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Abstract
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1 Introduction and Summary

In a recent paper [1] we identified the mechanism by which we believe that quan-
tum mechanics is reconciled with general relativity, in the context of string theory
in a two-dimensional target space-time. This identification was based on studies
of c = 1 matrix models [2] that solve, in a certain limit, two-dimensional quantum
gravity with matter coupled to a Liouville mode. The latter can be seen to corre-
spond to coset SU(1,1)

U(1)
Wess-Zumino models [3, 4]. The crucial observation, due to

Witten [4], is that such models can be interpreted as two-dimensional target space
stringy σ-models in a black hole background metric. It is then argued that the c = 1
matrix model is the last stage of the black hole evaporation.

The c = 1 matrix model can be represented as a theory of essentially free fermions,
and as such it possesses an infinity of conserved currents of high spin [5]. After
bosonisation [6] such conservation laws have been seen to give rise to an infinity of
(target space) conserved charges [7], that are known to form a Cartan subalgebra of
a W∞-algebra 1[8].

In singular space-times, symmetries do not imply the existence of conserved quan-
tities [10, 11], unless the symmetries are gauged by coupling the corresponding cur-
rents to long-range fields [12]. In ref. [1] we argued that this is just what happens
in the case of two-dimensional black holes, thus ensuring the maintenance of quan-
tum coherence, which in local point-like theories has been argued to be violated
due to black hole evaporation [13]. In other words we identified the infinite set of
hair, associated with a w∞-algebra of the target space, which we call ‘W-hair’, that
reconciles quantum mechanics with non-perturbative quantum gravity as described
by two-dimensional string theory. We illustrated this identification in ref. [1] by
exhibiting the conserved current that couples to one of the ‘massive’ topological
‘Q-graviton’ states that constitutes the last phase of black hole evaporation. Such
a discrete string state is the first of an infinite tower of stringy states with standard
ghost number and definite energy and momentum, which in two target space-time
dimensions constitute the only remnants of the higher-spin string modes [14]. It
should be remembered that the ‘tachyon’, which is actually massless in this case, is
the only fully-fledged field of the theory. We conjectured that all of these massive
modes are associated with stringy gauge symmetries in target space, which lead to

1To avoid confusion we should mention that the W∞-symmetries we are talking about are the
w∞-symmetries in the notation of Pope et al. [8], which admit central extension only in the
usual Virasoro sector, generated by spin-2 fields. In this sense the algebra may be considered
as the classical limit of the centrally extended (beyond Virasoro sectors) W∞-algebras discovered
by Pope, Romans and Shen [8]. It should be noted that at present a geometric interpretation
exists only for w∞-algebras, as being a subgroup of area-preserving diffeomorphisms on a certain
two-manifold [9]. It is mainly this kind of extended conformal algebras that we shall be concerned
with in this work, and from now on we stick to the w-notation, although in the relevant literature
usually there is no notational distinction [7].
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the infinity of conserved charges of the matrix model, viewed as the last stage of
black hole evaporation which respects the conservation laws.

Subsequently, and independently, Moore and Seiberg [15] confirmed the associa-
tion of the infinite set of conserved charges in the c = 1 system with the discrete
topological modes of the two-dimensional string, by showing that for the particular
values of energy and momentum that characterised the discrete high-spin modes
one can find field transformations that leave the action of the matrix model (in
the fermion formalism) invariant. They showed that these transformations gener-
ate w∞+1-symmetries for the target space-time. In particular they found a larger
infinite set of conserved charges, as compared to the results of [7], which obey the
commutation relations of a w∞+1-algebra. The charges of [7] constitute a commuting
subset (Cartan subalgebra) of this algebra. In this way Moore and Seiberg confirmed
the existence of ‘W-hair’ characterising the black hole solution of the associated σ-
model theory. For completeness we review their results in the fermion formalism of
the c = 1 matrix model.

The action takes the form

S =
1

4

∫
dt[(

dψ(t)

dt
)2 − ψ(t)2] (1)

where t is a Euclidean time and will be identified with the target space time in the
effective field theory (after a Wick rotation). Symmetries of the action are found by
redefining the fermion variables ψ(t) according to [15],

δs,lψ(t) = i
∂

∂p
[Hs,l]eilt (2)

where p = dψ(t)
dt

, s is a positive integer, l = s, s − 2, ... − s, and Hs,l = (−ip −
ψ)

s+l

2 (−ip + ψ)
s−l

2 . For these particular values of l the variation of the action (1)
vanishes. It can be shown from the analysis of [15] that these values precisely
correspond to the extra discrete modes that we mentioned above. Such modes
may be seen to correspond formally to what one would call ‘boundary operators’ in
matrix models [16], which however for the particular values of momentum l given
above become ‘bulk’ operators corresponding to the discrete massive high-spin states
of the two-dimensional string theory obtained as a certain continuum limit of the
matrix model. This infinite family of symmetries is generated by conserved charges
of the form Os,l = Hs,leilt which are shown to obey the commutation relation of a
w∞+1 algebra,

[Os,l, Os′,l′] = (s′l − sl′)Os+s′−2,l+l′ (3)

The charges discussed in [7] the beginning correspond to the commuting subgroup
l = 0. Notice the explicit time dependence of the charges for l 6= 0. This is analogous
to the case of the generators of Lorentz boosts in conventional field theories 2. In

2We thank L. Alvarez-Gaumé for an illuminating discussion on this point.

3



view of the conjectured equivalence of the matrix model and σ-model formalism one
expects that upon bosonising the theory, by taking into account the extra operators,
one would recover this set of symmetries as target space-time symmetries of the
corresponding (1+1)-dimensional σ-model. In this way the conserved charges could
be expressed as functionals of the target-space backgrounds integrated over the
‘space’ (Liouville coordinate) of the two-dimensional string [1]. In this framework
the symmetries of the matrix model could be viewed as exact (anomaly-free) target-
space gauge symmetries of the σ-model, formulated in higher genera.

There are two ways in which such symmetries are realised in the σ-model ap-
proach to string theory. In one of them, the symmetries correspond to redefinitions,
δX , of the σ-model target space coordinates X that leave the Fradkin-Tseytlin (FT)
functional invariant [17]. In this way the symmetries are dissociated (at least for-
mally) from the conformally invariant critical point, given that the FT generating
functional can be defined away from the fixed point [18]. In the alternative approach
[19], conformal invariance of the underlying world-sheet field theory is essential. In
this approach the symmetries are associated with a family of string vacua. A target
space stringy symmetry in this case would imply the existence of infinitesimal (or
finite) conformal field theory operators that generate isomorphisms between con-
formal field theories with target space fields {gi} and {gi + δgi} [19]. The formal
criteria for such a symmetry can be summarised as follows [19],

(i) Any infinitesimal world-sheet operator h generates an isomorphism between
conformal field theories with stress tensors T and T + i[h, T ] 3.

(ii) Two conformal field theories with stress tensors that differ by an operator χ(1,1)

of conformal spin (1,1) correspond to backgrounds that differ by an infinitesimal
change appropriate to χ(1,1). This follows from the assumption that in a σ-model
language one considers as physical (background) space-time fields the ones that are
in one-to-one correspondence with primary fields of dimension (1, 1). However this
restriction does not prevent other operators of the theory from being important in
determining the structure of space-time symmetries, as we shall discuss shortly.

(iii) Symmetries of the target space of the string are, therefore, generated by
currents J of conformal spin (1,0) or (0,1) (this is so because in that case the charge∫
dσJ ≡ h has the property that i[h, T ] = χ(1,1) [19]).

It is understood that appropriate extensions to finite transformations are expected
to hold, but the situation is not clear. Discrete string symmetries might form a

3We use Euclidean notation with Tzz ≡ T, Tz̄z̄ ≡ T , and T is the total stress tensor including
the ghost contributions. It is related to the Hamiltonian Hg of the σ-model by

∫
dσ(T + T ), with

σ a spatial world-sheet coordinate.
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different category, although the belief is that they also can be incorporated in the
second scheme.

It is not clear at present whether the two approaches are equivalent. Certainly
there are examples where a change of variables in the FT functional induces non-
trivial changes in the background fields, but it is not yet known whether this includes
the full set of stringy symmetries 4. We conjecture [1] that in the particular case of
two-dimensional strings, the w∞+1-symmetry of the target space can be represented
as a change in σ-model fields. We base this conjecture mainly on intuition at this
stage, but also on some preliminary results in simplified systems characterised by
W∞-symmetries 5. Our intuition is based on the so-called W -gravity systems, which
are known to possess extended conformal symmetries [21]. For instance, the action
of a two-dimensional free complex scalar field,

∫
d2z∂φ∂φ∗, is known to possess W∞

as well w∞-symmetries, which are represented as appropriate changes of the field
φ [21]. A complex scalar field may be considered as parametrising a complexified
two-dimensional target space, and the above theory is nothing other than string
theory in a flat space-time background 6. In this picture the world-sheet symmetry
is realised as a transformation of the spacetime coordinates [17] which leaves the
flat background invariant, and in this sense it is trivial from a target space-time
point of view 7. Once non-trivial backgrounds (field interactions) are introduced
one expects that generalised coordinate transformations will induce changes in these
backgrounds, and in this way a world-sheet symmetry is elevated into a target space
one. We argue below that this is precisely the case with the particular background
corresponding to matrix models.

In any case, irrespectively of the form of the symmetries in the σ-model language,
their existence would lead to Ward identities of amplitudes mixing various string

4For Bosonic strings, the higher gauge symmetries corresponding to massive multiplets up to
rank four are known to be obtained from appropriate transformations of the target-space coordi-
nates XM → XM + ζMNP (X)∂XN∂XP , ∂ being a world-sheet derivative [20].

5We thank E. Kiritsis and I. Bakas for interesting discussions on their preliminary results on
this issue.

6It goes without saying that this correspondence is only formal since string theory on flat
backgrounds cannot be formulated consistently in two target-space dimensions. To this end one
should employ non-trivial backgrounds.

7There is an important difference from the usual critical string case, in that the target space
coordinate transformations contain an explicit dependence on the world-sheet coordinates which
appears in the respective parameter. For example the flat background W∞ symmetry corresponds
to changes of the field φ of the form [21] δkl

φ =
∑l

k=0
αi
k∂

k(kl∂
l−k+1φ), where the parameters kl

are holomorphic functions of the world-sheet coordinate z. It is interesting to note [22] that by
‘fermionising’ the complex boson problem, i.e. by defining a pair of fermions η and χ such that
φ ≡: ηe−σ : and φ∗ ≡: ∂χeσ : (where : ... : denotes the appropriate normal ordering), one can
obtain non-linear realisations of W∞ and W∞+1. By further bosonisation of fermions [22] one can
then obtain - after appropriate truncation - realisations of the classical w∞-symmetries in terms of
two real scalars, which may be (formally) closer to the stringy target-space interpretation argued
above.
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levels [17, 1]. They would correspond to higher-spin massive string states 8. The ex-
istence of such operators and the corresponding Ward identities in the matrix model
[15] certainly points in this direction, but more work needs to be done, especially in
higher genera, before rigorous results are derived.

Recently Witten [26] has managed to exhibit a larger symmetry for the c = 1
matrix model by making use of new discrete states of non-standard ghost number,
which were known in the previous literature [27], but not extensively discussed. The
basic feature is the existence of modes of ghost number zero and conformal spin zero
that form a ring, the so-called ‘ground ring’. In terms of matrix models this ring
helps in understanding the symmetry of the system, which is nothing other than a
phase-space area-preserving transformation that leaves the Fermi surface invariant.
It is important that the world-sheet currents that generate this particular Lie al-
gebra of symmetries are operators of non-standard ghost number but of conformal
spin (1, 0) and/or (0, 1). Given that in the discussion we gave above on ‘hidden’
symmetries in string theory the ghost number seems to play no essential role, we
have an understanding of this symmetry as an ordinary stringy symmetry of target
space-time of a two-dimensional σ-model. The fact that the symmetry is known in
a closed form is due to the low dimensionality of target space. The symmetry is
bigger than that discussed previously [7, 1, 15], but the extra symmetries are quite
trivial as far as the matrix model is concerned. However, they are important in
the conformal field theory framework. As we mentioned in the beginning of the
article, it has been known for some time [9] that w-algebras are associated with
specific area-preserving diffeomorphisms for fields of high spin, but the connection
with string theory had not been clear.

In the body of this note we develop a physical interpretation of this remarkable
observation in the context of the symplectic geometry of Hamiltonian dynamics.
Specifically, it ensures that the matrix model’s time evolution respects Liouville’s
theorem, which is a necessary condition for canonical quantisation. Comparing with
a generalised evolution equation for the density matrix proposed previously [10] to
accommodate the breakdown of quantum coherence conjectured by Hawking [13],
we demonstrate the vanishing of the extra term that otherwise would allow pure
states to evolve into mixed ones. The basic feature is that the extra terms violate

8In view of this mixing of levels of different mass one would expect that in higher-dimensional
string theories such symmetries would be spontaneously broken by the background. From the
analysis of [19] it is evident that the order parameter of such a breaking is the metric for space-time.
An interesting result is obtained by noting that the symmetries are not restored for any value of this
field. This has been associated in [19] with the symmetric phase of the string where an S-matrix
cannot be constructed [23]. In the particular case of two-dimensional string, spontaneous breaking
cannot occur due to Coleman’s theorem [24]. In contrast, one might encounter a Kosterlitz-
Thouless type of symmetry breaking. The topological nature of the space-time graviton mode in
this case [14], and the fact that such excitations characterise the final stage of black hole evaporation
[1, 25], might then prove useful in understanding the nature of the string vacuum characterising
the matrix model system.
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the exact stringy symmetry of the model, which is expressed as the transformation
preserving the phase-space volume element 9. This geometric view-point on the
restoration of quantum coherence in two-dimensional strings probably opens new
ways to attack similar problems in higher-dimensional string theories. We also
recall that the area-preserving diffeomorphims of the matrix model leave invariant
the Fermi surface [26]. An analogous result in four-dimensional field theory would
reflect the existence of a large string symmetry interelating vacua with the same
value of the cosmological constant Λ. Assuming the existence of a supersymmetric
vacuum with zero cosmological constant, Λ = 0, the spontaneous breakdown of this
large string symmetry would leave string in some asymmetric vacuum with Λ = 0.

2 The matrix model, black holes and space-time

foam

However, there is a non-trivial conjecture that one has to make about the nature of
the matrix model in order to apply the above arguments. The conjecture concerns
the role of the black hole as well as space-time foam in this context. The matrix
model is believed to be the last stage of black hole evaporation [4]. Black hole
solutions have been discussed so far in the context of solving β-function conditions
for σ-models formulated on genus zero, while the matrix model is considered as a
stringy regularisation of world-sheet quantum gravity where the summation over
genera is done exactly. It is quite plausible that higher genus corrections do not
destroy the black hole character of the tree level conditions, and this will be assumed
in the following. The black hole solution is asymptotic (at spatial infinity) to a space-
time which is exactly that of a matrix model. The symmetries of the matrix model in
this way become asymptotic symmetries of space-time in the presence of a black hole

that can be assumed to evaporate somehow. Given that under time evolution the
phase space of the matrix model, which is essentially the phase space of c = 1 matter
interacting with the black hole, is preserved as a result of the stringy symmetry, one
has an elegant geometric interpretation of the maintenance of quantum coherence
in the system.

Is that the end of the story? In other words, is the classical black hole background
and its evaporation the only source of loss of coherence in the system? One might
naively answer positively, given that after the black hole evaporates one recovers
flat space-time and the problem of defining an S-matrix that factorises in the case
of matrix model seems quite natural and somehow trivial. However, the essential

9It should be stressed that this symmetry is a property of two-dimensional strings, associated
with the infinity of modes characterising various string multiplets, which does not exist in conven-
tional local field theories.
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point that will concern us below lies in the fact that, if one takes the dynamics of
space-time seriously in the case of c = 1 theories, there are additional complications
even after the black hole evaporation, that can be seen on a microscopic scale. The
problems come from the observation that a background-independent formalism of
the Das-Jevicki action [6] is possible, which implies that if one considers quantum
fluctuations around any background, then creation and annihilation of virtual black
holes may occur, and as a result space-time foam will appear.

Let us be more precise. First we argue how one can formally achieve a background-
independent formulation. From the collective field theory approach to the matrix
model [6, 28], it becomes evident the latter yields a string field theory of tachyons
that propagate in a flat space-time configuration, where the dilaton field is linear
in the the spatial coordinate and all the rest of the higher-spin string modes are
vanishing. The reason for having a tachyon field theory and not simply a classical
background is simple. One starts from the partition function of the lattice model
and then makes a change of variables (which is a canonical transformation that
leaves invariant the classical phase-space volume element) following [28] to pass
to a target space field formalism. In this way, the collective field coordinate is
integrated over in the path integral. This coordinate can be seen to correspond
to the tachyon field [6, 29]. There is no dynamics in the matrix model for the
high-spin string modes, by construction. From classical symmetry considerations
[7], however, one can anticipate a background-independent formalism, which will
enable one to integrate over the space-time fields and obtain a quantum string field
theory. To this end, one has first to covariantise the Das-Jevicki action. That this is
possible follows directly from the fact that the amplitudes of the Das-Jevicki theory
are nothing other than string theory amplitudes for the tachyon field in a two-
dimensional target space [14]. The insertion of graviton-dilaton states with generic
momenta in tachyonic amplitudes can be seen to yield vanishing results, which can
be interpeted [1] as arising from certain stringy Ward identities expressing general
covariance of the theory. In this way general covariance is viewed as one of the
the infinite gauge symmetries of the two-dimensional string associated with massive
high-spin levels [17]. It is straightforward [1], following the dictionary outlined in
[6, 29], to express the Das-Jevicki lagrangian in terms of a tachyon field propagating
in non-trivial (generic) graviton and dilaton backgrounds. The result is an effective
action, involving an infinite number of derivatives, describing the interaction of the
tachyon with these fields. The infinite derivative order is immediately seen from the
fact that the Das-Jevicki lagrangian [6] for the collective field φ(x, t) contains, in the
scaling limit, kinetic terms of the form

∫
dx

1

2
[
(∂−1
x

∂φ
∂t
)2

φ
+ L(φ) +O(φ3)] (4)

where the interaction terms L(φ) depend on the details of the matrix model poten-
tial. For a study of the critical properties of the model it suffices to consider inverted
harmonic oscillator potentials [6, 29]. In this case, L(φ) = (µF + 1

2
x2)φ, where µF is

8



the chemical potential of the matrix model [6]. It should be noted that µF is essential
for the non-perturbative (field-theoretic) quantum corrections we are interested in,
although it may be ignored when one considers only classical tachyon backgrounds
[29]. To get a covariant form, one may redefine the collective field by looking at
fluctuations around static classical minima, v0(x) = 1

π

√
2µF + x2, of the effective

potential corresponding to (4). Thus we write φ = v0(x) +
1

v0(x)
η(x, t), change vari-

ables from x to a space-like coordinate q (the Liouville mode 10) defined by, q =
∫ x dx

v0
,

and define a tachyon field T by η ≡ ∂qT (t, q). One immediately observes that the
kinetic terms of (4) when combined with the potential terms L(φ) = 1

φ
L(φ2) yield

(after a Wick rotation in time t) terms of the form

∫
dqdt

(∂tT )
2 − (∂qT )

2 +O[v0(q;µF ), ∂qT (t, q)]

1 + 1
v2
0
(q;µF )

∂qT
(5)

where for the shake of simplicity we denoted collectively the interaction terms by
O[...]. It is immediately seen that that the covariantisation is obtained naively by
setting 2q → Φ (a dilaton field), ∂qT → 1

2
Gµν∇µΦ∇νT , and (∂tT )

2 − (∂qT )
2 →

∇µT∇νTG
µν . The standard σ-model form is obtained by redefining T ′ = e−ΦT ,

which induces the non trivial dilaton factors in the integration measure [4, 1]
∫
d2ye−Φ

√
G....

There are ambiguities in such a covariantisation since the matrix model is formulated
on a flat target space-time and therefore curvature terms, which determine space-
time dynamics, are vanishing. Moreover, one cannot really distinguish between
constant factors in the action and purely dilaton terms. To resolve such questions
one has to to start from a stringy point of view [1, 14]. If one is interested only in
classical space-time dynamics for the high-spin modes (which in two dimensions have
definite energy and momentum), the σ-model point of view seems sufficient. The lat-
ter can be re-expressed, at least as far as the graviton-dilaton multiplet is concerned

10It should be noted at this stage that it is not at all obvious that we can establish an exact
(formal) correspondence of the spatial coordinate q appearing in the Das-Jevicki action with the
Liouville mode of the continuum model. In view of the results of [15] this appears to be true only
for low energies, while in general there is a non-local integral transform that connects the two
parameters, which makes the connection of the two theories technically obscured. Indeed, it can
be readily seen that in the low-energy limit the equations of motion obtained from the action (5)
are equivalent to the lowest order (α′) σ-model β-function conditions. However the situation is
not at all clear with the higher-order corrections, since exact results (on higher genera) from the
σ-model are not yet available. One should hope that when taking into account the field redefinition
ambiguities in the σ-model formulation and the relevant subtleties [15] of the connection of the
Liouville mode and the spatial coordinate of the Das-Jevicki action, the connection of the two
formalisms might be elucidated. This immediately raises the question of which theory is more
convenient (or even correct) to describe the dynamics of the c = 1 theory. The point of view we
took in [1], and which we follow here, is that the stringy approach is more fundamental. After
all, it is essentially this approach that gave rise to black-hole solutions [4, 25]. The connection
of the conformal field theory with the matrix model, and therefore the Das-Jevicki formalism, is
then elucidated further in [26] by exploiting the extra structure of the conformal field theory, that
cannot be seen in the matrix model approach. It is probably this extra structure [30] that explains
a discrepancy between the works of Gross and Klebanov [31], on the triviality of the S-matrix of
c = 1 matrix model theory, and that of Polyakov [14]. It is in view of this connection that the
background-independent formalism of the Das-Jevicki string field theory is useful.
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[4], as a SU(1,1)
U(1)

Wess-Zumino model. However, to get a consistent string theory
one should also include the rest of the string modes that couple to the tachyons
[1]. That such couplings exist becomes clear from the σ-model formalism, where
the stringy gauge symmetry transformations generated by these modes mix the var-
ious string levels [17, 19, 1]. These symmetries exist already at the conformal field
theory level, i.e. a first-quantised string formulated on flat space-times, imposing
non-trivial constraints (Ward identities) on string S-matrix elements [17, 1]. Such
constraints can be interpreted as arising from symmetries of the target space-time
associated with the rest of the spin modes that are vanishing in the fixed background
in which we are working. To find the precise form of the relevant terms is formally
a complicated task, and at present there is no closed form known for the collective
field theory to incorporate these modes, but in principle it exists. Nevertheless,
following the above methods of covariantisation, one can show explicitly [1] that the
first two lowest-lying conserved charges of the effective theory associated with the
string levels zero and one (fermion number and the spin-two current related to the
energy of the black hole) are surface terms, and as such characterise the asymptotic
black hole state and are, therefore, quite insensitive to what is going on inside the
horizon. One can anticipate [1] a similar result for the entire set of the conserved
charges of the matrix model, associated with other string modes. In this way one
has an infinity of independent charges that are exactly conserved even during the
Hawking process of black hole evaporation. They constitute the gauged ‘W-hair’ of
the black hole [1], which we argued to be responsible for the restoration of quantum
coherence, since they are remnants of the black hole after the evaporation.

When gravity and higher-spin fields are included, hopefully through an appropri-
ate extension of the Das-Jevicki approach [6], one should integrate over all possible
configurations of these fields. Although these modes are discrete string states of
definite energy and momentum, as can be readily seen in an expansion around flat

target space-time [14, 1], in general they may give rise to various field configura-
tions, which can only be seen if one starts from a background-independent string
field theory and not expanding around a given background, as in the σ-model ap-
proach. In such a procedure one should include topology-changing configurations
(in Euclidean formulations), which are in any case included in the set of allowed
classical solutions of the σ-model β-function conditions. It is therefore natural to
assume that the non-perturbative solution to the matrix model includes the creation
and annihilation of virtual microscopic black holes. In this interpretation Witten’s
black hole, which is a solution of the beta function conditions of the σ-model at
genus zero, plays the role of what Hawking would call a macroscopic black hole [13].
The σ-model (formulated in higher genera) would involve quantum fluctuations of
the space-time metric which lead to the formation of virtual black holes and micro-
scopic horizons. The latter survive the evaporation of the macroscopic black hole,
and thus characterise the asymptotic quantum field theory, which in this case may
be interpreted as describing the interaction of c = 1 matter with a space-time foam
whose role is similar to that of a quantum-mechanical reservoir.
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Hence, in principle, the modification of the quantum mechanical evolution sug-
gested in [10] could apply. However, this might not be the case due to stringy
symmetries, as we shall argue below. There is also a nice geometric intepretation
of these symmetries, which also illuminates the relation between matrix model and
string theory in fixed backgrounds.

3 The symplectic geometry of Quantum Coher-

ence

We now proceed to demonstrate the geometric origin of the argued restoration
of quantum coherence in the two-dimensional string. To understand better the
problem and its solution in the matrix model framework it is first useful to recall
some facts about the possible modifications of quantum mechanics as a result of
singular space-time metrics [10].

Consider a quantum mechanical problem described by a Hamiltonian H(p, q) and
a density matrix ρ(p, q, t). In conventional quantum mechanics, the time evolution
of the density matrix is given by

∂ρ

∂t
= i[ρ,H ] (6)

where [, ] denotes the conventional commutator. Eq. (6) is nothing other than
the quantum-mechanical analogue of Liouville’s theorem for the conservation of the
classical probability density under time evolution in classical mechanics. There
are two features that lead to such a classical conservation. For our purposes it is
instructive to review them briefly.

The first is the fact that the subsequent motion of the classical system (defined by
a point in phase space) is completely determined by its location in phase space at
a particular time. This implies that the number of systems inside the infinitesimal
volume element surrounding a given point remains constant under time evolution.
A system initially inside the volume can never get out, since at the moment of
crossing the border it has the same location as one of the boundary points and
therefore both points would be forced to travel together from that moment. The
second important point is that time evolution is a canonical transformation, and as
such leaves the infinitesimal volume element in phase space invariant. Thus, the
density of phase-space points remains constant during time evolution.

Eq. (6) might be modified if singular space-time metric backgrounds were taken
into account, due to the Hawking evaporation phenomena that accompany them
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[10]. Already in ref. [13] Hawking had proposed that once non-perturbative metric
fluctuations were taken into account, the usual S-matrix relation between initial and
final states should be replaced by a general linear relation

ρout = /Sρin (7)

where /S cannot in general be factorised into the product of S and S†, as in conven-
tional quantum field theory. It was suggested in ref. [10] that the corresponding
modification of eq. (6) would be

∂ρ

∂t
= i[ρ,H ] + /̂Hρ (8)

where the extra part represents an abstract operator, whose typical effects are sup-
pressed by powers of the Planck scale [10]. The immediate interpretation of this
modified quantum mechanics would be that gravity induced non-invariances of the
phase space volume of the system. The existence of microscopic event horizons might
cause similarities with the situation in open systems, where there is a flow of infor-
mation to and/or from the system, and this simply induces a failure of Liouville’s
theorem for the open system. Indeed, eq. (8) is similar in form to the markovian
master equation that controls the evolution of a reduced quantum mechanical sys-
tem in interaction with a reservoir [32]. The important difference [10] is that in this
scenario for quantum gravity the role of the reservoir is played by the space-time
foam, which however is intrinsically unobservable. Therefore the modification (8) is
essential, and not an artefact of a voluntary choice to observe only a reduced part
of the world.

Of the two features stated above that characterise the motion of an isolated clas-
sical Hamiltonian system, the one that is violated in the case of open systems is the
second, namely the invariance of the phase space volume element under the time
evolution, due to the non-existence of unitary Hamiltonian motion. This can be
understood by the fact that in the case of the evolution of the open system there
is flow of information through the boundaries. This is effectively described by the
non-invariance of the phase-space differential volume. As a result, the equation for
the probability density, and evidently the density matrix evolution, is modified by
the extra term /̂H in (8), whose precise form depends on the details of the interaction
of the subsystem in question with the reservoir. We do not know how such a modifi-
cation due to space-time foam would be avoided within the context of conventional
local quantum field theory.

However, in the particular case of two-dimensional string black holes (matrix
models) the conservation of the phase space volume is guaranted in the quantum
system by a symmetry of the theory, as we shall now discuss, and as such the above
modification of quantum mechanics is not present. This is the promised geometric
interpretation of the restoration of quantum coherence argued in [1] on the basis of
the infinite gauged ‘W-hair’ property of the two-dimensional string black hole.
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Following Witten [26], we consider the matrix model Hamiltonian which has the
standard inverted harmonic oscillator form,

H(p, q) =
1

2
(p2 − q2) (9)

The action density of the model in form language is given by the two-form ω =
dp ∧ dq − (pdp− qdq) ∧ dt, where t is a time parameter. Solving the model means
to find an appropriate change of variables in (p, q) space (as functions of t) so that
the equations of motion dp

dt
= −∂H

∂q
and dq

dt
= ∂H

∂p
look trivial. The transformation is

readily obtained [26]

p′ = pcosht− qsinht

q′ = −psinht + qcosht (10)

Indeed, the equations of motion in the p′ − q′ frame are dp′

dt
= 0 and dq′

dt
= 0. In the

(p′, q′)-system of phase space coordinates the action density itself becomes the phase
space volume element ω = dp′ ∧ dq′. It is therefore evident that the hamiltonian
vector fields, which by definition leave the dp′∧dq′ element invariant, are symmetries

of the matrix model. Such fields are easy to construct [26],

V̄ =
∂g(p′, q′)

∂q′
∂

∂p′
− ∂g(p′, q′)

∂p′
∂

∂q′
+ u(p′, q′, t)

∂

∂t
(11)

In terms of the original p − q system, the above vector fields generate symmetry
transformations for the matrix model. In particular, g(p′, q′) is associated with
shifts in the q-coordinate, while u(p′, q′, t) represents changes in the time coordinate
t. It is clear that the time evolution of the quantum system in the p′ − q′ plane
becomes in this way an exact symmetry of the conformal field theory 11. Hence, the
classical result of the invariance of the phase space volume element is promoted in
this particular case into a symmetry of the problem. As a consequence, the Liouville-
von Neuman evolution of the density matrix in ordinary quantum mechanics is
guaranteed by the symmetries of the theory. From the above-described equivalence
of the matrix model and the Das-Jevicki tachyon field theory, one can anticipate that
the phase space of the latter will remain constant under time evolution, for stringy
symmetry reasons. Witten’s analysis [26] shows that this evolution corresponds to
a symmetry of the conformal field theory which is associated with states of given
energy and momentum characterised by non-standard ghost number adjacent to the
one characterising the states discussed in refs. [14, 1, 15]. The extension of these
symmetries to non-trivial backgrounds, which incorporate black holes, is non-trivial
to check, especially in view of the non-existence, as yet, of a satisfactory string
field theory formalism that resums higher genera in the continuum. However, in
view of the above-described background independent formalism of the Das-Jevicki
action and its appropriate extension to include high-spin string modes, one should

11Actually the only restriction in that case is that the function u does not have an explicit
dependence on time.

13



anticipate that such an extension is possible. In this case, taking into account
the above interpretation of the role of space-time foam in this context, and the
connection of the asymptotic states of the black hole to the matrix model, one
has an elegant geometric interpretation of the restoration of quantum coherence in
the two-dimensional string theory. The basic feature is the existence of a stringy
symmetry, associated with various string excitations, which characterises the ground
state of the system. As a result, the extra term in (8) that would spoil conventional
quantum mechanics is forced to vanish, as it is incompatible with the symmetries
of the theory. This happens due to the fact that the symmetry in question finds
a nice interpretation as a phase-space volume-preserving diffeomorphism which is
precisely the property violated in the modified evolution equation (8). The existence
of the ‘W-hair’ [1], that characterises the asymptotic states of the black hole (matrix
model), certainly offers field-theoretic support to these arguments.

The area-preserving diffeomorphisms in phase space are a feature of the w∞ al-
gebras [9] discussed at the beginning of this article. It should be stressed that the
w∞-symmetry that characterises the standard ghost number discrete states of high
spin is included in the above symmetry. As we mentioned above, from the ma-
trix model point of view the extra symmetries are trivial and do not lead to extra
conserved charges. One should probably anticipate that the charges discussed pre-
viously, associated with the standard ghost number string states, are the only ones
that characterise the conformal field theory and therefore the black hole solutions.
However, it is the entire spectrum of string states, including the non-standard ghost
number ones, that are really responsible for the maintenance of quantum coher-
ence and the restoration of the relation between symmetries and conservation laws.
Hence it seems that it is the particularity of ‘W-hair’, which is area-preserving and

characterises the two-dimensional black hole, that is relevant for the reconciliation

of quantum mechanics and general relativity, and that just having an infinity of

conserved charges may not suffice.

In view of this result, one might speculate that if the above scenario is to be carried
through in higher dimensional space-times, it is necessary that there exist analogous
infinite-dimensional symmetries associated with area-preserving diffeomorphisms in
some phase space variables. One might need something like the w∞-algebras that
characterise four-dimensional self-dual Euclidean Einstein spaces [33]. There, it is
known that four-dimensional self-dual Einstein gravity follows as the large N-limit of
a two-dimensional Wess-Zumino SU(N) σ-model. Infinite-dimensional symmetries
of Einstein’s equations are shown to form a w∞-algebra. The self-duality of the
model may not be essential [33] for the existence of infinite dimensional integrability,
and one might hope that non-self-dual four-dimensional gravity models obtained
from string theories with higher-dimensional target spaces might possess extended
conformal symmetries of the typed discussed in this note.
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4 Remarks on the cosmological constant problem

After these speculative remarks about the possible extension of our ideas to higher-
dimensional space-times, we conclude with some comments on the cosmological con-
stant in the light of the above insights into matrix models. Witten [26] has observed
that the infinite set of string symmetries that preserve the two-dimensional area of
phase space of the matrix model also leave invariant the Fermi surface

F ≡ {1
2
(p2 − q2)} = 0 (12)

If this property of zero vacuum energy also could be lifted to realistic string models
with an effective field theory in four-dimensional target space-time, it could explain
why the cosmological constant Λ = 0. We presume that such theories would have
a large number of consistent vacua, among which would be a supersymmetric one
with Λ = 0. As in the case of a conventional finite-dimensional field theoretical
symmetry, this vacuum might be invariant under the infinite-dimensional string
symmetry 12. However, there is an equally generic possibility that this is just one
of a degenerate set of string vacua which are transformed into each other by the
string W-symmetries. The theory must choose between these by breaking the string
W-symmetry spontaneously, analogously to the Goldstone or Higgs mechanism in
local field theory. A key role is played in this idea by supersymmetry, which ensures
that the set of Λ = 0 vacua is at least non-empty. If the set is indeed degenerate, this
should be apparent in the effective four-dimensional field theory, which could well
exhibit a set of candidate vacua that have ‘small’ values of the cosmological constant,
at least in some approximation. Relevant examples of such effective field theories
are the flat-potential no-scale supergravity models [34], which have a continuum of
degenerate tree level vacua that break supersymmetry, and appear naturally in string
theories [35]. It would indeed be remarkable if the two fundamental problems of the
restoration of quantum coherence and the vanishing of the cosmological constant
could be solved within the framework of a single string symmetry.

The relation of these ideas to those of [36, 37, 38] is not clear, since the semi-
classical approach used there is not justified for two-dimensional gravity which has
a dimensionless coupling [39]. However, the two-dimensional target space models
offer hope that non-perturbative effects may guarantee Λ = 0 even beyond the
semiclassical approximation, which has in any case never been derived even in the
four-dimensional case. The approach of refs. [36, 37, 38] required some hierarchy
between the Planck scale (MP ) and the sizes of the wormholes considered, and would
‘iron out’ the cosmological constant only if it was ‘pre-cooked’ to be small compared
with M4

P , as in generic models with approximate supersymmetry and no-scale su-
pergravity models in particular [34]. Thus our ideas are not obviously contradictory
with those of refs. [36, 37, 38].

12We note parenthetically that the two-dimensional cosmological constant operator is central
within the string symmetry algebra.
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