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Abstract 

A computational study of the Richtmyer-Meshkov instability for an inclined interface 
is presented. The study covers experiments to be performed in the Texas A&M inclined 
shock tube facility. Incident Mach numbers from 1.2 to 2.5, inclination angles from 30 to 60 
degrees, and gas pair Atwood numbers of ~0.67 and ~0.95 are used in this parametric study 
containing 15 unique combinations of these parameters. Qualitative results are examined 
through a time series of density plots for multiple combinations of the parameters listed 
above, and qualitative effects of each of the parameters is discussed. The interface mixing 
width growth rate is determined for various combinations of the above parameters. A new 
model for the mixing width growth rate is proposed using the interface geometry and wave 
velocities calculated using 1D gas dynamic equations. This model uses the transmitted wave 
velocity for the characteristic velocity and an initial offset time based on the travel time of 
strong reflected waves. The new model is compared to the Richtmyer Impulsive model and 
shown to better predict the initial linear mixing width growth rate.  
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I. INTRODUCTION 

The Richtmyer-Meshkov (RM) instability [1,2]  is a hydrodynamic instability 
occurring due to the misalignment of the pressure and the density gradients. This 
misalignment generates vorticity through the barolclinic term in the vorticity equation shown 
below in equation 1, where ! is the vorticity, D!/DT is the substantial derivative of !, u is 
the velocity, v is the kinematic viscosity, " is the density, and p is the pressure. 
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In the case of the RM instability the pressure gradient is created by an impulsive 
acceleration of a perturbed fluid interface. The vorticity deposited by this impulsive 
acceleration will cause the fluid interface to stretch and result in the mixing of the two fluids. 
The amount of the vorticity deposited will depend on the strength of the pressure and the 
density gradients. The Atwood number, equation 2 below, is defined as a ratio of densities (!h 
the higher density fluid and !l the lower density fluid) at a fluid interface which can be used 
to describe the effects of the density gradient.  

(2) h l

h l

A " "
" "
.

%
(

 

The RM instability is an important phenomenon to inertial confinement fusion where 
its occurrence causes the fuel target to mix with inert material and reduces the fuel 
compression achieved. This reduction in compression greatly reduces the yield of the fuel 
target. The RM instability is also important in stellar supernova where shock wave interaction 
with density discontinuities is an important feature.  Accurate modeling of the RM instability 
is also important in supersonic combustion where understanding the mixing of fuel and air is 
crucial to improving performance. A summary of the RMI instability and its applications is 
presented in the review article by Brouillette  [3]. Another review of the RM instability 
focusing on the coherent structures formed in flowfield is presented by Zabusky  [4]. 

Various methods for creating the RM instability for experiments have been developed 
and employed. A brief description of these methods is necessary for perspective on the 
method discussed in this paper.  One method to generate the impulsive acceleration is to use 
shockwave. Facilities using this method employ a shock tube to generate a shock wave which 
interacts with a fluid interface containing a density perturbation. An oscillation in the fluid 
interface can create a sinusoidal perturbation as done by Krivets et al.  [5] and Motl et al.  [6].  
Another interface perturbation method employed in shock tubes is to use a bubble of lighter 
or heavier gas as used by Ranjan et al.  [7]. A third method is to employ a shaped falling gas 
curtain as described by Prestridge et al.  [8]. Finally, alternative methods to generate the 
impulsive acceleration have been developed as well. One of these methods is to use a sled 
device which has an impulsive acceleration created by dropping the test section onto a spring 
at the base of the sled track as described by Chapman and Jacobs  [9].  

For the study described in this paper the RM instability will be generated by passing a 
shockwave through a fluid interface. A simple perturbation in the fluid interface can be 
created by aligning the shockwave at an angle with respect to the density gradient, supported 
by gravity. The result is an inclined fluid interface with respect to the direction of the 
impulsive acceleration. This is the method that will be employed in the Texas A&M 
University (TAMU) shock tube facility (Figure 1), currently under construction, to study the 
RM instability.  
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FIG. 1: Texas A&M Shock tube Facility Currently Under Construction 

The simulations presented in the paper were performed in support of the TAMU 
shock tube facility design, and so the parameter space was limited to the capabilities of this 
facility. The TAMU shock tube facility will be capable of providing incident shockwave 
Mach numbers up to 2.5 in atmospheric pressure air, and will be capable of inclination from 0 
to 90 degrees. The overall length of the shock tube will be approximately 9m. The test section 
will be constructed with a modular design that will allow the interface to be visible at wide 
range of times with interface visibility up to 1.5m downstream of its preshock position. 
Simultaneous measurements of density and velocity fields will be made using planar laser 
induced fluorescence (PLIF) and particle image velocimetry (PIV) systems.    

II. COMPUTATIONAL SETUP 

The computation study was performed at Lawrence Livermore National Laboratory 
using the ARES code developed there. ARES is a staggered mesh Arbitrary Lagrange 
Eulerian (ALE) hydrodynamics code developed at Lawrence Livermore National Laboratory.  
The Lagrange time advancement is second-order predictor-corrector and uses the Gauss 
Divergence theorem to give the discrete finite difference equations  [10].  All numerical 
differences are fully second order in space.  Velocities are defined at mesh nodes and density 
and internal energy are defined at the zone centers using a piecewise constant profile.  
Artificial viscosity is used to suppress spurious oscillations  [11] following the remap phase 
of the calculation, where the Lagrangian solution is remapped back to a non-Lagrangian 
mesh, and is fully second order.  The original method is given in by Sharp and Baron  [12].   

The boundary layer simulations use a simple constant viscosity model for constructing 
the viscous stress. The boundary conditions in these simulations are imposed as solid no-slip, 
insulated walls. The no-slip wall boundary condition does generate a boundary layer, but it 
is admitted that it is very far from resolved, but accurate resolution is irrelevant to the current 
study.  The ARES code includes an adaptive mesh refinement (AMR) capability that allows 
base resolution to be increased by a factor of three for each level of refinement. The 
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refinement is performed on areas that exceed an error tolerance in the computation of a 
second undivided difference of density. The AMR approach used in ARES follows that of 
Berger and Oliger  [13] and Berger and Colella  [14]. Time advancement is not recursive 
though and the coarser levels are slaved to run at the finest level time step. 

A 2-D model was used for all simulations presented here. Viscosity was included 
using a model based on the Sutherland relation shown in equation 3 below, where µ is the 
dynamic viscosity, T is the temperature, and F1 and F2 are density and pressure correction 
factors that were set to one for the model used. Coefficients for the gases used are presented 
in table I below. The inclusion of the viscosity is discussed in the appendix. The present 
simulations did not include species diffusion, or stratification which will be included in future 
work. 

(3)  
1 2

nv

c a
b

Tv v F F
v T

/
# $0 1

% ( &* +2 3(4 5, -
 

 

Table I: Summary of coefficients used in Sutherland relation.  
Gas  Va   

(g/cm-us-K^.5)  
Vb  
(K)  

Vc  
(g/(cm-us)  

Vn  

Air  1.45E-11 110.4  0  1.5  
SF6  1.59E-11 243.8  0  1.5  
 

Preliminary simulations were run with a computational domain that included the 
entire shock tube. To reduce computational times for the parametric study the domain was 
decreased to 2.5m. The shock was initialized 1cm ahead of the upstream most end of the 
interface, which varied in position for different inclination angles. The downstream and 
sidewall boundary conditions were reflecting walls with no slip conditions. The downstream 
wall was placed at similar position to that of a configuration of the TAMU shock tube to 
allow for more accurate simulations of reshock. A section of the computational domain for 
the initial conditions is shown below in figure 2 where the upstream and downstream 
boundary conditions are at 0 and 250 cm respectively. 

 
FIG. 2: Density plot of the initial conditions for an interface inclination angle of 30 
degrees. 

The upstream boundary consisted of a reflecting wall with a source term added which 
supplied the necessary inflow to support the shockwave. This boundary condition was not 
ideal as interface reflected shockwaves traveling upstream were reflected back towards the 
interface as expansion waves. The intersection of the reflected expansion waves with the 
shocked interface limited the time over which the simulation could be used to model 
experiments in the TAMU shock tube facility. 

#

Shocked Light Gas 

Pre-shock Light Gas 

Pre-shock SF6 
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The parametric study was run for 3 different inclination angles; 30, 45, and 60degrees. 
Two different gas pairs were used at each angle, air-SF6 (At~0.67), and helium-SF6 (At~.95).  
The air-SF6 interface was run at three different Mach numbers; 1.5, 2.0, and 2.5. The helium-
SF6 interface was run at Mach 1.2 and 1.5. The study parameters are summarized below in 
Table II. Due to the large number of simulations that were required to cover the various 
parameters the AMR capability was particularly useful. The AMR capability reduced the 
computational time and allowed for higher resolution studies with limited resources.  

Table II: List of study simulations 
Case  M  ! Gas Pair 
1 1.5 30 Air-SF6 
2 1.5 45 Air-SF6 
3 1.5 60 Air-SF6 
4 2.0 30 Air-SF6 
5 2.0 45 Air-SF6 
6 2.0 60 Air-SF6 
7 2.5 30 Air-SF6 
8 2.5 45 Air-SF6 
9 2.5 60 Air-SF6 
10 1.2 30 He-SF6 
11 1.2 45 He-SF6 
12 1.2 60 He-SF6 
13 1.5 30 He-SF6 
14 1.5 45 He-SF6 
15 1.5 60 He-SF6 

III. QUALITATIVE FLOW FIELD DESCRIPTION 

 A time series of density plots for four different parameter sets showing the effect of 
changing each of the 3 parameters is presented below in Figure 3. The exemplar case (Fig. 3 
set B, Case 1, Mi=1.5, #=30°, A~0.67) is displayed along with three other cases differing in 
incident shock Mach number (Fig. 3 set A, Case 7, Mi=2.5, #=30°, A~0.67),  Atwood number 
(Fig. 3 set C, case 13, Mi=1.5, #=30°, A~0.95), and interface inclination angle (Fig. 3 set D, 
case 3, Mi=1.5, #=60°, A~0.67) respectively. All three cases evolve a region of SF6 with low 
mixing that follows the transmitted shock front. After some time the mixing region separates 
from this region of SF6, and the transmitted shock and the interface separating the post shock 
light gas and this region of SF6 both become planar. This region of SF6 will be referred to as 
the slug in the following discussion due to its rectangular shape. 

The exemplar case (Fig. 3, set B) will be used as the basis for comparison to the other 
three cases displayed in Fig. 3. This case is characterized by a large mixing and slug region. 
A strong lambda shock (Fig.3, B1) is formed which travels up the slug region until impacting 
and reflecting off the upper wall. This reflection creates many more secondary compressible 
effects of moderate strength that resonate within the slug (Fig. 3, B4). A weak Winkler vortex 
structure  [15] is formed within the slug (Fig. 3, B3). As the mixing region continues to 
develop in time it separates into two large secondary structures of SF6 (Fig. 3, B5) which 
persist and exhibit a lower degree of mixing. 
 
 



 
FIG. 3: Time series plot of density for three different parameter sets. Figures A1-A5, 
Case 7, at times 0.5, 1.0, 1.5, 2.0, and 2.5 ms respectively. Figures B1-B5, Case 1, at times 
0.5, 1.5, 2.5, 4.0, and 5.5 ms. Figures C1-C5, Case 13, at times 0.25, 0.5, 1.0, 1.5, and 2.0 
ms. Figures D1-D5, Case 3, at times 0.5, 1.5, 2.5, 4.0, and 5.5 ms. 
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The effects of incident shock wave Mach number can be examined by comparing the 
exemplar case (Fig. 3, set B) with case 7 (Fig. 3, set A). These two cases differ only in the 
strength of the incident shock. In case 7 the stronger incident shock leads to a higher degree 
of separation between the mixing region and the slug. In case 7 the transmitted, lower wall 
reflected shock is flattened with the interface by the interface reflected, upper wall reflected 
shock and then separated by the primary vortex created at the upper wall which has traveled 
down the interface. This results in the early destruction of the lambda shock at the lower wall 
allowing the primary transmitted shock to replanarize quickly. The destruction of the lambda 
shock and the limited width of the slug region suppress the secondary compressible effects 
within the slug seen in the exemplar case. A strong Winkler vortex structure is also created 
within the slug after the lambda shock is destroyed (Fig. 3, A2). The Winkler vortex is joined 
by other smaller vortical structures at later times (Fig. 3, A5)  

The effect of the interface Atwood number is shown by comparing the exemplar case 
(Fig. 3, set B) with case 13 (Fig. 3, Set C). Case 13 differs only from the exemplar case in 
Atwood number, but the incident shock strength of Mach 1.5 in helium is more like the shock 
strength of case 7, Mach 2.5 in air. In case 13 the higher Atwood number increases the 
strength of shockwaves reflected from the interface and decreases the strength of refracted 
waves. This ultimately results in the suppression of the large secondary structures created by 
the first interface reflected, upper wall reflected, transmitted shock seen in case 7 and to a 
lesser degree in the exemplar case. In case 13 smaller secondary structures then become 
visible that are created from a second RM instability. This second RM instability is created 
by the refraction of a leg of the lambda shock, moving from heavy to light gas, which is 
reflected from the upper wall and then refracted again through the interface, light to heavy. 
The strength of the refracted shock is weaker than that of the exemplar case and case 7 but its 
wall reflection’s interaction with a relatively flat helium-SF6 interface makes the secondary 
structures produced visible. 

Interface inclination effects are shown by comparing the exemplar case (Fig. 3, set B) 
with case 3 (Fig. 3, set D). Case 3 differs only in inclination angle (#=60°) from the exemplar 
case. Case 3 is characterized by slower interface growth and a smaller, less mixed, mixing 
region due to the decreased inclination angle. This inclination angle provides particularly 
uniform properties in the post shock SF6, due to the weakness of reflected secondary 
compressible effects (fig. 3, D5). The lack of strong reflected compressible effects also 
results in a simpler interface with fewer secondary spikes and limited mixing. A weak 
Winkler vortex can be seen within the slug.   

IV. QUANTITATIVE RESULTS 

A. Previous linear growth rate models 

 For this paper the non-dimensional growth rate of the mixing region was examined in 
the linear region. Previous models have attempted to estimate the mixing width growth rate in 
the linear region for different kinds of interfaces. Richtmyer  [1] first proposed an impulsive 
growth model for a sinusoidal interface in 1960 based on Taylor’s  [16] work of 1950.  The 
impulsive growth rate equation is presented below in Equation 4 where $, k, [%],  $0 ,are the 
interface mixing width, wave number, velocity jump, and preshock initial amplitude 
respectively.  
(4) 6 70 0k v A8 8%!  

The post shock Atwood number and the post shock interface amplitude can be used to 
increase the accuracy of Equation 4 in the light to heavy gas shock case. To estimate the post 
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shock amplitude Meshkov  [2] introduced the relationship shown in Equation 5 below where 
wi is the incident shock speed.  

(5)  
6 7

0 0 1
i

v
w

8 8
0 1
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Various modifications to improve the impulsive model for both light/heavy and 
heavy/light interfaces have been made by Myer and Blewett  [17], and Vandenboomgaerde 
 [18]. A growth reduction factor was proposed based on experiments for a diffuse interface by 
Motl et al. [6]. 
 While many attempts have been made to model the linear mixing width growth for 
sinusoidal interfaces, few have been presented for an inclined interface. Work on inclined 
interfaces has been limited thus far to numerical simulations. Circulation deposition on an 
inclined gas curtain was examined in simulations by Samtaney and Zabusky  [19]. Numerical 
simulations to study vortex dynamics in an inclined gas curtain were presented by Zhang et 
al. [20]. The linear growth of arbitrary interface shapes, including a “v” shaped interface 
equivalent to an inclined interface, is studied in numerical simulations by Mikaelian  [21].  

B. Mixing width definition 

 Before a mixing width growth rate model can be applied and tested the mixing width 
must be defined. One method to define the mixing width is to use the width for an equivalent 
perfectly mixed region. This is the procedure is described by Cabot and Cook  [22]. Another 
technique used is to define the mixing width as the region between the 5 and 95% mole 
fraction of one of the species. By starting with the 5% concentration of either species the 
mixing width is limited to the region occupied by a substantial amount of either species. This 
eliminates the effects of spurious small mass projectiles that escape the main structure and 
fluid entrained in the boundary layer. The disadvantage of this method is that mixing width 
can discontinuously jump in size as a fluid is pulled out away from the current mixing region 
and accumulates to a level where it passes the 5 or 95% concentration level (Figure 4). The 
equivalent mixing width method avoids this problem by integrating over the entire molar 
concentration levels. The advantage of the 5 to 95% concentration method is that it provides a 
length that has a physical representation easily seen in simulation results. For this reason the 
5 to 95% concentration measurement was used to define the mixing width.
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FIG 4: Density Plot Showing Accumulation of Fluid Outside of the Calculated Mixing 
Width Region (5%-95% Species Concentration). 

C. Adaptation of Richtmyer impulsive model 

 The Richtmyer impulsive model was first tested to determine its ability to match the 
simulation data. To use the Richtmyer impulsive model for these simulations some variables 
had to be redefined in the context of an inclined interface. The initial interface amplitude was 
defined as the length of the interface measured in the direction of travel of the incident 
shockwave (Figure 5). The interface wavelength was defined as the length of the interface 
perpendicular to the direction of travel of the incident shockwave. This distance is the width 
of the shock tube as well.   

 
FIG. 5: Interface Amplitude and Wavelength for the Richtmyer Impulsive Model. 
 
 The Richtmyer impulsive model was used to non-dimensionalize the results of the 
simulations. A non-dimensional time and mixing width are defined below in Equations 6 and 
7 using the impulsive growth model with the post shock Atwood number and amplitude 
(Equation 8). The Richtmyer impulsive model predicts the growth of an interface after the 
incident shockwave has interacted with the entire length of the interface.  Because of this the 
non-dimensional time (&) is offset from the simulation time to be zero at the time the incident 
shockwave has completely traversed the initial amplitude of the interface. This offset time is 
defined in Equation 9.  The choice of this time is important as it predicts the time at which the 
initial non-linear compression of the interface mixing width ends and linear growth regime 
begins. The non-dimensional mixing width is offset so that it starts at zero when & equals zero 
(Equation 10). The 1D gas dynamic parameters and wave speeds used in these calculations 
and calculations in the following section are listed in Table III and Table IV below. 
(6)  : ;*

0k t t< 8% .!  

(7) 0( )k8 8 89% .  
(8)  6 70 0k A v8 89 9%!  

Pre-shock Light Gas 

Pre-shock Heavy Gas 

Interface Amplitude $ 

Interface 
Wavelength 
' 

Accumulating fluid ahead 
of the 5-95% region. 
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(9)  : ;* tan( ) it w= >%  

(10) : ;*
0 t8 89 %   

Table III: 1D gas dynamics values.  
Initial 
Parameters 

Gamma R (j/kg-K) Initial Gas 
Temperature 
(K) 

Initial Gas 
Pressure (kPa) 

Air 1.4 287 300 101.3 
Helium  1.667 2077 300 101.3 
SF6  1.09 56.92 300 101.3 
 

Table IV: 1D gas dynamics calculated wave speeds.  
Incident Mach  
Number 

Light Gas Heavy Gas wi (m/s) wt  (m/s) wrrt  (m/s) 

1.2 Helium SF6 1223.00 192.73 156.34 
1.5 Helium SF6 1528.76 282.05 177.56 
1.5 Air SF6 520.75 242.76 156.56 

2 Air SF6 694.38 353.75 167.23 
2.5 Air SF6 867.97 465.55 197.17 

 
 The non-dimensionalized data from the Richtmyer impulsive model for the Air-SF6 
simulations is plotted below in Figure 6. For all mixing width plots the key lists the cases 
described by the light gas name, the Mach number, excluding the decimal, preceded by the 
letter M, and  inclination angle preceded by the letter A. From Figure 6 it can be seen that the 
model collapses the simulation results together well based on incident shockwave Mach 
number. However the data does not collapse well for the three different interface inclination 
angles. Also initial agreement at & < 25 is not good as compared to later &. This is partially 
due to the discontinuities in mixing width measurements discussed in section B, but also due 
to additional non-linear growth that occurs after the incident shockwave traverses the 
interface initial amplitude. A sudden decrease in the mixing width at the end of some data 
sets is due to the onset of reshock from the downstream boundary that was not entirely 
cropped off of the data set. Figure 7 below shows Helium-SF6 simulation data compared to a 
sample of the air-SF6 data. This figure illustrates the performance of this model for different 
Atwood numbers. The agreement is quite poor again, but it can be seen that the Helium-SF6 
simulations fall in the same range of non-dimensional growth rates as the air-SF6 
simulations. This suggests that the problem in the Richtmyer impulsive model is not its 
ability to collapse data for different Atwood numbers but its ability to collapse data for 
different interface inclination angles.  
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FIG. 6: Non-dimensional mixing width versus time for all air-SF6 parameter sets where 
"# is the non-dimensional mixing width, and " is the non-dimension time.  
 

 
FIG. 7: Non-dimensional mixing width versus time for selected air-SF6 and helium-SF6 
parameter sets where "# is the non-dimensional mixing width, and " is the non-
dimension time. 

D. Inclined interface impulsive model 

 From the Richtmyer impulsive model it can be seen that for a model to fit the inclined 
interface simulation data it needs to account for the interface geometry and the initial non-
linear compression of the interface. The strategy for arriving at a new linear growth model 

$% 

$% 
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was to use the basic pattern of the impulsive model but to select parameters appropriate to an 
inclined interface. The impulsive model consists of an offset time multiplied by a gas pair 
ratio and divided by characteristic time (equation 11). Since the impulsive model matched 
different Atwood number cases well the gas pair ratio parameter, Atwood number, was not 
changed.  

(11)  
: ;*

char

A t t
t

<
.

%  

 The characteristic time in the impulsive model was found from a characteristic 
velocity, the interface jump velocity, and a characteristic length, the wave number squared 
divided by the post shock interface amplitude. For the new model it was found that the 
transmitted shockwave speed (wt) was a more accurate characteristic velocity. This is because 
the important secondary compressible effects (interface reflected, wall reflected, interface 
transmitted (IRWRIT) shockwave, and subsequent reflections) travel at speeds that scale more 
closely with the transmitted wave speed. The importance of these secondary compressible 
effects is explained further with respect to the selection of an offset time later.  

The characteristic length was selected by examining the effects of the length of the 
interface parallel (height) and perpendicular (width) to the incident shockwave velocity. The 
result was a characteristic length term called the effective ' (Equation 12). This effective ' 
can be described as the interface width that would be required for each inclination angle if the 
interface height were held constant across all inclination angles. The resulting characteristic 
length is defined as 2

0/= 8 . This is similar to the characteristic length for the Richtmyer 
impulsive model when modified as described before (section C) for an inclined interface (

2 2
0/ 4= ? 89 ). The difference is that the adapted Richtmyer impulsive model uses the post 

shock compressed amplitude and the new model uses the initial interface height. This is 
because the post shock compressed amplitude is more complicated to predict due to 
secondary compressible effects, while the initial interface height is simple and produced a 
more accurate model.  
(12)  tan( )E= = >% &  
 Another improvement in the new model was to use a more accurate offset time to 
better predict the initial non-linear compression time. The Richtmyer impulsive model was 
offset by the time it took for the incident shockwave to traverse the height of the interface. 
This accounts for the initial compression of the interface by the incident shockwave but 
misses the compression effects of the secondary compressible waves. After the incident 
shockwave is transmitted secondary compression and expansion waves continue to traverse 
the width of the interface. These waves increase in strength as the interface inclination angle 
becomes more oblique (low #s). The strength of these waves diminishes with every interface 
and boundary interaction that occurs. The first of these secondary effects is shown below in 
Figure 8. This wave is denoted as the interface reflected, wall reflected (IRWR) shockwave. 
The strength of this shockwave is sufficient to cause a compression of the interface along its 
width, and to extend the initial non-linear growth of the interface.  Subsequent waves will 
continue to alter the growth rate at a diminishing rate. The time at which this wave has 
compressed the interface will approximate the end of the initial non-linear growth rate.   
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FIG. 8: Gradient of pressure field plot at early time (t~.226ms). 
 To predict the time at which the IRWR shockwave has compressed the interface 1-d 
gas dynamic equations were used. The initial compression time from the incident shockwave 
was again calculated using the 1-d incident shock speed and the interface height. At the end 
of this time it was assumed that part of IRWR shock transmits through the interface. The 
transmitted leg of this wave (IRWRIT) was used to determine the end of the initial nonlinear 
growth since it had the lower speed. While the 1-d calculated speed of the un-transmitted leg 
of the wave is higher the wave is limited by the transmitted leg (Figure 9). Using the 1-d 
approximated speed of the transmitted leg more accurately predicted the time at which the 
transmitted leg has reached the wall (Figure 10) and the compression of the interface from 
this wave is complete. The width compression time is then determined from the 1-d velocity 
of the IRWRIT shockwave (wrrt), and the width of the interface. This time is added to the initial 
compression time to yield the new offset time shown in Equation 13. Calculated 1D wave 
speeds used in Equation 13 are shown in Table IV of the previous section. Plots of the non-
dimensional growth rate versus non-dimensional time (Figure 11) as well as qualitative 
examination of density field plots showed that this offset time was a good predictor of the end 
of the initial nonlinear compression.   
 

 
FIG. 9: Gradient of pressure field plot (t~.302ms). 
 

Interface reflected shockwave 

Interface reflected, wall 
reflected shockwave 

Transmitted shockwave

Interface reflected, wall 
reflected, transmitted 
shockwave 
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FIG. 10: Gradient of pressure field plot (t~.524ms). 

(13) : ;* / tan( )

i rrt

t
w w

= > =
% (  

 Equations for the new linear growth are shown below in equations 14-16. The 
calculated 1D transmitted wave speed used in Equation 14 can be found in Table IV of the 
previous section. The results of the new linear growth model are presented below in Figures 
11 and 12. From these figures it can be seen that the initial agreement for the air-SF6 gas pair 
has improved over the Richtmyer model. The divergence of the different Mach number cases 
occurs much earlier in the new non-dimensional time. The new non-dimensional time also 
creates a larger separation in the non-dimensional development rate of the different 
inclination angle cases. It would appear from Figure 12 that the agreement between helium-
SF6 cases is not as good, but the errors in the mixing width algorithm discussed in section B 
cause jumps in the mixing width that offset the non-dimensional mixing width. If the slopes 
after these jumps are compared it can be seen that the growth rates are similar for all cases. A 
different definition of the mixing width or a modification of the current definition could 
mitigate these jumps, and will be considered in future work.  
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FIG. 11: Non-dimensional mixing width versus time for all air-SF6 parameter sets 
where "# is the non-dimensional mixing width, and " is the non-dimension time defined 
using the new linear growth model.  
 

 
FIG. 12: Non-dimensional mixing width versus time for selected air-SF6 and helium-
SF6 parameter sets where "# is the non-dimensional mixing width, and " is the non-
dimension time defined using the new linear growth model. 
 

V. CONCLUSIONS 

There is much to be explored still for the inclined interface RM instability. This type of 
interface produces many unique features and challenges. From the qualitative results 
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presented in this paper it can be seen that the inclination angle, incident Mach number, and 
gas pair properties have a strong effect on the development of the interface. The linear growth 
rate of the mixing width is predicted poorly using the Richtmyer impulsive model adapted for 
the inclined interface. The Richtmyer impulsive model struggles to collapse the data from 
different inclination angles. A new linear mixing width model was proposed that collapses 
the data for all parameters sets well at early times.  The new model uses the 1-d wave speeds 
for the incident shockwave and the interface reflected, wall reflected, transmitted shockwave 
to predict the end of the initial nonlinear growth. The characteristic velocity for the new 
model was the 1-d transmitted wave speed instead of the interface jump velocity used in the 
Richtmyer impulsive model. Future work will seek to define the interface mixing width better 
and to explore the divergence between the interface angles at later times.  
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APPENDIX A: RESOLUTION STUDY 

 A resolution study was first performed to determine the maximum resolution that could be 
achieved while limiting the simulation computer run times to a level that would allow the study to be 
completed in a two month period. The most computationally time intensive simulation used the 
following parameters; incident shockwave Mach number (Mi) of 2.5, interface inclination angle of 
(Aint) 30°, and an Atwood number of ~0.67 (air-SF6 interface). Several simulations were started for 
this set of parameters with different resolutions to estimate the computation time it would take for the 
models to run to 4ms. This time was chosen as the cutoff point as it would run long enough for 
reshock to be captured, but would stop the simulation before expansion waves reflected from the 
upstream boundary could intersect the interface. The viscosity model was not included in these 
resolution study simulations because the viscosity study and consequent decision to include viscosity 
was dependent on the resolution study. 

All but two of these simulations were stopped at less than 0.1 ms simulation time. Two 
simulations, at 282 (m and 56 (m resolutions, were run out to a time of 0.5ms where the interface had 
developed long enough for a qualitative comparison to be made. Density plots of these two 
simulations are shown below in figure 13. It can be seen from these plots that the 56 (m resolution 
case showed fine structures that one would expect to be damped out by species diffusion. Since 
species diffusion could not be included in the simulations the 282 (m resolution simulation provides a 
more density plot that is expected to match experiments more closely. Computational times for these 
simulations were significantly different as well. These simulations were run on 128 cores total, where 
each node consisted of AMD Optetron quad core processors with 16 cores and 32GB of memory per 
node. The 56 (m resolution case required and estimated 130hrs to run, and the 282 (m case required 
7hrs. The next incremental increase in resolution (169 (m) gave an estimated run time of 32 hrs. 
Based on the computational times the 282 (m resolution was selected for the parametric study.  

FIG. 13: Density plot for Mi=2.5, Aint=30°, and At~0.67 (air-SF6 gas pair) at t=0.5ms. Top: resolution 
of 282 (m. Bottom: resolution of 56 (m.  
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APPENDIX B: VISCOSITY STUDY 

 After selecting the resolution for the parametric study, a comparison was made between a 
viscous simulation and an inviscid simulation. The same parameters used in the resolution study were 
again applied, incident shock Mach number of 2.5, inclination angle of 30 degrees, and air-SF6 gas 
pair. Each simulation was run to greater than 4ms to allow late time and reshock development to be 
compared. Figure 14 below shows density plots for the viscous and inviscid cases at approximately 
1ms. From these plots it can be seen that the addition of viscosity has a significant damping effect on 
the growth of secondary spikes. The addition of viscosity has also slowed the transmitted wall 
reflected shockwave due to the presence of a boundary layer and stretched the interface due to the no 
slip condition at the wall. At later times the difference becomes more significant but more difficult to 
define. The viscous model was chosen because of the significant differences in the interface growth. 
Including viscosity in the simulation increased the computational time from 7 hours to 11 hours for 
the parameters M=2.5, A=30°, air-SF6. 

 
 
FIG. 14: Density plots for Mi=2.5, Aint=30°, and At~0.67 (air-SF6 gas pair) at t=1ms. Top: 
viscous model. Bottom: inviscid model. 
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