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Using irreversible thermodynamics we show that current-induced spin transfer torque within a
magnetic domain implies spin pumping of current within that domain. This has experimental
implications for samples both with conducting leads and that are electrically isolated. These results
are obtained by deriving the dynamical equations for two models of non-uniform conducting magnets:
(1) a generic conducting magnet, with net conduction electron density n and net magnetization ~M ;
and (2) a two-band magnet, with up and down spins each providing conduction and magnetism. For
both models, in regions where the equilibrium magnetization is non-uniform, voltage gradients can
drive adiabatic and non-adiabatic bulk spin torques. Onsager relations then ensure that magnetic
torques likewise drive adiabatic and non-adiabatic currents – what we call bulk spin pumping. For a
given amount of adiabatic and non-adiabatic spin torque, the two models yield similar but distinct
results for the bulk spin pumping, thus distinguishing the two models. As in the recent spin-Berry
phase study by Barnes and Maekawa, we find that within a domain wall the ratio of the effective
emf to the magnetic field is approximately given by P (2µB/e), where P is the spin polarization.
The adiabatic spin torque and spin pumping terms are shown to be dissipative in nature.

PACS numbers: 72.25.-b, 75.60.Ch, 05.70.Ln

I. INTRODUCTION

A. Current-induced Spin Transfer Torque

Current-induced spin transfer torque at both
surfaces1,2 and in bulk is by now a well-established
phenomenon.3 In surface spin transfer torque, when a
polarized spin current from a non-magnet crosses the
interface with a magnet it causes spin motion. In bulk
spin transfer torque, when a polarized spin current
crosses a domain wall (where the magnetization varies in
direction) it causes spin motion. For a uniform magnet,
there is no current-induced spin torque.

To be specific, we consider that the magnetization ~M
satisfies the equation4

∂t ~M + ∂i ~Qi = −γ ~M × ~H ′ + ~N, (1)

where ~Qi is the magnetization flux (or magnetization cur-
rent density), −γ ~M × ~H ′ is the Larmor-like torque, and
~N is the rest of the torque density acting on the magneti-
zation. We take γ to be the magnitude of the (negative)
gyromagnetic ratio.
~H ′ is the net effective field, which can include an ex-

ternal field, crystalline anisotropy, the demagnetization
field, and non-uniform exchange. (We will reserve ~H
for a somewhat different quantity, which not only gives
~M × ~H = ~0 in equilibrium, but in fact satisfies ~H = ~0

in equilibrium.) ~H ′ is given in SI units of T, although
~H ′ is not the magnetic induction field ~B, whose units
also are in T; an H-field in A/m, on multiplication by µ0,
becomes an H-field in T.

We will call

~N ′ = ~N − ∂i ~Qi (2)

the non-Larmor-like spin torque. (The prime here is un-
related to the prime on ~H ′.) When ~N ′ contains a term
that is proportional to the current (or to the gradient
of the electrochemical potential) one says that there is a
spin transfer torque.

For a uniform system, ~N ′ will contain only damping
terms. However, for a nonuniform system ~N ′ also con-
tains terms of the form5

− ξ∂iµ̃[∂i ~M − β∂iM̂ × ∂i ~M ], (3)

where µ̃ the electrochemical potential, −ξ∂iµ̃ has units
of a velocity, and β is dimensionless. The first term is
called an adiabatic spin transfer torque and the second
term is called a nonadiabatic spin transfer torque.6

In the literature the current ji usually is written (with
a suitable conductivity) in place of ∂iµ̃, but when one
employs irreversible thermodynamics ∂iµ̃, a thermody-
namic driving force that is even under time-reversal, is
the more natural quantity to employ. Use of ∂iµ̃ un-
ambiguously leads to the conclusion that, because of
their time-reversal properties, the adiabatic spin trans-
fer torque is irreversible (dissipative) and the nonadia-
batic spin transfer torque is reversible (reactive). This
also will be seen from a calculation of the volume rate of
dissipation R, where the equivalent of ξ appears, but the
equivalent of β is absent.

B. Spin Pumping of Current

Spin pumping of current at surfaces is also a well-
established phenomenon.7 Here spin dynamics at an in-
terface transfers a spin-polarized current to an adjacent
material. The first indication of spin pumping was pro-
vided by experiments on a thin magnetic film adjacent
to both a vacuum and an ordinary conductor.8 The
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present work studies two models for non-uniform con-
ducting magnets, one a generic conducting magnet that
is related to but distinct from the s-d model,5 and one
based on a two-band magnet.9

For both models, Onsager relations between transport
coefficients imply a bulk version of spin pumping, to an
extent related to the amount of bulk spin transfer torque.
(This is analogous to how, if temperature gradients can
cause an electric current, then electrochemical potential
gradients can cause a heat current, with the size of these
effects related by Onsager relations.) However, the effects
are somewhat different for the two models, permitting
them to be distinguished.

For the band model, there are two currents (from up
and down spins) and two effective electrochemical poten-
tials. Each of these currents can be “spin-pumped” by
disequilibrium of ~M . For the generic conducting mag-
net, there is only one current, but it is taken to be spin-
polarized. For the generic conducting magnet we study
the number current density jni [cf. (36)]. We interpret
those terms with the form

jni = −LnM1(∂i ~M) · ~H − L′nM∂i ~M · ( ~M × ~H) + . . . (4)

as representing the adiabatic and non-adiabatic spin
pumping terms. Bulk spin-pumping of current requires
a non-uniform magnetization; it occurs within domains.

Barnes and Maekawa have recently studied the effec-
tive electric field associated with the spin-Berry phase
induced by the domain structure.10 The present results
are remarkably similar to their, despite the vastly dif-
ferent methods. In particular, both works find that the
ratio of the effective emf to the magnetic field is given
by P (2µB/e), where P is the spin polarization, although
our result does not appear to be exact.

The spin pumping terms are related to the spin trans-
fer torque terms by Onsager relations. (In surface spin
pumping, there is also a spin transfer torque in propor-
tion to the spin pumping.7) Thus, not only does the fact
that spin transfer torque has been observed tell us that
spin pumping must exist (if we understand the correct
thermodynamic description of our system), it also tells us
how large the spin pumping terms must be. For the two-
band magnet, analogous terms appear in each of the two
currents. However, the two models have forms that per-
mit them to be distinguished. Thus the theory may also
provide a means to distinguish between the two models.11

C. Summary of Methods

This paper employs the methods of irreversible ther-
modynamics. For an introduction to these methods that
is directed to the magnetism community, see Ref.12. We
summarize the approach as follows.13,14,15

•The first step is to determine the appropriate ther-
modynamic variables and the thermodynamic relation for
the differential dε of the energy density as a sum of terms

FIG. 1: Experimental geometry to observe spin-pumping of
current associated with a head-to-head domain wall. An ap-
plied magnetic field drives the domain wall to the right. A
spin-pumped current goes to the left. One expects an associ-
ated voltage pulse when the domain wall crosses either voltage
lead.

proportional to the various thermodynamic densities de-
scribing the system. For an ordinary one-component sys-
tem these densities are associated with the entropy and
the particle number. For the generic magnetic conduc-
tor, these densities are the entropy density s, the density
of carrier electrons n, and the magnetization ~M . For a
two-component non-magnetic system like a semiconduc-
tor these densities are associated with the entropy and
the particle numbers (electrons and holes).16 For the two-
band magnet, these densities are associated with the en-
tropy and the particle numbers (up and down electrons,
with particle densities n↑, n↓, and the magnetization di-
rection M̂ .
•The second step is to require that all of the densities

satisfy either a conservation law (with unknown fluxes)
or a source equation (with unknown sources) or both.
•The third step is to construct the matrix of structure-

dependent constants (the transport and dissipation coef-
ficients) relating the sources and fluxes to the thermody-
namic forces. Essential to the construction of this matrix
are the time-reversal properties of the fluxes, forces, and
sources. Finally, the Onsager relations are used to reduce
the number of independent coefficients.

The structure of this paper will be, in each section, to
develop the appropriate parts of each theory in parallel.

D. Experimental Implications

The most important prediction of this work, based on
irreversible thermodynamics, is that bulk spin pumping
occurs if there is spin transfer torque (and vice-versa);
moreover, the amount of spin pumping can be determined
from appropriate Onsager relations.

For a magnetic wire with head-to-head domains, and
two voltage leads, if a domain wall is ~H-field-driven
past one lead there should be a voltage jump. Figure
1 shows an experimental geometry corresponding to a
linear head-to-head domain wall that is driven by an ex-
ternal field. When the domain wall crosses the voltage
lead on the right, the voltage difference between the leads
will measure a pulse that drives current leftward. Like-
wise, for a magnetic dot with a vortex configuration, and
two voltage leads, if the vortex structure is ~H-field-driven
past one lead there should be a voltage jump.
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For Co, data on spin torque indicates that within a do-
main wall a true E-field E0 = 1.0×104 V/m can cause the
same spin torque as direct application of a magnetic field
HST = 4 × 10−3 T. From this, in Sect. VII we estimate
that within a domain wall a true H-field H0 = 0.1 T can
cause the same spin-pumped current as direct applica-
tion of an electric field ESP = 350 (V/m), or, across the
domain wall, can cause the same effect as a voltage dif-
ference of 7.0× 10−6 V. In terms of the effective emf per
magnetic field, given by P (2µB/e), this is 0.7×10−4 V/T.

II. ENERGY AND ENTROPY

Energy and entropy are treated the same way in both
theories.

Consider the energy density ε, which, being conserved,
has only a flux:

∂tε+ ∂ij
ε
i = 0, (5)

Here jεi is the energy flux density. The intrinsic time-
reversal signature of ε is even, so the intrinsic time-
reversal signature of jεi is odd.

Now consider the entropy density s. It has both a flux
jsi and a source R/T , where R is the volume rate of heat
production:

∂ts+ ∂ij
s
i =

R

T
≥ 0. (6)

Irreversible thermodynamics considers the time-behavior
of thermodynamic variables, which have definite signa-
ture under time-reversal. As a consequence, in an equa-
tion of motion for that quantity that has both a flux
and a source, because of the time-derivative, the intrin-
sic time-reversal signatures of both the flux (here jsi ) and
the source (here R/T ) are opposite to the intrinsic time-
reversal signature of then extensive density. Since s is
even, the intrinsic time-reversal signature of jsi and R/T
are odd.

III. THERMODYNAMIC RELATIONS

A. Generic Conducting Magnet

We consider a system with magnetization ~M that is
basically due to localized electrons, of gyromagnetic ra-
tio −γ, and conduction electrons with electrochemical
potential µ̃ and number density n. We take the thermo-
dynamics to be given by

dε = Tds+ µ̃dn− ~H · d ~M. (7)

Here ~H includes not only the field ~H ′ that causes the
Larmor torque, but also a uniform exchange field that
points along ~M , and thus has no effect on the Larmor
torque. The exchange field is chose to make ~Heq = ~0

in equilibrium, so that ~H will serve as a thermodynamic
force.

To be specific, consider a uniform ferromagnet in a
minor loop and in an external field ~H0. In the absence
of anisotropy, in equilibrium it satisfies ~M = M0Ĥ0 +
χ ~H0. Let there also be an anisotropy field ~Han. Further,
include an a non-uniform exchange term A′(∂i ~M)2 in the
energy density, which will yield a non-uniform exchange
field ~Hex = 2A′∇2 ~M . We assert that

~H = − δε

δ ~M
= − ∂ε

∂ ~M
+ ∂i

∂ε

∂(∂i ~M)

= [ ~H0 + ~Han + 2A′∇2 ~M ]− [
~M −M0M̂

χ
]

≡ ~H ′ − ~Hint. (8)

has the desired form. The first bracket, with three terms,
constitutes ~H ′, which drives Larmor precession. The last
bracket, with two terms, represents an internal field ~Hint

due to exchange. In equilibrium, ~Hint = ~H ′, to yield
~H = ~0 in equilibrium.

Setting ~H = ~0 gives ~M along ~H ′, as desired for no
Larmor torque. Moreover, it gives ~M = M0Ĥ

′+χ ~H ′, as
expected. Even out of equilibrium ~Hint, which is along
M̂ , does not contribute to ~M × ~H, so that ~M × ~H ′ =
~M × ~H, a substitution we will make when needed. In

the absence of anisotropy and non-uniform exchange, (8)
very similar to the form employed by Ref.17, but called
~H∗.

In the s-d model as often used, there is an exchange
field that couples to the s electrons, giving them a weak
magnetization. If one wants to incorporate this idea in
the present framework, then one may consider that ~M in-
cludes a contribution from the polarized conduction elec-
trons. However, because no such specification is made,
our generic conducting magnet is distinct from the s-d
model.

B. Two-band Magnet

The two-band magnet9 considers a conducting mag-
netic system consisting of electrons of charge −e and
gyromagnetic ratio −γ, where γ = |g|µB/~ > 0 and
µB = e~/2m (for free electrons we take g = −2). We
assume that the electrons partially occupy two, spin-
dependent, conduction bands, with number densities n↑
and n↓. For specificity we assume that n↓ > n↑, so that
the magnetization will point along the “up” direction,
determined either by spontaneous symmetry breaking or
by an external field and anisotropy. The system also has
an entropy density s. The total number density for the
conducting electrons is

n = n↑ + n↓. (9)

Moreover, the magnetization is given by

~M = −γ~S, (10)
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where ~S is the spin density, of magnitude

S = (~/2)(n↓ − n↑). (11)

Thus the magnetization has magnitude M = | ~M | given
by

M = γ(~/2)(n↓ − n↑) = (|g|µB/2)(n↓ − n↑). (12)

With magnetization direction M̂ , we then have

~M = γ(~/2)(n↓ − n↑)M̂. (13)

Note that

d ~M = γ(~/2)M̂ d(n↓ − n↑) +M dM̂. (14)

For the differential of the energy density we take

dε = Tds+ µ∗↑dn↑ + µ∗↓dn↓ −M( ~H · dM̂). (15)

Here

µ∗↑,↓ = µ̃↑,↓ ± γ(~/2)( ~H · M̂), (16)

where

µ̃↑,↓ = µ↑,↓ − eV (17)

is the electrochemical potential in terms of the chemical
potential, with V being the electrical potential. Changes
in the number density are affected both by the electro-
chemical potential and ~H. In equilibrium µ∗↑ = µ∗↓ and
M̂ × ~H = ~0. If we further require that ~H = ~0 in equilib-
rium, then µ̃↑ = µ̃↓ in equilibrium.

IV. CONSERVATION LAWS AND EQUATIONS
OF MOTION

A. Generic Conducting Magnet

We take the equations of motion and conservation laws
for the four variables n and ~M to be:

∂tn+ ∂ij
n
i = 0, (18)

∂t ~M + ∂i ~Qi = −γ ~M × ~H + ~N. (19)

Here jni is the number current density, ~Qi is the magne-
tization flux density (i is the real space index), and ~N (a
source) is the volume rate of change of magnetization due
to torques associated with a lack of thermal equilibrium.
We have employed ~M× ~H ′ = ~M× ~H, thus substituting ~H,
which in equilibrium is zero, for the precession-causing
field ~H ′.18

B. Two-band Magnet

We take the equations of motion and conservation laws
for the four variables n↑, n↓, and M̂ to be:

∂tn↑ + ∂ij↑i = S, (20)
∂tn↓ + ∂ij↓i = −S, (21)

∂tM̂ = (γ ~H + ~Ω)× M̂. (22)

Here j↑,i and j↓,i are the number current densities, S is
the decay rate for up spins (by charge conservation this
is compensated by the decay rate −S for down spins),
and γ ~H and ~Ω are the Larmor and non-Larmor parts of
the rotation rate for M̂ . By definition ~Ω has only two
components, and is normal to ~M . (Again we have made
the allowable substitution, in the torque, of ~H for ~H ′.)

C. Two-band Magnet: Implied Equations

The above equations imply certain equations of mo-
tion for n of (9), M of (12) and ~M of (13). These equa-
tions are not necessary, because the previous section is
self-contained, but they are useful for comparison with
previous work.

Continuity equation. Eqs. (9), (20), and (21) imply
that

∂tn+ ∂ij
n
i = 0, jni ≡ j↑i + j↓i. (23)

With the charge density ρ = −en and current density
(charge flux) given by

ρ = −en, ji = −ejni = −e(j↑i + j↓i), (24)

the continuity equation is automatically satisfied:

∂tρ+ ∂iji = 0. (25)

Magnitude of Magnetization. Eqs. (12), (20), and
(21) imply that

∂tM + γ(~/2)∂i(j↓i − j↑i) = −2Sγ(~/2). (26)

For magnetization along z, this is analogous to ∂tMz.
Vector Magnetization. Eqs. (13), (20), (21), and

(22) imply that

∂t ~M+γ(~/2)M̂∂i(j↓i−j↑i) = −γ ~M× ~H+~Ω× ~M−2Sγ(~/2)M̂.
(27)

This can be rewritten in the more conventional form

∂t ~M + ∂i ~Qi = −γ( ~M × ~H) + ~N (28)

on setting

~Qi = γ(~/2)M̂(j↓i − j↑i), (29)
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where ~Qi is the magnetization flux density (i is the real
space index), and

~N = ~Ω× ~M + γ(~/2)(j↓i− j↑i)∂iM̂ − 2Sγ(~/2)M̂, (30)

where ~N (a source) is the volume rate of change of magne-
tization due to torques associated with a lack of thermal
equilibrium.

From (29) and (30) the net non-Larmor spin transfer
torque of (2) is given by

~N ′ = ~Ω× ~M −γ(~/2)M̂∂i(j↓i− j↑i)−2Sγ(~/2)M̂, (31)

Thus the only transverse part of ~N ′ comes from the ~Ω× ~M
term.

Once the difference in units are accounted for, ~Qi above
is equivalent to Eq. (8) of Ref. 9; there, both the magneti-
zation and the magnetization flux densities are measured
in units of γ, with |g| = 2, and û is employed for the di-
rection of the magnetization. Moreover, the second term
of ~N in (30) is the same as the adiabatic spin torque den-
sity of Ref. 19. This adiabatic spin torque is enforced by
the condition that the magnetization and the spin quan-
tization axis track with one another. Note that Ref.9
does not include the adiabatic spin torque density.

In (30), the first and second terms give the transverse
components in spin space, and the third term gives the
longitudinal component in spin space. Of course, we have
yet to determine ~Ω, S, j↓i, or j↑i. Below we show that j↓i
and j↑i each have five terms, so that Qαi has ten terms.
Moreover, ~Ω has seven terms and S has one term, so that
~N has eighteen terms.

Note that spin angular momentum is not conserved;
however, total angular momentum is conserved once one
accounts for the crystal lattice angular momentum. With
~H ′ = ~H0 + ~Han + ~Hex, the angular momentum associ-
ated with ~H0 is transferred to the source of ~H0 (an exter-
nal magnet or an external current-carrying circuit); the
angular momentum associated with ~Han (either lattice
or dipolar anisotropy) is transferred to the lattice; and
the angular momentum associated with ~Hex integrates
to zero, because it involves the spin system interacting
with itself. ~N is associated with the lattice.

V. RATE OF HEAT PRODUCTION

Irreversible thermodynamics accomplishes its task by
combining the equations of motion and the thermody-
namics to obtain an expression for the non-negative
quantity R as a sum of products of fluxes (or sources)
and thermodynamic “forces” (or their gradients).

A. Generic Conducting Magnet

Eqs. (5), (6), (18), and (19) placed in the time-
derivative of (7) yields

0 ≤ R = −∂i
(
jεi − Tjsi − µ̃jni + ~H · ~Qi

)
−jsi ∂iT − jni ∂iµ̃+ ~Qi · ∂i ~H + ~N · ~H. (32)

Here jsi , jni , and ~Qi are thermodynamic fluxes and ∂i ~H,
∂iT , and ∂iµ̃ are thermodynamic forces; further, ~N is a
thermodynamic source, and ~H is a thermodynamic force.
In equilibrium all of the thermodynamic forces are zero,
and thus there is no entropy production.

Each of the four non-divergence terms in (32) has a
clear physical interpretation as a source of heating: the
first term to thermal conduction, the second to electrical
conduction, the third to magnetic diffusion (or conduc-
tion), and the fourth to (local) spin damping.

B. Two-band Magnet

Eqs. (5), (6), and (20)-(22) placed in the time-
derivative of (15) yields

0 ≤ R = T (∂ts+ ∂ij
s
i )

= −∂i
(
jεi − Tjsi − µ∗↑j↑i − µ∗↓j↓i

)
−jsi ∂iT − j↑i∂iµ∗↑ − j↓i∂iµ∗↓
−(µ∗↑ − µ∗↓)S + ~Ω · ( ~M × ~H). (33)

Here jsi , j↑i, and j↓i are thermodynamic fluxes and ∂iT ,
∂iµ
∗
↑, and ∂iµ∗↓ are thermodynamic forces; further, S and

~Ω are thermodynamic sources and (µ∗↑−µ∗↓) and ~M × ~H
are thermodynamic forces.

Each of the five non-divergence terms in (33) has a
clear physical interpretation as a source of heating: the
first term to thermal conduction, the second and third
to (spin-dependent) electrical conduction, the fourth to
(local) longitudinal magnetic damping, and the fifth to
(local) transverse magnetic damping.

VI. SOURCES AND FLUXES

A. Generic Conducting Magnet

This model has been treated in the absence of terms
associated with the conducting electrons.12

Energy Flux jεi . The energy flux is given by con-
straining the divergence to be zero (up to an arbitrary
curl), which leads to

jεi = Tjsi + µ̃jni + ~H · ~Qi. (34)

We now must express each flux and source as the sum
over the suitably weighted “forces” ∂iT , ∂iµ̃, ~H, and ∂i ~H,
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all of which are zero in equilibrium. The coefficients may
be constructed from the “order parameters” of the equi-
librium state, ~M and ∂i ~M . The vector nature of the
fluxes must be respected (including their properties un-
der both real space and spin space rotations).

Entropy Flux jsi . The entropy flux, a vector in
real space whose non-dissipative part is odd under time-
reversal T , takes the form

jsi = − κ
T
∂iT − Lsn∂iµ̃− LsQ ~M · ∂i ~H

−LsM1(∂i ~M) · ~H − LsM2(M̂ · ∂i ~M)(M̂ · ~H)
−L′sM∂i ~M · ( ~M × ~H). (35)

There are six terms. The terms with unprimed coef-
ficients are even under time-reversal T , signifying dis-
sipation. The term with a primed coefficient is odd
under T (signifying no dissipation). κ is the usual
thermal conductivity. Lsn has units of [diffusion-
constant-density/ temperature]. LsQ, LsM1, and LsM2

have units of [velocity-length/temperature], or [diffusion-
constant/temperature]. L′sM has units of [diffusion-
constant-density/ temperature-magnetization].

Number Flux jni . The number flux, like the entropy
flux a vector in real space whose non-dissipative part is
odd under time-reversal T , takes the form

jni = − σ
e2
∂iµ̃− Lns∂iT − LnQ ~M · ∂i ~H

−LnM1(∂i ~M) · ~H − LnM2(M̂ · ∂i ~M)(M̂ · ~H)
−L′nM∂i ~M · ( ~M × ~H). (36)

There are six terms. The terms with unprimed coeffi-
cients are even under time-reversal T , signifying dissipa-
tion. The terms with a primed coefficient is odd under
T (signifying no dissipation). σ is the usual electrical
conductivity. The last three terms we will later inter-
pret as bulk spin pumping terms, and we will relate them
to the bulk spin torque terms, to be discussed shortly.
Lns has units of [diffusion-constant-density/ tempera-
ture]. LnQ, LnM1, and LnM2 have units of [diffusion-
constant/energy]. L′nM has units of [diffusion-constant-
density/ energy-magnetization].

Magnetization Flux ~Qi. The magnetization flux,
whose non-dissipative part is even under time-reversal,
takes the form

~Qi = C‖ ~M(M̂ · ∂i ~H)− C⊥ ~M × (M̂ × ∂i ~H)
−C ′ ~M × ∂i ~H + LQs ~M∂iT + LQn ~M∂iµ̃

+LQN1∂i ~M(M̂ · ~H) + LQN2(M̂ · ∂i ~M) ~H
+LQN3M̂(∂i ~M · ~H) + LQN4M̂(M̂ · ∂i ~M)(M̂ · ~H)
+L′QN1∂i ~M × ~H + L′QN2M̂ [(M̂ × ∂i ~M) · ~H]
+L′QN3(M̂ × ∂i ~M)(M̂ · ~H)
+L′QN4(M̂ · ∂i ~M)(M̂ × ~H). (37)

There are thirteen terms. The terms with unprimed co-
efficients are odd under time-reversal T , signifying dis-
sipation. The terms with primed coefficients are even

under T (signifying no dissipation). The terms involv-
ing ~H are discussed in Ref. (12), as is the term involving
∂iT . C‖ and C⊥ have dimensions of a diffusion constant
divided by a magnetization-squared, and indeed they rep-
resent longitudinal and transverse diffusion. C ′ has the
dimensions of [diffusion-constant/magnetization]. LQn
has units of [diffusion-constant/energy]. The term asso-
ciated with LQn, when the divergence is taken, will lead
to a bulk spin torque term. All of the terms in LQN and
L′QN have units of [diffusion-constant/field], with field in
tesla. Note that, for near-saturation of the magnetiza-
tion, the terms M̂ ·∂i ~M will be small, so that only LQN1

and LQN3 will yield possibly important new terms in the
damping.

Spin Torque Density ~N . The spin torque density,
whose non-dissipative part is even under time-reversal,
takes the form
~N = A‖ ~M( ~M · ~H)−A⊥ ~M × ( ~M × ~H)

+LMs1∂i ~M∂iT + LMs2M̂(M̂ · ∂i ~M)∂iT
+L′Ms(M̂ × ∂i ~M)∂iT + L′Mn(M̂ × ∂i ~M)∂iµ̃
+LMn1∂i ~M∂iµ̃+ LMn2M̂(M̂ · ∂i ~M)∂iµ̃
+LNQ1M̂(∂i ~M · ∂i ~H) + LNQ2(M̂ · ∂i ~M)∂i ~H
+LNQ3∂i ~M(M̂ · ∂i ~H) + LNQ4M̂(M̂ · ∂i ~M)(M̂ · ∂i ~H)
+L′NQ1∂i

~M × ∂i ~H + L′NQ2(M̂ × ∂i ~M)(M̂ · ∂i ~H)
+L′NQ3M̂(M̂ × ∂i ~M) · ∂i ~H
+L′NQ4(M̂ · ∂iM̂)M̂ × ∂i ~H. (38)

There are sixteen terms. The terms with unprimed co-
efficients are odd under time-reversal T , signifying dis-
sipation. The terms with primed coefficients are even
under T (signifying no dissipation). The terms involv-
ing ∂i ~H have been discussed in Ref. (12), as has the
term involving ∂iT . The terms in LMn1, LMn2, L

′
Mn

we interpret as bulk spin torque terms. A‖ and A⊥

have units of [1/time-(magnetization)2] for ~H given in
A/m; or they must include a factor of 1/µ0 if ~H
is given in T. They represent longitudinal and trans-
verse damping; in terms of the Landau-Lifshitz pa-
rameter λ, one has A⊥ = λ/M . LMs1, and LMs2

have units of [velocity-length/temperature], or [diffusion-
constant/temperature]. L′Ms has units of [diffusion-
constant-density/ temperature-magnetization]. LMn1,
and LMn2 have units of [diffusion-constant/energy].
L′Mn has units of [diffusion-constant-density/ energy-
magnetization]. All of the terms in LNQ and L′NQ have
units of [diffusion-constant/field], with field in tesla.

Rate of Entropy Production R. The rate of en-
tropy production is strictly even under time-reversal. A
total of forty-one terms can contribute to R when the
above equations are substituted to find R. The term
involving C ′ is identically zero. There are six diago-
nal terms once the longitudinal and transverse parts of
~Qi and ~N are accounted for. The remaining thirty-four
terms are cross-terms that occur in pairs. We find that

R =
κ

T
(∂iT )2 +

σ

e2
(∂iµ̃)2 + (Lsn + Lns)∂iT∂iµ̃
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+C‖( ~M · ∂i ~H)2 + C⊥( ~M × ∂i ~H)2

+A‖( ~M · ~H)2 +A⊥( ~M × ~H)2

+(LsQ + LQs) ~M · ∂i ~H∂iT
+(LnQ + LQn) ~M · ∂i ~H∂iµ̃
+(LsM1 + LMs1)∂i ~M · ~H∂iT
+(LnM1 + LMn1)∂i ~M · ~H∂iµ̃
+(LsM2 + LMs2)(M̂ · ∂i ~M)(M̂ · ~H)∂iT
+(LnM2 + LMn2)(M̂ · ∂i ~M)(M̂ · ~H)∂iµ̃
+(L′sM + L′Ms)(M̂ × ∂i ~M) · ~H∂iT
+(L′nM + L′Mn)(M̂ × ∂i ~M) · ~H∂iµ̃
+(LQN1 + LNQ1)(M̂ · ~H)(∂i ~M · ∂i ~H)
+(LQN2 + LNQ2)(M̂ · ∂i ~M)( ~H · ∂i ~H)
+(LQN3 + LNQ3)(M̂ · ∂i ~H)(∂i ~M · ~H)
+(LQN4 + LNQ4)(M̂ · ∂i ~M)(M̂ · ~H)(M̂ · ∂i ~H)
+(L′QN1 + L′NQ1)(∂i ~M × ~H · ∂i ~H)
+(L′QN2 + L′NQ2)(M̂ × ∂i ~M · ~H)(M̂ · ∂i ~H)
+(L′QN3 + L′NQ3)(M̂ · ~H)(M̂ × ∂i ~M · ∂i ~H)
+(L′QN4 + L′NQ4)(M̂ · ∂i ~M)(M̂ × ~H · ∂i ~H). (39)

Recall that ~H 6= ~H ′, and that ~H = ~0 in equilibrium,
so that there are no dissipative terms associated with ~H
when the magnetization is in equilibrium.

To ensure that R is invariant under time-reversal the
non-dissipative cross-terms (which are odd under T )
must be eliminated. This is done by imposing the condi-
tions

L′sM = −L′Ms, L′nM = −L′Mn,
L′NQi = −L′QNi, i = 1, 4 (40)

In addition, in order to satisfy the Onsager relations
for dissipative cross-terms (which are even under T ) we
must impose the conditions

Lns = Lns, LsQ = LQs, LnQ = LQn,
LsM1 = LMs1, LsM2 = LMs2,
LnM1 = LMn1, LnM2 = LMn2,

LQNi = LNQi, i = 1, 4. (41)

We then have

R =
κ

T
(∂iT )2 +

σ

e2
(∂iµ̃)2 + 2Lsn∂iT ∂iµ̃

+C‖( ~M · ∂i ~H)2 + C⊥( ~M × ∂i ~H)2

+A‖( ~M · ~H)2 +A⊥( ~M × ~H)2

+2LsQ ~M · ∂i ~H∂iT + 2LnQ ~M · ∂i ~H∂iµ̃
+2LsM1∂i ~M · ~H∂iT + 2LnM1∂i ~M · ~H∂iµ̃
+2LsM2(M̂ · ∂i ~M)(M̂ · ~H)∂iT
+2LnM2(M̂ · ∂i ~M)(M̂ · ~H)∂iµ̃
+2LQN1(M̂ · ~H)(∂i ~M · ∂i ~H)
+2LQN2(M̂ · ∂i ~M)( ~H · ∂i ~H)
+2LQN3(M̂ · ∂i ~H)(∂i ~M · ~H)
+2LQN4(M̂ · ∂i ~M)(M̂ · ~H)(M̂ · ∂i ~H) (42)

Dissipative Nature of Adiabatic Spin Torque.
All the terms in (42), being even under time-reversal,

are dissipative. We first call attention to the third term,
due to the thermoelectric effect, involving the product of
thermodynamic forces ∂iT ∂iµ̃. Had ∂iµ̃ been replaced
(up to a proportionality constant) by jni , to give the form
∂iT j

n
i , which is a product of a thermodynamic force and

a flux, one would have a term that is apparently odd
under time-reversal. One therefore might conclude that
such a term is non-dissipative. Such reasoning would be
incorrect. In determining the time-reversal properties of
terms that might contribute to the rate of heating, one
must work either with products of forces or fluxes; we
have done the former.

Similarly, in (42) the terms in LMn1 and LMn2, which
are due both to adiabatic bulk spin torque and adiabatic
bulk spin pumping terms, produce dissipation. Likewise
the terms in LnQ, which also produce a (longitudinal)
bulk spin pumping term and a longitudinal spin flux,
produce dissipation.

B. Two-band Magnet

Energy Flux jεi . The energy flux is given by con-
straining the divergence to be zero (up to an arbitrary
curl), which leads to

jεi = Tjsi − µ∗↑j↑i − µ∗↓j↓i. (43)

We now must express each flux and source as the sum
over the suitably weighted “forces” µ̃∗↑ − µ̃∗↓, ∂iT , ∂iµ̃∗↑,
∂iµ̃
∗
↓, and ~M × ~H, all of which are zero in equilibrium.

The coefficients may be constructed from the “order pa-
rameters” of the equilibrium state, ~M and ∂i ~M . The
vector nature of the fluxes must be respected (includ-
ing their properties under both real space and spin space
rotations).

Decay Rate S. The intrinsic signatures under time-
reversal T of n↑ and n↓ are even, so that the intrinsic
signatures under T of their time-derivatives are odd. The
decay rate S is associated with both ∂tn↑ and ∂tn↓; hence
the non-dissipative part of S is odd under T .

For S, the only possible form is

S = −α(µ∗↑ − µ∗↓), (44)

with α a material-dependent constant havings units of
(J-m3-s)−1. No other form is allowed because S is a
scalar in both real space and spin space. One might think
that the “order parameter” ~M could be multiplied by the
thermodynamic “force” ~M × ~H to obtain a scalar, but
that dot product is identically zero. Eq. (44) is even
under time-reversal, and therefore is dissipative.

For small deviations from equilibrium, we have

S ≈ −α
(
∂µ∗↑
∂n↑

δn↑ −
∂µ∗↓
∂n↓

δn↓

)
= −δn↑

τ↑
+
δn↓
τ↓

, (45)

1
τ↑
≡ α

∂µ∗↑
∂n↑

,
1
τ↓
≡ α

∂µ∗↓
∂n↓

, (46)
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a result that could have been expected on physical
grounds. Note that if τ↑ = τ↓, then the longitudinal part
of the magnetization would have a decay rate propor-
tional to the deviation in the longitudinal magnetization
itself. However, since under most circumstances local
electroneutrality enforces δn↑ = −δn↓, so δM ∼ δn↑,
this normally will be the case anyway. In this case we
can think of S as determining T1 processes.

Entropy Flux jsi . The entropy flux, a vector in real
space whose reversible part is odd under time-reversal T ,
takes the form

jsi = − κ
T
∂iT − Ls↑∂iµ∗↑ − Ls↓∂iµ∗↓

−LsM ( ~M × ∂i ~M) · ( ~M × ~H)
−L′sM∂i ~M · ( ~M × ~H). (47)

There are five terms. The terms with unprimed coef-
ficients are even under time-reversal, signifying dissipa-
tion. The term with a primed coefficient is odd under
time-reversal (signifying no dissipation). κ is the usual
thermal conductivity. Ls↑ and Ls↓, associated with the
second and third terms, give a well-known electrothermal
effect, whereby a chemical potential gradient can drive an
entropy current; they have units of a diffusion constant
divided by [temperature]. The last two terms, which are
new, have the same symmetry as corresponding terms in
the number flux, which we now discuss. They imply that
spin dynamics can drive an entropy current. We may
call this spin-pumping of an entropy current. Ls ~M has
units of a diffusion constant divided by [magnetization2-
temperature], and L′

s ~M
has units of a diffusion constant

divided by [magnetization-temperature]. Note that when
the fifth term is multiplied by ∂iT in (33) for R, unlike R
the product is odd under T ; it thus must be canceled by
another term (to be discussed below) or it must be zero.

Number Fluxes j↑i and j↓i. Each number flux, like
the entropy flux, is a vector in real space whose reactive,
or reversible, part is odd under time-reversal T . They
take the forms [cf.(47)]:

j↑i = −σ↑
e2
∂iµ
∗
↑ − L↑s∂iT − L↑↓∂iµ∗↓

−L↑M ( ~M × ∂i ~M) · ( ~M × ~H)
−L′↑M∂i ~M · ( ~M × ~H), (48)

j↓i = −σ↓
e2
∂iµ
∗
↓ − L↓s∂iT − L↓↑∂iµ∗↑

−L↓M ( ~M × ∂i ~M) · ( ~M × ~H)
−L′↓M∂i ~M · ( ~M × ~H). (49)

Each of these have five terms. The terms with unprimed
coefficients are even under time-reversal, signifying dissi-
pation. The term with a primed coefficient is odd under
time-reversal (signifying no dissipation). σ↑↓ gives the
respective electrical conductivities. Ls↑ and Ls↓, associ-
ated with the second and third terms, give a well-known
electrothermal effect, whereby a chemical potential gra-
dient can drive an entropy current; they have units of
a diffusion constant divided by [temperature]; the terms

L↓↑ and L↑↓ have the same units. The last two terms in
both (48) and (49), which are new, have the same symme-
try as corresponding terms in the number flux, which we
now discuss. They imply that spin dynamics can drive
a current. We call this spin-pumping of current. L↑ ~M
and L↓ ~M have units of a diffusion constant divided by
[magnetization2-energy], and L′↑ ~M and L′↓ ~M has units of
a diffusion constant divided by [magnetization-energy].
Note that when the fifth terms are respectively multi-
plied by ∂in↑ and ∂in↓ in (33) for R, unlike R the product
is odd under T , and thus these terms must be canceled
by another cross-term (discussed below) or they must be
zero.

Non-equilibrium Rotation Rate ~Ω. The reactive,
or reversible, part of ~Ω is odd under T . ~Ω bears the brunt
of the complexity of the Onsager coefficients. In detail ~Ω
is given by

~Ω = λM̂ × ~H + LMs( ~M × ∂i ~M)∂iT + L′Ms∂i ~M∂iT

+LM↑( ~M × ∂i ~M)∂iµ∗↑ + L′M↑∂i ~M∂iµ
∗
↑

+LM↓( ~M × ∂i ~M)∂iµ∗↓ + L′M↓∂i
~M∂iµ

∗
↓. (50)

There are seven terms. The terms with unprimed coef-
ficients are even under T , and thus are dissipative. The
terms with primed coefficients are odd under T , and thus
are not dissipative. The first term gives Landau-Lifshitz
damping. (We believe that any theory based on irre-
versible thermodynamics that has an energy term vary-
ing as − ~HM · dM̂ will give a Landau-Lifshitz damping
term, since then the corresponding thermodynamic force
is M̂× ~H.) The three terms proportional to ~M×∂i ~M are
even under T , so they are dissipative. They correspond
to spin torque by electric current and by entropy current.
Note that there are two types of spin torque, correspond-
ing to the two types of spins; this is a new result. Both of
these correspond to what has been called adiabatic spin
torque. The term driven by entropy current is new. The
three terms proportional to ∂i ~M are odd under T , so
they are non-dissipative. They, too, correspond to spin
torque by electric current and by entropy current. Again
there are two types of spin torque, corresponding to the
two types of spins; this is a new result. Both of these
correspond to what has been called non-adiabatic spin
torque. The term driven by entropy current is new.

Rate of Heat Production R. The rate of entropy
production is strictly even under time-reversal. We now
rewrite (33) in light of (43), which eliminates the diver-
gence term, and in light of the equations for the various
thermodynamic fluxes and sources. We then have

R = α(µ∗↑ − µ∗↑)2 +
κ

T
(∂iT )2 +

σ↑
e2

(∂iµ∗↑)
2 +

σ↓
e2

(∂iµ∗↓)
2

+
λ

M
( ~M × ~H)2 + (∂iT )(∂iµ∗↑)(Ls↑ + L↑s)

+(∂iT )(∂iµ∗↓)(Ls↓ + L↓s) + (∂iµ∗↑)(∂iµ
∗
↓)(L↑↓ + L↓↑)

+( ~M × ∂i ~M) · ( ~M × ~H)
[
(LsM + LMs)∂iT

+ (L↑M + LM↑)∂iµ∗↑ + (L↓M + LM↓)∂iµ∗↓
]

+(∂i ~M) · ( ~M × ~H)
[
(L′sM + L′Ms)∂iT
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+ (L′↑M + L′M↑)∂iµ
∗
↑ + (L′↓M + L′M↓)∂iµ

∗
↓
]
. (51)

To ensure that R is invariant under time-reversal the
non-dissipative cross-terms (which are odd under T )
must be eliminated. This is done by imposing the condi-
tions

L′Ms = −L′sM , L′M↑ = −L′↑M , L′M↓ = −L′↓M . (52)

In addition, in order to satisfy the Onsager relations for
dissipative cross-terms (which are even under T ) we must
impose the conditions

L↑s = Ls↑, L↓s = Ls↓, L↑↓ = L↓↑,
LMs = LsM , LM↑ = L↑M , LM↓ = L↓M . (53)

We then have

R = α(µ∗↑ − µ∗↑)2 +
κ

T
(∂iT )2 +

σ↑
e2

(∂iµ∗↑)
2 +

σ↓
e2

(∂iµ∗↓)
2

+
λ

M
( ~M × ~H)2 + 2L↑↓(∂iµ∗↑)(∂iµ

∗
↓)

+2Ls↑(∂iT )(∂iµ∗↑) + 2Ls↓(∂iT )(∂iµ∗↓)
+2( ~M × ∂i ~M) · ( ~M × ~H)

[
LsM (∂iT )

+ L↑M (∂iµ∗↑) + L↓M (∂iµ∗↓)
]
, (54)

The first five terms are diagonal in the fluxes and source.
They are always positive. The other six terms, involving
off-diagonal products of the thermodynamic forces, can
have either sign, dependent upon the relative directions
of these gradients. The constraint of positive definite-
ness for R then imposes limits the magnitudes of the
off-diagonal coefficients, which we do not enumerate.

C. Derived Quantities

We now turn to the derived quantities jni , Qαi, and
Nα.

Number current density jni . By (23), (48), and
(49), we have

jni = −∂iT (L↑s + L↓s)− ∂iµ∗↑(
σ↑
e2

+ L↓↑)− ∂iµ∗↓(
σ↓
e2

+ L↑↓)

−( ~M × ∂i ~M) · ( ~M × ~H)(L↓M + L↑M )
−∂i ~M · ( ~M × ~H)(L′↓M + L′↑M ). (55)

Magnetization Flux ~Qi. This quantity is the sum
of ten terms, which we obtain from (29), (48), and (49).
We have

~Qi = γ(~/2)M̂
(

∂iT (L↑s − L↓s)

+∂iµ∗↑(
σ↑
e2
− L↓↑)− ∂iµ∗↓(

σ↓
e2
− L↑↓)

−( ~M × ∂i ~M) · ( ~M × ~H)(L↓M − L↑M )

−∂i ~M · ( ~M × ~H)(L′↓M − L′↑M )
)
. (56)

The teems involving gradients of the electrochemical po-
tentials are diffusive in nature.

Magnetization Source ~N . This quantity is the sum
of eighteen terms, which we obtain from (30), (48), (49),
(44), and (50). We have

~N = γ(~/2) ∂iM̂

(
∂iT (L↑s − L↓s)

+∂iµ∗↑(
σ↑
e2
− L↓↑)− ∂iµ∗↓(

σ↓
e2
− L↑↓)

−( ~M × ∂i ~M) · ( ~M × ~H)(L↓M − L↑M )

−∂i ~M · ( ~M × ~H)(L′↓M − L′↑M )
)

−(γ~) M̂(−1)Γ(µ∗↑ − µ∗↓)

− ~M×
(
λM̂ × ~H

+LMs( ~M × ∂i ~M)∂iT + L′Ms∂i ~M∂iT

+LM↑( ~M × ∂i ~M)∂iµ∗↑ + L′M↑∂i ~M∂iµ
∗
↑

+LM↓( ~M × ∂i ~M)∂iµ∗↓ + L′M↓∂i ~M∂iµ
∗
↓

)
.

(57)

To end this section we note that, by (31), in the ab-
sence of temperature and chemical potential gradients,
the non-Larmor spin torque has a transverse part given
only by the Landau-Lifshitz term. This is in contrast to
the case of the generic conducting magnet, where two new
coefficients can contribute to the damping, in a manner
that depends on the magnetic texture. For the two-band
magnet there is no such dependence.

VII. CURRENT-INDUCED SPIN TORQUE AND
SPIN-PUMPING OF CURRENT

We are now prepared to discuss both the current-
induced spin torque and the spin-pumping of current.
For the two models studied we will restrict ourselves to
the appropriate terms in the net current density and the
spin torque. For simplicity we will consider only the sub-
set of terms that are relevant to spin torque and spin
pumping, and for that reason we use (≈) to indicate that
the appropriate quantities contain certain terms, but are
not restricted to those terms.

A. Spin Torque and Spin-Pumping Results

1. Generic Conducting Magnet

Eq. (36) contains the spin-pumping of number current
terms

jni ≈ −LnM1(∂i ~M) · ~H − LnM2(M̂ · ∂i ~M)(M̂ · ~H)
−L′nM∂i ~M · ( ~M × ~H.) (58)

The second of these is small if the magnetization is nearly
saturated, as we will assume.
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Eq. (38) contains the current-driven spin torque terms

~N ≈ L′Mn(M̂ × ∂i ~M)∂iµ̃
+LMn1∂i ~M∂iµ̃+ LMn2M̂(M̂ · ∂i ~M)∂iµ̃. (59)

Eq. (37) contains the current-driven spin torque terms

~Qi ≈ LQn ~M∂iµ̃. (60)

The total non-Larmor spin torque ~N ′ thus contains the
current-driven terms

~N ′ ≈ L′Mn(M̂ × ∂i ~M)∂iµ̃
+(LMn1 − LQn)∂i ~M∂iµ̃+ LMn2M̂(M̂ · ∂i ~M)∂iµ̃.

(61)

For the generic conducting magnet, eqs.(58) and (61)
provide the basis of our later discussion of the relation-
ship between spin torque and spin pumping.

2. Two-band Magnet

In the two-band magnet, each spin-component has,
in principle, its own electrochemical potential. In some
cases such a distinction can be made experimentally. (For
example, by a suitable combination of electric field and
of magnetic field gradient it may be possible to produce
a net spin current but zero net electric current.) For sim-
plicity, however, let us consider that µ∗↑ = µ∗↓. Then, by
(55), jni contains the field-driven terms

jni ≈ −( ~M × ∂i ~M) · ( ~M × ~H)(L↓M + L↑M )
−∂i ~M · ( ~M × ~H)(L′↓M + L′↑M ). (62)

For the non-Larmor spin torque in the two-band mag-
net, by (31) we need only the transverse terms, due to
~Ω × ~M . If we set µ∗↑ = µ∗↓ = µ̃, then (50) yields the
current-driven terms

~Ω ≈ (LM↑ + LM↓)( ~M × ∂i ~M)∂iµ̃
+(L′M↑ + L′M↓)∂i ~M∂iµ̃, (63)

so that, by (31) ,

~N ′ ≈ (LM↑ + LM↓)M2∂i ~M∂iµ̃

−(L′M↑ + L′M↓)M
2(M̂ × ∂i ~M)∂iµ̃, (64)

For the two-band magnet, eqs.(62) and (64) provide
the basis of our later discussion of the relationship be-
tween spin torque and spin pumping.

3. Comparison with Previous Work

Eq. (7) of Ref.9, using a phenomenology based on
both up and down bands, has the form

jn∗i =
σ↑ + σ↓

e
Ei −

D↑ +D↓
2

∂in−
D↑ −D↓

~
M̂ · ∂i ~M.

(65)

Eq. (9) of Ref.9 has the form

Q∗i =
~
2
σ↑ − σ↓

e
M̂Ei−

~
2
D↑ −D↓

2
M̂∂in−

D↑ +D↓
2

∂i ~M.

(66)
These forms are very similar to what we have derived, in
that there are three thermodynamic forces in play. For
Ref.9 they are the gradient of the voltage, the gradient of
the density, and the longitudinal gradient of the magne-
tization. In the two-band magnet they are the gradient
of the electrochemical potentials, which depend on the
voltage and on the densities of the up and down spins.

We now turn to the net torque. The sum of (2) and
(4) of Ref.19 has the form

~N∗ = −λ[M̂ × ( ~M × ~H)]− v[∂i ~M − βM̂ × ∂i ~M ], (67)

where β is dimensionless and we expect that β � 1.19
Microscopic theories for the adiabatic spin torque give,

with P the polarization of the current (e.g., 0.6 for 60%
in the up band)19

v = −PjµB
eM

(model). (68)

To make a proper comparison with this form, we must
replace the current density ji (a flux) by the form it
takes when driven by the “force” ∂iµ̃. We also employ a
less model-dependent form by introducing the constant
ξ, with units of a diffusion constant divided by energy,
and let ji → (σ/e)∂iµ̃. Thus we write

v = −ξ∂iµ̃, (69)

so (67) becomes

~N∗ = −λ[M̂×( ~M× ~H)]+ξ∂iµ̃[∂i ~M−βM̂×∂i ~M ]. (70)

In this form, which is appropriate to irreversible ther-
modynamics, the adiabatic spin torque (proportional to
∂i ~M) is odd under time-reversal, opposite the even sig-
nature of a non-dissipative spin torque. Therefore the
adiabatic spin torque is dissipative, as can be seen from
its contribution to the rate of heating R above. On the
other hand, the non-adiabatic spin torque (proportional
to M̂ × ∂i ~M) is even under time-reversal, signifying that
it is non-dissipative, as can be seen by its absence from
R.

For the above model we then have

ξ =
PσµB
e2M

(model). (71)

To close this subsection we note that Ref. 7 uses very
different methods to show that, at surfaces, spin trans-
fer torque and spin pumping are related. We also note
that Ref. 10 uses a Berry-phase and a spin-Berry-phase
to predict that, for ferromagnetic conductors, there is
an effective spin-dependent emf that drives an ordinary
electric current and a spin emf that drives a spin current.
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4. Comparison with the two models

Generic Conducting Magnet. Comparison of (70)
and the generic conducting magnet result (61) shows that
the two versions of the spin torque have the same form if

(LMn1 − LQn) = ξ, L′Mn = −βξ. (72)

Two-band magnet. Comparison of (70) and the two-
band magnet result (64) shows that the two versions of
the spin torque have the same form if

(LM↑ + LM↓)M2 = ξ, (L′M↑ + L′M↓)M
2 = βξ. (73)

Note that the generic (“g”) conducting magnet and
the two-band (“2b”) magnet have transport coefficients
with different dimensionality. By (72) and (73), for later
purposes we write

Lg ≈ L2bM
2 ≈ ξ. (74)

B. Estimates

For purposes of estimation we will employ Table 1 of
Ref. 9, which for Co gives P = 0.6, M = 1.45× 106A/m
and implies that σ = σ↑+σ↓ = 3.4×107/Ω-m. With stan-
dard values of e = 1.6×10−19 C and µB = 9.3×10−24A-
m2, we estimate that, for Co, ξ ≈ 5.1× 1015 m2/J-s. (As
indicated above, this has units of a diffusion constant over
an energy. Indeed, use of σ = ne2τ/m and M = PnµB
gives ξ = τ/m. For a bare electron mass m this corre-
sponds to the somewhat short time of τ ≈ 4.5×10−15 s.)
Also note that γ = 1.9× 1011/T-s.

Let δ be a characteristic domain wall dimension, which
for purpose of estimation (in Co) we will take to be
10 nm. Within the domain walls we may take |∂i ~M | ≈
2M/δ (2 because the magnetization reverses). In order
to make estimates, we will neglect the vector nature of
various quantities, and not consider signs. We will con-
sider only the adiabatic spin torque, which we believe
dominates experimentally.19

On neglecting spin-pumping terms a field E yields a
current density j proportional to the conductivity σ via

j ≈ σE. (75)

For non-uniform magnets there is also a current-
induced spin torque NST that is proportional to j. We
define the equivalent spin torque field HST via

HST =
NST
γM

. (76)

From (70), with Lg the appropriate Onsager coefficient
(by (72), for estimation purposes Lg is like ξ, with units
of a diffusion constant divided by an energy), we have

NST = Lg
eM

δ
E. (77)

Now define

RST =
HST

E
, (78)

which is in T-m/V. Then, by (75) and (76), eq. (78) yields

RST =
NST
γME

= Lg
e

γδ
. (79)

From the “velocity” of (68) and (75), we can write the
spin torque terms of (70) as

NST = PσEµB
1
eM

M

δ
=
PσµB
eδ

E. (80)

Comparison of (77) and (80) gives the result

Lg =
PσµB
e2M

. (81)

This permits the estimate that, for Co, Lg = 5.1 ×
1015(m2/J-s). Then, again for Co, application of (79)
gives RST = 4 × 10−7(T-m/V). Therefore within a do-
main wall a true E-field E0 = 1.0 × 104V/m can cause
the same torque as direct application of a magnetic field
HST = 4 × 10−3T. This merely restates what is already
known.

From (58), an applied field H0 that produces a torque

N = γMH0 (82)

also produces a spin-pumping driven current within a
domain wall. With |∂i ~M | ≈ 2M/δ, this current is given
by

jSP = eLg
2M
δ
H0. (83)

We define the equivalent spin-pumping field ESP via

ESP =
jSP
σ
. (84)

With the definition

RSP =
ESP
H0

(85)

we find that

RSP =
jSP
σH0

=
2eM
δσ

Lg. (86)

Note that RSP and RST have units that are inverse to
one another.

For Co this gives RSP = 7.0 × 103(V/T-m). Thus,
within a domain wall a true H-field H0=0.1T can cause
the same current as direct application of an electric field
ESP = 700(V/m). This is a new prediction. The corre-
sponding voltage difference across the domain wall is on
the order of ESP δ, or 7.0× 10−6 V.

Consider the situation depicted in Figure 1, where
~H points rightward and ∂x ~M points leftward. With
LnM1 ≈ ξ > 0, by (58) the number current density points
rightward, so that (within the domain wall) the electric
current density points leftward.



12

C. Comparison with Barnes and Maekawa

For comparison with Ref. 10, we define a spin-pumping
emf

ESP = ESP δ. (87)

Then the emf divided by the field, on using (85), (86),
and (81), is given by

ESP
H0

=
ESP
H0

δ =
2PµB
e

. (88)

Ref. 10 finds a quantity Es to be given by 2µBH0/e, and
that PEs drives a current density. On division by H, this
is precisely (88). We believe that this exact agreement,
but not the parameter dependence, is accidental.

VIII. SUMMARY AND DISCUSSION

Using irreversible thermodynamics we have shown, for
both a two-band magnet and a generic conducting mag-
net, that current-induced spin transfer torque within a
magnetic domain leads, by Onsager relations, to spin
pumping of current within that domain. For a given
amount of adiabatic and non-adiabatic spin torque, the
two models yield similar but distinct results for the bulk
spin pumping, thus distinguishing the two models.

This has experimental implications both for samples
with conducting leads and that are electrically isolated.
For Co we estimate that within a domain wall a true
H-field H0 = 0.1 T can cause the same spin-pumped

current as direct application of an electric field ESP =
350 (V/m), or, across the domain wall can cause the same
effect as a voltage difference of 7.0×10−6 V. Correspond-
ingly, the ratio of the effective emf to the field H0 is, for
Co, about 0.7× 10−4 V/T.

The similarity between our results and those of Barnes
and Maekawa is likely not an accident. In the present case
we have shown that the “off-diagonal” current-induced
(“adiabatic”) spin transfer torque implies a similar “off-
diagonal” (“adiabatic”) spin pumping of current. Barnes
and Maekawa10 show that, in addition to being able to
generate a spin transfer torque,4 a spin-dependent Berry
phase can generate what we have called spin pumping.
Their approach also gives a natural way to understand
the associated emf-to-field ratio, 2µB/e.

On the other hand, using irreversible thermodynamics,
it is clear from the time-reversal properties of the thermo-
dynamic fluxes that both the spin transfer torque and the
spin pumping emf correspond to irreversible processes.
The irreversible nature of these quantities is not clear
from Berry-phase approaches, where one employs cur-
rents (fluxes) as primary variables, whereas in consider-
ing experimental quantities, which correspond to thermal
averaging, these terms must be considered to be driven
by thermodynamic forces.
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