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Algorithm for preparation of multilayer systems with high critical angle of total reflection
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A development of the theory of multilayer systems is presented. It shows precisely how to calculate thick-
nesses and number of layers to get reflectivity close to unity for a given arbitrary critical angle. Application of
the proposed approach to real systems is demonstrated.
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I. INTRODUCTION

We apply an analytical method not yet widely known
the calculation of thicknesses and number of layers
multilayer systems~MS! in order to achieve a high critica
angle.

Usually MS consist of many bilayers of two materia
with different refraction indices, and the thicknessaj of the
bilayer varies with its indexj. The idea to increase the crit
cal angle with the help of MS with steadily decreasing thic
ness of layers was first published by Turchin@1# in 1967 and
further elaborated by the author in 1997@2#. In the mean-
while another contribution by Mezei, dealing with the sam
subject, appeared in the literature in 1976@3#.

The main question is what should be the rule of thickn
variation. At present, the thickness is varied according to
theoretical prescriptions as described in Ref.@4#. All the bi-
layers have different thickness, and the change of the th
ness of neighboring layers can be very small.

We consider here a different construction: the MS con
of several periodic chains, and we show how to find
period, number of periods for every chain, and the numbe
chains to achieve the critical angle we wish. We use a re
rence method similar to that used by Darwin@5# and later by
Godfrey @6#. Our method is analytical. It permits us to co
trol technology of layers preparation, to find the optim
number of layers for achieving a tolerable result, and to
pair defects, if for some reasons they appear on the reflec
curve.

Applications of MS in experiments are discussed in ma
review papers~see, for instance Refs.@7,8# and references
therein!, and we do not dwell on it too much. We only wa
to add some references@9–15#, which were not mentioned in
Ref. @8#.

In Refs.@9–12# the MS were used for the polarization o
neutrons by transmission@9# through them, by transportatio
along magnetized neutron guides@10,12#, and by splitting of
an unpolarized beam by a magnetized supermirror@11#. In
Ref. @13# the pulsed beam was produced by reflection from
supermirror periodically magnetized in an external field.
Ref. @14# supermirrors were used in neutron guides to
crease the transmitted flux. Some research on fabricatio
supermirrors was presented in Ref.@15#.

Our present paper stems from a desire to increase
intensity and polarization of polarized neutron beams. In
1050-2947/2003/67~4!/043610~8!/$20.00 67 0436
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der to increase intensity we need to increase critical angleu1

for one component of polarization. In order to increase p
larization we need to decrease critical angleu2 for the op-
posite component of polarization. However, in this paper
do not mention polarization since our method is more g
eral. This method can be applied to MS, which contain m
than two materials, and it can be applied to other radiat
such as x rays, which have polarization properties differ
from those of neutrons. As for the specific problems of ne
tron polarization, they can be solved by an appropri
choice of materials comprising a multilayer system.

II. OUR METHOD

First of all, let us mention one difference between o
approach and the one commonly used. We consider reflec
in terms of the normal componentk' of the incident neutron
wave vector instead of the incidence angle. This is m
convenient because reflection of a mirror at a given an
depends also on the wavelength, whereas when it is state
terms of the wave vectork it depends only onk' and prop-
erties of the mirror. In the following development, we ev
omit the index', and use simplyk, because we deal only
with specular reflection and for this case, the one dimens
is sufficient.

To be more precise we consider a neutron propaga
along thex axis normal to the supermirror and calculate
reflection from a set of alternating layers of two materia
One of them is represented by a potential barrier of heighub
and width l b , another is represented by a potential well
height uw and width l w . The potential barrier withl b→`
totally reflects neutrons withk2,ub , andAub is called criti-
cal numberkc .

In order for our readers to understand our argument,
first need to specify our units. When we speak about pot
tial energyu, we mean that in common units this energy
V5\2u/2m, where\ is the reduced Planck constanth/2p,
andm is the neutron mass. The neutron kinetic energy isE
5\2k2/2m. So the reflection from the potentialVb
5\2ub/2m is total whenE,Vb , which is equivalent tok2

,ub . Critical energy is defined asEc5Vb , which is equiva-
lent to the definition of the critical wave numberkc

25ub .
It is convenient to use 1/kc as a unit of length, hence a

the variables with dimension of length can be measured
units 1/kc , and are made dimensionless from there on. T
©2003 The American Physical Society10-1
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I. CARRON AND V. IGNATOVICH PHYSICAL REVIEW A 67, 043610 ~2003!
potential barrier becomes of heightub51, and the critical
number is unity.

Below we use a somewhat different normalization. W
take for unity the differenceub2uw , and for the unit length
1/Aub2uw. This normalization becomes identical to the o
above, when potential of the well is zero, which can be
sumed without loss of generality.

We look for such MS that give total reflection up to som
Kc.kc51. In general,Kc can be arbitrarily large, but prac
tically it is not possible to achieveKc larger than 4.

Our analytical method is based on an observation@16,17#
that every potential can be split by an infinitesimal gap in
two as shown in Fig. 1, and the reflection amplitudeR12 of
the composite potential is represented as the combinatio
reflectionsRi and transmissionsTi amplitudes of the separat
barriers:

R125R11T1
2 R2

12R1R2
, ~1!

where the denominator corresponds to multiple reflecti
inside the gap. For simplicity, in Eq.~1! we did not take into
account the asymmetry of the potentials, but it will be d
cussed later in this paper.

Equation~1! leads immediately to the result@18# obtained
for a semi-infinite periodic potential. If a single period of th
potential is characterized by reflection and transmission
plitudesr andt respectively, then reflection amplitude of th
whole potential„denotedR0 in Ref. @4#: Eqs. ~14!–~16!
there… is

R5
A~11r !22t22A~12r !22t2

A~11r !22t21A~12r !22t2
~2!

and the Bloch phase factor@denoted byk in Ref. @4#: Eqs.
~12! and ~13! there# is

exp~ iqa!5
A~11t !22r 22A~12t !22r 2

A~11t !22r 21A~12t !22r 2
, ~3!

wherea is the period width andq is the Bloch wave number
At Bragg reflection, R5exp(ix) and exp(iqa)5exp(ipn
2q8a) with real x, q8, and integern. ~We neglect here the
imaginary part of the potential.!

With Eqs.~2! and ~3! we can find@16# reflectionRN and
transmissionTN amplitudes of the periodic chain with a fi
nite numberN of periods:

RN5R
12exp~2iqaN!

12R2exp~2iqaN!
,

FIG. 1. Every potential can be split by an infinitesimal gap
width e→0 into two. The splitting does not change their reflecti
and transmission properties, because of total transmission o
gap.
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TN5exp~ iqaN!
12R2

12R2exp~2iqaN!
. ~4!

To see how do these formulas work we need to define
single period and its amplitudesr and t. A single period is a
bilayer. It consists of a potential well and barrier. This peri
is nonsymmetrical, but we can make it symmetrical by sh
ing the barrier as shown in Fig. 2. This rearrangement, as
see later, does not change the final result, but it facilitates
mathematics. For a symmetrical period of widtha5 l w1 l b
we can immediately find amplitudesr and t:

r 5eikwl wr wb

12exp~2ikbl b!

12r wb
2 exp~2ikbl b!

,

t5eikwl weikbl b
12r wb

2

12r wb
2 exp~2ikbl b!

, ~5!

where kw,b5Ak22uw,b, r wb5(kw2kb)/(kw1kb), and po-
tentials may contain an imaginary part accounting for loss

Substitution of Eq.~5! into Eqs. ~2! and ~4! gives the
result shown in Figs. 3 and 4. In Fig. 3 we see the Bra
reflection with unit amplitude in the intervalD called the
width of the Darwin table. By decreasingl w and l b , we can
shift the intervalD toward largerk, and, if we can built a
system of semi-infinite potentials with different periods

f

he

FIG. 2. A period containing a well and a barrier~can be rear-
ranged to a symmetrical form!.

FIG. 3. Reflection amplitudeuR(k)u of a semi-infinite periodic
potential with period containing the potential well of heightuw

520.5 and widthl w51, and the barrier of the heightub51 and
width l b51.
0-2
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such a way that intervalsD would overlap as intervalsD in
Fig. 5, we can considerably increasekc .

However, we can build periodic chains only with fini
number of periods, so we must useuRNu of Eq. ~4!, which at
the Darwin table is smaller than unity because
exp(22q8Na) in the nominator. This factor is small whenN
is large. If we tolerate reflectionuRNu512z with some small
z, we must have

N52
ln z

2aq8
. ~6!

So the strategy is very clear. We cover step by step the ra
of k we needed, by overlapping intervalsD8,D, and tuning
parametersl w , l b , N we find maximalD8 needed to mini-
mize the number of required chains, and therefore the t
number of layers for the tolerable deviation of reflection c
efficient uRu2 from unity.

To proceed further it is more convenient to transform E
~2! and ~3! to the form

FIG. 4. Reflection amplitudeuRNu of the periodic potential with
N58 periods. The parameters of a single period are the same
Fig. 3.
04361
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R5
Acosf1ur u2Acosf2ur u

Acosf1ur u1Acosf2ur u

5
ARe~r !1ur u22ARe~r !2ur u2

ARe~r !1ur u21ARe~r !2ur u2
, ~7!

eiqa5
ARe~ t !1utu22ARe~ t !2utu2

ARe~ t !1utu21ARe~ t !2utu2
, ~8!

wheref is the phase and Re(r ,t) are real parts of amplitude
r, t respectively. To derive Eqs.~7! and ~8! we use the rela-
tions valid for arbitrary real potential@18,19#:

r 5eifur u, t56 ieifutu, r 22t25e2if. ~9!

From Eq. ~7! it follows that R is a unit complex number
exp(ix), whenur u2.uRe(r )u.

III. ALGORITHM FOR CALCULATIONS
OF PARAMETERS OF PERIODIC CHAINS

Now we show how to calculatel b , l w , N, andD8 for a
single chain. Substitution of Eq.~5! into Eqs.~7! and ~8! in
the casek2.ub gives

FIG. 5. The algorithm for critical angle increasing. A system
periodic potentials with overlapping Bragg peaks of widthsDi

gives total reflection in a range ofk considerably wider than the
common case 0<k<1.

in
R5

Akbtan~kwl w/2!2kwcot~kbl b/2!

kwtan~kwl w/2!2kbcot~kbl b/2!
2Akwtan~kwl w/2!1kbtan~kbl b/2!

kbtan~kwl w/2!1kwtan~kbl b/2!

Akbtan~kwl w/2!2kwcot~kbl b/2!

kwtan~kwl w/2!2kbcot~kbl b/2!
1Akwtan~kwl w/2!1kbtan~kbl b/2!

kbtan~kwl w/2!1kwtan~kbl b/2!

~10!

or

R5

Acosf11r wbcosf2

cosf12r wbcosf2

2Asinf11r wbsinf2

sinf12r wbsinf2

Acosf11r wbcosf2

cosf12r wbcosf2

1Asinf11r wbsinf2

sinf12r wbsinf2

, ~11!

and
0-3
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eiqa5
Acos2f12r wb

2 cos2f22A2sin2f11r wb
2 sin2f2

Acos2f12r wb
2 cos2f21A2sin2f11r wb

2 sin2f2

, ~12!

wheref65(kwl w6kbl b)/2. It is easy to check that at the limitl b→0 we obtainR→0 andq→kw , and atl w→0 we obtain
R→r wb , q→kb .

If k2,ub , instead of Eqs.~11! and ~12! we obtain

R5
Acos2j22exp~22kb8l b!cos2j12 iAsin2j22exp~22kb8l b!sin2j1

Acos2j22exp~22kb8l b!cos2j11 iAsin2j22exp~22kb8l b!sin2j1

, ~13!

eiqa5

Asinj22exp~2kb8l b!sinj1

sinj21exp~2kb8l b!sinj1

2Acosj22exp~2kb8l b!cosj1

cosj21exp~2kb8l b!cosj1

Asinj22exp~2kb8l b!sinj1

sinj21exp~2kb8l b!sinj1

1Acosj22exp~2kb8l b!cosj1

cosj21exp~2kb8l b!cosj1

, ~14!
n
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wherej65kwl w/26f0 , f05arccos(kw /Aub2uw), andkb8
5Aub2k2.

It is easy to check that in the limitl w→0 the periodic
potential degenerates to a potential step and we obtaiR
→r wb5exp(22if0), q5 ik8. In the limit l b→0 barriers dis-
appear and we obtain empty space withR50 andq5kw .

Now we considerk2.ub . The Bragg reflections take
place when expressions under two square roots in Eq.~11!
have opposite signs. It happens whenucosf1u,rwbucosf2u,
or usinf1u,rwbusinf2u, i.e., for pn/22df<f1<pn/2
1df, wheren is integer. The half-width of the Bragg reflec
tion ([ half-width of the Darwin table,D/2) is df
5r wbucosf2u for oddn, anddf5r wbusinf2u for evenn. To
get this width maximal we must havef25pm/2 with inte-
germ, andm must be even or odd for odd or evenn, respec-
tively.

From these considerations we obtain that, if we want
have the total reflection at somek5kv , we must require at
this pointkbl b1kwl w5p andkwl w2kbl b50, which imme-
diately gives two parametersl b5p/2kb and l w5p/2kw @as
was correctly used in Ref.@4#, Eq. ~7!#. Of course, we can
also requirekbl b1kwl w52p and kwl w2kbl b5p, then we
find other parametersl b5p/2kb and l w53p/2kw ; however
this choice of parameters, as will be shown later, is not p
itable.

We cannot use the full widthD of the Darwin table, be-
cause the total reflection inside it is possible only for
infinite number of periods. With finite number of periods w
have some reduction of reflection coefficient, and the red
tion is tolerable in some intervalD8,D. The larger is the
numberN of periods, the wider isD8. However, the gain in
width decreases with increase ofN. So we need to find an
optimal N that gives the maximal effective lengthd1
5D8/N per single period.

For optimization we represent Eq.~12! at the Bragg peak
in the form

eip2q8a52
12Q

11Q
'2exp~22Q!,
04361
o
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where

Q5Acos2~f2!r wb
2 2cos2~f1!

sin2~f1!2sin2~f2!r wb
2

. ~15!

In the case of smallr wb we can expandf1 near the central
point kv of the Bragg peak, wheref15pn/2, f25pm/2
andm,n. This expansion gives

Q'r wbA12~x/x0!2, ~16!

wherex5(k2kv)/kv and

x05
4

p
r wb

kw
2 kb

2

kv
2@n~kw

2 1kb
2!2m~kw

2 2kb
2!#

.

The Darwin widthD is determined byx0. Larger them is,
larger isx0, so it is profitable to havem5n21. With thism
the parameterx0 is

x05
4

p
r wb

kw
2 kb

2

kv
2@2nkb

21~kw
2 2kb

2!#
.

It is the largest for the smallestn. Thus the best choice forn
is n51 and we finally get

x05
4

p
r wb

kw
2 kb

2

kv
2~kw

2 1kb
2!

.

Now we need to find the endskve of the Darwin table
aroundkv . They depend on the amount of deviation fro
total reflection that we can tolerate. If we tolerateuRu251
22z, then from Eqs.~4! and ~15! it follows

Q>2 ln~z!/4N. ~17!

From this we find

S x

x0
D 2

<12S ln z

4Nrwb
D 2

. ~18!
0-4
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To find the optimal numberN of periods, we require the
maximal effective width ofdk covered by a single period
i.e., we seek a maximum ofx/N. The maximum correspond
to

N5
ln z

2A2r wb

~19!

and

dk5ukve2kvu5kvx0

1

A2
5

2A2r wbkw
2 kb

2

pkv~kw
2 1kb

2!
'

A2

p
kvr wb ,

~20!

where kw , kb , and r wb are determined fork5kv . If we
tolerate 2z51%, thenN51.9/r wb .

Now, the intervalD852dk5(2A2/p)kvr wb aroundkv is
closed and we can make the step to a newkv85kv1D8 and
find a new periodic chain around the pointkv8 . In practice,
we made stepsD852dk/1.2 to ensure the overlapping of th
intervals, because every next widthdk is a little bit lower
than the preceding one.

In Fig. 6 the reflection coefficientuRu2 is shown for MS
consisting of 1139 bilayers with positions of the Bragg pea
chosen as prescribed above. The starting point iskv51.18
and the next one iskv51.42. They were found a little bi
empirically. Both ends of the multilayer system are closed
thick layers (l 0510) with potential barrier, giving total re
flection for k,1. We see that the reflection coefficient
almost perfectly equal to one for real potentials. The def

FIG. 6. Dependence of the reflection coefficientuRu2 on k for
MS with real potentials. MS consists of 24 chains with differe
number of periods. Total number of bilayers is 1139. There are
barriers of widthl 0510 on both sides of MS. Criticalkc for the
barrier is equal to 1.

FIG. 7. Dependence of the reflection coefficientuRu2 of FeCo-
TiZr MS on k. Parameters of MS are the same as for Fig. 6. Po
tials include imaginary parts.
04361
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seen on the reflection curve can be easily repaired by ad
one more periodic chain with the Bragg peak at the posit
of this defect, or by slight shift of somekv toward a lower
value.

In the development presented above, we did not take
account the imaginary part of the potential; however, form
las~2!–~5! and~10!–~12! are valid for arbitrary potentials, so
in order to take into account losses or gains~in the case of
active media! we need only substitute intokw and kb the
complex potentialsuw,b5uw,b8 2 iuw,b9 , where minus sign
means losses foru9.0. Of course, the number and widths
layers in periodic chains and the widths of the Bragg pe
are real numbers so, for them, we must use absolute ma
tudes.

The result of calculations for FeCo-TiZr MS, which
similar for FeCo-Si, is shown in Fig. 7. Here the number
bilayers is the same as in Fig. 6, and we see that becaus
the imaginary part of the potentials the reflection coefficie
deviates from unity. It means that our requirement~17! with
smallz is too strict and not necessary, because the imagin
part of the potentials makes us tolerant to stronger devia
of the Bragg reflection from unity. So we can strongly d
crease the number of periods in every chain considerabl

In Fig. 8 we show how the reflection coefficient present
in Fig. 6 changes when the number of bilayers is decrea
to 298. We see that now it becomes similar to that shown
Fig. 7. If we account for imaginary parts of the potentia
then for the FeCo-TiZr MS with 298 bilayers we obtain th
reflection coefficient shown in Fig. 9. We see that it is alm
the same as that shown in Fig. 8, which means that im
nary parts of the potentials do not spoil it further.

t
o

-

FIG. 8. Dependence of reflection coefficientuRu2 of the same
system as in Fig. 6 with number of periods in every periodic ch
strongly decreased. Total number of bilayers is 298.

FIG. 9. Dependence of the reflection coefficientuRu2 of FeCo-
TiZr MS on k. Parameters of MS are the same as for Fig. 7, but
number of bilayers is only 298.
0-5
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In the case we are satisfied with smaller increase of
critical angle, we need an even smaller number of layers
Fig. 10 we show the reflection coefficient for FeCo-TiZr wi
only 46 bilayers. The parameters of these bilayers are sh
in Table I.

IV. REFLECTION FROM THE SET OF CHAINS

If we have two chains with reflection and transmissi
amplitudesRNi , TNi ( i 51,2), then the reflection amplitud
R21 from two chains from the left~the chain 1 is to the righ
of the chain 2! is

R215RN21
TN2

2 RN1

12RN2RN1
. ~21!

Addition of the third chain to the left side gives the reflecti
amplitude

R3215RN31
TN3

2 R21

12RN3R21
. ~22!

Four chains will have reflection amplitudeR4321and so on. It
is a simple algorithm to calculate reflection from all th
chains, and at the end we must add a single wide barrie
shown in Fig. 11, which provides total reflection for allk
almost up tok51. Because of finite widthl 0 of the first
barrier, its reflectivity drops neark51. Indeed, the reflection
from the barrier is

r 5r wb

12Q0

12r wb
2 Q0

,

where

FIG. 10. Reflection of 46 bilayers of FeCo-TiZr system wi
account of losses. Parameters of layers are shown in Table I.
04361
e
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r wb5
kw2 ikb8

kw1 ikb8
, kw5Ak22uw, kb85A12k2,

andQ05exp(22l0kb8).
Suppose, we tolerate, whenur u2512z. Near the critical

point k51, the reflection coefficient can be approximated

ur u25
~12Q0!2

~12Q0!2116kw
2 kb

2Q0

'124
k2

l 0
2

.

So, if we want to haveur u2 to be everywhere in 0,k,1
larger than 12z, we must choosel 052/Az. In particular, for
z50.01 we must choosel 0520. In all the Figs. 6–9 we use
the widths of the wide barriers at both ends of MS, or only
the beginning, equal tol 0510. This parameter is not too
critical, because though reflection of the smaller first barr
is a little bit less the losses in it are also less. So practic
we have no gain, if we increase the totally reflecting lay
and we do not need two wide barriers. One barrier at
beginning of the MS is sufficient.

V. ASYMMETRY OF THE PERIOD

Above we considered the case when periods of period
chains are symmetrical, i.e., the barrier of widthl b is sur-
rounded on both sides with wells of widthl w/2, i.e., it is
represented as a three layer. In practice, it is simpler to c
sider the period as a bilayer consisting of the well of widthl w
and the barrier of the widthl b . Such a period is not sym
metrical. Its reflection from the leftr l is not equal to reflec-
tion from the right,r r , though transmissions from both side
are equal@see Eq.~5!#. The amplitudesr l and r r for the
bilayer are

r l5e2ikwl wr wb

12exp~2ikbl b!

12r wb
2 exp~2ikbl b!

5eikwl wr ,

FIG. 11. Composition of MS with a wide barrier layer. The M
should contain a barrier of large widthl 0 to provide total reflection
almost up tok51.
f
.

15
82
73
TABLE I. Parameters of 12 periodic chains with the reflection coefficient shown in Fig. 10.kv is the
position of the Bragg peak,l w , l b , andN are the widths of TiZr~or Si! and FeCo layers and number o
bilayers, respectively, for the chain with the Bragg reflection centered atkv . Total number of bilayers is 46
At the beginning of the MS there is a FeCo layer of thicknessl 058, providing total reflection fork up to 1.

Param- 1 2 3 4 5 6 7 8 9 10 11 12
eters

kv 1.12 1.32 1.44 1.55 1.65 1.73 1.81 1.90 1.96 2.03 2.09 2.
l b 3.11 1.84 1.5 1.331 1.20 1.11 1.04 0.98 0.93 0.89 0.86 0.
l w 1.40 1.20 1.09 1.01 0.95 0.91 0.87 0.83 0.80 0.78 0.75 0.
N 3 3 3 3 3 4 4 4 4 5 5 5
0-6
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r r5r wb

12exp~2ikbl b!

12r wb
2 exp~2ikbl b!

5e2 ikwl wr , ~23!

where r is the reflection amplitude~5! for the symmetrical
period. With nonsymmetrical period expression~2! should be
modified. For instance, reflection amplitudeRl from the
semiinfinite periodic potential beginning with the well is

Ar l

r r

A~11Ar r r l !
22t22A~12Ar r r l !

22t2

A~11Ar r r l !
22t21A~12Ar r r l !

22t2

5eikwl w
A~11r !22t22A~12r !22t2

A~11r !22t21A~12r !22t2
, ~24!

or it is exp(ikwlw)R, whereR is the symmetrical amplitude
given by Eq.~2!. The reflection from semi-infinite periodi
potential beginning with the barrier will be exp(2ikwlw)R,
i.e., asymmetry ofr is inherited byR.

Equation~3! for the Bloch phase factor does not chang
because instead ofr 2 it containsr l r r , which is identical to
r 2. Now it is easy to understand that reflection of a fin
number periodsRN for asymmetrical period will change in
the same way asR, i.e., for reflection from the left and righ
we haveRNl,r5exp(6ikwlw)RN , where RN denotes the re-
flection amplitude for symmetrical period.

We now need to see what happens when we stack
nonsymmetrical chains. For that we need to generalize
pression~1! for nonsymmetrical potentials 1 and 2 shown
Fig. 1. This generalized expression is

Rl125Rl11T1
2 Rl2

12Rr1Rl2
, ~25!

where indicesl ,r denote reflection from the left and righ
respectively.

Taking into account this generalization, we represent
~21! in the form

Rl215eikwl w2FRN21
TN2

2 exp~ ikw@ l w12 l w2# !RN1

12RN2exp~ ikw@ l w12 l w2# !RN1
G ,
~26!

where asymmetry is explicitly represented by the fac
exp(ikw@lw12lw2#). It is easy to prove that if the chain 1 a
somek gives total reflection, i.e.,RN15exp(ix), then inclu-
sion of chain 2 will not destroy this total reflection, i.e.,Rl21
for thesek is also a unit complex number:Rl215exp(ix8).
Indeed, taking into account relations~9!, which are valid for
RN andTN , we can transform Eq.~26! as follows

Rl2152eikwl w11 ix12if2

3
12uRN2uexp~2 ikw@ l w12 l w2#2 if22 ix!

12uRN2uexp~ ikw@ l w12 l w2#1 if21 ix!
,

~27!
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wheref2 is the phase of the amplitudeRN2. Since the last
factor is of the form exp(ic) the wholeRl21 is also of the
form exp(ix8) that corresponds to the total reflection.

Of course, all these relations are precise only for r
potentials. The imaginary part of the potentials gives a c
rection to them, and the smaller is the imaginary part,
smaller is the correction.

VI. SIMILARITY OF ALL THE MS SYSTEMS

All the MS can be represented as a system with barrier
height 1 and wells of height 0. Indeed, if in a practical sy
tem barriers have the potentialub , and wells the potentia
uw , then the potential step between the well and the bar
is ub2uw , and we can normalize this difference to unity, a
take as a unit length the critical wavelengthl/2p
5\/A2m(ub2uw). Hence, calculations for all the practica
systems are the same. The only difference is that at the
we need to include the reflection amplitude from the pot
tial step from vacuum to the well. This potential step is no
a normalized potentialũw5uw /(ub2uw). If the reflection
amplitude from MS without this correction isR, then after
correction it will be

r 0w1
~12r 0w

2 !R

11r 0wR
,

where

r 0w5
k2 k̃w

k1 k̃w

, k̃w5Ak22ũw.

In our calculations we did not make this correction and to
uw50 having in mind reflection of neutrons from inside of
Si crystal, as was proposed in Ref.@20#.

We applied our method to practical systems and con
ered only 24 chains, though it is not critical. With the
chains we are able to increase the critical angle'3.5 times.
If we want only to double the critical angle, we need only
chains. Their parameters are presented in Table I. The
row shows the pointskv that are centers of the Bragg peak
The first numberkv51.12 was chosen somewhatad hoc.
Next two rows show the width of the wellsl w and barriersl b
for thosekv and the last row shows the number of periods
every chain.

Imaginary parts for potentials of practical systems we
normalized to the difference of real parts ofub2uw . Thus
for the FeCo-Si system in which Si are wells withuw
554.42 i6.2531024 neV and FeCo are barriers withub
5330.72 i6.4031022 neV, the normalized potentials ar
ub512 i231024 anduw502 i2.331026.

In the FeCo-TiZr system the normalized imaginary part
FeCo is'331024 and that of TiZr'131024. The main
effect of losses comes from the imaginary part of FeCo,
the results of calculations for practical systems with Si a
TiZr give nearly the same result.
0-7
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VII. CONCLUSION

We presented a method of calculating properties of a
permirror with a high critical angle of total reflection. W
suppose that our method has some advantage, becaus
analytical and therefore amenable to optimization te
niques. In the cases presented here, change of parameted l b

and d l w from chain to chain is sufficiently large and ther
fore is less prone to errors related to the technology of lay
preparation. There is only a title change of parameters c
pared to the common approach of building multilayer s
tems, when the parameters change almost continuously,
d l b , d l w become lower than a monolayer. Such a sm
change of width is almost impossible to control.

We want also to add that though our analytical method
very good for analysis, actual calculation of the reflecti
coefficient, after all the parameters are defined from our a
lytical method, can be performed numerically with the m
trix method.

We have shown here how to prepare MS by increasing
range of total reflection step by step. However, it is poss
to proceed differently. We can put one bilayer on a subst
and calculate its reflection. Then we put another bilayer w
parameters scanned in some intervals and choose param
which give the larger increase of the reflectivity. Then w
look for parameters of third bilayer and so on. If we do n
restrict thickness of layers, we can get with 200 bilayer
good reflectivity as shown in Fig. 12 for some model syst
with uw521 even for intervalk54kc .1 However, in these
bilayers some thicknesses are of the order 0.1 of interato
distance. It is clear that it is impossible to achieve a go
homogeneity for such thicknesses. We can restrict th
nesses to some values when scanning in the parameter s
It may give a not-so-perfect multilayer system with a sma

1If we normalize to unity the sumub1uuwu, then the increase in
Fig. 12 is not 4, butA17/252.9.
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number of layers but with a good enough reflectivity in
wide enough interval ofk.

Though this trial-and-error method may give a tolerab
reflection with a smaller number of periods, our step-by-s
method is more promising for the technology of MS prep
ration. It is evident that in order to have good interfaces
thicknesses of a layers must be equal to integer numbe
monolayers. If a layer contains a fraction of monolayer,
surface will never be flat, even if it is evaporated on a su
strate with an ideal surface.

When we know the exact thickness of a single monola
we can calculate reflection amplitudes for layers with inte
number of monolayers. Comparison of calculations with
ally obtained reflectivities in a wide range of energies p
vides a good control for development of technology for M
preparation.

We considered here only the reflection of neutrons fr
MS. This method can also be applied tox rays. In that case
we can reliably account for the imaginary part of the pote
tials, which is large compared to that of optical potentials
neutrons.

FIG. 12. Reflection of 399 layers for a model system withuw
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