
n Q1n + n−1/2Q2n + n−1/2b−1/2

n Q3n
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(6.49)
+ b−1

n Q4n + n−1Q5n + b−3/2
n Q6n + Õp(δn,C),

where

Q1n = h(µ)′Â1nh(µ), Q2n = 2
∑

|α|=1

Zα
n [α

′H(2)(µ)]Σ1nh(µ),

Q3n = h(µ)′Â2nh(µ), Q4n = 2
∑

|α|=1

Zα
nα

′H(2)(µ)Â1nh(µ),

Q5n =
∑

|α|=1

∑

|β|=1

Zα+β
n [2H

(3)
α,β(·;µ)′Σ1nh(µ) +α′H(2)(µ)Σ1nH

(2)(µ)β],

Q6n = h(µ)′Â3nh(µ).

Here H(2)(µ) = ((Dei+ejH(µ))) is the d× d matrix of second-order partial

derivatives of H at µ, and H
(3)
α,β(·;µ) is the d× 1 vector with pth component

Dei+ej+epH(µ), p= 1, . . . , d. Then stochastic approximation T1n is now given
by

T1n =

7
∑

j=1

ajnĜjn,(6.50)

where a1n = 1, a2n = b
−1/2
n , a3n = n−1/2, a4n = b−1

n , a5n = b
−1/2
n n−1/2, a6n =

n−1, a7n = b
−3/2
n , and where with γjn = g(j)(τ21n)/j!, j ≥ 1,

Ĝ1n = τ−1
1n Z0n,

Ĝ2n = γ1nZ0nQ1n,

Ĝ3n = τ−1
1n Z1n + γ1nZ0nQ2n,

Ĝ4n = γ1nZ0nQ3n + γ2nZ0nQ
2
1n,

Ĝ5n = γ1nZ0nQ4n + γ1nZ1nQ1n +2γ2nZ0nQ1nQ2n,

Ĝ6n = τ−1
1n Z2n + γ1nZ1nQ2n + γ2nZ0nQ

2
2n + γ1nZ0nQ5n,

Ĝ7n = γ1nZ0nQ6n + γ3nZ0nQ
3
1n +2γ2nZ0nQ1nQ3n.

Note that by arguments in the proof of Lemma 3.28 of [GH], for unit vectors
x ∈R

d1 and y ∈R
d1 ,

|E(x′Â1n)(y
′Zn)|

= b−1
n

∣

∣

∣

∣

∣

b0n
∑

i=1

b0n
∑

j=1

Cov(x′[2Win], y
′[1Wjn])

∣

∣

∣

∣

∣
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≤ b−1
n

∣

∣

∣

∣

∣

b0n
∑

i=1

∑

|j−i|≤C

Cov(x′[2Win], y
′[1Wjn])

∣

∣

∣

∣

∣

+O(exp(−C(κ)ℓ))(6.51)

≤Cwn max
1≤p,q,r≤d

ℓ−3/2
Cℓ
∑

i=1

Cℓ
∑

j=1

Cℓ
∑

k=1

|E(e′pXi, e
′
qXj , e

′
rXk)|

+O(exp(−C(κ)ℓ))

=O(ℓ−1/2),

provided wn ≡max{|wkn : 1 ≤ k ≤ ℓ} = O(1) as n→∞. Thus, ℓ1/2EĜ2n =

O(1). By similar arguments, |EĜ4n| + |EĜ7n| = O(b
−3/2
n ℓ−1/2). Next note

that by (6.13) above and by Lemma 4.1 of [L], EĜ5n =O(b
−1/2
n ). Also, by

Lemma 3.28 of [GH], EĜ6n =O(n−1/2). Hence,

X1,n =

7
∑

j=1

ajnE(Ĝjn)

= n−1/2[ℓ1/2EĜ2n +EĜ3n] +O(b−1
n n−1/2)(6.52)

≡ n−1/2β1,1,n +O(b−1
n n−1/2), say.

Next, define the pth cumulant of random variables V1, . . . , Vp by

Kp(V1, . . . , Vp) = (−ι)r ∂

∂ε1
· · · ∂

∂εp

∣

∣

∣

∣

ε1=···=εp=0
(6.53)

× logE exp(ι[ε1V1 + · · ·+ εpVp])

(assuming that the relevant partial derivatives exist). Also, for p1+ · · ·+pr =
p, p1, . . . , pr ∈N and random variablesW1, . . . ,Wr, write Kp(W

⋄p1
1 , . . . ,W ⋄pr

r ) =
Kp(W1, . . . ,W1, . . . ,Wr, . . . ,Wr) where on the right-hand side, W1 appears
p1-times, W2 appears p2-times, etc. Then, using the well-known formula for
expressing cumulants of polynomials of random variables [cf. Section 2.3,
Brillinger (1981)] in terms of cumulants of the random variables themselves,
Lemma 4.1 of [L], and arguments similar to (6.51), we have:

X2,n =K2(Ĝ
⋄2
1n)

+ b−1
n [2b1/2n K2(Ĝ1n, Ĝ2n) + 2K2(Ĝ1n, Ĝ4n) +K2(Ĝ

⋄2
2n)]

+ n−1[2n1/2K2(Ĝ1n, Ĝ3n)

+ 2ℓ1/2{K2(Ĝ2n, Ĝ3n) +K2(Ĝ1n, Ĝ5n)}(6.54)

+ 2K2(Ĝ1n, Ĝ6n) +K2(Ĝ
⋄2
3n)]
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+O(b−2
n + b−1

n n−1/2)

≡ e2n + b−1
n β2,1,n + n−1β2,2,n +O(b−2

n + b−1
n n−1/2), say;

X3,n = n−1/2(n1/2K3(Ĝ
⋄3
1n) + 3ℓ1/2K3(Ĝ

⋄2
1n, Ĝ2n) + 3K3(Ĝ

⋄2
1n, Ĝ3n))

+ b−3/2
n K3(Ĝ

⋄2
1n, Ĝ7n) +O(b−1

n n−1/2)(6.55)

≡ n−1/2β3,1,n + b−3/2
n β3,2,n +O(b−1

n n−1/2), say;

X4,n = b−1
n [4b1/2n K4(Ĝ

⋄3
1n, Ĝ2n) + 6K4(Ĝ

⋄2
1n, Ĝ

⋄2
2n)]

+ n−1[K4(Ĝ
⋄4
1n) + 4n1/2K4(Ĝ

⋄3
1n, Ĝ3n)

+ ℓ1/2{12K4(Ĝ
⋄2
1n, Ĝ2n, Ĝ3n) + 4K4(Ĝ

⋄3
1n, Ĝ5n)}

(6.56)
+ 4ℓK4(Ĝ

⋄3
1n, Ĝ4n) + 6K4(Ĝ

⋄2
1n, Ĝ

⋄2
3n) + 4K4(Ĝ

⋄3
1n, Ĝ6n)]

+ b−3/2
n 4K4(Ĝ

⋄3
1n, Ĝ7n) +O(b−2

n + n−1b−1/2
n )

≡ b−1
n β4,1,n + n−1β4,2,n + b−3/2

n β4,3,n +O(b−1
n n−1/2), say;

where recall that e2n = τ2n/τ
2
1n and where the βr,j,n-terms in (6.52)–(6.56) are

O(1) as n→∞. Further, by similar arguments, X5,n =O(b−1
n n−1/2).

Next, combining (6.52)–(6.56), and using the relation
∫

R

exp(ιtx)[σ−kHk(x/σ)φσ(x)]dx= (ιt)k exp(−t2σ2/2), t ∈R,

one can express that the density of the preliminary EE ψ∗
n for Tn with error

of order o(n−1) as

ψ∗
n(x) = φen(x)[1 + n−1/2q1n(x) + b−1

n q2n(x) + n−1q3n(x) + b−3/2
n q4n(x)],

x ∈R,

where, with Hkn(x)≡ e−k
n Hk(x/ek), x ∈R, k ≥ 1,

q1n(x) = β1,1,nH1n(x) + β3,1,nH3n(x)/6,

q2n(x) = β2,1,nH2n(x)/2 + β4,1,nH4n(x)/24,

q3n(x) = [β2,2,nH2n(x)/2 + β4,2,nH4n(x)/24]
(6.57)

+ [β21,1,nH2n(x)/2 + β23,1,nH6n(x)/72

+ β1,1,nβ3,1,nH4n(x)/6],

q4n(x) = β3,2,nH3n(x)/6 + β4,3,nH4n(x)/24,

x ∈R.
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Next, suppose that a−1
n ≡ (e−1

n − 1) =O(n−1/3). Then using the relation
∫ x

−∞
H(k+1)n(y)φen(y)dy =−Hkn(x)φen(x), x ∈R,

and Taylor’s expansions, one can expand the preliminary EE for Tn to derive
(3.8), where the respective polynomials pin(x), x ∈R, are given by

p1n(x) =−[β1,1,n + β3,1,ne
−3
n H2(x)],

p2n(x) = β3,1,ne
−3
n xH3(x),

p3n(x) =−
[

β2,1,n
2e2n

H1(x) +
β4,1,n
4!e4n

H3(x)

]

,

p4n(x) =

[

β2,1,n
2e2n

xH2(x) +
β4,1,n
4!e4n

xH4(x)

]

,(6.58)

p5n(x) =−
[

β2,2,n + β21,1,n
2

H1(x) +
β4,2,n
24

H3(x)

+
β23,1,n
72

H5(x) +
β1,1,nβ3,1,n

6
H3(x)

]

,

p4n(x) =−[β3,2,nH2(x)/6 + β4,3,nH3(x)/24]. �

6.5. Proofs of results from Section 4.

Proof of Theorem 4.1. The block resampling estimator of Cov(Zn)
is location invariant, and hence, w.l.g., we again set µ = 0 (for notational

simplicity). Let Σ
[2]
1n =EU11U

′
11. It is easy to check that

Σ̂[2]
n −Σ

[2]
1n =N−1

N
∑

i=1

(U1iU
′
1i −EU1iU

′
1i)

+ [w0
n]

2X̄nX̄
′
n

[

1− 2n

N

]

+ b−3/2
n [w0

n](E [2]
n Z ′

n +ZnE [2]′

n )(6.59)

≡ b−1/2
n Â

[2]
1n(p, q) + b−1

n Â
[2]
2n(p, q)

+ b−3/2
n Â

[2]
3n(p, q), say,

where w0
n =

∑ℓ
k=1wkn, and

E [2]
n = [n/N ]ℓ−3/2

ℓ
∑

k=1

wkn

(

k−1
∑

i=1

Xi +
n
∑

i=N+k

Xi

)
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is the edge-effect term. Note that the three terms in (6.59) are exactly of

the same form as those in (6.46). Hence, an (s− 2)th-order EE for T
[2]
n can

be derived retracing the proof of Theorem 3.1. We omit the details. �

Proof of Theorem 4.2. Since there is no mean correction, it is easy

to verify that Σ̂
[3]
n − EU11U

′
11 has the same expansion as in (6.59), with

Âkn = 0 for k = 2,3. Hence, an EE for T
[3]
n can be derived directly from the

EE results of [L], using the transformation technique of Bhattacharya and
Ghosh (1978). �
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