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Abstract. Type II functional responses are frequently observed in herbivores feeding 
in patches where plants are concentrated in space. We tested a mechanistic model of 
regulation of intake rate of herbivores foraging in food-concentrated patches (Laca and 
Demment 1992, Spalinger and Hobbs 1992) that accounts for asymptotic, Type II re- 
sponses. The model is based on the hypothesis that competition between cropping and 
chewing regulates instantaneous intake rate in response to changes in the size of bites 
obtained by the forager. We tested this hypothesis and examined the ability of our model 
to account for observations of intake rate of 12 species of mammalian herbivores ranging 
in body mass over 4 orders of magnitude. 

We measured short-term intake rates of mammalian herbivores feeding in hand-as- 
sembled patches of plants. We varied bite size by changing plant height and density in 
patches offered to herbivores, and observed dry matter intake rates in response to this 
variation. Averaged across species, our model accounted for 77% of the variance in food 
intake rate (P < .001 for all species). Predictions of maximum intake rate closely resembled 
observations of processing capacity, demonstrating that processing rather than cropping 
sets an upper limit on short-term intake. Tests of model mechanisms provided strong 
support for the hypothesis that competition between cropping and chewing is responsible 
for the Type II functional response seen in herbivores feeding in food-concentrated patches. 
The model was able to consistently predict intake rates observed in 16 previous studies. 
These results indicate that plant characteristics regulating bite size (e.g., leaf size and 
geometry, spinescence) frequently control instantaneous rates of food intake by mammalian 
herbivores. 

Key words: bite size; browsing; disc equation;foraging; functional response; grazing; handling time; 
herbivory; intake rate; mammal; patch; plant-animal interaction. 

INTRODUCTION 

Solomon (1949) and Holling (1959, 1965) distin- 
guished between the numerical response of animals and 
their functional response. In one form or another, equa- 
tions representing these responses play a central role 
in most contemporary models of predator-prey and 
plant-herbivore interactions (Hassell 1978, Caughley 
1982, Edelstein-Keshet 1986, Elsen et al. 1988, Gren- 

I Manuscript received 24 December 1991; revised 26 May 
1992; accepted 17 June 1992. 

fell 1992). However, despite its general importance in 
animal ecology, most work on functional response has 
focused specifically on predators and parasitoids (re- 
viewed by Schoener 1971, Pyke 1984, Stephens and 
Krebs 1986). During the last decade interest in devel- 
oping foraging theory specific to herbivores has in- 
creased dramatically (Owen-Smith and Novellie 1982, 
Illius and Gordon 1987, Lundberg 1988, Ungar and 
Noy-Meir 1988, Astr6m et al. 1990, Lundberg and 
Astrdm 1990, Laca and Demment 1992, Spalinger and 
Hobbs 1992). We believe that the development of this 
theory is hampered by the absence of tested models of 
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functional response that are faithful to the unique fea- 
tures of foraging by herbivores. 

Unlike most predators, herbivores often forage in 
patches where foods are highly concentrated in space 
and are readily apparent to the forager. Grass swards 
and stands of leafy shrubs offer examples of such food 
patches. Under these circumstances, the density of 
"prey" approaches infinity, i.e., one prey item imme- 
diately adjoins another. When this is the case, tradi- 
tional models of functional response predict that intake 
is simply the reciprocal of handling time, which is par- 
simoniously assumed to be a constant function of prey 
size. For example, the disc equation (Holling 1959) 
predicts the number of prey consumed per unit time 
as a function of prey density. Prey consumption varies 
with prey handling time and predator searching effi- 
ciency, 

ADT 
N 

+AHD' (1) 

where N = the number of prey captured, A = the preda- 
tor's searching efficiency (in square metres per minute), 
D = prey density (number per square metre), T = du- 
ration of foraging (in minutes), and H = handling time 
of prey item (minutes per prey). If we define N as the 
number of bites of plant tissue (i.e., bites = prey) taken 
by an herbivore during a given time interval (F), we 
can obtain a form that specifies the herbivore's instan- 
taneous rate of intake of plant mass (I, in grams per 
minute) by multiplying the disc equation by bite size 
(S, in grams per bite) and dividing by foraging time 
(T: 

AD 
1= *~~~S. (2) 

1 + AHD 

When prey are infinity dense, we have 

lim AD _.S= S/H =I, (3) 
D-o 1 + AHD 

which predicts that the intake rate of herbivores feeding 
in food-saturated patches should increase as a linear 
function of bite size (i.e., a Type I functional response). 
This prediction is contradicted by empirical evidence 
showing that intake rate of herbivores increases as- 
ymptotically as bite size increases (i.e., a Type II func- 
tional response; Allden and Whittaker 1970, Wick- 
strom et al. 1984, Hudson and Watkins 1986, Hudson 
and Frank 1987, Spalinger et al. 1988). Explaining this 
Type II behavior requires a model that allows handling 
time (H) to change dynamically as bite size changes. 

The need for a dynamic representation of handling 
time motivated us to develop a new model of func- 
tional response of herbivores foraging in food-concen- 
trated patches (Spalinger and Hobbs 1992). We began 
by defining a bite as a mass of plant tissue that an 
herbivore can remove from the plant with a single jaw 
movement. The size of the bite cropped (S) is deter- 
mined by the interaction between the geometry of the 

animal's mouth (Illius and Gordon 1987, Janis and 
Ehrhardt 1988) and the geometric arrangement of plant 
tissue in space (Stobbs 1973, Chacon and Stobbs 1976, 
Burlison et al. 1991, Penning et al. 1991, Laca et al. 
1992). If cropping rate (B, in bites per minute) were a 
constant function of bite size, then intake rate would 
be directly proportional to bite size, as suggested by 
the disc equation. Alternatively, we hypothesized 
(Spalinger and Hobbs 1992) that cropping rate must 
decline with increasing bite size because larger bites 
require an herbivore to invest more effort in masti- 
cating a bite to prepare it for swallowing, and because 
these chewing movements cannot occur simultaneous- 
ly with cropping movements (Ardran et al. 1 958, Greaves 
1978, Fortelius 1985). Based on these ideas, we have 
shown (Spalinger and Hobbs 1992) that cropping rate, 
(and thus handling time), can be predicted as 

1 
RB = a ' (4) H Rmaxh +S' 4 

where Rmax is the maximum rate of processing of plant 
tissue in the mouth (in grams per minute) that would 
occur in the absence of cropping, and h is the average 
time (in minutes per bite) required to crop a single bite 
in the absence of chewing. It follows (Spalinger and 
Hobbs 1992) that intake rate of herbivores feeding on 
spatially concentrated foods can be represented as an 
asymptotic function of bite size: 

Rmaxs 
I = R mhx S (5) 

Thus, Eq. 5 represents the hypothesis that competition 
between cropping and chewing is responsible for the 
Type II functional response frequently seen in herbi- 
vores feeding in food-concentrated patches (Allden and 
Whittaker 1970, Wickstrom et al. 1984, Hudson and 
Watkins 1986, Hudson and Frank 1987, Spalinger et 
al. 1988). A similar model has been developed inde- 
pendently by Laca and Demment (1992), and Spalinger 
and Hobbs (1992) derived explicit conditions defining 
when these models should apply. 

Here, we report experimental tests of our model of 
functional response (Eq. 5) for mammalian herbivores 
differing in body size and feeding style. We offer tests 
of the model's mechanism and discuss the significance 
of that mechanism for understanding foraging behavior 
of herbivores. 

MATERIALS AND METHODS 

Experimental manipulation of bite size 

We observed changes in food intake rate (I, Eq. 5) 
that occurred in response to changes in bite size (S, Eq. 
5) of 12 species of herbivores spanning 4 orders of 
magnitude in body mass (Table 1). The animals in our 
experiments represented a variety of feeding styles, 
dentition patterns, and digestive adaptations. Differ- 
ences in bite size were imposed by varying the size of 
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TABLE 1. Species used in tests of the functional response model. 

Dis- 
Origin/ Molar Feeding tance? No. 

Species Mass (kg) (n)* rearingt dentition style Sitet (cm) trials 

Collared lemming 
(Dicrostonyx groenlandicus) 0.05 (13) C/M hypsodont grazer CO 1 57 

Black-tailed prairie dog 
(Cynomys ludovicianus) 0.75 (3/2) W/M hypsodont mixed CO 4.5 108 

Domestic rabbit (Oryctolagus cuniculus) 2.9 (2/3) C/M hypsodont grazer TX 9 125 
Collared peccary (Tayassu tajacu) 27.2 (3/0) C/M bunodont concentrated TX 9 124 
White-tailed deer (fawn) 

(Odocoileus virginianus) 25.5 (2/2) C/B selenodont mixed TX 18 90 
White-tailed deer (adult) 45.0 (1/3) C/B selenodont mixed TX 18 67 
Axis deer (Axis axis) 53.0 (0/3) W/B selenodont grazer TX 18 62 
Caribou (Rangifer tarandus) 104 (2/0) W/B selenodont mixed WA 18 46 
Grizzly bear (Ursus arctos) 161 (2/3) W/M bunodont omnivore WA 18 36 
Elk (Cervus eleaphus) 266 (0/3) C/B selenodont grazer CO 10 46 
Moose (Alces alces) 309 (1/1) W/B lophodont grazer WA 18 43 
Horse (Equus caballus) 432 (3/0) C/M lophodont grazer TX 18 41 
Cow (Bos taurus) 548 (2/2) C/M lophodont grazer TX 18 73 

* Number of individuals (male/female). All male horses, caribou, and cattle were castrated. Sex of lemmings unknown. 
t C = captive born, W = wild born, M = maternal raised, B = bottle (human) reared. 
t CO = Fort Collins, Colorado; TX = Uvalde, Texas; WA = Pullman, Washington. 
? Distance between bites. 
11 Concentrate selector (e.g., cactus fruits, pods from legumes). 

plants offered to animals in patches (Black and Kenney 
1984, Spalinger et al. 1988) that were assembled as 
follows. We offered animals preweighed amounts of 
fresh alfalfa (Medicago sativa) anchored to plywood 
boards (25.5 cm x 28.5 cm x 12.7 mm thick for prairie 
dogs, and 61 cm x 61 cm x 19 mm thick for all other 
species except lemmings). We used alfalfa because it 
was palatable to a broad range of herbivores and was 
consistent in quality among study locations. Holes were 
drilled in plywood boards to accept alfalfa stems or 
petioles, which were firmly held with rubber stoppers 
inserted from the bottom of the board. Plants were 
uniformly spaced 4.5, 9, 10, or 18 cm apart to scale 
plant distribution to the size of the animal being ob- 
served (Table 1). To complete the patch, boards were 
bolted to frames 1.2 x 2.4 m (for prairie dogs 0.31 x 
1.22 m) to form a surface where the animal foraged. 
Because of their small size, lemmings required a dif- 
ferent experimental apparatus. Lemmings were offered 
leaves placed at 1-cm intervals in plastic clips (com- 
monly sold as binders for report covers). These clips 
were roughly triangular in cross section, 13 mm high, 
5 mm wide at the base, and 280 mm long. Petioles 
were securely held by pressure exerted at the apex of 
the clip. Clips were attached to an acrylic-fronted run- 
way 9 cm wide x 61 cm long. 

Hereafter, we will refer to plant size (in grams per 
plant) as the mass of plant tissue anchored at a single 
location in a patch, and bite size (S. in grams per bite) 
as the mass of tissue removed from the plant by a single 
cropping motion of an herbivore. When animals con- 
sumed the entire plant from a single location, then 
plant size equalled bite size. We varied plant size by 
changing height and bulk density of plants on the boards. 
In so doing, we were able to force a 10-fold or greater 

difference in mass between the largest and smallest 
bites taken by each species. 

Behavioral measures 

We measured dry matter intake rates of 2-13 indi- 
viduals of each species (Table 1) feeding in artificial 
patches during foraging trials conducted during Sep- 
tember 1990 through September 1991. All animals were 
habituated to the experimental protocols before trials 
were initiated. For each trial, a single animal was re- 
leased into a patch consisting of plants of roughly equal 
size. As the animal foraged, we counted the number 
of bites cropped and recorded the elapsed time of active 
foraging. We used video tapes of trials replayed in slow 
motion to enhance the accuracy of our counts of cropped 
bites. 

Because we were interested in the maximum instan- 
taneous intake rate achievable at a given bite size, trials 
were kept brief, typically lasting 1.5 min. Moreover, 
species were fasted before observations were taken to 
assure a high level of interest in feeding. Food was 
withheld from rabbits and smaller species for 6-7 h 
before intake measurements. Larger species were fasted 
overnight (12 h). Otherwise, animals were allowed ad 
libitum access to a maintenance diet. 

We estimated total dry matter intake during a trial 
as the difference between the dry mass of forage offered 
at the beginning of the trial and the dry mass remaining 
on the boards at the end of the trial. The amount of 
forage offered was determined by weighing the plant 
material before it was placed in patches. Upon com- 
pletion of a trial, all plant remains were removed, dried 
to a constant mass in a convection or microwave oven, 
and weighed. Because orts were held firmly in place in 
the patch, we were able to collect all of the plant mass 
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remaining at the end of a feeding trial. The average 
bite size consumed during each trial was determined 
by dividing total amount of forage removed (i.e., total 
intake) by the number of cropping bites observed dur- 
ing that trial. 

All calculations were corrected for dry matter. Dry 
matter corrections were determined daily from several 
subsamples of offered material, and varied little among 
days or sites. 

Model tests 

We designed three model tests. First, we examined 
whether the model could provide a reasonable statis- 
tical fit to the data. Model parameters were estimated 
by nonlinear regression (SAS 1988), and the residuals 
were analyzed for a systematic lack of fit using a runs 
test (Sokal and Rohlf 1 981). Values of r2 for nonlinear 
regressions were calculated using corrected sums of 
squares (Motulsky and Ransnas 1987). We separately 
analyzed plant size and bite size as independent vari- 
ables. Both quantities offer useful features in our anal- 
yses. Clearly, plant size ultimately controls bite size, 
while bite size is proximally responsible for the mech- 
anism we propose (Eq. 5). Bite size is virtually impos- 
sible to measure directly, particularly for small ani- 
mals. So, we estimated bite size indirectly as a ratio 
(total mass removed per total number of cropping bites). 
The numerator of this ratio was also present in the 
dependent variable, intake rate (total mass removed 
per time). Regression analyses based on ratios are con- 
troversial (Prairie and Bird 1989, Jackson and Somers 
1991, Kenney 1991). So, we also analyzed our data by 
regressing intake rate against direct measurements of 
plant size, which shares no term in common with in- 
take rate. 

Examining statistical fit of a model to data provides 
an opportunity for the model to fail, but it does not 
validate mechanisms the model represents. To do so, 
we derived predictions from the model and compared 
those predictions with independent observations. Two 
predictions are central to our model. The first is that 
cropping motions of the jaw compete with chewing 
motions, thereby producing a decelerating rate of in- 
take with increasing bite size. Second, the model pre- 
dicts that the asymptotic maximum intake rate (i.e., 
Rmax) of herbivores feeding in food-concentrated patches 
is set by constraints on food processing in the mouth. 
We tested these predictions as follows. 

The functional form of the competitive relationship 
between cropping and chewing is given by Eq. 4. If the 
deceleration in intake rate in Eq. 5 is produced by 
competition between cropping and chewing, then crop- 
ping rate must decline asymptotically as bite size in- 
creases according to Eq. 4 (Spalinger and Hobbs 1992). 

Our model (Eq. 5) also predicts that maximum in- 
stantaneous intake rate is set by a processing constraint, 
Rmax. In the absence of cropping, intake rate is theo- 
retically limited only by the ability of the animal to 

masticate food sufficiently to render it suitable for swal- 
lowing. We estimated Rmax (in grams per minute) di- 
rectly as the product of chewing effort (grams per chew) 
and chewing frequency (in chews per minute): 

Rmax = Ce X Cf. (6) 

We defined a chew to consist of a single up and down 
cycle of the jaw terminating when the molars occluded. 
We observed chewing behavior using video tapes of 
feeding animals replayed in slow motion. Values for 
chewing effort (Ce, Eq. 6) were obtained by dividing 
the total number of chews observed during a feeding 
trial by the dry mass of alfalfa consumed during the 
trial. Chewing frequencies (Cf. Eq. 6) were determined 
by counting at least five, consecutive, uninterrupted 
chews and dividing the number of chews by the time 
elapsed between the first and last chew. To test the 
proposed mechanism producing the asymptote in our 
model (Eq. 5), we compared observations of Rmax (es- 
timated as the product of Ce x Cf) with predictions of 
Rmax obtained from the statistical fit of Eq. 5 to intake 
rate data. 

As a final model test, we compared published ob- 
servations of intake rates for a variety of species to 
those predicted by Eq. 5. To generate predicted intake 
rates, we first used body mass to match species rep- 
resented in previous studies with species used in our 
experiments. We then substituted parameter values 
from the least squares fit of our functional response 
model (Eq. 5) to calculate a predicted intake rate for 
each bite size observed in previous studies. We ex- 
cluded values only when the author noted that me- 
chanical structures interfered with foraging (e.g., spines). 
We compared our model predictions against the ob- 
servations of other workers. 

RESULTS 

Following a brief training period, all species readily 
consumed alfalfa offered in the foraging trials. Species 
used in our experiments consumed bites ranging in 
mass from 0.0004 g dry matter (lemming) to 8.1 g dry 
matter (cow). Analyses of the model for food-concen- 
trated patches (Eq. 5) were based on 36-125 trials (Ta- 
ble 1; mean = 72 trials/species). Each species consumed 
bites spanning at least an order of magnitude in mass, 
and plant size offered varied by >2 orders of magnitude 
for some species. We observed intake rates of <0.03 
g/min for lemmings to >80 g/min for cattle. Overall, 
estimates of maximum intake rate (Rmax) increased with 
body mass (Tables 1 and 2), but h was independent of 
body mass, averaging 0.014 min/bite for all species. 
Details of our work on the allometry of model param- 
eters will be reported elsewhere. 

Fidelity to observations 

As predicted by our model (Eq. 5), we observed an 
asymptotic relationship between plant size and intake 
rate of mammalian herbivores (Fig. 1). Plant size proved 
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mass of plant tissue cropped by an herbivore with a single cropping motion. When herbivores consumed an entire plant in 
a single bite then plant size equalled bite size. 
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TABLE 2. Estimates of maximum processing rate (Rmax) and cropping time (h) from nonlinear regression of intake rate on 
bite or plant size (from Eq. 2). All regressions are significant (P < .001). 

Bite size Plant size 

Rmax - Runs Rmax 
Species (g/min) h (min/bite) r2 testt (g/min) h (min/bite) r2 Runs test 

Lemming 0.15 0.013 0.74 NS 0.15 0.016 0.75 NS 
Prairie dog 0.61 0.006 0.59 NS 0.53 0.005 0.41 NS 
Rabbit 1.04 0.016 0.68 ** 1.01 0.017 0.63 * 
Peccary 4.14 0.026 0.57 NS 3.86 0.033 0.53 NS 
White-tailed deer (fawn) 6.32 0.010 0.73 NS 5.99 0.011 0.72 NS 
White-tailed deer (adult) 9.85 0.011 0.84 ** 9.17 0.011 0.78 NS 
Axis deer 8.65 0.008 0.74 NS 8.42 0.009 0.73 NS 
Caribou 16.73 0.013 0.78 NS 16.29 0.016 0.75 NS 
Grizzly bear 43.06 0.015 0.87 NS 40.90 0.022 0.81 NS 
Elk 52.95 0.012 0.96 NS 47.41 0.015 0.89 NS 
Moose 31.11 0.038 0.83 NS 29.78 0.041 0.79 NS 
Horse 40.39 0.010 0.90 NS 39.31 0.010 0.89 NS 
Cow 74.16 0.009 0.75 NS 74.57 0.011 0.75 NS 

* P < .05, ** P < .01, NS = not significant. 
t Runs test on residuals (Sokal and Rohlf 1981:782). 

to be an accurate predictor of intake rate, with an av- 
erage corrected r2 of 72% (Fig. 1; Table 2, all regressions 
were significant at P << .001). We found a systematic 
lack of fit (i.e., a nonrandom distribution of residuals) 
in only one species (rabbits, runs test, T7 = 2.1 1, P < 

.05). 
In general, using bite size (S) as an independent vari- 

able improved the fit of the model (Table 2, Fig. 1). 
On average, S accounted for 77% of the variance in 
intake rate (Table 2). A runs test performed on the 
residuals from Eq. 5 confirmed that there was no sys- 
tematic lack of fit for 1 1 of the 13 species (Table 2). 
Asymptotes (Rmax) estimated from nonlinear regres- 
sion were within the measured range of observed as- 
ymptotic intake rates for all species except elk and 
peccaries. When large (> 2 g) plants were offered to elk, 
they consistently chose bite sizes smaller than the plant 
size offered by cropping more than one bite from each 
plant. As a result, most points fell on the rapidly as- 
cending portion of the functional response (Fig. 1), 
resulting in an unreasonably high estimate of Rmax. For 
some species (e.g., prairie dogs, axis deer) intake rate 
tended to decline slightly at very large bite sizes. This 
tendency may indicate a reduction in processing effi- 
ciency when bites become large (Dougherty et al. 1 989b). 

Bite size and plant size 

When plant sizes were small, herbivores consumed 
the entire plant in a single bite. As a result, there was 
an isometric relationship between plant size and bite 
size consumed for small plants (Fig. 2). However, as 
plant size increased, we failed to detect a clearly de- 
marcated upper limit to bite size for most species (Fig. 
2). When we offered large plants (i.e., plants producing 
intake rates on the flat portion of the functional re- 
sponse curve), cows, horses, and rabbits often con- 
sumed bites much larger than would fit into their mouths 
with a single cropping motion. Animals consumed these 

bites by feeding the alfalfa stems directly to the molars 
via the diastema between the incisors and molars. This 
allowed them to crop bites that exceeded the dimen- 
sions of the mouth. In contrast, lemmings, elk, and 
prairie dogs tended to restrict bite size as plant size 
increased (for example, Fig. 2D). Body size and feeding 
style did not appear to influence these patterns. 

Tests of model mechanisms 

Consistent with our hypothesis, cropping rate de- 
clined at a decelerating rate as bite size increased for 
all species observed (Fig. 3). 

Maximum intake rates calculated from direct mea- 
surements of chewing rate (chews per minute) and 
chewing effort (chews per gram; Table 3) compared 
favorably with Rmax calculated from Eq. 5 (r2 = 0.98 
for log-transformed values, r2 = 0.91 for untrans- 
formed data; Fig. 4). 

Our functional response model (Eq. 5) accounted for 
83% of the variance in previously published observa- 
tions of intake rate (Fig. 5, n = 153, log y = -0.085 
+ 0.988 log x, r2 = 0.83, P < .001, for untransformed 
data y = -2.09 + 1.07 x, r2 = 0.86, P < .001). The 
largest residuals from the regression (circled points in 
Fig. 5) were obtained by recording pressure changes in 
a pneumatic bellows that encircled the jaw of feeding 
caribou (Trudell and White 1981). This device record- 
ed both jaw and lip movements and may therefore have 
overestimated the number of prehending bites as we 
defined them. 

DISCUSSION 

Relationship to empirical studies of 
functional response 

Our observations of asymptotic intake rate (Rmax) 

consistently exceeded intake rates reported for similar 
species of herbivores (Tables 2 and 4). However, we 
suggest that intake rates observed in many previous 
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observations of bite size for each plant size. We observed two types of cropping tactics. For some species, there was no clear 
upper limit to bite size (A, B). When plant sizes were large, these animals cropped bites that exceeded the volume of the 
mouth and "fed" plant tissue to the molars via the diastema between the incisors and the molars. Other species demonstrated 
stronger tendencies to limit bite sizes to those that would fit in the mouth (C, D). Other species were intermediate to those 
shown here. 

studies never approached Rmax because bite sizes con- 
sumed in those studies severely limited intake rate (Ta- 
ble 4). When we used the bite sizes observed in pre- 
vious studies to drive our functional response model 
(Eq. 5), it accounted for 83% of the variation in intake 
rate for a broad array of herbivores. Our model tended 

to overestimate intake rate (intercept < 0), yet it 
achieved a level of generality not exhibited by other 
models of herbivore functional response. 

We find this generality somewhat surprising because 
we believed that several factors inherent to the design 
of our experiments should limit their applicability. We 

TABLE 3. Chewing frequency and chewing effort for herbivores consuming fresh alfalfa. 

Chews/min Chews/g intake 

Species X SD X SD 

Lemming 474 51.4 3590 447 
Prairie dog 276 21.4 342 46.4 
Rabbit 282 17.6 247 48.1 
Peccary 121 3.3 34.2 7.31 
White-tailed deer (fawn) 145 8.2 17.9 1.93 
White-tailed deer (adult) 101 0.5 7.97 2.04 
Axis deer 121 6.3 11.56 1.82 
Caribou 150 2.1 7.37 0.52 
Grizzly bear 139 2.4 4.28 0.73 
Elk 112 8.4 3.33 0.35 
Moose 117 9.6 5.73 1.42 
Horse 91 7.3 2.67 0.43 
Cow 67 2.1 0.85 0.24 
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representative species differing in body size and feeding style; other species show similar trends. 

offered each animal a homogeneous patch of high-qual- 
ity, low-fiber forage (fresh alfalfa). In so doing, we elim- 
inated characteristics that could potentially reduce in- 
take rate or feeding efficiency, such as high fiber levels 

100 
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FIG. 4. Predicted maximum intake rate (Rmax) was highly 

correlated with observations based on chewing rate and chew- 
ing effort. Best fit to line shown is log10y = 0.039 + 0.948 
log,,x (r2 = 0.98, P < .001). For untransformed data, y = 

0.432 + 0.87x (r2 = 0.91, P < .001). 

(Baich 1971, Spalinger et al. 1988), a densely branched 
plant architecture (McNaughton 1984), or the inclu- 
sion of inedible material in the feeding station (Arnold 
1964, Bell 1970, McNaughton 1978). Moreover, be- 
cause our objective was to test a model of mechanical 
(rather than volitional) controls on intake rate, we con- 
ducted trials with highly motivated, hungry animals 
that were most likely to maximize short-term intake 
rate (Demment and Greenwood 1988, Dougherty et 
al. 1989c). We caution that in some situations, these 
influences may strongly impact intake rate (Dunham 
1980, Arthur 1984) and may limit the utility of our 
model. 

Temporal scale is central to understanding an ani- 
mal's functional response. We focused on instanta- 
neous intake rate and the processes that control it. 
Because animals typically consumed our hand-assem- 
bled patches in a systematic manner, there was essen- 
tially no patch depletion during the course of a mea- 
surement; the distance between bites was the same for 
the first two bites of a trial and the last two. In addition, 
because the mechanical processes responsible for the 
functional response operate on a time scale of seconds 
or minutes, we limited the length of feeding trials. Stud- 
ies of the relationship between food availability and 
intake rate of herbivores have focused on different time 
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scales, ranging from periods of a few minutes (this 
study, Trudell and White 1981, Black and Kenney 1984, 
Hudson and Watkins 1986, Spalinger et al. 1988), 10's 
of minutes (Batzli et al. 1981, Milne et al. 1982; Lund- 
berg and Danell 1990), one to several hours (Allden 
and Whittaker 1970, Short 1986, Lundberg 1988, 
Dougherty et al. 1 989a), or -24 h (Chacon and Stobbs 
1976, Jamieson and Hodgson 1979, Hodgson and Ja- 
mieson 1981, Short 1985). Direct comparisons be- 
tween these studies are difficult because constraints 
imposed by short-duration mechanical processes, such 
as cropping and chewing time, are confounded with 
processes that operate over longer time frames, such 
as digestion, gut fill, or satiety (e.g., Suzuki et al. 1969, 
Dougherty et al. 1989c). The interaction among pro- 
cesses regulating intake over different time scales offers 
an important, unresolved question in foraging ecology. 

Our results suggest that bite size is a useful predictor 
of short-term intake rate of herbivores (Figs. 1 and 5). 
Traditionally, biomass density (in grams per square 
metre) has been used for this purpose. The use of bio- 
mass density to predict intake can be traced to the 
historical predominance of studies of domestic rumi- 
nants feeding in grasslands (reviewed by Hodgson 1985 
and Forbes 1988). In habitats with a relatively simple 
structure, such as grass swards, there is a strong cor- 
relation between bite size and biomass density (Stobbs 
1975, Black and Kenney 1984, Hudson and Nietfeld 
1985, Hudson and Watkins 1986, Penning et al. 1991), 
and consequently either measure can effectively be used 
to predict intake rate of grazers. However, a bite cropped 
by a browser typically consists of a leaf, or a twig with 
a few leaves. Hence, the size of bites cropped by brows- 
ers is often controlled by leaf size. When leaf size con- 
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FIG. 5. Intake rate predicted by our model (Eq. 5) was 

highly correlated with observations of intake from other stud- 
ies (Eq. 5, n = 153, log&y = -0.085 + 0.988 logOx, r2 = 

0.83, P < .001, for untransformed data y = -2.09 + 1.07x, 
r2= 0.86, P < .001). Species plotted are mule deer, Sitka 
black-tailed deer, impala, elk, bison, reindeer, moose, sheep, 
and cattle. All data points except those circled were obtained 
by direct visual counts of cropping movements of the jaw. 
Circled points were obtained indirectly using a pneumatic 
device (Trudell and White 1981) that may count noncropping 
jaw movements. Data from Allden and Whittaker (1970), 
Collins et al. (1978), Trudell and White (1981), Dunham 
(1980), Arthur (1984), Wickstrom et al. (1984), Hudson and 
Nietfeld (1985), Renecker and Hudson (1986), Hudson and 
Frank (1987), Spalinger et al. (1988), Flores et al. (1989a, b), 
Dougherty et al. (1989b, 1990), Penning et al. (1991), and 
Watkins et al. (1991). 

TABLE 4. Maximum intake rates of mammalian herbivores consuming fresh forages. 

Body Bite Intake rate Forage or 
Species mass (kg) size (g) (g/min) habitat Source 

Bank vole 0.04* 0.012 willow shoots Lundberg 1988 
Brown lemming 0.05 0.11 arctic sod Batzli et al. 1981 
Domestic lamb 40t 0.20 5.0 service-berry shrub Flores et al. 1989a 
Impala 40 0.37 7.48 Diospyros lycioides Dunham 1980 
Ewe 40t 0.168 5.7 perennial ryegrass Penning et al. 1991 
Sheep 41.5 6 Kikuyu grass Black and Kenney 1984 
Mule deer 42 0.35 6 mixed diet Wickstrom et al. 1984 
Sheep 43 0.4 7.5 ryegrass Allden and Whittaker 1970 
Black-tailed deer 48 0.28 7.5 Rubus spectabilis Spalinger et al. 1988 
Mule deer 60 3.3 clear-cut forest Collins and Urness 1983 
Reindeer 70 12.7 Pedicularis landgsorfii Trudell and White 1981 
Elk 225t 0.36 12.6 grass sward Hudson and Nietfeld 1985 
Elk 160 1.6 20 mixed diet Wickstrom et al. 1984 
Elk 231 17.2 clear-cut forest Collins and Urness 1983 
Elk 250t 0.5 22.5 wet meadow Collins et al. 1978 
Elk 250t 0.7 21 cured pasture Hudson and Watkins 1986 
Moose 340 1.2 22.5 summer forages Renecker and Hudson 1986 
Moose 350* 29 birch trees Astr6m et al. 1990 
Moose 360 16.7 deciduous leaves Belovsky and Jordan 1978 
Cow 471 1.46 49 fresh alfalfa Dougherty et al. 1989c 
Cow 400t 1.22 74.1 open grassland Arthur 1984 

* Nowak and Paradiso 1983. 
t Personal estimate. 
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trols bite size, bite size and biomass density are un- 
coupled (Spalinger et al. 1988, Spalinger and Hobbs 
1992), and the predictive power of biomass density is 
lost (Trudell and White 1981, Wickstrom et al. 1984, 
Renecker and Hudson 1986, Spalinger et al. 1 988). The 
failure of biomass density to provide general predic- 
tions of herbivore functional response emphasizes the 
need for mechanistic models that respond to the variety 
of foraging situations encountered by herbivores. We 
think that a better understanding of the features of 
plants and animals that control bite size is central to 
this development. 

Relationship to theory on functional response 

Most contemporary models of functional response 
represent foraging by predators. Because herbivores 
encounter foraging situations that differ markedly from 
those confronted by predators, traditional functional 
response models often fail to describe processes regu- 
lating intake rate by herbivores. For example, Holling's 
disc equation and the random parasitoid model require 
that searching for food and handling it occur as mu- 
tually exclusive events (Holling 1959, Rogers 1972). 
Asymptotic forms result in these models because 
searching competes with handling, i.e., the predator 
can allocate its time to one activity or the other, but 
not both simultaneously. In addition, functional re- 
sponse models designed for predators predict the num- 
ber of similar-sized prey captured per unit time (Holl- 
ing 1959, Rogers 1972, Stephens and Krebs 1986, 
Trexler et al. 1988, Abrams 1990). But "prey" size for 
herbivores varies dynamically; it can change by more 
than an order of magnitude even when animals are 
feeding on the same plant species (Fig. 2). Moreover, 
while predators must often reside at a prey item to 
consume it, herbivores can process bites from one plant 
as they move through the environment looking for 
another. Because searching and handling overlap in 
time, searching does not compete with handling when 
plants are sufficiently concentrated in space. 

Our model is a Michaelis-Menten function that can 
be shown to be algebraically identical to the disc equa- 
tion of Holling (1965) under the assumption that the 
cropping rate is a linear function of bite (i.e., prey) 
density (Real 1977). However, this assumption clearly 
does not hold for herbivores feeding in food-concen- 
trated patches. Cropping rates changed over an order of 
magnitude even when the density of plants (or bites) 
offered to animals was held constant (Fig. 3). Thus, 
although our model is mathematically consistent with 
the disc equation, it is functionally different. 

The primary difference between our model and pre- 
vious functional response models follows from as- 
sumptions of the foraging process. Our experiments 
substantiate the idea that competition between crop- 
ping and chewing regulate the instantaneous intake rate 
of herbivores feeding in food-concentrated patches. 
These results are analogous to the competition between 

searching and handling in predator-based models; the 
herbivore can allocate its time to cropping or to chew- 
ing but not both simultaneously (Fig. 3, also see Ardran 
et al. 1958, Greaves 1978, Fortelius 1985). Competi- 
tion between cropping and chewing does not require 
that an herbivore finish chewing one bite before crop- 
ping another, i.e., at any instant an animal may be 
chewing several bites at once. But, this does mean that 
the overall cropping rate is limited by the chewing rate, 
i.e., the rate of input to the mouth cannot exceed the 
rate of output. Large bites require longer chewing times 
than small ones and, hence, depress cropping rate 
through competition for jaw movements. We surmise 
from our experiments in food-concentrated patches that 
the mechanism represented in the functional response 
models of Spalinger and Hobbs (1992) and Laca and 
Demment (1992) faithfully represents these features of 
short-term regulation of intake. We suggest that the 
fidelity of the model to this mechanism explains its 
broad applicability to herbivores of vastly different body 
size and feeding style (Figs. 1 and 5). 

Our observations allow us to reject the hypothesis 
that input to the mouth regulates maximum intake rate 
in mammalian herbivores. Clutton-Brock and Harvey 
(1983) proposed that because buccal capacity deter- 
mines bite size, maximum intake rate is proximally 
limited by the volume of the mouth. They suggested 
that intake rate responds directly to the amount of food 
consumed by each bite, because cropping rate is rela- 
tively constant. Their hypothesis leads to predictions 
inconsistent with our observations. First, it suggests a 
linear increase of intake rate with bite size (i.e., Eq. 5), 
that is, a linear Type I as opposed to an asymptotic 
Type II functional response. In contrast, we observed 
a nonlinear, asymptotic response of intake rate to bite 
size (Fig. 1). Second, Clutton-Brock and Harvey (1983) 
suggested that cropping rate is insensitive to bite size, 
but we observed an inverse relationship between crop- 
ping rate and bite size (Fig. 2). The close correspon- 
dence of our observed maximum intake rate and that 
predicted from chewing rate and chewing effort (Fig. 
4) lends strong support to the idea that the most im- 
portant determinant of intake rate is processing ca- 
pacity. Hence, we conclude that although cropping rate 
is proximally responsible for intake regulation, pro- 
cessing bites for swallowing ultimately controls intake 
by regulating cropping rate. 

Identifying how cropping and chewing compete to 
regulate intake rate provides a foundation for predict- 
ing how plant morphology and structure can influence 
foraging strategies of herbivores. Plant fibrosity (Balch 
1971) or cell wall thickness (Spalinger et al. 1988) will 
reduce the processing rate (Rmax) by increasing chewing 
effort (Spalinger et al. 1988), but may have little or no 
direct effect on cropping time (h). On the other hand, 
we postulate that reductions in intake rate related to 
spinescence (Dunham 1980, Cooper and Owen-Smith 
1986) or changes in plant morphology (McNaughton 
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1984) result from an increase in the time required to 
crop bites (h), but are unrelated to processing rate (Rim). 
Because cropping time is relatively more important to 
functional response as bite size diminishes, we expect 
that plants with small bites (e.g., small leaves) will be 
much more effectively protected by mechanical struc- 
tures than plants with large bites. When leaves are 
large, more time is spent chewing and features that 
increase chewing effort (e.g., lignin) will have more 
impact on intake rate. These factors also emphasize 
the limitations on inferences offered by our data. We 
conducted trials with alfalfa plants in peak condition, 
with very high palatability and relatively low fiber con- 
tents. Therefore, our measures of cropping rate, chew- 
ing effort, and the resulting Rmax are likely to differ 
from those obtained in other settings. 

Although previous models of herbivore functional 
response have provided useful statistical descriptions 
of observations of intake rate (e.g., Allden and Whit- 
taker 1970, Wickstrom et al. 1984, Hudson and Wat- 
kins 1986, Hudson and Frank 1987, Lundberg and 
Danell 1990), they failed to provide testable hypoth- 
eses on the processes regulating intake. In contrast, our 
model describes a specific mechanism. Our tests of the 
model offer evidence that this mechanism, competition 
between cropping and processing, is responsible for 
Type II functional responses frequently observed for 
herbivores feeding in food-concentrated patches. 
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