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Using Andreev and Lifshitz’s supersolid hydrodynamics, we obtain the propagating longitudinal
modes at non-zero applied pressure Pa (necessary for solid 4He), and their generation efficiencies
by heaters and transducers. For small Pa, a solid develops an internal pressure P ∼ P 2

a . This
theory has stress contributions both from the lattice and an internal pressure P . Because both
types of stress are included, the normal mode analysis differs from previous works. Not surprisingly,
transducers are significantly more efficient at producing elastic waves and heaters are significantly
more efficient at producing fourth sound waves. We take the system to be isotropic, which should
apply to systems that are glassy or consist of many crystallites; the results should also apply, at
least qualitatively, to single-crystal hcp 4He.

PACS numbers: 67.80.B-, 67.80.bd, 05.70.Ln

I. INTRODUCTION

In 1969 Andreev and Lifshitz developed a theory of
supersolids.1 Although the microscopic physical descrip-
tion was for flow of vacancies, the macroscopic equations
did not depend on vacancies in an essential fashion. At
about the same time Thouless2 and Chester3 both sug-
gested the possibility of superflow in a solid by vacan-
cies. In addition, Leggett4 pointed out the possibility
of Non-Classical Rotational Inertia (NCRI) associated
with quantum-mechanical flow via a superfluid velocity
(a phase gradient) opposite the local velocity of the ro-
tating lattice.

Since the observation of NCRI by Kim and Chan,5,6 a
number of laboratories have reproduced their work.7–14

(For reviews that emphasize experiment, see Refs. 15 and
16.) Were NCRI the sole criterion for superflow of solids,
there would be strong reason to accept that such super-
flow has been observed. However, a supersolid should
also have other properties, including a fourth sound-like
mode, as predicted by Andreev and Lifshitz, and modi-
fied elastic waves with higher velocities, since the super-
fluid mass does not participate in the motion. (We re-
mind the reader that a fourth sound mode in superfluid
4He occurs only when the normal fluid is entrained by a
porous medium; in the present case the lattice serves as
the porous medium.) Neither a fourth sound mode nor
velocity shifts have been observed.17–19 However, a stiff-
ened shear response is observed,20,21 although not enough
to explain the observed NCRI.16 Note also recent work
indicating that supersolidity in 4He can only occur below
55 mK.22

As a guide to experiments to observe the fourth sound
mode,19 the present work calculates various quantities
relevant to its observation, such as the relative efficien-
cies of a transducer and a heater in producing both lon-
gitudinal elastic waves and fourth sound waves. It also
considers the effect of a non-zero applied pressure Pa; to
solidify 4He, even near T = 0, requires Pa & 25 bar.
To our knowledge, previous works have not included the
effect of Pa.

Although we believe that vacancies are essential to
a microscopic understanding of superflow in solids, in
the hydrodynamic theory they play no fundamental role,
other than as an additional variable largely tied to diffu-
sion. Indeed, we believe that the hydrodynamic theory is
more likely to describe a supersolid related to the NCRI
effect proposed by Leggett than to vacancy superflow.
Most of the present work assumes that the system is

isotropic. One effect this has is that the superfluid den-
sity, which properly is a second rank tensor ↔ρs, is propor-

tional to the unit matrix, so we take
↔

ρs ≈ 1
↔

ρs.
23,24 We

then write the superfluid fraction as

fs =
ρs
ρ
, (1)

where ρs is the superfluid density and ρ is the total (mass)
density. fs is unity in a superfluid at low temperatures.
However, in putative supersolid 4He, the measured NCRI
fraction, which if due to superflow should be equated to
fs, is never greater than about 0.2. The effective nor-
mal fraction fn thus has the curious property of being
not less than 0.8, although at T = 0 there are no excita-
tions to destroy the superflow. We have previously noted
this difficulty,25 and proposed that the lattice be given a
mass fraction fL, in addition to a contribution fex

n due
to excitations, so that 1 = fs + fex

n + fL. This permits,
at T = 0, no excitations (so fex

n = 0) but fs < 1. In
this viewpoint, the lattice velocity is identified with u̇i,
where ui is the lattice displacement, and the effective
normal fluid fraction fn is the sum of fL and a part fex

n

due to excitations: fn = fex
n + fL.

It is known that the more annealed (and thus more
crystalline) the sample of 4He, the smaller the NCRI
fraction.11 Likewise it is known that the more quenched
the sample, the larger the NCRI fraction.12 Hence the
supersolidity is more likely to occur for less crystalline
samples, which might be either glassy26 or consist of a
large number of small crystallites.27 In both of these cases
an acoustic probe is likely to take a rotational average,
thus making the system behave more like an isotropic sys-
tem than a crystal. Therefore we consider systems whose
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macroscopic properties are isotropic. If a pure crystal of
hcp 4He were to be supersolid, then the results we obtain
will be only an approximation; nevertheless they will be
a useful guide for experiment.

We also note that we are working in the linear regime,
where the disturbances produced by a heater or trans-
ducer are expected to be only a small perturbation, as
is assumed in all theories of this sort. It is possible that
solid 4He is ultrasensitive to temperature or to stress (e.g.
if it is a glass, perhaps the atoms can be driven off their
sites by a transducer). Nevertheless, there should always
be a linear regime; Ref. 19 notes that their membrane for
producing putative fourth sound produced strains much
below the critical value.

The present work is intended to be self-contained,
although we do not derive the equations of motion,
which may be most explicitly obtained from Sect.IV of
Ref. 28,29 nor do we derive the Pa dependence of various
quantities, which is done explicitly in Ref. 30.

Sections II and III present the thermodynamics and
equations of motion, respectively. Section IV studies the
eigenfrequency and eigenmodes for each of the longitudi-
nal propagating modes. Section V finds, for each mode,
the stress and temperature response in terms of the nor-
mal fluid velocity. Section VI finds and discusses the ef-
ficiency of generating each propagating mode by a trans-
ducer and a heater. Section VII provides a brief summary
of the results.

One of the features of the hydrodynamic theory of su-
persolids is that it contains stress due to both internal
pressure P and the lattice, in order to permit the system
properties to continuously transform into those of a su-
perfluid. This means that under an applied pressure Pa

the pressure and the lattice each take up a part of it. We
believe that use of both a pressure and a lattice stress is
needed not merely for solid 4He but for other solids as
well, particularly those under pressure or with point de-
fects that are not in equilibrium.30 Appendix A discusses
the relationship between the internal pressure P and the
applied pressure Pa, which we estimate using experimen-
tal data and results from Ref. 30. Appendix B discusses
the relative sizes of velocities and strains in a crystal un-
der an applied pressure. Appendix C finds the relative
size of two thermodynamic derivatives of temperature T
that appear in the generation efficiencies.

II. THERMODYNAMICS

The thermodynamic equations for a supersolid are
given in terms of the energy density ǫ, entropy density s,
unsymmetrized strain wij = ∂iuj , mass density ρ, super-
fluid velocity ~vs, and momentum density

~g = ρn~vn + ρs~vs, (2)

and their thermodynamically conjugate quantities.1,28

Here ~vn is the normal fluid velocity. Specifically,

dǫ = Tds+ λikdwik + µdρ+ ~vn · d~g +~js · d~vs, (3)

ǫ = −P + Ts+ λikwik + µρ+ ~vn · ~g +~js · ~vs, (4)

0 = −dP + sdT + wikdλik + ρdµ+ ~g · d~vn + ~vs · d~js.
(5)

Here the thermodynamically conjugate quantities are
temperature T , (unsymmetrized) elastic tensor density
λik (with units of pressure P ), chemical potential µ (with
units of velocity squared), normal fluid velocity ~vn, and

~js = ~g − ρ~vn = ρs(~vs − ~vn). (6)

Note that ~js has units of momentum density but is in-
variant under Galilean boosts. That is, if both ~vn and ~vs
are boosted by δ~v, ~js does not change.
We find it convenient to define

~jn ≡ ρ~vn, (7)

so that

~g = ~jn +~js. (8)

Unlike ~js, the quantity ~jn is a momentum density both in
units and in its properties under Galilean boosts; under
a boost by δ~v, both ~g and ~jn are boosted by ρ(δ~v).

III. HYDRODYNAMIC EQUATIONS

Eq. (3) shows that there are five independent thermo-
dynamic variables. Two of them are scalars (s and ρ),
one is a tensor (wik = ∂iuk) and two are vectors (~g and
~vs). In developing the hydrodynamic equations we will

employ the first three, but we will use the two vectors ~jn
and ~js in place of ~g and ~vs. For an ordinary solid, where
~vs does not appear, it is convenient to use the variables
σ ≡ s/ρ, ρ, wik, and ~g, since σ decouples from the other
variables. Such decoupling does not occur for the super-
solid. Note that one could also use the scalar variables T
and ρ, or T and µ, or s and µ.
Unless otherwise specified, thermodynamic derivatives

with respect to ρ, s, or wik are taken with the other two
variables held constant.
We consider small amplitude excitations of the form

exp [i(~k · ~r − ωt)], where the wavevector ~k is taken to
be known. Then, with primes denoting deviations from
equilibrium, in the absence of damping the equations of
motion are given by1,28

ρ̇′ + ∂ig
′

i = 0, (9)

ġ′i − ∂kσ
′

ik = 0, σik ≡ λik − Pδik, (10)

v̇′si + ∂iµ
′ = 0, (11)

ṡ′ + s∂ivn
′

i = 0, (12)

u̇′

i − vn
′

i = 0. (13)
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Rather than the stress tensor σik, the momentum flux
Πik = −σik + ρsvsivsk + ρnvnivnk ≈ −σik has also been
employed,1,31 as well as gi = ji.

1,31,32

In terms of the thermodynamic variables ρ and s, we
have

µ′ =
∂µ

∂ρ
ρ′ +

∂µ

∂s
s′ +

∂µ

∂wjl
w′

jl, (14)

σ′

ik =
∂σik

∂ρ
ρ′ +

∂σik

∂s
s′ +

∂σik

∂wjl
w′

jl. (15)

The equations of motion (9), (12), and (13) directly give

ρ′ =
kig

′

i

ω
, (16)

s′ = s
kivn

′

i

ω
, (17)

w′

ij = ikiu
′

j = −
kivn

′

j

ω
. (18)

The other two equations of motion, (10) and (11), can
now be written in terms of v′si and v′ni, or, equivalently,
j′si and j′ni.
From (15)-(18), momentum conservation (10) gives

ωg′i =− kkσ
′

ik

=−
kkkl
ω

∂σik

∂ρ
g′l −

kkkl
ω

s
∂σik

∂s
vn

′

l +
kkkj
ω

∂σik

∂wjl
vn

′

l.

(19)

We now rearrange to use the variables j′n and j′s. From
(7)-(8), multiplying (19) by ω gives

0 =

[
ω2δil + kkkl

∂σik

∂ρ

]
js

′

l +

[
ω2δil +

(
kkkl

∂σik

∂ρ

+kkkl
s

ρ

∂σik

∂s
− kkkj

1

ρ

∂σik

∂wjl

)]
jn

′

l. (20)

Likewise, from (14) and (16)-(18), the superfluid equa-
tion of motion (11) gives

ωvs
′

i =kiµ
′ =

kikl
ω

∂µ

∂ρ
g′l +

kikl
ω

s
∂µ

∂s
vn

′

l −
kikj
ω

∂µ

∂wjl
vn

′

l.

(21)

From (7)-(8) and ρsvs
′

i = js
′

i − (ρs/ρ)jn
′

i, multiplying
(21) by ρsω and rearranging gives

0 =

[
ω2δil − kiklfsρ

∂µ

∂ρ

]
js

′

l + fs

[
ω2δil

− ρ

(
kikl

∂µ

∂ρ
+ kikl

s

ρ

∂µ

∂s
− kikj

1

ρ

∂µ

∂wjl

)]
jn

′

l. (22)

Equations (20) and (22) yield the normal mode fre-
quencies and their eigenvectors (the ratio of the responses
of the normal and superfluid currents). In what follows
we consider only an isotropic solid. The effect this con-
straint has on (20) and (22) is that the second-rank ten-
sors are all proportional to the unit tensor, and the term

kkkjρ
−1(∂σik/∂wjl) in (20) contains two terms, one pro-

portional to δil and one proportional to kikl.
Taking the dot product of these equations with ki then

gives two equations in the unknowns ω2, ~k ·~j′s, and
~k ·~j′n.

This yields ω2 and the ratio ~k·~j′s/
~k·~j′n. In addition, taking

the cross-product of (22) with ki gives, since ~k × ~vs = ~0,
identically zero. Further, taking the cross-product of (20)
with ki gives an equation having terms proportional to

ω2 and k2, both multiplying ~k × ~vn.
There are two ways to solve the resulting equations for

~k ·~j′s,
~k ·~j′n, and

~k×~vn. One solution is to take ~k×~vn = ~0
and klj

′

sl 6= 0, klj
′

nl 6= 0 (purely longitudinal modes),
with the frequencies determined by the two equations

in the unknowns ω2, ~k · ~j′s, and
~k · ~j′n. Hence this set

of modes is purely longitudinal. The other solution is to

take ~k×~vn 6= ~0 and ~k ·~j′s = 0, ~k ·~j′n = 0 (purely transverse
modes), with the frequencies determined by the the cross-
product of (20) with ki. ~vs does not participate in the
transverse modes, so their mass weighting involves only
ρ/ρn, and their frequencies squared should be higher than
in the normal solid by ρ/ρn. To our knowledge such an
effect has not been observed.33

IV. LONGITUDINAL EIGENFREQUENCIES

AND EIGENMODES

Recall that, unless otherwise specified, thermodynamic
derivatives with respect to ρ, s, or wik are taken with the
other two variables held constant.

A. Some Properties and Definitions

We now compute the quantity ∂σik/∂ρ, which appears
in (20). We take the strain response of a solid to Pa to

be isotropic (i.e., w
(0)
ik ∼ δikw

(0)
ll , where the superscript

(0) denotes the static value). Recall that wik is unsym-
metrized; here we take only the static part, due to Pa, to
be symmetric, as does Ref. 34. Then, by Ref. 34,

λ
(0)
ik =

(
K −

2

3
µV

)
δikw

(0)
ll + µV

(
w

(0)
ik + w

(0)
ki

)
∼ δikw

(0)
ll ,

(23)

so that we can write

∂λik

∂ρ
≡

∂λ

∂ρ
δik. (24)

Here, K and µV are the respective bulk and shear mod-
uli, with units of P ; µV is completely distinct from µ.
Eq. (24) is also employed in Ref. 30, although there
σ = s/ρ is held constant rather than s. At T ≈ 0, the
difference should be negligible. Thus we can write

∂σik

∂ρ
=

∂λik

∂ρ
− δik

∂P

∂ρ
=

[
∂λ

∂ρ
−

∂P

∂ρ

]
δik ≡

∂σ̃

∂ρ
δik,

(25)
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where we use σ̃ to distinguish a stress (with the same
units as σik) from σ = s/ρ; σ̃ and σ are not related. Note
that ∂σ̃/∂ρ is not a true derivative, merely a definition;
further, we do not here define a σ̃.
We now compute the quantity ∂σik/∂wjl, which also

appears in (20). Since Ref. 30 shows that (∂P/∂wik) ∼

w
(0)
ik ∼ w

(0)
ll δik, we can write

∂P

∂wik
≡

∂P

∂w
δik. (26)

∂P/∂w is evaluated in Ref. 30, and is given in Ap-
pendix B. We also use the definitions

∂λ

∂w
≡ K +

4

3
µV ,

∂σ̃

∂w
≡

∂λ

∂w
−

∂P

∂w
, (27)

As above, ∂σ̃/∂w is not a true derivative, merely a defi-
nition. Eqs. (23) and (26) then give

∂σik

∂wjl
=

(
∂σ̃

∂w
− 2µV

)
δikδjl + µV δilδjk + µV δijδkl.

(28)

Thus,

kkkj
∂σik

∂wjl
j′nl =

(
∂σ̃

∂w
− µV

)
ki(~k ·~j′n) + µV k

2j′ni. (29)

For ~k · ~j′n 6= 0 and ~k × ~jn = 0 (the longitudinal case),

ki(~k ·~j′n) = k2j′ni so that (29) gives

kkkj
∂σik

∂wjl
j′nl =

∂σ̃

∂w
k2µV j

′

ni. (30)

It is convenient to define the velocities c0 and c1, which
satisfy

c20 ≡ρ
∂µ

∂ρ
, (31)

c21 ≡−
∂σ̃

∂ρ
+

1

ρ

∂σ̃

∂w
. (32)

If σ, rather than s, were held constant, then c0 would
be the sound velocity in an ordinary fluid, and c1 would
be the velocity of sound in an ordinary solid with no
superflow.30 Using the Gibbs-Duhem relation (5) and ne-
glecting thermal expansion and terms second order in ve-
locities gives

∂P

∂ρ
= c20 + wjl

∂λjl

∂ρ
. (33)

Then, eq. (25) gives

∂σ̃

∂ρ
≈
(
1− w

(0)
ll

) ∂λ

∂ρ
− c20. (34)

In the following we use either (25) or (34), depending on
convenience.

B. Reducing the Equations of Motion

Momentum Equation (20): We take s(∂σik/∂s) →
0, which should be a reasonable approximation for solid
4He at low temperatures, both because s → 0 as T → 0,
and because K and µV (and therefore λik at constant
wjl) should be nearly independent of s. Substituting (25)
and (30) into (20) and using (32) and (34) then gives, for
a purely longitudinal mode,

0 =

[
ω2 −

(
c̃2 + w

(0)
ll

∂λ

∂ρ

)
k2
]
js

′ +
[
ω2 − c21k

2
]
jn

′;

(35)

here we define, to simplify the equations,

c̃2 ≡ c20 −
∂λ

∂ρ
. (36)

Appendix B finds that |∂λ/∂ρ| ≫ c20, so that c̃2 ≈
−∂λ/∂ρ. It also finds that c̃2 is expected to be posi-
tive, and first order in Pa/K. Further, it shows that for
Pa ≪ K we have c21 ≫ c̃2 ≫ c20.
Superfluid Equation (22): A Maxwell relation that

follows from (3), combined with (24), gives

∂µ

∂wjl
=

∂λjl

∂ρ
= δjl

∂λ

∂ρ
. (37)

Then, neglecting s(∂µ/∂s) = s(∂T/∂ρ) ∼ T 4, and taking
the mode to be purely longitudinal, eq. (22) gives

0 =
[
ω2 − fsc

2
0k

2
]
js

′ + fs
[
ω2 − k2c̃2

]
jn

′. (38)

We use (35) and (38) first to find the longitudinal mode
frequencies, then to find the superfluid-to-normal ratios
of current density and velocity in each longitudinal mode.
For fs → 0, eq. (38) gives either ω2 = fsc

2
0k

2 (fourth
sound) or j′s = 0 (no superflow). In the latter case, sub-
stitution into (35) then gives ω2 = c21k

2 (first sound).

C. Longitudinal Mode Frequencies

Eqs. (35) and (38) yield

0 =ω4(1− fs)− ω2k2
[
c21 + fsc

2
0 − fs

(
2c̃2 + w

(0)
ll

∂λ

∂ρ

)]

+ k4fs

[
c21c

2
0 − c̃2

(
c̃2 + w

(0)
ll

∂λ

∂ρ

)]
. (39)

Solving (39) to first order in fs gives

ω2
1

k2
≡

ω2
+

k2
= c21 + fs

[
c21 − 2c̃2 +

c̃4

c21
+ w

(0)
ll

∂λ

∂ρ

(
c̃2

c21
− 1

)]
,

(40)

and

ω2
4

k2
≡

ω2
−

k2
= fs

(
c20 −

c̃4

c21
− w

(0)
ll

∂λ

∂ρ

c̃2

c21

)
≡ fsc̃

2
0. (41)



5

In the limit where c20 ≪ ∂λ/∂ρ and w
(0)
ll ≪ 1 (i.e., Pa ≪

K),

c̃20 ≈ c20 −
c̃4

c21
. (42)

Appendix B finds that both terms on the right-hand-side
of (42) are second order in Pa/K. Further, it shows that
for Pa ≪ K we have c21 ≫ c̃2 ≫ c̃20.

D. Longitudinal Mode Structure – Currents and

Velocities

We now find the ratios of the normal fluid and super-
fluid response for both longitudinal modes. These ratios
will be used to calculate, for each mode, the response to
the stress and temperature produced by transducers and
by heaters. We employ

v′s
v′n

=
ρ

ρs

ρs(v
′

s − v′n)

ρv′n
+ 1 =

1

fs

j′s
j′n

+ 1. (43)

The ratios j′s/j
′

n for each mode can in principle be ob-
tained from the normal mode frequencies and either of
(35) or (38).

1. First Sound Mode Structure

From (38), with the subscript 1 denoting first sound,

j′s1
j′n1

= −fs

ω2

1

k2 − c̃2

ω2

1

k2 − fsc20
. (44)

Substituting ω2
1 from (40), accurate to zeroth order in fs,

gives a ratio accurate to first order in fs:

j′s1
j′n1

≈ −fs

(
1−

c̃2

c21

)
. (45)

Then, using (43), the ratio of superfluid velocity to nor-
mal velocity for first sound is

v′s1
v′n1

≈
c̃2

c21
. (46)

Appendix B shows that c21 ≫ c̃2, so v′n1 ≫ v′s1.

2. Fourth Sound Mode Structure

From (35), with subscript 4 denoting fourth sound,

j′s4
j′n4

= −

ω2

4

k2 − c21
ω2

4

k2 −
[
c̃2 + w

(0)
ll

∂λ
∂ρ

] . (47)

With ω2
4 ∼ fs, for fs ≪ 1

j′s4
j′n4

≈−
c21

c̃2 + w
(0)
ll

∂λ
∂ρ

. (48)

Appendix B shows that if Pa/K ≪ 1, then w
(0)
ll ≪ 1

and c20 ≪ ∂λ/∂ρ. Thus, eq. (36) gives c̃2 ≈ −∂λ/∂ρ ≫

w
(0)
ll ∂λ/∂ρ. Then,

j′s4
j′n4

≈−
c21
c̃2
. (49)

Then, using (43), the ratio of superfluid velocity to nor-
mal velocity for fourth sound is, to lowest order in fs,

v′s4
v′n4

≈ −
c21
fsc̃2

. (50)

Appendix B shows that c21 ≫ c̃2, so v′s4 ≫ v′n4.

V. LONGITUDINAL MODES – STRESS AND

TEMPERATURE RESPONSES

We now calculate the deviations from equilibrium of
the longitudinal stress and temperature produced by a
transducer and by a heater. We consider that only the
σ′

11 component of the stress is generated. For notational
simplicity we employ σ̂′ ≡ σ′

11; recall that σ is reserved
for the entropy/mass.

A. Stress

Conservation of momentum (10) yields

σ̂′ = −
ωg′

k
= −

ω

k
(j′s + j′n) = −

ω

k

(
j′s
j′n

+ 1

)
ρv′n. (51)

Substituting the ratio j′s/j
′

n from (45) and (49) and
ω1,4 = +c1,4k from (40) and (41) into (51) gives the
stress associated with each mode. For fs ≪ 1,

σ̂′

1 ≈− c1

[
1− fs

(
1−

c̃2

c21

)]
ρv′n1 ≈ −ρc1v

′

n1, (52)

σ̂′

4 ≈f
1

2

s
c21
c̃2
ρc̃0v

′

n4 = f
1

2

s
c21
c̃2
ρc̃0

v′n4

v′n1

v′n1. (53)

where we have used c21 ≫ c̃2 (see Appendix B).
The total stress deviation therefore is

σ̂′ = σ̂′

1 + σ̂′

4 ≈ −c1ρv
′

n1

[
1− f

1

2

s c̃0
c1
c̃2

v′n4

v′n1

]
. (54)

The ratio v′n4/v
′

n1 depends on the mode generator, to be
discussed in the next section.
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B. Temperature

The temperature deviation is less straightforward to
obtain because it is a function of the variables s, ρ, and
wjl:

T ′ ≈
∂T

∂s
s′ +

∂T

∂ρ
ρ′ +

∂T

∂wjl
w′

jl. (55)

Since ∂T/∂wjl = ∂λjl/∂s, and K and µV depend only
weakly on s, by (23) we neglect ∂T/∂wjl. Substitution
for ρ′ and s′ from (16) and (17) then yields

T ′ ≈ s
∂T

∂s

ki
ω
vn

′

i +
∂T

∂ρ

ki
ω
g′i. (56)

We earlier showed that the mode is longitudinal, so we
drop the indices i. The identity g′ = ρ (1 + j′s/j

′

n) v
′

n

then yields, for both modes, that

T ′ ≈
k

ω
v′n

[
s
∂T

∂s
+ ρ

∂T

∂ρ

(
1 +

j′s
j′n

)]
. (57)

Substituting the ratio j′s/j
′

n from (45) and (49) and
ω1,4 = +ck1,4 from (40) and (41) into (57) gives the tem-
perature associated with each mode. To lowest order in
fs we obtain

T ′

1 ≈
vn

′

1

c1

[
s
∂T

∂s
+ ρ

∂T

∂ρ

]
, (58)

T ′

4 ≈f
−

1

2

s
vn

′

4

c̃0

[
s
∂T

∂s
+ ρ

∂T

∂ρ

(
1−

c21
c̃2

)]
. (59)

For a solid at low temperature, Appendix C gives
ρ(∂T/∂ρ) ≈ 10s(∂T/∂s). In addition, for Pa ≪ K (as
is the case here), Appendix B gives c21 ≫ c̃2. Therefore
(58)-(59) become

T ′

1 ≈ρ
∂T

∂ρ

vn
′

1

c1
, (60)

T ′

4 ≈− f
−

1

2

s ρ
∂T

∂ρ

c21
c̃2

vn
′

4

c̃0
= −f

−
1

2

s ρ
∂T

∂ρ

c21
c̃2

vn
′

4

vn′

1

vn
′

1

c̃0
. (61)

The total temperature deviation therefore is

T ′ = T ′

1 + T ′

4 ≈ ρ
∂T

∂ρ

vn
′

1

c1

[
1− f

−
1

2

s
c31
c̃2c̃0

vn
′

4

vn′

1

]
. (62)

The ratio v′n4/v
′

n1 depends on the mode generator, to be
discussed in the next section.

VI. LONGITUDINAL MODE GENERATION

A transducer produces, and therefore can be used to
detect, stress deviations. A heater produces, and there-
fore can be used to detect, temperature deviations (when
used as a detector, a heater is called a thermometer). To
utilize the results of Sec. V, we find v′n4/v

′

n1 for each
device, then substitute it into (52)-(54) and (60)-(62) to
find the respective stress and temperature deviations pro-
duced by transducers and heaters.

A. Transducer Properties

For a transducer we take v′s = v′n (and therefore j′s = 0)
so that

0 = j′s|trn = [j′s1 + j′s4]trn =

[
j′s1
j′n1

j′n1 +
j′s4
j′n4

j′n4

]

trn

,

(63)

where the subscript “trn” denotes properties of a trans-
ducer. Then

v′n4

v′n1

∣∣∣∣
trn

=
j′n4

j′n1

∣∣∣∣
trn

= −
j′s1/j

′

n1

j′s4/j
′

n4

. (64)

Use of (45) and (49) yields

v′n4

v′n1

∣∣∣∣
trn

≈− fs
c̃2

c21

(
1−

c̃2

c21

)
≈ −

fsc̃
2

c21
, (65)

where we have taken c21 ≫ c̃2 (see Appendix B).
Eq. (52) gives σ̂′

1 in terms of v′n1, regardless of gener-
ator. Use of (65) in (53)-(54) gives

σ̂′

4|trn ≈− f
3

2

s ρc̃0v
′

n1, (66)

σ̂′|trn ≈− ρc1v
′

n1

(
1 + f

3

2

s
c̃0
c1

)
≈ −ρc1v

′

n1, (67)

for fs ≪ 1 and c̃20 ≪ c21. Thus the stress produced by
a transducer primarily goes into first sound, with a frac-

tion f
3/2
s (c̃0/c1) of the stress going into fourth sound.

Eqs. (52) and (66) divided by (67) are the two entries in
the top left of Table I.
Eq. (60) gives T ′

1 in terms of v′n1, regardless of gener-
ator. Substituting (65) into (61) yields

T ′

4|trn ≈f
1

2

s ρ
∂T

∂ρ

vn
′

1

c̃0
. (68)

By (60), T ′

4 = f
1/2
s (c1/c̃0)T

′

1, so T ′

1 and T ′

4 could be of
the same order of magnitude. Eqs. (60) and (68) divided
by (67) are the two entries in the top right of Table I.

B. Heater Properties

For a heater we take g′ = 0, so that

0 =g′|htr = [(j′s1 + j′n1) + (j′s4 + j′n4)]htr

=

(
j′s1
j′n1

+ 1

)
j′n1|htr +

(
j′s4
j′n4

+ 1

)
j′n4|htr, (69)

where the subscript “htr” denotes properties of a heater.
Then

v′n4

v′n1

∣∣∣∣
htr

=
j′n4

j′n1

∣∣∣∣
htr

= −
(j′s1/j

′

n1) + 1

(j′s4/j
′

n4) + 1
, (70)
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and substitution from (45) and (49) yields, for fs ≪ 1,

v′n4

v′n1

∣∣∣∣
htr

≈
1

c2
1

c̃2 − 1
≈

c̃2

c21
. (71)

Here, we have used c21 ≫ c̃2 (see Appendix B).
Eq. (60) gives T ′

1 in terms of v′n1, regardless of gener-
ator. Substitution of (71) into (61)-(62) gives

T ′

4|htr ≈− f
−

1

2

s ρ
∂T

∂ρ

vn
′

1

c̃0
, (72)

T ′|htr ≈ρ
∂T

∂ρ

vn
′

1

c1

[
1− f

−
1

2

s
c1
c̃0

]
≈ −f

−
1

2

s ρ
∂T

∂ρ

vn
′

1

c̃0
, (73)

for fs ≪ 1 and c̃20 ≪ c21. Thus the temperature pro-
duced by a heater primarily goes into fourth sound, with

a fraction f
1/2
s (c̃0/c1) of the temperature going into first

sound. Eqs. (60) and (72) divided by (73) are the two
entries in the bottom right of Table I.
Eq. (52) gives σ̂′

1 in terms of v′n1, regardless of gener-
ator. Substituting (71) into (53) yields

σ̂′

4|htr ≈f
1

2

s ρc̃0v
′

n1. (74)

Since fs ≪ 1 and c̃20 ≪ c21, we have σ̂′

1 ≫ σ̂′

4. Eqs. (52)
and (74) divided by (73) are the two entries in the bottom
left of Table I.

C. Generation Efficiencies

A proper treatment of the response of a given detec-
tor (transducer or thermometer) to a given mode (first
or fourth sound) would consider the incoming mode
and what happens under reflection from the detector;
this would give the net stress and temperature at the
detector.31 We consider only the issue of generation.
A transducer generates mostly stress, σ̂′. Thinking of

the equation entries in Table I as a 4-by-2 matrix M,
M11 shows that a transducer is efficient as a first sound
generator. M21/M11 gives

σ̂′

4

σ̂′

1

≈ f3/2
s

c̃0
c1

. (transducer) (75)

For fs ≪ 1 and c̃20 ≪ c21, this is negligible.

Although a transducer primarily produces stress,
it also produces a small temperature deviation T ′.
M22/M12 gives

T ′

4

T ′

1

≈ f1/2
s

c1
c̃0
. (transducer) (76)

For fs ≪ 1 and c̃20 ≪ c21, it is not clear which of the terms
in (76) dominates.
A heater generates mostly temperature, T ′, and M42

shows that a heater is efficient as a fourth sound genera-
tor. M42/M32 gives

∣∣∣∣
T ′

4

T ′

1

∣∣∣∣ ≈ f−1/2
s

c1
c̃0

≫ 1, (heater) (77)

which is large. In fact, for fs ≪ 1 and c̃20 ≪ c21, M42 =
T ′

4/T
′ ≈ 1 and therefore nearly all of the temperature

response corresponds to the fourth sound mode.
Although a heater primarily produces temperature, it

also produces a small stress deviation σ̂′. M41/M31

gives

∣∣∣∣
σ̂′

4

σ̂′

1

∣∣∣∣ ≈ f1/2
s

c̃0
c1
. (heater) (78)

Therefore, with fs ≪ 1 and c̃20 ≪ c21, eqs. (75) and (78)
imply that stress deviations do not contribute an appre-
ciable amount of fourth sound, whether produced by a
transducer or a heater.

VII. SUMMARY

We have studied the implications of the Andreev and
Lifshitz theory of supersolids for the generation of a
fourth sound mode in a solid under an applied pressure
Pa, including the relative efficiencies of a transducer and
a heater in producing both longitudinal elastic waves and
fourth sound waves. The present results apply when the
bulk modulus K ≫ Pa.
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≈

1

1 + f
3

2
s

c̃0
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T ′
1
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≈ −
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1

∂T

∂ρ
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− 3

2
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3

2
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1

2
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Appendix A: Relating Applied Pressure Pa and

Internal Pressure P

We now use the experimental data of Ref. 35 to esti-
mate P/Pa. We then evaluate when Pa ≫ P .
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Ref. 30 gives that

P

Pa
≈

K
∗

Pa

2K2
, (A1)

where K∗ ≡ K − V (∂K/∂V )|wik,σ,N . Under hydrostatic

compression λ
(0)
ik − Pδik = −Paδik. Thus,

λ
(0)
ll = 3P − 3Pa ≈

3K
∗

P 2
a

2K2
− 3Pa. (A2)

Unfortunately, K∗ is not a quantity measured exper-
imentally, since the structure of the energy density dic-
tates that the derivative is taken at constant strain (i.e.,
constant lattice site density).
In what follows, we roughly estimate ∂K/∂V by as-

suming it to be of the same order of magnitude whether
taken at constant wik or under typical experimental con-
ditions. That is, we take

∂K

∂V

∣∣∣∣
wik,σ,N

≈
∂K

∂V

∣∣∣∣
σ,N,exp

≈
∆K

∆V

∣∣∣∣
σ,N,exp

. (A3)

We now consider the data of Ref. 35. Although the
samples were necessarily under pressure, Ref. 35 appears
to apply c21 = (1/ρ)(∂λ/∂w) = (1/ρ)[K +(4/3)µV ] with-
out including corrections due to Pa.

30 Nevertheless their
result should permit a rough estimate (for simplicity we
consider that T ≈ 0). We use K = (1/3)[c11 + 2c13],
where c11 and c13 are elastic constants.35. Select parts of
Tables I and II of Ref. 35 are reproduced in Table II for
two molar volumes, which is sufficient to make estimates.
These data give ∆V ≈ −1.2 cm3/mole and ∆K ≈

160 bars, so that ∆K/∆V ≈ −133 bars-mole/cm3, which
we take to be constant since the elastic constants in Fig-
ure I of Ref. 35 are linear in volume. Thus we obtain the
two values for K∗ in Table II: K∗ ≈ 10K at Pa = 31 bars
and K∗ ≈ 6.6K at Pa = 52 bars.
For Pa ≈ 31 bars, P/Pa ≈ 0.53 (and thus λ11/Pa ≈

0.47). For Pa ≈ 52 bars, P/Pa ≈ 0.37 (and thus
λ11/Pa ≈ 0.63).
For V = 20.5 cm3/mole, Pa/K ≈ 0.10, so it is ap-

propriate to take Pa ≪ K. For V = 19.28 cm3/mole,
Pa/K ≈ 0.11, and Pa ≪ K is still a reasonable approx-
imation. Therefore, for applied pressures less than 100
bars (and possibly higher), Pa ≪ K likely holds.
Pa/K increases as Pa increases. Therefore, although at

higher Pa we may find that Pa ≫ P (extrapolating from
Table II), Pa/K might become on the order of unity,
and the approximations made in the present work and in
Ref. 30 no longer apply.

Appendix B: Velocities, Thermodynamic Derivatives

and Strain in a Crystal Under Applied Pressure

We now estimate the relative sizes of the velocities c1,
c0, c̃, and c̃0 in the limit Pa ≪ K. We use the relation-
ships between thermodynamic derivatives and applied
pressure given in Ref. 30.

To lowest order in Pa/K, Ref. 30 gives

w
(0)
ll = −

Pa

K
, (B1)

∂λ

∂ρ
=

V Pa

ρK

∂K

∂V

∣∣∣∣
σ,wik,N

, (B2)

∂P

∂ρ
=

V 2P 2
a

2ρK2

∂2K

∂V 2

∣∣∣∣
σ,wik,N

, (B3)

∂P

∂w
= −Pa

(
1−

V

K

∂K

∂V

∣∣∣∣
σ,wik,N

)
, (B4)

c21 ≈
K + 4

3µV

ρ
, (B5)

where σ = s/ρ. Here the internal pressure P has been
taken to depend only on the square of the strain. Al-
though ∂λ/∂ρ and ∂P/∂ρ in Ref. 30 are taken at con-
stant σ, not s, at solid 4He temperatures we assume that
σ ≈ 0 ≈ s. Note that to lowest order in Pa/K, the strain
of eq. (B1) agrees with Ref. 34, which includes lattice
stress but no internal pressure P . (Ref. 30 also finds a
P 2
a term in the strain that is not obtained in Ref. 34.)
We now use the Gibbs-Duhem relation (5) to determine

c20:

c20 = ρ
∂µ

∂ρ
≈
∂P

∂ρ
− w

(0)
ll

∂λ

∂ρ

≈
V P 2

a

ρK2

[
V

2

∂2K

∂V 2

∣∣∣∣
σ,wik,N

+
∂K

∂V

∣∣∣∣
σ,wik,N

]
.

(B6)

Note that Ref. 1 takes ρ(∂µ/∂ρ) = ∂P/∂ρ, and thus does
not include the term proportional to the static strain. As
for P , µ depends only on the square of the strain, via a
Maxwell relation. This is not true for a good liquid.
Eq. (B6) shows that c20 is second order in Pa/K,

whereas (B2) shows that ∂λ/∂ρ is first order in Pa/K.
Thus, for Pa ≪ K, |∂λ/∂ρ| ≫ |c20|. Therefore (36) gives

c̃2 ≈ −∂λ/∂ρ ≫ c20. (B7)

Further, we may find the sign of c̃2. K is a measure of
the stiffness of a solid. Thus, as V increases at constant
particle number and strain (or lattice site number den-
sity), i.e., as vacancies and lattice sites are added to the
system, K should decrease, or ∂K/∂V < 0. Then (B2)
gives ∂λ/∂ρ < 0, so that

c̃2 ≈ −∂λ/∂ρ > 0. (B8)

Moreover, since to first order c21 is independent of Pa,
eqs. (B2) and (B5) give

c21 ≫ |∂λ/∂ρ|. (B9)

Combining (B7) and (B9) yields

c21 ≫ c̃2 ≫ c20. (B10)
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Volume Pa c33 c13 K ∆K/∆V K∗ P P/Pa Pa/K
(
cm3/mole

)
(bars) (bars) (bars) (bars)

(
bars mole/cm3

)
(bars) (bars)

19.28 51.6† 980 198 460 -133 3020 19.1 0.37 0.11

20.5 31.4† 630 142 300 -133 3030 16.6 0.53 0.10

TABLE II. The first four columns are experimental data on hcp 4He from Ref. 35. We also employ K = [c33 +2c13]/3, assume
K to be linear in V , take K∗

≈ K−V (∆K/∆V ), and find P/Pa from (A1). †Value was estimated by extrapolation from Table
I of Ref. 35.

Finally, (42) gives c̃20 ≈ c20−(c̃4/c21), which implies that
c̃20 ≪ c̃2. Thus, (B10) gives

c21 ≫ c̃2 ≫ c̃20. (B11)

The quantities c20 and c̃20 may be of the same order.

Appendix C: On s(∂T/∂s) and ρ(∂T/∂ρ)

For an insulating solid at low temperatures, it is well-
known that s = ξ(T/u)3, where ξ is a dimensionless
constant and u is the mean velocity of longitudinal and

transverse ordinary sound.36 It immediately follows that

s
∂T

∂s

∣∣∣∣
ρ

=
T

3
, (C1)

and that (∂T/∂u)s = T/u. We then have

ρ
∂T

∂ρ

∣∣∣
s
= ρ

∂T

∂u

∣∣∣
s

∂u

∂ρ

∣∣∣
s
≈ T

ρ

u

∂u

∂ρ
|s. (C2)

We are at low enough temperatures that we may consider
u to depend only on density, so that both s and T may
be considered nearly zero.
We now estimate (ρ/u)(∂u/∂ρ)|T = −(V/u)(∂u/∂V)|T

of (C2), where the molar volume V ∼ ρ−1. Us-
ing data from Fig.13 of Ref. 37 we take an averaged
longitudinal sound velocity of 5 × 104 cm/s to be u,
V to be 20 cm3/mole, and (from Fig.13) ∆u/∆V ≈
(∂u/∂V) to be −0.83 × 104 mole/(cm2-s). This gives
(ρ/u)(∂u/∂ρ)|T ≈ 3.3. Comparison with (C1) yields
ρ(∂T/∂ρ) ≈ 10 s(∂T/∂s).


