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Akhmediev and Kuznetsov-Ma breathers are rogue wave solutions of the nonlinear Schrödinger
equation (NLSE). Talbot effect (TE) is an image recurrence phenomenon in the diffraction of light
waves. We report the nonlinear TE of rogue waves in a cubic medium. It is different from the linear
TE, in that the wave propagates in a NL medium and is an eigenmode of NLSE. Periodic rogue
waves impinging on a NL medium exhibit recurrent behavior, but only at the TE length and at the
half-TE length with a π-phase shift; the fractional TE is absent. The NL TE is the result of the
NL interference of the lobes of rogue wave breathers. This interaction is related to the transverse
period and intensity of breathers, in that the bigger the period and the higher the intensity, the
shorter the TE length.

PACS numbers: 42.30.Wb, 42.65.Hw, 42.65.Jx, 42.65.Tg, 42.81.Dp

Introduction.—Talbot effect (TE) is a recurrent self-
imaging phenomenon in the near-field diffraction of plane
waves from a grating, first observed in 1836 by H. F.
Talbot [1] and theoretically explained in 1881 by Lord
Rayleigh [2]. In the past decade TE has attracted a lot
of attention, owing to its potential applications in im-
age preprocessing and synthesis, photolithography, spec-
trometry, optical computing, and elsewhere. Until now,
TE has been reported in, but not confined to, the follow-
ing areas of physics: atomic optics [3], quantum optics [4],
waveguide arrays [5], photonic lattices [6], Bose-Einstein
condensates [7], X-ray imaging [8], and in the interfer-
ometer for C70 fullerene molecules [9]. Very recently, a
nonlinear (NL) TE was reported in Ref. [10]. It is dif-
ferent from the NL TE reported here, in that it refers to
the linear TE from a NL wave. For a more thorough in-
troduction, one may consult the recent review paper [11].
However, all these investigations do not report TE in NL
media, not even the so-called NL TE in Refs. [10, 11].
This task is accomplished in this Letter.

As a phenomenon first spotted in oceans, the rogue
wave is now commonly observed in NL optics [12, 13].
Today, it is accepted that rogue waves are adequately
described by the NLSE; they come in a variety of
forms that include Peregrine solitons [14], Kuznetsov-Ma
breathers (KMBs) [15], Ahkmediev breathers (ABs) [16],
and higher-order rogue wave solutions [17]. To observe
TE it is necessary that the diffracting pattern is periodic
in the transverse direction. Hence, we study the TE of
rogue wave breathers that are periodically modulated in
the transverse coordinate. However, different from the
linear TE, the diffracting patterns propagate in the NL
medium and are the eigenmodes of NLSE.

Again, the nonlinear TE reported in this Letter is in
stark contrast to the linear one, which needs real grat-
ings or periodic diffracting structures, forms in linear ho-

mogenous media, and can be generally explained by the
Fresnel diffraction theory. In this Letter, to our knowl-
edge for the first time, we demonstrate the nonlinear TE
from propagating ABs and other rogue wave eigenmodes
of the system that exhibit TE in a bulk NL medium.
Mathematical modeling.—The commonly used model

to generate a soliton, a rogue wave, or a breather solu-
tion in one dimension is the scaled cubic NL Schrödinger
equation (SE)

i
∂ψ

∂z
+

1

2

∂2ψ

∂x2
+ |ψ|2ψ = 0. (1)

A soliton solution is easily found by using the inverse
scattering transform [18]. Among the rogue wave solu-
tions of NLSE, AB was first reported by N. Akhmediev
in 1980s [16]; it can be written as

ψ(z, x) =
(1− 4q) cosh(az) +

√
2q cos(Ωx) + ia sinh(az)√

2q cos(Ωx)− cosh(az)

× exp(iz), (2)

where q = (1− Ω2/4)/2 and a =
√

8q(1− 2q), with q <
1/2. The period of ψ(z, x) along x is Dx = π/

√
1− 2q.

Specially, Eq. (2) will transform into

ψ(z, x) =
cos(
√

2x) + i
√

2 sinh(z)

cos(
√

2x)−
√

2 cosh(z)
exp(iz), (3)

when q = 1/4. If q > 1/2, the rogue wave solution of Eq.
(1) is the KMB, which can be written as

ψ(z, x) =
(1− 4q) cos(az) +

√
2q cosh(Ωx)− ia sin(az)√

2q cosh(Ωx)− cos(az)

× exp(iz), (4)

where now q = (1 + Ω2/4)/2 and a =
√

8q(2q − 1). Dif-
ferent from AB, the KMB is periodic along the z axis,
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with the period Dz = π/
√

2q(2q − 1). When q = 1/2,
the solutions in Eqs. (2) and (4) degenerate into the
fractional form

ψ(z, x) =

[
1− 4 + 8iz

1 + 4x2 + 4z2

]
exp(iz), (5)

which is known as the Peregrine soliton [13, 14]. In Fig.
1 we display three specific solutions of Eq. (1), corre-
sponding to Eqs. (3), (5) and (4), respectively. It is seen
that the AB transforms into the Peregrine soliton as q
approaches 1/2, which then transforms into the KMB
as q further increases. The common characteristic of all
breathers is that they ride on a small but finite back-
ground.

ABs are periodic along the transverse coordinate x, as
exhibited in Fig. 1(a), so their intensity is infinite along
the x axis. KMBs are periodic along the z axis, so they
can be viewed as higher-order soliton solutions (the basic
soliton solution being the hyperbolic secant function).
One should bear in mind that the energy of KMB, as
well as of the Peregrine soliton, is also infinite along the
x axis. All these solutions are exact analytical solutions
of the cubic NLSE. The question is, what happens when
one propagates, as an input to Eq. (1), the solution which
is not exactly the exact solution.
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FIG. 1. (Color online) (a) AB with q = 1/4. (b) Peregrine
soliton. (c) KMB with q = 3/4. Top panels present the in-
tensity distributions, bottom panels the view from the above.

Numerical simulation and discussion.—Numerical
simulations in this Letter are obtained by utilizing
the fourth-order split-step fast Fourier transform (FFT)
method [18] in double precision. To make beams of finite
energy and prevent FFT spill-over effects, we utilize an
aperture (filter) with a diameter large enough to enforce
fast convergence of beam intensity to 0 when |x| → ∞.
Starting from Eq. (5), we construct an input to Eq.
(1) with a finite energy of 2π, by using the profile sub-
tracted from the uniform background in Eq. (5) at z = 0,
ψ0(z = 0, x) = 4/(1 + 4x2). The evolution of this profile
is displayed in Fig. 2(a); it looks very much like a stable
breather [19]. However, if one uses the whole transverse
cross section of the Peregrine soliton at z = 0 as an in-
put, which is the same as AB for q = 1/2, the evolution
looks very different; it is shown in Fig. 2(b).

Curiously, instead of forming a breather or exhibiting
a continuous diffraction in bulk media, the beam under-
goes a “discrete” parabolic diffraction, quite similar to
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FIG. 2. (Color online) Propagation of ψ0 (a) and Peregrine
soliton (b).

the evolution of a discrete system [20]. It is also evi-
dent that the beam in each of the “channels” behaves
like a breather during propagation. The explanation of
the phenomenon is that actually the input wave is not an
exact Peregrine soliton, but a slightly modulated wave,
owing to the finite numerical accuracy at which the Pere-
grine profile is determined and to its finite energy. This
modulated wave shows the tendency to diffract into an
AB-like wave upon propagation. Thus, the cause of the
phenomenon is the transverse modulational instability
during the NL propagation.

We recall that there exists a more general Akhmediev
solution of NLSE from Eq. (1), expressed in terms of
Jacobi elliptic functions [16],

ψ(x, z) =k

A(x) dn

(
kz,

1

k

)
+
i

k
sn

(
kz,

1

k

)
1−A(x) cn

(
kz,

1

k

) exp(iz),

(6)

in which

A(x) =

√
1

1 + k
cn

(
√

2kx,

√
k − 1

2k

)

with k > 1. When k → 1, Eq. (6) reduces to Eq. (3).
Because sn(x,m), cn(x,m) and dn(x,m) are all periodic
and the corresponding periods are 4K, 4K and 2K [21],

respectively, with Km =
∫ π/2
0

dθ/
√

1−m sin2 θ, the so-
lutions described by Eq. (6) are all periodic in both x and
z directions. The corresponding periods can be deduced
as

Dx =
4√
2k

K
m=
√

(k−1)/(2k) and Dz =
4

k
Km=1/k,

respectively. Corresponding to Eq. (6) there exists an-
other analytical solution of NLSE with k < 1 [16], but
this eigenmode does not exhibit TE. The doubly-periodic
Akhmediev solution from Eq. (6) does.

The intensity distribution of the solution with k = 1.2
is displayed in Fig. 3(a), with the result Dx ≈ 4.4 and
Dz ≈ 7.8. It is clearly seen that the solution exhibits
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FIG. 3. (Color online) (a) Intensity of the solution in Eq. (6)
for k = 1.2. (b) Periods Dx and Dz versus k. Insets show
intensities of the solution with k = 3, 5, 7, and 9, respectively.
The dot on the Dz curve corresponds to (a).

the self-imaging TE-like property – the periodic incident
wave exactly reappears at certain distances (an integer
multiple of Dz) and its π-phase shifted image appears
at the distances half-way in-between (an odd multiple of
Dz/2). Thus, the self-imaging can be viewed as a TE
with the TE length zT = Dz. Different from the previ-
ous literature, such TE is completely nonlinear, because
it originates from the eigenmodes of NLSE and propa-
gates in a NL medium. In Fig. 3(b), we display the TE
length zT (viz., Dz), as well as the transverse period Dx

of the solution, as functions of k; they both monotonously
decrease with increasing k.

To display the changing nonlinear TE with k more
clearly, we show in the inset of Fig. 3(b) four special
cases corresponding to k = 3, 5, 7 and 9, respectively.
When k = 2, Dx = Dz, and Dx and Dz will have a
crossing point, as shown in Fig. 3(b). When k → 1,
Dx →

√
2π and zT → +∞, as is visible in Fig. 3(b).

Then, the solution indicated by Eq. (6) reduces to the
AB solution described by Eq. (3) and illustrated by Fig.
1(a). Since Eq. (6) is an eigenmode solution of the NLSE
in Eq. (1), the general AB can be viewed as the nonlinear
TE eigenmode.

AB for q = 1/4 is a limiting case of the TE eigenmode.
Therefore, we investigate evolution of the beam with the
same profile as the AB at z = 0 plane, obtained at high
but finite precision. Thus, we launch AB from Eq. (2)
at z = 0 into the NL medium and follow its evolution;
the result is shown in Fig. 4(a). It corresponds to the
case given in Fig. 1(a) (Dx =

√
2π), evolving on a torus.

It is clearly seen that AB displays the nonlinear TE dur-
ing propagation. Owing to the modulational instability,
it shows the tendency to diffract as the doubly-periodic
Akhmediev solution from Fig. 3. In Fig. 4(b) the in-
tensities of the beam during evolution are presented at
the initial place (z = 0), half TE length (z = zT /2), and
the full TE length (z = zT ), respectively. The intensity
distributions at zT are the same as the launched ones,
while those at zT /2 display a π-phase shift. Thus, the
NL Talbot carpet looks simple – only the primary and
secondary images appear; the fractional images are ab-
sent. This may be a blessing in applications, because –
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FIG. 4. (Color online) (a) NL TE carpet of the AB with
q = 1/4. (b) Intensity profiles at certain distances. (c) and
(d) Same as (a) and (b) but for the linear TE. (e) Spatial
period Dx, the maximum intensity of the wave, FWMH of
one peak intensity, and NL TE length zT , all as functions of
q. The star ∗ corresponds to (a).

e.g. for optical switching – fractional images are harmful.
To exemplify the difference between linear and nonlin-

ear TE, we remove the NL term in Eq. (1) and follow
the linear diffraction of the input AB; one obtains the
evolution carpet shown in Fig. 4(c). This corresponds
to the “NL TE” mentioned in Refs. [10, 11]. The usual
Talbot carpet is revealed, displaying the fractional TE
images as well [11]. Similar to Fig. 4(b), we exhibit the
intensities of the linear TE at z = 0, z = zT /4, z = zT /2,
and z = zT in Fig. 4(d). For the fractional linear TE
at z = zT /4, the period of the beam is halved, which
is in accordance with the previous literature [3, 11]. In
the linear case, the diffraction pattern (the input AB)
undergoes the usual superposition and interference as it
propagates. In the nonlinear case the superposition does
not hold and the interference is strongly influenced by
the diffractionless propagation of the input AB, which is
an eigenmode of Eq. (1). The result is the NL TE.

Different from the TE of the eigenmode shown in Fig.
3, the TE here directly follows from the transversely pe-
riodic wave and it cannot be analytically explained by
Eq. (6). Without an analytical expression for zT in this
case, we numerically estimate zT for different q in Eq.
(2); the results are shown in Fig. 4(e). Corresponding
to Fig. 4(a), the value of zT is approximately 18.3, as
shown by the green star ∗ in Fig. 4(e). In the same
figure we also exhibit the period Dx, the maximum in-
tensity max{|ψ|2}, and the full width at half maximum
(FWHM) of the peak intensity of AB versus q. It is seen
that the TE length zT first decreases and then increases



4

with q increasing. At the same time, Dx and max{|ψ|2}
monotonously increase with the increasing q, while the
FWHM monotonously decreases. It is worth mentioning
that when q > 3/8, the self-imaging at half TE length is
becoming less perfect (not shown).

The NL TE effect in Fig. 4 can be understood as a
result of the interaction – the NL interference – among
the smooth breather lobes. With q increasing, the pe-
riod Dx increases and the FWHM decreases, so that the
interaction among the peaks weakens. Therefore, each
peak tends to evolve in a manner similar to Fig. 2(b),
which leads to the imaging getting worse and the TE
getting diminished. When Dx is not too big, the inter-
action among the lobes results in the clearly visible TE.
Phenomenologically, the change in zT is in accordance
with the changing trends of Dx and max{|ψ|2}. During
interaction, Dx and max{|ψ|2} can be viewed as a dis-
tance and a mass, according to the analogy with classical
mechanics. The larger the mass and the shorter the dis-
tance, the stronger the interaction and the shorter the
zT . Thus, the interaction can be explained according to
the behavior of Dx/max{|ψ|2}. When q is small, Dx is
relatively big and max{|ψ|2} is relatively small, thus zT
is large. With q increasing, the increase in Dx is smaller
than that in max{|ψ|2}, so zT decreases. However, when
q → 1/2, Dx increases fast and approaches +∞, while
max{|ψ|2} tends to the maximum intensity of Eq. (5);
therefore zT starts to increase again.

Conclusion.—We have demonstrated the NL TE in the
cubic NL medium, coming from ABs and other rogue
waves. It is a genuine NL optical effect, arising from the
transverse modulational instability and the NL interfer-
ence of AB lobes. Its defining feature is the presence of
only primary and secondary images; no fractional images
are seen. We have shown that the TE length of the NL
TE is determined by the intensity and the period of ABs.
Owing to the simple Talbot carpet, the NL TE can find
potential applications in all-optical communications.
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