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ABSTRACT

We calculate the direct dark matter detection spin-independent and proton spin-dependent

cross-sections for a semi-realistic intersecting D6-brane model. The cross-sections are com-

pared to the latest constraints of the current dark matter direct detection experiments, as

well as the projected results of future dark matter experiments. The allowed parameter space

of the intersecting D6-brane model is shown with all current experimental constraints, in-

cluding those regions satisfying the WMAP and Supercritical String Cosmology (SSC) limits

on the dark matter density in the universe. Additionally, we compute the indirect detection

gamma-ray flux resulting from neutralino annihilation for the D6-brane model and compare

the flux to the projected sensitivity of the Fermi Gamma-ray Space Telescope. Finally, we

compute the direct and indirect detection cross-sections as well as the gamma-ray flux re-

sulting from WIMP annihilations for the one-parameter model for comparison, where the

one-parameter model is a highly constrained subset of the mSUGRA parameter space such

that the soft supersymmetry breaking terms are functions of the common gaugino mass,

which is common to many string compactifications.

http://arxiv.org/abs/0903.4905v2
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I. INTRODUCTION

Observations in cosmology and astrophysics suggest the presence of a stable dark matter par-

ticle. Supersymmetry (SUSY) supplies a satisfactory candidate for a dark matter particle, where

R-parity is conserved and the lightest supersymmetric particle (LSP) is stable [1], which is usually

the lightest neutralino χ̃0
1 [1, 2]. Two proposed methods of discovering this weakly interacting

massive particle (WIMP) are directly through WIMP interactions with ordinary matter and indi-

rectly via the products of WIMP annihilations. The direct detection method searches for elastic

scattering of WIMPs off nuclei in underground experiments. The experiments are conducted in

deep underground laboratories in an effort to reduce the background to minimal levels. The

indirect detection method seeks out debris resulting from WIMP annihilations in the galactic

halo. One galactic process that could produce gamma-rays from WIMP annihilation is the process

χ̃0
1χ̃

0
1 → γγ, where two gamma-rays are produced directly from a WIMP annihilation, and another

is χ̃0
1χ̃

0
1 → qq → π0 → γγ. Analyses of direct detection cross-sections and gamma-ray flux within

mSUGRA (or CMSSM) models have been completed [3, 4, 5, 6]. It is, however, a worthwhile

pursuit to analyze the direct and indirect detection parameters in alternative models.

The last few years have seen a great deal of interest in Type II string compactifications. Indeed,

intersecting D-brane models (see [7] and [8] for reviews) on Type II orientifolds have become

particularly attractive. In contrast to the standard framework, mSUGRA, the supersymmetry-

breaking soft terms for intersecting D-brane models are in general non-universal [9]. Despite

substantial progress in constructing such models, most supersymmetric D-brane models suffer from

two significant problems. One problem is the lack of gauge coupling unification at the string scale,

and the other is the rank one problem in the Standard Model (SM) fermion Yukawa matrices which

prevents the generation of mass for the first two generations of quarks and leptons. Nevertheless,

there is known one example of an intersecting D6-brane model constructed in Type IIA theory on

the T 6/(Z2×Z2) orientifold where these problems have been resolved [10] [11]. This model exhibits

automatic gauge coupling unification at the tree-level and it is also possible to obtain the correct

Yukawa mass matrices for both up and down-type quarks and leptons for specific values of the

moduli VEVs [12] [13]. Furthermore, the soft-supersymmetry breaking terms for this model have

been calculated, where regions in the parameter space were discovered that generate the observed

dark matter density and satisfy current experimental constraints [12] [13]. Although this model

has many appealing phenomenological features, one issue still to be completely resolved is that of

moduli stabilization. This issue has been addressed to an extent [11] [14] by turning on fluxes, but



3

there is still the task of stabilizing the open-string moduli associated with D-brane positions in

the internal space and Wilson lines. Only once the moduli stabilization issue has been completely

addressed can this model be considered fully realistic.

In this work we show the parameter space allowed by all the experimental constraints for this

intersecting D6-brane model for varying cases of gravitino masses and tanβ. The spin-independent

cross-sections are computed and plotted against the current dark matter detection experiment

constraints. Furthermore, we present the proton spin-dependent cross-sections, whereas the com-

puted neutron spin-dependent cross-sections only vary slightly from those of the proton, so the

neutron cross-sections are not shown. The gamma-ray flux resulting from neutralino annihilations

in the galactic halo for the D6-brane model is plotted and compared to the most recent telescope

measurements. Finally, in order to compare our results with a model with universal soft terms

representing the opposite extreme, we calculate the spin-independent and spin-dependent cross-

sections for the so-called one-parameter model [15, 16, 17, 18], including the gamma-ray flux. The

one-parameter model is a highly constrained small subset of the mSUGRA parameter space such

that the soft supersymmetry breaking terms are all functions of the common gaugino mass. In

no-scale supergravity models, generically m0 = m0(m1/2) and A = A(m1/2), thus the number of

free parameters is reduced to two, m1/2 and tanβ. Adopting a strict no-scale framework, one can

also fix the B-parameter as B = B(m1/2), and hence we are led to a one-parameter model where

all of the soft terms may be fixed in terms of m1/2. Therefore, the one-parameter model represents

a suitable case with which to compare the intersecting D6-brane model with non-universal soft

supersymmetry breaking terms.

II. LOW-ENERGY EFFECTIVE ACTION

In this section, we give a background discussion for the more technically-minded reader which

describes the way in which the supersymmetry breaking soft terms are calculated for intersect-

ing D6-brane models. In recent years, intersecting D-brane models have provided an exciting

approach toward constructing semi-realistic vacua. To summarize, D6-branes (in Type IIA) fill

three-dimensional Minkowski space and wrap 3-cycles in the compactified manifold, with a stack

of N branes having a gauge group U(N) (or U(N/2) in the case of T 6/(Z2 ×Z2)) in its world vol-

ume. The 3-cycles wrapped by the D-branes will in general intersect multiple times in the internal

space, resulting in a chiral fermion in the bifundamental representation localized at the intersection

between different stacks. The multiplicity of such fermions is then given by the number of times
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the 3-cycles intersect. Due to orientifolding, for every stack of D6-branes we must also introduce

its orientifold images. Thus, the D6-branes may also have intersections with the images of other

stacks, also resulting in fermions in bifundamental representations. Each stack may also intersect

its own images, resulting in chiral fermions in the symmetric and antisymmetric representations.

In addition, there are constraints that must be satisfied for the consistency of the model, namely

the requirement for Ramond-Ramond tadpole cancellation and to have a spectrum with N = 1

supersymmetry.

To discuss the low-energy phenomenology we start from the low-energy effective action. From

the effective scalar potential it is possible to study the stability [19], the tree-level gauge couplings

[20, 21, 22], gauge threshold corrections [23], and gauge coupling unification [24]. The effective

Yukawa couplings [25, 26], matter field Kähler metric and soft-SUSY breaking terms have also been

investigated [9]. A more detailed discussion of the Kähler metric and string scattering of gauge,

matter, and moduli fields has been performed in [27]. Although turning on Type IIB 3-form fluxes

can break supersymmetry from the closed string sector [28, 29, 30, 31, 32, 33], there are additional

terms in the superpotential generated by the fluxes and there is currently no satisfactory model

which incorporates this. Thus, we do not consider this option in the present work. In principle,

it should be possible to specify the exact mechanism by which supersymmetry is broken, and thus

to make very specific predictions. However, for the present work, we will adopt a parametrization

of the SUSY breaking so that we can study it generically.

The N = 1 supergravity action depends upon three functions, the holomorphic gauge kinetic

function, f , Kähler potential K, and the superpotential W . Each of these will in turn depend

upon the moduli fields which describe the background upon which the model is constructed. The

holomorphic gauge kinetic function for a D6-brane wrapping a calibrated three-cycle Π is given by

(see [8] for a detailed discussion and explanation of the notation)

fP =
1

2πℓ3s

[
e−φ

∫

ΠP

Re(e−iθPΩ3)− i

∫

ΠP

C3

]
. (1)

In terms of the three-cycle wrapped by the stack of branes, we have

∫

Πa

Ω3 =
1

4

3∏

i=1

(ni
aR

i
1 + 2−βiiliaR

i
2). (2)

where ni and li are the wrapping numbers of the D-branes on the ith two-torus, from which it

follows that

fP =
1

4κP
(n1

P n2
P n3

P s− n1
P l2P l3P u1

2(β2+β3)
− n2

P l1P l3P u2

2(β1+β3)
− n3

P l1P l2P u3

2(β1+β2)
), (3)
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where κP = 1 for SU(NP ) and κP = 2 for USp(2NP ) or SO(2NP ) gauge groups and where we

use the s and u moduli in the supergravity basis. In the string theory basis, we have the dilaton

S, three Kähler moduli T i, and three complex structure moduli U i [27]. These are related to the

corresponding moduli in the supergravity basis by

Re (s) =
e−φ4

2π

(√
ImU1 ImU2 ImU3

|U1U2U3|

)

Re (uj) =
e−φ4

2π

(√
ImU j

ImUk ImU l

) ∣∣∣∣
Uk U l

U j

∣∣∣∣ (j, k, l) = (1, 2, 3)

Re(tj) =
iα′

T j
(4)

and φ4 is the four-dimensional dilaton. To second order in the string matter fields, the Kähler

potential is given by

K(M,M̄,C, C̄) = K̂(M,M̄ ) +
∑

untwisted i,j

K̃CiC̄j
(M,M̄ )CiC̄j + (5)

∑

twisted θ

K̃CθC̄θ
(M,M̄ )CθC̄θ.

The untwisted moduli Ci, C̄j are light, non-chiral scalars from the field theory point of view,

associated with the D-brane positions and Wilson lines. These fields are not observed in the

MSSM, and if present in the low energy spectra they may disrupt the gauge coupling unification.

Clearly, these fields must get a large mass through some mechanism. One way to accomplish this

is to require the D-branes to wrap rigid cycles, which freezes the open string moduli [34].

For twisted moduli arising from strings stretching between stacks P and Q, we have
∑

j θ
j
PQ = 0,

where θjPQ = θjQ− θjP is the angle between the cycles wrapped by the stacks of branes P and Q on

the jth torus respectively. Then, for the Kähler metric in Type IIA theory we find the following

two cases:

• θjPQ < 0, θkPQ > 0, θlPQ > 0

K̃PQ = eφ4eγE(2−
P

3

j=1
θj
PQ

)

√√√√ Γ(θjPQ)

Γ(1 + θjPQ)

√√√√Γ(1− θkPQ)

Γ(θkPQ)

√√√√Γ(1− θlPQ)

Γ(θlPQ)

(tj + t̄j)θ
j
PQ(tk + t̄k)−1+θkPQ(tl + t̄l)−1+θlPQ . (6)

• θjPQ < 0, θkPQ < 0, θlPQ > 0
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K̃PQ = eφ4eγE(2+
P

3

j=1
θj
PQ

)

√√√√Γ(1 + θjPQ)

Γ(−θjPQ)

√√√√Γ(1 + θkPQ)

Γ(−θkPQ)

√√√√ Γ(θlPQ)

Γ(1− θlPQ)

(tj + t̄j)−1−θj
PQ(tk + t̄k)−1−θkPQ(tl + t̄l)−θlPQ . (7)

For branes which are parallel on at least one torus, giving rise to non-chiral matter in bifunda-

mental representations (for example, the Higgs doublets), the Kähler metric is

K̂ = ((s + s̄)(t1 + t̄1)(t2 + t̄2)(u3 + ū3))−1/2. (8)

The superpotential is given by

W = Ŵ +
1

2
µαβ(M)CαCβ +

1

6
Yαβγ(M)Cαβγ + · · · (9)

while the minimum of the F part of the tree-level supergravity scalar potential V is given by

V (M,M̄ ) = eG(GMKMNGN − 3) = (FNKNMFM − 3eG), (10)

where GM = ∂MG and KNM = ∂N∂MK, KMN is inverse of KNM , and the auxiliary fields FM

are given by

FM = eG/2KMLGL. (11)

Supersymmetry is broken when some of the F-terms of the hidden sector fields M acquire VEVs.

This then results in soft terms being generated in the observable sector. For simplicity, it is assumed

in this analysis that the D-term does not contribute (see [35]) to the SUSY breaking. Then the

goldstino is absorbed by the gravitino via the superHiggs effect. The gravitino then obtains a mass

m3/2 = eG/2, (12)

which we will take to be 500 GeV and 700 GeV in the following. The normalized gaugino mass

parameters, scalar mass-squared parameters, and trilinear parameters respectively may be given

in terms of the Kähler potential, the gauge kinetic function, and the superpotential as

MP =
1

2RefP
(FM∂MfP ), (13)

m2
PQ = (m2

3/2 + V0)−
∑

M,N

F̄ M̄FN∂M̄∂N log(K̃PQ),

APQR = FM
[
K̂M + ∂M log(YPQR)− ∂M log(K̃PQK̃QRK̃RP )

]
,
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where K̂M is the Kähler metric appropriate for branes which are parallel on at least one torus, i.e.

involving non-chiral matter.

The above formulas for the soft terms depend on the Yukawa couplings, via the superpotential.

An important consideration is whether or not this should cause any modification to the low-energy

spectrum. However, this turns out not to be the case since the Yukawas in the soft term formulas are

not the same as the physical Yukawas, which arise from world-sheet instantons and are proportional

to exp(−A), where A is the world-sheet area of the triangles formed by a triplet of intersections

at which the Standard Model fields are localized. The physical Yukawa couplings in Type IIA

depend on the Kähler moduli and the open-string moduli. This ensures that the Yukawa couplings

present in the soft terms do not depend on either the complex-structure moduli or dilaton (in the

supergravity basis). Thus, the Yukawa couplings will not affect the low-energy spectrum in the

case of u-moduli dominant and mixed u and s dominant supersymmetry breaking.

To determine the SUSY soft breaking parameters, and therefore the spectra of the models, we

introduce the VEVs of the auxiliary fields Eq. (11) for the dilaton, complex and Kähler moduli

[36]:

F s = 2
√
3Cm3/2Re(s)Θse

−iγs ,

F {u,t}i = 2
√
3Cm3/2(Re(u

i)Θu
i e

−iγu
i +Re(ti)Θt

ie
−iγt

i ). (14)

The factors γs and γi are the CP violating phases of the moduli, while the constant C is given by

C2 = 1 +
V0

3m2
3/2

. (15)

The goldstino is absorbed into the gravitino by ΘS in S field space, and Θi parameterize the

goldstino direction in U i space, where
∑

(|Θu
i |2 + |Θt

i|2) + |Θs|2 = 1. The goldstino angle Θs

determines the degree to which SUSY breaking is being dominated by the dilaton s and/or complex

structure (ui) and Kähler (ti) moduli. As suggested earlier, we will not consider the case of t-moduli

dominant supersymmetry breaking, since in this case the soft terms are not independent of the

Yukawa couplings.

III. PARAMETER SPACE AND SUPERSYMMETRY SPECTRA

The set of soft terms at the unification scale are generated in the same manner as was performed

in [13] for u-moduli dominated SUSY breaking. The soft terms are then input into MicrOMEGAs

2.0.7 [37] using SuSpect 2.34 [38] as a front end to run the soft terms down to the electroweak
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scale via the Renormalization Group Equations (RGEs) and then to calculate the corresponding

relic neutralino density. We take the top quark mass to be mt = 172.6 GeV [39], and leave tan β

as a free parameter while µ is determined by the requirement of radiative electroweak symmetry

breaking (REWSB). However, we do take µ > 0 as suggested by the results of gµ− 2 for the muon.

The results are then filtered according to the following criteria:

1. The WMAP 5-year data [40] for the cold dark matter density, 0.1109 ≤ Ωχoh2 ≤ 0.1177.

We also consider the WMAP 2σ results [41], 0.095 ≤ Ωχoh2 ≤ 0.129. In addition, we look

at the SSC model [42] for the dark matter density, in which a dilution factor of O(10) is

allowed [43], where Ωχoh2 ≤ 1.1. For a discussion of the SSC model within the context of

mSUGRA, see [44]. We investigate two cases, one where a neutralino LSP is the dominant

component of the dark matter and another where it makes up a subdominant component

such that 0 ≤ Ωχoh2 ≤ 0.1177, 0 ≤ Ωχoh2 ≤ 0.129, and 0 ≤ Ωχoh2 ≤ 1.1. This allows for

the possibility that dark matter could be composed of matter such as axions, cryptons, or

other particles.

2. The experimental limits on the Flavor Changing Neutral Current (FCNC) process, b → sγ.

The results from the Heavy Flavor Averaging Group (HFAG) [45], in addition to the BABAR,

Belle, and CLEO results, are: Br(b → sγ) = (355± 24+9
−10 ± 3)× 10−6. There is also a more

recent estimate [46] of Br(b → sγ) = (3.15 ± 0.23) × 10−4. For our analysis, we use the

limits 2.86 × 10−4 ≤ Br(b → sγ) ≤ 4.18 × 10−4, where experimental and theoretical errors

are added in quadrature.

3. The anomalous magnetic moment of the muon, gµ − 2. For this analysis we use the 2σ level

boundaries, 11× 10−10 < aµ < 44× 10−10 [47].

4. The process B0
s → µ+µ− where the decay has a tan6β dependence. We take the upper bound

to be Br(B0
s → µ+µ−) < 5.8× 10−8 [48].

5. The LEP limit on the lightest CP-even Higgs boson mass, mh ≥ 114 GeV [49].

A scan of the parameter space allowed by the aforementioned five experimental constraints was

performed for various values of the gravitino mass and tanβ, with the goal to determine the range

of the gravitino mass where the upper limit is the mass at which SUSY events become observable

at the Large Hadron Collider (LHC) above the SM background, and at the lower limit the Higgs

mass becomes too light and violates the LEP constraint. We discover the upper limit to be m3/2
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≈ 700 GeV and the lower limit to be in the range m3/2 = 400 ∼ 500 GeV. Thus, we calculate

the relic density, experimental constraints, and subsequently, the direct detection cross-sections

and indirect detection gamma-ray flux for m3/2 = 500 GeV and m3/2 = 700 GeV. For each of

these gravitino masses, the calculations were completed for tanβ = 10, 25, and 46. Regions of the

parameter space satisfying all the experimental constraints exist for five of the six cases; only m3/2

= 700 GeV, tanβ = 10 produced no regions that satisfied the constraints. Additional values of

tanβ were run for m3/2 = 700 GeV, though tanβ = 25 is close to the minimum tanβ that violates

none of the constraints. Thus, we study five cases in this paper: m3/2 = 500 GeV and tanβ = 10,

m3/2 = 500 GeV and tanβ = 25, m3/2 = 500 GeV and tanβ = 46, m3/2 = 700 GeV and tanβ =

25, m3/2 = 700 GeV and tanβ = 46.

We plot the parameter space in terms of the goldstino angles Θ1 and Θ2 in Fig. 1. A detailed

discussion of the goldstino angles Θ1 and Θ2 and how they relate to the non-universal gaugino

masses and scalar masses can be found in [12] [13]. The different shades represent the regions

which are allowed or excluded for the reasons noted in the chart legend. These plots focus on the

experimental constraints and the dark matter density within the SSC and WMAP regions. Note

the small regions excluded by the Higgs mass mh < 114 GeV satisfy all other constraints, including

the SSC dark matter density. All the regions in the allowed parameter space pass the Higgs mass

constraint, except as just noted, however, it is not identified on the charts whether the excluded

regions meet or fail the higgs mass constraint, though all the excluded regions fail to meet one or

more of the remaining constraints. In addition, the regions excluded by Ωχoh2 > 1.1 satisfy all

other constraints. The circular region centered at the origin of the plot is excluded for driving m2
H

to negative values. The region outside the allowed parameter space is excluded since the goldstino

angles Θ1, Θ2, and Θ3 do not satisfy the unitary condition Θ2
1 + Θ2

2 + Θ2
3 = 1 [12] [13]. For more

explicit details of the parameter space regions satisfying the experimental constraints, including

potential LHC signatures and experimental observables, see [50]. In the remainder of this work,

we focus only on the direct and indirect detection parameters.

IV. WIMP DETECTION

Direct detection experiments search for dark matter through an elastic collision of WIMPs with

ordinary matter. The lightest neutralino, χ0
1, is assumed to be stable, and as such represents

the best possible candidate for dark matter, and hence, WIMPs. These WIMPs produce low

energy recoils with nuclei. The interaction between the WIMPs and nuclei can be segregated into
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11

a spin-independent (SI) part and a spin-dependent(SD) part, where the SI (scalar) interactions

are primarily the consequence of elastic collisions with heavy nuclei. First, we consider the SI

cross-sections for an intersecting D6-brane model, then study the SD interactions.

Both the direct detection cross-sections and the gamma-ray flux are calculated using MicrOMEGAs

2.1 [51]. For the SI calculation, we use the nucleon form factor coefficient values of

fp
d = 0.033, fp

u = 0.023, fp
s = 0.26

fn
d = 0.042, fn

u = 0.018, fn
s = 0.26

while for the SD computations, we use the following quark density coefficients

∆p
u = 0.842 ± 0.012, ∆p

d = −0.427 ± 0.013, ∆p
s = −0.085 ± 0.018

∆n
u = ∆p

d, ∆n
d = ∆p

u, ∆n
s = ∆p

s

In addition, we use v0 = 220 km/s for the dark matter velocity distribution in the galaxy rest

frame, vE = 244.4 km/s for the Earth velocity with respect to the galaxy, and vmax = 600 km/s

for the maximal dark matter velocity in the sun’s orbit with respect to the galaxy.

In Fig. 2, we plot the SI cross-sections for an intersecting D6-brane model. The cross-sections

and flux were calculated only for those regions of the parameter space satisfying all the experimental

constraints. Those allowed regions are shown in Fig. 1. The plots in Fig. 2 are subdivided by dark

matter density, where for clarity we use the 2σ WMAP limits. The most recent experimental

results for Zeplin-III [52], Xenon 10 [53], and CDMS II [54] are shown, in addition to the projected

sensitivity of the future SuperCDMS [55] and Xenon-1 Ton [56] experiments. Only for m3/2 =

500 GeV and tanβ = 10 are the cross-sections within the current experimental limits, however,

in this case there is only a small region of the allowed parameter space within the latest CDMS

results, where these points have a very small dark matter density only allowed since we removed

the lower WMAP 2σ boundary. Most of the points will be within the experimental limits of the

SuperCDMS and Xenon-1 Ton future experiments, potentially providing incentive for the design

and development of the next generation of dark matter direct detection experiments. In the SSC

region, we allow for a dilution factor of O(10), resulting in a dark matter density up to Ωχoh2 ∼ 1.1,

permitting the inclusion of more points. As can be seen in Fig. 2, in general, the SSC regions have

a smaller cross-section than the WMAP regions. The dark matter density Ωχoh2 is inversely

proportional to the annihilation cross-section 〈σannv〉, so one expects the points with a higher

Ωχoh2 to possess a smaller annihilation cross-section, as depicted in Fig. 2.
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FIG. 2: Spin-independent cross-sections of an intersecting D6-brane model. Each marker satisfies all ex-

perimental constraints for an explicit gravitino mass and tanβ. The three marker colors identify the dark

matter density.
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The proton SD cross-sections are shown in Fig. 3. The format of the SD charts is similar to

the SI charts. For comparison of the intersecting D6-brane model cross-sections to the current

experimental limits, we show the latest results for COUPP [57], NAIAD [58], KIMS [59], and

SuperK [60]. We also calculated the neutron SD cross-sections (not shown), though there was only

a slight difference between the proton and neutron SD. The patterns were generally the same, but

the neutron SD cross-sections were slightly larger, and the shape of the SD patterns is essentially

identical to the SI patterns. None of the intersecting D6-brane model points are within the current

experimental limits of the SD dark matter detectors, and in fact, they are still three orders of

magnitude away from the discovery region. Again, since Ωχoh2 ∼ 1
〈σannv〉

, we see in Fig. 3 that the

SSC points have in general a smaller annihilation cross-section than the WMAP points.

V. INDIRECT DARK MATTER DETECTION

Indirect detection experiments search for high energy neutrinos, gamma-rays, positrons, and

anti-protons emanating from neutralino annihilation in the galactic halo and core, or in the case

of neutrinos, in the core of the sun or the earth. In this work, we focus only on the flux of

gamma-rays Φγ in the galactic core or halo. The gamma-ray flux Φγ for the intersecting D6-brane

model is shown in Fig. 4, including the projected sensitivity of the Fermi experiment [61]. The

sensitivity is not constant, but is a function of photon energy, and for this reason, to be precise,

we delineate it using a band. Most of the points allowed by the experimental constraints will be

within the sensitivity of the Fermi telescope. As mentioned in the Introduction, two possible decay

channels where WIMPs can produce gamma-rays in the galactic core and halo are χ̃0
1χ̃

0
1 → γγ

and χ̃0
1χ̃

0
1 → qq → π0 → γγ. Hence, the flux of gamma-rays is directly dependent upon the

annihilation cross-section. Fig. 2 and Fig. 3 show and we have explained that the SSC points

have a smaller annihilation cross-section. Consequently, we expect the SSC points to also exhibit

a smaller gamma-ray flux Φγ , and accordingly, this is illustrated in Fig. 4.

It is an intriguing question as to how a model with non-universal soft-supersymmetry break-

ing terms, such as an intersecting D6-brane model, compares to a model with universal soft-

supersymmetry breaking terms, for example, mSUGRA. The one-parameter model (OPM) [15,

16, 17, 18] is a highly constrained small subset of mSUGRA, where all the soft-supersymmetry

breaking terms may be fixed in terms of the gaugino mass m1/2. The OPM has universal soft-

supersymmetry breaking terms, so it is ideal to compare to the D6-brane model. Details of the

phenomenology of the OPM using the most recent measurements of the experimental constraints
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can be found in [18]. The parameter space of the OPM is quite constrained by the experimental

constraints, and this leads to small regions of allowed direct and indirect detection parameters. In

Fig. 5 we plot the direct and indirect detection parameters of the OPM. As described in [18], the

range of tanβ for spectra that satisfy all the experimental constraints in the WMAP region is 35.2

< tanβ < 38, while the range in the SSC region is 10.2 < tanβ < 38. Note that the points shown

in Fig. 5 are for all tanβ within the aforementioned ranges. However, it can be concluded from

Fig. 5 that the points with the same WIMP mass do exhibit the same characteristics as the points

in the intersecting D6-brane model. For the same WIMP mass, the WMAP spectra have a larger

annihilation cross-section, and hence, gamma-ray flux than the SSC points, due to the fact that in

the WMAP region, we are not allowing for the O(10) dilution factor to Ωχoh2.

VI. CONCLUSION

Much advancement has been made in the last few years toward the discovery of dark matter.

Current generation direct detection experiments that search for elastic collisions of WIMPs off

nuclei have come within shouting distance of the allowed parameter space of models with universal

soft-supersymmetry breaking terms such as mSUGRA. Furthermore, the Fermi Gamma-ray space

telescope is edging closer to the parameter space of these same models. In light of this experimental

progress, it is a good time to start examining the direct and indirect detection parameters of

semi-realistic string models. To this end, we began an investigation of the experimental detection

parameters for a particular string-derived model with many appealing phenomenological properties.

There are various theoretical models currently offered, so our goal is present the phenomenology of

a promising new model, in contrast to the usual standard, mSUGRA. In this work, we investigated

an intersecting D6-brane model on a Type IIA orientifold that overcomes the persistent problems

experienced by many Type II string vacua, namely that of gauge coupling unification and the

generation of masses for the first two generations of quarks and leptons. This model exhibits

automatic gauge coupling unification and allows the correct masses and mixings for all quarks

and leptons to be obtained. As a consequence, we presented the spin-independent and proton

spin-dependent cross-sections. We find that only a small region of the allowed parameter space is

within the current limits of the direct detection experiments. Regions with a larger Ωχoh2 have

smaller cross-sections, thus cross-sections for SSC are smaller than those of WMAP. Additionally,

we illustrated the galactic gamma-ray flux for this model resulting from neutralino annihilations.

We discover that most of the regions of the D6-brane model allowed parameter space will be within
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the sensitivity of the Fermi telescope.
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[31] M. Cvetič, T. Li and T. Liu, Phys. Rev. D 71, 106008 (2005).

[32] J. Kumar and J. D. Wells, JHEP 0509, 067 (2005).

[33] C.-M. Chen, V. E. Mayes and D. V. Nanopoulos, Phys. Lett. B 633, 618 (2006).

[34] R. Blumenhagen, M. Cvetic, F. Marchesano and G. Shiu, JHEP 0503, 050 (2005)

[arXiv:hep-th/0502095].

[35] Y. Kawamura, T. Kobayashi and T. Komatsu, Phys. Lett. B 400, 284 (1997) [arXiv:hep-ph/9609462].

[36] A. Brignole, L. E. Ibanez and C. Munoz, Nucl. Phys. B 422, 125 (1994) [Erratum-ibid. B 436, 747

(1995)] [arXiv:hep-ph/9308271]; [arXiv:hep-ph/9707209].

[37] G. Belanger, F. Boudjema, A. Pukhov and A. Semenov, Comput. Phys. Commun. 176, 367 (2007)

[arXiv:hep-ph/0607059]; Comput. Phys. Commun. 174, 577 (2006) [arXiv:hep-ph/0405253]; Comput.

Phys. Commun. 149, 103 (2002) [arXiv:hep-ph/0112278].

[38] A. Djouadi, J. L. Kneur and G. Moultaka, Comput. Phys. Commun. 176, 426 (2007)

[arXiv:hep-ph/0211331].

[39] Tevatron Electroweak Working Group and CDF Collaboration and D0 Collab, [arXiv:0808.1089 [hep-

ex]].

[40] G. Hinshaw et al. [WMAP Collaboration], Astrophys. J. Suppl. 180, 225 (2009) [arXiv:0803.0732

[astro-ph]].

[41] D. N. Spergel et al. [WMAP Collaboration], Astrophys. J. Suppl. 148, 175 (2003)

[arXiv:astro-ph/0302209]; Astrophys. J. Suppl. 170, 377 (2007) [arXiv:astro-ph/0603449].

[42] I. Antoniadis, C. Bachas, J. R. Ellis and D. V. Nanopoulos, Phys. Lett. B 211, 393 (1988); Nucl.

Phys. B 328, 117 (1989); Phys. Lett. B 257, 278 (1991); J. R. Ellis, N. E. Mavromatos and

D. V. Nanopoulos, Lectures given at International Workshop on Recent Advances in the Superworld,

Woodlands, TX, 13-16 Apr 1993, Published in Woodlands Superworld 1993:3-26 (QCD161:I966:1993)

[arXiv:hep-th/9311148]; J. R. Ellis, N. E. Mavromatos and D. V. Nanopoulos, Mod. Phys. Lett.

http://arxiv.org/abs/hep-th/9805157
http://arxiv.org/abs/hep-th/0302221
http://arxiv.org/abs/hep-ph/0004214
http://arxiv.org/abs/hep-th/0305146
http://arxiv.org/abs/hep-th/0302105
http://arxiv.org/abs/hep-th/0303083
http://arxiv.org/abs/hep-th/0404134
http://arxiv.org/abs/hep-th/0502095
http://arxiv.org/abs/hep-ph/9609462
http://arxiv.org/abs/hep-ph/9308271
http://arxiv.org/abs/hep-ph/9707209
http://arxiv.org/abs/hep-ph/0607059
http://arxiv.org/abs/hep-ph/0405253
http://arxiv.org/abs/hep-ph/0112278
http://arxiv.org/abs/hep-ph/0211331
http://arxiv.org/abs/0808.1089
http://arxiv.org/abs/0803.0732
http://arxiv.org/abs/astro-ph/0302209
http://arxiv.org/abs/astro-ph/0603449
http://arxiv.org/abs/hep-th/9311148


21

A 10, 1685 (1995) [arXiv:hep-th/9503162]; Phys. Lett. B 619, 17 (2005) [arXiv:hep-th/0412240];

D. V. Nanopoulos and D. Xie, Phys. Rev. D 78, 044038 (2008) [arXiv:0710.2312 [hep-th]].

[43] A. B. Lahanas, N. E. Mavromatos and D. V. Nanopoulos, PMC Phys. A 1, 2 (2007)

[arXiv:hep-ph/0608153]; Phys. Lett. B 649, 83 (2007) [arXiv:hep-ph/0612152].

[44] B. Dutta, A. Gurrola, T. Kamon, A. Krislock, A. B. Lahanas, N. E. Mavromatos and D. V. Nanopoulos,

[arXiv:0808.1372 [hep-ph]].

[45] E. Barberio et al. [Heavy Flavor Averaging Group (HFAG) Collaboration], [arXiv:0704.3575 [hep-ex]].

[46] M. Misiak et al., Phys. Rev. Lett. 98, 022002 (2007) [arXiv:hep-ph/0609232].

[47] G. W. Bennett et al. [Muon g-2 Collaboration], Phys. Rev. Lett. 92, 161802 (2004)

[arXiv:hep-ex/0401008].

[48] T. Aaltonen et al. [CDF Collaboration], Phys. Rev. Lett. 100, 101802 (2008) [arXiv:0712.1708 [hep-ex]].

[49] R. Barate et al. [LEP Working Group for Higgs boson searches and ALEPH Collaboration], Phys. Lett.

B 565, 61 (2003) [arXiv:hep-ex/0306033]; W. M. Yao et al (Particle Data Group), J. Phys. G 33, 1

(2006).

[50] J. Maxin, V. E. Mayes, and D. V. Nanopoulos, In preparation

[51] G. Belanger, F. Boudjema, A. Pukhov and A. Semenov, [arXiv:0803.2360 [hep-ph]].

[52] V. N. Lebedenko et al., [arXiv:0812.1150 [astro-ph]].

[53] J. Angle et al. [XENON Collaboration], Phys. Rev. Lett. 100, 021303 (2008) [arXiv:0706.0039 [astro-

ph]].

[54] Z. Ahmed et al. [CDMS Collaboration], Phys. Rev. Lett. 102, 011301 (2009) [arXiv:0802.3530 [astro-

ph]].

[55] R. W. Schnee et al. [The SuperCDMS Collaboration], [arXiv:astro-ph/0502435].

[56] E. Aprile [The XENON Collaboration], [arXiv:astro-ph/0502279].

[57] E. Behnke et al, Science 319, 933 (2008)

[58] G. J. Alner et al, Phys. Lett. B 616, 17 (2005)

[59] H. S. Lee. et al. [KIMS Collaboration], Phys. Rev. Lett. 99, 091301 (2007) [arXiv:0704.0423 [astro-ph]].

[60] S. Desai et al. [Super-Kamiokande Collaboration], Phys. Rev. D 70, 083523 (2004) [Erratum-ibid. D

70, 109901 (2004)] [arXiv:hep-ex/0404025].

[61] A. Morselli, A. Lionetto, A. Cesarini, F. Fucito and P. Ullio [GLAST Collaboration], Nucl. Phys. Proc.

Suppl. 113, 213 (2002) [arXiv:astro-ph/0211327].

http://arxiv.org/abs/hep-th/9503162
http://arxiv.org/abs/hep-th/0412240
http://arxiv.org/abs/0710.2312
http://arxiv.org/abs/hep-ph/0608153
http://arxiv.org/abs/hep-ph/0612152
http://arxiv.org/abs/0808.1372
http://arxiv.org/abs/0704.3575
http://arxiv.org/abs/hep-ph/0609232
http://arxiv.org/abs/hep-ex/0401008
http://arxiv.org/abs/0712.1708
http://arxiv.org/abs/hep-ex/0306033
http://arxiv.org/abs/0803.2360
http://arxiv.org/abs/0812.1150
http://arxiv.org/abs/0706.0039
http://arxiv.org/abs/0802.3530
http://arxiv.org/abs/astro-ph/0502435
http://arxiv.org/abs/astro-ph/0502279
http://arxiv.org/abs/0704.0423
http://arxiv.org/abs/hep-ex/0404025
http://arxiv.org/abs/astro-ph/0211327

	Introduction
	Low-Energy Effective Action
	Parameter Space and Supersymmetry Spectra
	WIMP Detection
	Indirect Dark Matter Detection
	Conclusion
	Acknowledgments
	References

