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A development of the theory of multilayer systems is presented. It shows precisely how to calculate thick-
nesses and number of layers to get reflectivity close to unity for a given arbitrary critical angle. Application of
the proposed approach to real systems is demonstrated.
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I. INTRODUCTION der to increase intensity we need to increase critical afigle
for one component of polarization. In order to increase po-
We apply an analytical method not yet widely known to larization we need to decrease critical angle for the op-
the calculation of thicknesses and number of layers irposite component of polarization. However, in this paper we
multilayer systemgMS) in order to achieve a high critical do not mention polarization since our method is more gen-
angle. eral. This method can be applied to MS, which contain more
Usually MS consist of many bilayers of two materials than two materials,_and it can be.applied to oth_er ra_diation
with different refraction indices, and the thicknessof the such as x rays, which have polarization properties different
bilayer varies with its index. The idea to increase the criti- from those of neutrons. As for the specific problems of neu-
cal angle with the help of MS with steadily decreasing thick-tron polarization, they can be solved by an appropriate
ness of layers was first published by Turchljin 1967 and ~ choice of materials comprising a multilayer system.
further elaborated by the author in 1987]. In the mean-
while another contribution by Mezei, dealing with the same Il. OUR METHOD
subject, appeared in the literature in 1934. ) ) .
The main question is what should be the rule of thickness First of all, let us mention one difference between our
variation. At present, the thickness is varied according to th@PProach and the one commonly used. We consider reflection

theoretical prescriptions as described in Rel. All the bi- N terms of the normal componekt of the incident neutron
layers have different thickness, and the change of the thickvVave vector instead of the incidence angle. This is more
ness of neighboring layers can be very small. convenient because reflection of a mirror at a given angle

We consider here a different construction: the MS consisfl€Pends also on the wavelength, whereas when it is stated in
of several periodic chains, and we show how to find the®®ms of the wave vectdr it depends only ork, and prop-
period, number of periods for every chain, and the number of'ti€s of the mirror. In the following development, we even
chains to achieve the critical angle we wish. We use a recu@Mit the indexL, and use simply, because we deal only
rence method similar to that used by Darf] and later by ywth spe_cular reflection and for this case, the one dimension
Godfrey[6]. Our method is analytical. It permits us to con- IS Sufficient. _ _ _
trol technology of layers preparation, to find the optimal 10 be more precise we consider a neutron propagating
number of layers for achieving a tolerable result, and to re&/ong thex axis normal to the supermirror and calculate its
pair defects, if for some reasons they appear on the reflectioigflection from a set of alternating layers of two materials.
curve. One of them is represented by a potential barrier of haight

Applications of MS in experiments are discussed in manyand widthl,, another is represented by a potential well of
review papergsee, for instance Ref§7,8] and references heightu,, and widthl,,. The potential barrier with,— o
therein, and we do not dwell on it too much. We only want totally reflects neutrons witk?<uy,, and+/uy, is called criti-
to add some referenc8—15], which were not mentioned in  cal numberk.

Ref. [8]. In order for our readers to understand our argument, we

In Refs.[9-17] the MS were used for the polarization of first need to specify our units. When we speak about poten-
neutrons by transmissid®] through them, by transportation tial energyu, we mean that in common units this energy is
along magnetized neutron guidg®,12, and by splitting of ~ V=7?u/2m, where# is the reduced Planck constam@,
an unpolarized beam by a magnetized supermirtdi. In andm is the neutron mass. The neutron kinetic energk is
Ref.[13] the pulsed beam was produced by reflection from a=%°k?/2m. So the reflection from the potentiaV,
supermirror periodically magnetized in an external field. In=%2u,/2m is total whenE<V,,, which is equivalent tk?

Ref. [14] supermirrors were used in neutron guides to in-<<uy. Critical energy is defined &.=V,,, which is equiva-
crease the transmitted flux. Some research on fabrication d¢ént to the definition of the critical wave numbkf=uy, .
supermirrors was presented in REE5]. It is convenient to use k/ as a unit of length, hence all

Our present paper stems from a desire to increase the variables with dimension of length can be measured in
intensity and polarization of polarized neutron beams. In orunits 1k., and are made dimensionless from there on. The
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FIG. 1. Every potential can be split by an infinitesimal gap of ly 1—12* l-‘z“
width e— 0 into two. The splitting does not change their reflection |
and transmission properties, because of total transmission of the w L —|
gap. v
_-— 0 — _—  —
potential barrier becomes of heighf=1, and the critical FIG. 2. A period containing a well and a barri@an be rear-
number is unity. ranged to a symmetrical fopm

Below we use a somewhat different normalization. We
take for unity the difference,—u,,, and for the unit length
1/JJup—u,,. This normalization becomes identical to the one Ty=expligaN)
above, when potential of the well is zero, which can be as- 1
sumed without loss of generality.

We look for such MS that give total reflection up to someTo see how do these formulas work we need to define the
K.>k.=1. In generalK. can be arbitrarily large, but prac- single period and its amplitudesandt. A single period is a
tically it is not possible to achievi, larger than 4. bilayer. It consists of a potential well and barrier. This period

Our analytical method is based on an observafi)17] is nonsymmetrical, but we can make it symmetrical by shift-
that every potential can be split by an infinitesimal gap intoing the barrier as shown in Fig. 2. This rearrangement, as we
two as shown in Fig. 1, and the reflection amplitiRlg of  see later, does not change the final result, but it facilitates our
the composite potential is represented as the combination ehathematics. For a symmetrical period of widtke |+,
reflectionsR; and transmission§; amplitudes of the separate we can immediately find amplitudesandt:
barriers:

1-R?
—R2%exp(2igaN)

4

e 1_exq2ikb|b)
R..=R +T2L 1 r=ewwr 2 : )
=Rt i g pos (1) 1—rZexp2ikply)
where the denominator corresponds to multiple reflections t — aikulwaikolp 1_r3vb )
inside the gap. For simplicity, in Eql) we did not take into —emve 1—f5vbeXF(2ikb|b) '

account the asymmetry of the potentials, but it will be dis-

cussed later in this paper. T L
Equation(1) leads immediately to the res(ilt8] obtained where ko= k"= Uy,p, b= (Ky=kKp)/(kyTkp), and po-

Con . : . . tentials may contain an imaginary part accounting for losses.
for a semi-infinite periodic potential. If a single period of the o2 . )
potential is characterized by reflection and transmission am- S:thsrt]ltutlon olf:.Eq.(?E:) m(tjo 4E?S'é.2) egnd (4) g(;v?r?etg?a
plitudesr andt respectively, then reflection amplitude of the resuft shown in Figs. 5 and 4. In F1g. 5 We S 99

; ; ) _ reflection with unit amplitude in the interval called the
whole_potential(denotedRy in Ref. [4]: Eqs. (14-(16) width of the Darwin table. By decreasirig andl,, we can

therg is shift the intervalA toward largerk, and, if we can built a
B VL+1)2=t2—J(1-r)%>—1t? @ system of semi-infinite potentials with different periods in
VL41)2—t2+(1-r1)*—t? .
and the Bloch phase factpdenoted byx in Ref.[4]: Egs. IR l
(12) and (13) therq is 075
. V(L+8)2 == (1-t)°—r?
expiga) = — = ©) \
VA+1)2=r2+(1—-t)%—r 0.5 \ /
wherea is the period width and is the Bloch wave number. N \
At Bragg reflection, R=expiy) and expiga)=exp(mn 0.25 \
—q'a) with real y, q’, and integem. (We neglect here the LAl I
imaginary part of the potential. 0 [
With Eqs(Z) and (3) we can f|nd[]_6] reﬂectionRN and 0 025 05 075 1 125 15 175 2 225 25 275 3
transmissionTy amplitudes of the periodic chain with a fi- K
nite numbem of periods: FIG. 3. Reflection amplitudgR(k)| of a semi-infinite periodic
_ ; potential with period containing the potential well of heighy
Ry=R 1-exp2igaN) , =—0.5 and widthl ,=1, and the barrier of the heigli,=1 and
1-R%exp(2igaN) width 1,=1.
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FIG. 4. Reflection amplitudéRy| of the periodic potential with
N=8 periods. The parameters of a single period are the same as in 0 ko Lk ke ks kg k
Fig. 3.

FIG. 5. The algorithm for critical angle increasing. A system of
periodic potentials with overlapping Bragg peaks of widhs
gives total reflection in a range & considerably wider than the

such a way that interval& would overlap as interval® in
common case €k=<1.

Fig. 5, we can considerably increalsg.

However, we can build periodic chains only with finite
number of periods, so we must ug| of Eq. (4), which at
the Darwin table is smaller than unity because of
exp(—2g’'Na) in the nominator. This factor is small whéh
is large. If we tolerate reflectiofiRy| = 1— ¢ with some small
Z, we must have

Jcosg+ |r|—\cosp—|r|
R=
Jcosp+|r|+\cosg—]|r]
_ JRer) +[r[*~ JRe(r) —|r|*
JRe(r) +[r[2+ JRe(r) —[r[?’
o VRe(t) +t[*— JRe(t) —[t[*
VRe(t) +[t]2+ VRe(t) — [t]?

where¢ is the phase and Ret) are real parts of amplitudes
r, t respectively. To derive Eq$7) and(8) we use the rela-
tions valid for arbitrary real potentiglL8,19:

r2—t2=e%¢,

Y

®

In¢

2aq’

(6)

t=+ie'|t|, (9)

So the strategy is very clear. We cover step by step the ranggqgm, Eq.(7) it follows that R is a unit complex number
of k we needed, by overlapping intervals <A, and tuning  exp(y), when|r|%>|Re(r)|.

r=e'r|,

parameters,,, |y, N we find maximalA’ needed to mini-
mize the number of required chains, and therefore the total
number of layers for the tolerable deviation of reflection co-
efficient |R|? from unity.

lll. ALGORITHM FOR CALCULATIONS
OF PARAMETERS OF PERIODIC CHAINS

Now we show how to calculatk,, 1,,, N, andA’ for a

To proceed further it is more convenient to transform Egssingle chain. Substitution of E45) into Egs.(7) and(8) in

(2) and(3) to the form

the case&k®>uy gives

\/ Kotan Kyl y/2) — Ky COt Kyl p/2)
Kytan Kyl w/2) — kycot(kpl p/2)

\/ ktan Kyl w/2) + kptan Kyl p/2)
kotan(Kyl /2) + kytan(Kyl 4/2)

- \/ kptan(ky | ,/2) — Ky, cot Kyl ,/2) \/ ko tan(ky ! /2) + kptan(kpl o/2) 10
kytan(kyl/2) — kycot(kyl p/2) i kptan(kyl ,/2) + kytankyl ,/2)
or
\/cos¢++rwbcos¢_ \/sin¢++rwbsin¢_
cos¢+—rwbcos¢__ SiNg . —rypSing _
R= , (11)
\/cos¢++rwbcos¢>i sing, +rypSing
COS¢h . —yp,COSh ' SiNg . —rypSing_
and
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Voo, —12,cofp_—\—sirtd, +r2,sifd_
Jeode, —r2,codd_++—siPp  +r2,sirfg_

eiqa=

(12

where ¢ = (k, I, kylp)/2. It is easy to check that at the limlif—0 we obtainR—0 andgq—k,,, and atl,,—0 we obtain
R—>rwb , — kb .
If k°<up, instead of Eqs(11) and(12) we obtain

_ VeoSE_ —exp( — 2Kyl COSE , —i\SIPE_ —expl( — 2kpl)SIPE
- Jeogé_ —exp( —2k{|,)coSE, +isiPé_ —exp(— 2kl p)SinPE,

\/sing—exp(—kt’)lb)sing+ \/cosf—exp(—k,’)lb)cosg+
sing_+exp(—kgly)siné, cosé_ +exp(—kylp)cosé
\/sin & —exp—kilp)siné, \/cos§ —exp(—kplp)cosé, ’

sing,Jrexp(—kt’,lb)sin@+ cosé_ +exp(—kjlp)cosé

(13

eiqa: (14)

where ¢, =kl /2 ¢g, ¢po=arccosk,/\u,—uy), andk;,  where

=up—k=. 2

It ?s easy to check that in the limit,—0 the periodic — \/CO§(¢)rwb_C°§(¢+) (15)

potential degenerates to a potential step and we ofiRain sirf(¢, ) —sinf(¢_)r2,’

—Twp=exp(—2idp), q=ik’. In the limitl,—0 barriers dis-

appear and we obtain empty space Witk 0 andgq=k,,. In the case of small,,, we can expand, near the central
Now we considerk?>u,. The Bragg reflections take pointk, of the Bragg peak, whereb, = mn/2, ¢ _=mm/2

place when expressions under two square roots in(Efj. andm<n. This expansion gives

have opposite signs. It happens whens¢, |<r,c0S¢_|, - I rErTRY

or |sing.|<r,sinég_|, i.e., for 7:21/2— 5d|)$ ¢J|rs77n/|2 Q=TwoV1 = (X/%0)%, (16

+ 8¢, wheren is integer. The half-width of the Bragg reflec- \\herex= (k—k,)/k, and

tion (= half-width of the Darwin table,A/2) is 6¢

=r,p/cO8¢_| for oddn, ands¢=r,,|sin¢_| for evenn. To _4 KGk?

get this width maximal we must hawg_ = =m/2 with inte- Xo= " Twb K22+ k) —m(K2—KD)|

germ, andm must be even or odd for odd or evanprespec- v Wb Wb

tively. The Darwin widthA is determined by,. Larger them is,

From these considerations we obtain that, if we want tQarger isXo, SO it is profitable to haven=n—1. With thism
have the total reflection at sonke=k,, we must require at the parametex, is
this pointkyl,+kyl= 7 andk,l,—kyl,=0, which imme-
diately gives two parametetg= m/2k, andl,,= m/2k,, [as 4 kikﬁ
was correctly used in Ref4], Eq. (7)]. Of course, we can XO_;er K[ 2nke+ (k2 —k3)]
also requireky|,+kyl,=27m andk,l,—kyl,= 7, then we RS T
find other parameters, = m/2k, andl,,=3m/2k,,; however |t s the largest for the smallest Thus the best choice for
this choice of parameters, as will be shown later, is not profis n=1 and we finally get
itable.
We cannot use the full widttA of the Darwin table, be- 4 ke
cause the total reflection inside it is possible only for an Xo= 7 Twolee ey
infinite number of periods. With finite number of periods we viiwe b
have some reduction of reflection coefficient, and the reduc- Now we need to find the ends,, of the Darwin table

tion is tolerable in some ir_1terv_al’/<A. The larger is the  aroundk, . They depend on the amount of deviation from
numberN of periods, the wider id". However, the gain in - yota) reflection that we can tolerate. If we tolerdRi2=1
width decreases with increase Nf So we need to find an —2¢, then from Eqgs(4) and (15) it follows

optimal N that gives the maximal effective lengtd;

=A'/N per single period. Q=—In({)/4N. a7
F timizati t EQL2) at the B k
. thcgrfgfnlqmlza ion we represent E(2) at the Bragg pea Erom this we find
2 2
T & =l
i PR —| <1- . 18
¢ 17q XA 2Q. Xo ANy (18)
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' 24 chains, 298 bilayers
2 thick layers on both sides

2 thick layers on both sides
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FIG. 6. Dependence of the reflection coefficiéRt? on k for FIG. 8. Dependence of reflection coefficiéi? of the same

MS with real potentials. MS consists_ of 24_chains with different system as in Fig. 6 with number of periods in every periodic chain
number of periods. Total number of bilayers is 1139. There are tW%troneg decreased. Total number of bilayers is 298.

barriers of widthl;=10 on both sides of MS. Criticélt, for the

barrier is equal to 1. seen on the reflection curve can be easily repaired by adding

one more periodic chain with the Bragg peak at the position
of this defect, or by slight shift of somle, toward a lower
value.

In the development presented above, we did not take into
account the imaginary part of the potential; however, formu-

In¢ las(2)—(5) and(10)—(12) are valid for arbitrary potentials, so
N= 2\/§r (19 in order to take into account losses or gafitsthe case of
wb active media we need only substitute intk,, and k,, the
and complex potentialsu,, ,=u,, ,— iUy, Where minus sign
b 5 means losses far">0. Of course, the number and widths of
1 2\/§rwbkwkb _ V2 layers in periodic chains and the widths of the Bragg peaks
V2 ak,(kC+kd) T are real numbers so, for them, we must use absolute magni-
(20) tudes.

The result of calculations for FeCo-TiZr MS, which is
similar for FeCo-Si, is shown in Fig. 7. Here the number of
bilayers is the same as in Fig. 6, and we see that because of
the imaginary part of the potentials the reflection coefficient
deviates from unity. It means that our requireméiit) with
small{ is too strict and not necessary, because the imaginary
part of the potentials makes us tolerant to stronger deviation
of the Bragg reflection from unity. So we can strongly de-
crease the number of periods in every chain considerably.

In Fig. 8 we show how the reflection coefficient presented
dn Fig. 6 changes when the number of bilayers is decreased
to 298. We see that now it becomes similar to that shown in

and the next one ik,=1.42. They were found a little bit Fig. 7. If we account for imaginary parts of the potentials

empirically. Both ends of the multilayer system are closed b>}hen f(.)r the Fe_C_o-Tin MS With. 298 bilayers we pptain the
thick layers (,=10) with potential barrier, giving total re- reflection coefficient shown in Fig. 9. We see that it is almost

flection for k<1. We see that the reflection coefficient is the samte an :Eat SQOV\? Im c'i:Ig. 8,[ Wh'.fht ;ne;;ns that imagi-
almost perfectly equal to one for real potentials. The defecf'@’y parts of the potentials do not spoit it further.

To find the optimal numbeN of periods, we require the
maximal effective width ofsk covered by a single period,
i.e., we seek a maximum &fN. The maximum corresponds
to

ok= | kve_ kv| = kvXO

oFwhb

wherek,,, k,, andr,, are determined fok=k, . If we
tolerate Z=1%, thenN=1.9f,,.

Now, the intervalA’ =28k=(2/2/m)K, I, aroundk, is
closed and we can make the step to a hgwk,+A" and
find a new periodic chain around the pokijt. In practice,
we made stepAd’ =25k/1.2 to ensure the overlapping of the
intervals, because every next widék is a little bit lower
than the preceding one.

In Fig. 6 the reflection coefficier|R|? is shown for MS
consisting of 1139 bilayers with positions of the Bragg peak
chosen as prescribed above. The starting poirk,is1.18

2
R

2
R T T T T T T
||1

FeCoTiZr

05
24 chains, 1139 bilayers

2 thick layers on both sides

1 | 1 | |
05 1 15 2 a5 3 35
k

— 1

0.5

FeCoTiZr
24 chains, 298 bilayers
1 thick layer at the beginning

15 2

2.5
k

35

FIG. 7. Dependence of the reflection coefficigRt? of FeCo- FIG. 9. Dependence of the reflection coeffici¢Rt? of FeCo-
TiZr MS on k. Parameters of MS are the same as for Fig. 6. PotenTiZr MS on k. Parameters of MS are the same as for Fig. 7, but the
tials include imaginary parts. number of bilayers is only 298.
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00001

/2 /2 —

FeCoTiZr
0.5~
12 chains, 46 bilayers

1 thick layer at the beginning

| | |
0.5 1 15 ] 2.5 3 3.5 4

FIG. 11. Composition of MS with a wide barrier layer. The MS
should contain a barrier of large width to provide total reflection

X almost up tok=1.
FIG. 10. Reflection of 46 bilayers of FeCo-TiZr system with k. —ik!
account of losses. Parameters of layers are shown in Table I. er:kw—'kk’)' ko= vVkZ—U,, ki=yV1—K%
+1
w b

In the case we are satisfied with smaller increase of the
critical angle, we need an even smaller number of layers. I®nd Qo=exp(—2lgky).
Fig. 10 we show the reflection coefficient for FeCo-TiZr with  Suppose, we tolerate, Wh¢r12:1—§. Near the critical
only 46 bilayers. The parameters of these bilayers are showpointk=1, the reflection coefficient can be approximated as
in Table I. (1_Q0)2 k2

rf?= ~1-4s
(1—- Qo)+ 16k2kEQ

5"
IV. REFLECTION FROM THE SET OF CHAINS 15

If we have two chains with reflection and transmissionSO. if we want to haver|? to be everywhere in @k<1
amplitudesRy;, Ty; (i=1,2), then the reflection amplitude arger than & ¢, we must choosk,=2/y/Z. In particular, for

R, from two chains from the leftthe chain 1 is to the right ¢=0.01 we must choodg=20. In all the Figs. 6—9 we used
of the chain 2 is the widths of the wide barriers at both ends of MS, or only at
the beginning, equal tb,=10. This parameter is not too
1) critical, because though reflection of the smaller first barrier
is a little bit less the losses in it are also less. So practically
we have no gain, if we increase the totally reflecting layer,
Addition of the third chain to the left side gives the reflectionand we do not need two wide barriers. One barrier at the
amplitude beginning of the MS is sufficient.

TI%I3R21
1- RN\?,RZl .

TﬁZRNl

Rp1=Rypt+ -~
21 N2 1_RN2RN1

Ra,1=Rns+ (22 V. ASYMMETRY OF THE PERIOD

Above we considered the case when periods of periodical
Four chains will have reflection amplitudRg;,, and so on. It chains are symmetrical, i.e., the barrier of widthis sur-
is a simple algorithm to calculate reflection from all the rounded on both sides with wells of widi/2, i.e., it is
chains, and at the end we must add a single wide barrier agpresented as a three layer. In practice, it is simpler to con-
shown in Fig. 11, which provides total reflection for &ll  sider the period as a bilayer consisting of the well of width
almost up tok=1. Because of finite width, of the first and the barrier of the width,. Such a period is not sym-
barrier, its reflectivity drops ned=1. Indeed, the reflection metrical. Its reflection from the left, is not equal to reflec-

from the barrier is tion from the right,r, , though transmissions from both sides
1 are equal[see Eq.(5)]. The amplitudes, andr, for the
r=r 17Q0 bilayer are
Wbl— 2 Ll
rwbQo -~ 1—exp(2ikylp) o
ry=e " wwr 5 - =e'*wlwr
where 1-rupexp2ikply)

TABLE |. Parameters of 12 periodic chains with the reflection coefficient shown in Figk 1& the
position of the Bragg peak,,, |,, andN are the widths of TiZror Si) and FeCo layers and number of
bilayers, respectively, for the chain with the Bragg reflection centeré&g .atotal number of bilayers is 46.
At the beginning of the MS there is a FeCo layer of thickngss8, providing total reflection fok up to 1.

Param- 1 2 3 4 5 6 7 8 9 10 11 12
eters

k, 1.12 132 144 1.55 165 173 181 190 196 203 2.09 215
Iy 311 1.84 1.5 1331 120 111 104 098 093 089 086 0.82
lw 140 120 1.09 1.01 095 091 087 083 080 0.78 075 0.73
N 3 3 3 3 3 4 4 4 4 5 5 5
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1—exp(2ikplp)

— g iknl
1—r2 exp2ikyly)
whb b'b

rr: Wr‘,

(23

Mwb

wherer is the reflection amplitudé5) for the symmetrical
period. With nonsymmetrical period expressi@nshould be
modified. For instance, reflection amplitudg from the
semiinfinite periodic potential beginning with the well is

N V2= 2= V(1= )2
V@22 Va2t
NP1t
=e'*w'w ,

V(L+1)2= 2+ (1-1)2— 2

(24

or it is expik,lw)R, whereR is the symmetrical amplitude
given by Eq.(2). The reflection from semi-infinite periodic
potential beginning with the barrier will be expik,lw)R,
i.e., asymmetry of is inherited byR.

Equation(3) for the Bloch phase factor does not change
because instead of it containsr,r,, which is identical to

r2. Now it is easy to understand that reflection of a finite

number perioddRy for asymmetrical period will change in
the same way aR, i.e., for reflection from the left and right
we haveRy, =exp(xik,l)Ry, where Ry denotes the re-
flection amplitude for symmetrical period.

PHYSICAL REVIEW A67, 043610 (2003

where ¢, is the phase of the amplitudgy,. Since the last
factor is of the form exp()) the wholeR,,; is also of the
form exp{x’) that corresponds to the total reflection.

Of course, all these relations are precise only for real
potentials. The imaginary part of the potentials gives a cor-
rection to them, and the smaller is the imaginary part, the
smaller is the correction.

VI. SIMILARITY OF ALL THE MS SYSTEMS

All the MS can be represented as a system with barriers of
height 1 and wells of height 0. Indeed, if in a practical sys-
tem barriers have the potentia},, and wells the potential
Uy, then the potential step between the well and the barrier
is u,—uy,, and we can normalize this difference to unity, and
take as a unit length the critical wavelength/27
=h/y2m(u,—u,). Hence, calculations for all the practical
systems are the same. The only difference is that at the end
we need to include the reflection amplitude from the poten-
tial step from vacuum to the well. This potential step is now

a normalized potentiall,,= u,,/(u,—uy). If the reflection
ramplitude from MS without this correction B, then after
correction it will be

(1-r5 R

r L. D
oW 1+4rg,R

We now need to see what happens when we stack tw@heare
nonsymmetrical chains. For that we need to generalize ex-

pression(1) for nonsymmetrical potentials 1 and 2 shown in
Fig. 1. This generalized expression is

Ri2
R|12:R|1+T§T

, 25
rlRIZ ( )

where indiced,r denote reflection from the left and right,
respectively.

Taking into account this generalization, we represent Eq.

(22) in the form

T2oexMikal w1 — lwal)Raa

1—RyzeXp(iky[lwi = lw2])Rn1)’
(26)

Riz1=e'fwlwz| Ry, +

where asymmetry is explicitly represented by the facto
explikalwi—lwel)- It is easy to prove that if the chain 1 at
somek gives total reflection, i.e Ry;=exp(y), then inclu-
sion of chain 2 will not destroy this total reflection, i.8,1
for thesek is also a unit complex numbeR,,;=exply’).
Indeed, taking into account relatiof&), which are valid for
Ry and Ty, we can transform E¢26) as follows

Ryp = — elkulva tix+2id
1—|Ryalexp( —iky[lyi— w2l —ido—ix)
1—|Ryolexpliky[lyi— w2l +igo+ix)
(27)

k=K,
k+Ky,

I’OW ’EW V kz_tlw.

In our calculations we did not make this correction and took
u,,= 0 having in mind reflection of neutrons from inside of a
Si crystal, as was proposed in RE20].

We applied our method to practical systems and consid-
ered only 24 chains, though it is not critical. With these
chains we are able to increase the critical angl@5 times.

If we want only to double the critical angle, we need only 12
chains. Their parameters are presented in Table I. The first
row shows the pointg, that are centers of the Bragg peaks.
The first numberk,=1.12 was chosen somewhatl hoc
Next two rows show the width of the wellg and barriers,,

ffor thosek, and the last row shows the number of periods in
every chain.

Imaginary parts for potentials of practical systems were
normalized to the difference of real parts wf—u,,. Thus
for the FeCo-Si system in which Si are wells with,
=54.4-16.25<10 % neV and FeCo are barriers with,
=330.7-16.40< 10 2 neV, the normalized potentials are
up=1-i2x10 * andu,=0-i2.3x10" 5.

In the FeCo-TiZr system the normalized imaginary part of
FeCo is=~3Xx10 * and that of TiZr~1Xx10 *. The main
effect of losses comes from the imaginary part of FeCo, so
the results of calculations for practical systems with Si and
TiZr give nearly the same result.
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VII. CONCLUSION 399 layers

. . Rato|
We presented a method of calculating properties of a su-

permirror with a high critical angle of total reflection. We
suppose that our method has some advantage, because it 1 v——
analytical and therefore amenable to optimization tech-
nigues. In the cases presented here, change of pararmkters
and él,, from chain to chain is sufficiently large and there-
fore is less prone to errors related to the technology of layers o.ess}
preparation. There is only a title change of parameters com-
pared to the common approach of building multilayer sys-
tems, when the parameters change almost continuously, an
oly, ol,, become lower than a monolayer. Such a small oss
change of width is almost impossible to control.

We want also to add that though our analytical method is FIG. 12. Reflection of 399 layers for a model system with
very good for analysis, actual calculation of the reflection=—1.
coefficient, after all the parameters are defined from our ana-

lytical method, can be performed numerically with the Ma umber of layers but with a good enough reflectivity in a

trix method. : 4
. . wide enough interval ok.
We have shown here how to prepare MS by Increasing the Though this trial-and-error method may give a tolerable

. . lection with a smaller number of periods, our step-by-step
to proceed dlfferently. We can put one bilayer on "’_‘SUbStr?‘tﬁwethod is more promising for the technology of MS prepa-
and calculate its reflection. Then we put another bilayer withyation_ |t is evident that in order to have good interfaces the
parameters scanned in some intervals and choose paramet§fjeknesses of a layers must be equal to integer number of
which give the larger increase of the reflectivity. Then wemonolayers. If a layer contains a fraction of monolayer, its
look for parameters of third bilayer and so on. If we do notsyrface will never be flat, even if it is evaporated on a sub-
restrict thickness of layers, we can get with 200 bilayers atrate with an ideal surface.
good reflectivity as shown in Fig. 12 for some model system When we know the exact thickness of a single monolayer
with u,=—1 even for intervak=4k..* However, in these we can calculate reflection amplitudes for layers with integer
bilayers some thicknesses are of the order 0.1 of interatomigumber of monolayers. Comparison of calculations with re-
distance. It is clear that it is impossible to achieve a goodilly obtained reflectivities in a wide range of energies pro-
homogeneity for such thicknesses. We can restrict thickvides a good control for development of technology for MS
nesses to some values when scanning in the parameter spaggsparation.

It may give a not-so-perfect multilayer system with a smaller We considered here only the reflection of neutrons from
MS. This method can also be appliedxtoays. In that case,
we can reliably account for the imaginary part of the poten-

11f we normalize to unity the sum,+|u,|, then the increase in tials, which is large compared to that of optical potentials for

0 50 100 150 200 250 300 350 ADDk_ 1 00450

Fig. 12 is not 4, but/17/2=2.9. neutrons.
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