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Abstract Identification of the host genetic factors that contribute to variation in vaccine 
responsiveness may uncover important mechanisms affecting vaccine efficacy. We carried out an 
integrative, longitudinal study combining genetic, transcriptional, and immunologic data in humans 
given seasonal influenza vaccine. We identified 20 genes exhibiting a transcriptional response to 
vaccination, significant genotype effects on gene expression, and correlation between the 
transcriptional and antibody responses. The results show that variation at the level of genes 
involved in membrane trafficking and antigen processing significantly influences the human 
response to influenza vaccination. More broadly, we demonstrate that an integrative study design  
is an efficient alternative to existing methods for the identification of genes involved in 
complex traits.
DOI: 10.7554/eLife.00299.001

Introduction
Influenza remains one of the major threats to human health worldwide and is responsible for an estimated 
250,000–500,000 deaths each year (World Health Organization, 2009). Attempts at immunization 
pre-dated the isolation of the virus from humans in 1933 (Smith et al., 1933) and vaccination remains 
the cornerstone of prevention strategies. Since 1977, strains of influenza A (H3N2), influenza A (H1N1), 
and influenza B have been responsible for the majority of documented human infections and trivalent 
vaccines are updated annually to contain the circulating strains. Animal models have demonstrated 
that immune responses and susceptibility to influenza infection can be strongly influenced by host 
genetic factors (Trammell and Toth, 2008; Srivastava et al., 2009). As with viral infection, variability 
in the immune response to vaccination is likely to be influenced by genotype. Accordingly, twin and 
sibling studies have shown heritability estimates as high as 45% for a varicella vaccine (Klein et al., 2007) 
and 90% for a measles vaccine (Tan et al., 2001). Studies investigating influenza vaccine immunogenicity 
in humans have consistently shown large inter-individual variability, but the genetic contribution to this 
variability remains poorly understood.

Gene expression is strongly controlled by common genetic variants (Morley et al., 2004; Stranger 
et al., 2007) with both broad (Bullaughey et al., 2009) and tissue-specific effects (Innocenti et al., 
2011; Rotival et al., 2011), referred to as expression quantitative trait loci (eQTL). Moreover, 
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genome-wide association studies have identified hundreds of variants associated with human disease 
risk that are also eQTL, implying that the mechanism by which they influence risk involves variation 
in transcriptional responses (Emilsson et al., 2008; Cookson et al., 2009; Naukkarinen et al., 
2010; Nicolae et al., 2010; Rotival et al., 2011; Barreiro et al., 2012) Finally, integrative ge-
nomic studies in model organisms (Schadt et al., 2005; Amit et al., 2009) have demonstrated that 
the combination of genetic and transcriptional information can allow direct tests of causal mechanisms  
in controlled experiments. We hypothesized that integrating genome-wide genotype data with 
serial measurements of the transcriptional and humoral responses to an influenza vaccine in a 
clinical study could be used to identify loci that influence vaccine responsiveness and subsequent 
immunity to influenza in humans.

We immunized an ethnically homogeneous group of 119 healthy adult male volunteers with licensed 
trivalent influenza vaccine. DNA was obtained from peripheral blood and genome-wide SNP genotyping 
was performed. We also measured global transcript abundance in peripheral blood RNA specimens 
before and at three time points (days 1, 3, and 14) after vaccination. Type-specific antibody measurements 
(H1N1, H3N2, and FluB) were made in serum samples before and at two time points (days 14 and 28) 
after vaccination. An identical study was then carried out with an independent validation cohort 
of 128 ethnically homogeneous healthy adult female volunteers. This experimental design allowed us 
to search for loci that show evidence of a transcriptional response to vaccination, genetic regulation of 
gene expression (cis-acting eQTL), and correlation between gene expression and the magnitude of 
the antibody response.

Results
Multiple genes show evidence of a transcriptional response to the 
vaccine and genetic regulation of expression
We performed mixed model regression analysis with SNPs located in 1-Mb intervals around each expression 
reporter sequence. We began by identifying SNP-transcript pairs with both significant evidence of a 

eLife digest Vaccines increase resistance to disease by priming the immune system to respond 
to specific viruses or microorganisms. By presenting a weakened (or dead) form of a pathogen, or 
its toxins or surface proteins, to the immune system, vaccines trigger the production of antibodies 
against the virus or microorganism. If a vaccinated individual then encounters the pathogen, their 
immune system should be able to recognize and destroy it. Many vaccines also include a secondary 
agent, known as an adjuvant, to further stimulate the immune response.

Influenza, an RNA virus commonly referred to as the ‘flu’, is an infectious disease that affects 
both birds and mammals. Seasonal epidemics occur each year affecting 2–7% of the population. 
According to the World Health Organization, influenza leads to nearly 5 million hospitalizations each 
year and causes up to half a million deaths. Vaccination is a primary strategy for the prevention of 
seasonal influenza, but responses to the vaccine vary markedly, partly because of variation in the 
genetic makeup or genotype of individuals. However, the details of how genes influence response 
to vaccination, and indeed susceptibility to influenza, remain unclear.

To investigate the genetic basis of variation in the immune response of healthy adults to the 
seasonal influenza vaccine, Franco et al. combined information about the genotypes of 
individuals with measurements of their gene transcription and antibody response to 
vaccination. They identified 20 genes that contributed to differential immune responses to the 
vaccine. Almost half of these encode proteins that are not specifically associated with the 
immune system, but have more general roles in processes such as membrane trafficking and 
intracellular transport.

Focusing on these genes may enable researchers to spot those individuals who are less likely to 
respond to a vaccine. It could also open up new avenues of research for vaccine development: 
rather than designing adjuvants that target known immune mechanisms, researchers should develop 
adjuvants that target the proteins encoded by these 20 genes.
DOI: 10.7554/eLife.00299.002
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cis-acting eQTL and significant changes in gene expression in response to vaccination. Thresholds for 
local significance were initially explored, since only SNPs flanking each reporter sequence were tested for 
cis association. In the discovery cohort, 3229 SNP-transcript pairs, corresponding to 408 unique 
genes, exhibited significant genotype-expression association (genotype effect  
p<1 × 10−4) and concomitant evidence of a transcriptional response to the vaccine (day effect 
p<0.01). Of these, 2606 SNP-transcript pairs, corresponding to 256 genes, were validated in the 
independent cohort of female volunteers (genotype effect p<0.05 and day effect p<0.01). When 
more stringent thresholds were applied, 756 SNP-transcript pairs, corresponding to 114 unique 
genes, exhibited significant genotype-expression association (genotype effect p<5 × 10−8) and 
concomitant evidence of a transcriptional response to the vaccine (day effect p<0.01) in the discovery 
cohort. Of these, 654 SNP-transcript pairs, corresponding to 93 genes, were validated in the second 
cohort (genotype effect p<0.05 and day effect p<0.01). A majority of these (467 SNP-transcript 
pairs, corresponding to 78 unique genes) would pass equally stringent thresholds in both cohorts 
(genotype effect p<5 × 10−8, day effect p<0.01). A Manhattan plot of these results is presented in 
Figure 1. Data for the individual SNP-transcript pairs that passed equally stringent thresholds in 
both cohorts, including results of significance testing and gene identifiers, are provided in Table 1 via 
the Interactive Results Tool (which is also available to download from Zenodo and shown within 
Supplementary file 1).

At some loci, the genetic effect is enhanced or only apparent after the 
experimental perturbation
We hypothesized that, at some loci, the magnitude of the genetic effect could be different before  
and at different time points after vaccination. This type of effect, which would not be observed  
in a cross-sectional study design, could be directly examined with our serial expression data. We 
analyzed the additive effect of genotype on expression at each day in the study. Using a cis-effect 
significance threshold of p<1 × 10−4 in the discovery cohort and p<0.05 in the validation cohort, 
this analysis identified 5155 validated eQTL SNP-transcript pairs (3011 at baseline and 3417, 2496, 
and 3043 at days 1, 3, and 14, respectively). These SNP-transcript pairs correspond to 543 unique 
genes. We then identified the SNP-transcript pairs in which the expression variance explained was 
most strongly increased after vaccination (highest change in genetic variance explained, which  
we termed delta-Rg

2). This analysis revealed multiple loci at which the genetic effect was either 
enhanced or only apparent after the experimental perturbation. An example is presented in Figure 2A, 
which displays local Manhattan plots for the NECAB2 locus before and 3 days after vaccination in 
both cohorts.

Theoretically, the observed temporal changes in the estimated genotype effect after vaccination 
could be driven by an increase in the effect size, a relative decrease in the variability within genotype 
strata, or both. We analyzed all SNP-transcript pairs for loci at which we observed both a strong  
cis-acting eQTL and a transcriptional response to vaccination, calculating the relative magnitude 
of slope and within-genotype variance between the pre-vaccination and maximal Rg

2 time points. 
Figure 2B shows that an increase in the strength of the genotype effect (slope of the additive asso-
ciation) was the main driver for the observed change in Rg

2, and that this amplitude change was a 
general feature of the loci in which we observed both a strong cis-acting eQTL and a transcrip-
tional response to the vaccine stimulus. The delta-Rg

2 values were consistent between the cohorts 
when evaluated by Spearman’s rank correlation analysis using all SNP-transcript pairs (Cor = 0.25, 
p<2 × 10−16). To select a conservative set of candidate loci based on this property for further analysis, 
we identified the SNP-transcript pairs that were in the top 1% of the delta-Rg

2 distribution and also 
showed evidence of a strong cis-acting eQTL (genotype effect p<5 × 10−8), in both cohorts. Data for 
the resulting set of 146 SNP-transcript pairs, including Rg

2 values, are provided in Table 2 via the 
Interactive Results Tool (which is also available to download from Zenodo and shown within 
Supplementary file 1).

Content analysis shows enrichment for genes involved in membrane 
trafficking, antigen processing, and antigen presentation
Of the 78 genes that had the strongest validated evidence of a genotype effect and a transcrip-
tional response to the vaccine, 14 were also in the list of 34 genes with the strongest evidence of 
an increase in the magnitude of the genetic effect after vaccination. Content analysis on the union 
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Figure 1. Multiple genes show both a transcriptional response to the vaccine and evidence of genetic regulation of gene expression (cis-acting eQTL) in 
both cohorts. Manhattan plots of the genotype-expression—log10 p-values across the genome for the discovery (inner circle) and validation (outer circle) 
cohorts. Each dot represents a SNP-transcript pair. Red dots indicate SNP-transcript pairs for which there is evidence of significant genotype-expression 
association (genotype p<5 × 10−8) and evidence of a transcriptional response to the vaccine (day effect p<0.05). The 78 genes that showed both 
properties in the two cohorts are shown in the outer margin.
DOI: 10.7554/eLife.00299.003

of the two sets (98 genes) showed significant enrichment for genes involved in antigen processing 
and presentation, cytotoxic T-lymphocyte-mediated apoptosis of target cells, dendritic cell matu-
ration and function, and membrane trafficking (Figure 3).

http://dx.doi.org/10.7554/eLife.00299
http://dx.doi.org/10.7554/eLife.00299.003


Human biology and medicine

Franco et al. eLife 2013;2:e00299. DOI: 10.7554/eLife.00299	 5 of 18

Research article

Integration of genotype, expression, and antibody titer data identifies 
20 genes with the strongest evidence for genetic variation influencing 
the humoral immune response to influenza vaccination
We and others have shown that for some transcripts there is significant correlation between the 
magnitude of the transcriptional and antibody responses to the vaccine stimulus (Zhu et al., 2010; Bucasas 
et al., 2011; Nakaya et al., 2011) In a combined analysis of the two cohorts in the present study, 
301 transcripts were found to correlate with the magnitude of the antibody response (Figure 4). Additional 
details of these 301 transcripts, including correlation coefficients and days of maximum correlation, are 
provided in Table 3 via the Interactive Results Tool (which is also available to download from Zenodo 
and shown within Supplementary file 1). We imposed an additional selection threshold based on this 
correlation, and identified 20 genes that show evidence of significant genotype-expression association 
(genotype effect p<5 × 10−8), a significant correlation between the transcriptional and antibody 
responses (expression-antibody effect p<0.05), and either a transcriptional response to the vaccine 
(day effect p<0.01) or evidence of a change in the magnitude of the genetic effect after vaccination 
(top 1% of the delta-Rg

2 distribution) in the two independent cohorts. These loci have the strongest 
evidence of genetic variation influencing the immune response to the vaccine, and include TAP2, 
SNX29, FGD2, NAPSA, NAPSB, GM2A, C1orf85, JUP, FBLN5, CHST13, DIP2A, PAM, D4S234E, 
C3AR1, HERC2, LST1, LRRC37A4, OAS1, RPL14, and DYNLT1. Remarkably, seven of these encode 
proteins involved in intracellular antigen transport and processing (Figure 5).

We determined genetic associations to the antibody response using 137 eQTL SNPs from these 
20 loci. The quantile-quantile plot from the association tests performed on these SNPs shows marked 
deviation from the empirical null distribution for QTL associations (Figure 6), supporting the idea that 
these loci are enriched for true genetic associations.

The study design permits causal and reactive model analyses
We explored three types of associations in our work: genotype to gene expression (eQTL), gene 
expression to antibody titer, and genotype to antibody titer (QTL). We now considered alternative 
models for the relationships between these distinct types of association (Figure 7A), and we evaluated 

Figure 2. At some loci, the magnitude of the genetic effect changes after the experimental perturbation. (A) A specific example of this phenomenon: 
local Manhattan plots for the gene NECAB2 before and on day 3 after vaccination in each of the two cohorts, showing an increase in the magnitude of 
the genotype effect (R2

g) after the experimental perturbation. (B) An increase in R2
g after the experimental perturbation is a general feature of the 

SNP-transcript pairs that show a strong cis-eQTLs and a transcriptional response to vaccination (left). The within-genotype variance is unchanged 
(MSE, center), while the strength of the genotype effect on expression (slope of the additive association; β, right) increases, suggesting that the latter is 
the main driver for the observed increase in the genetic effect after vaccination.
DOI: 10.7554/eLife.00299.004
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our data to determine which of these alternatives appears most consistent with our observations. The 
alternative models considered were: (i) genotype association with gene expression is independent of 
genotype association or trends of association with antibody response (independent model); (ii) genotype 
association or trends of association with antibody response are mediated by gene expression patterns 
that are strongly correlated with genotype (causal model); and (iii) genotype associations to antibody 
response are not mediated by expression, but instead gene expression patterns are a response to 
the antibody trait or its early correlates (reactive model). To perform a comparative analysis of 
these alternatives we extended the framework for causal modeling (Pearl, 2010) in eQTL data recently 
developed by others (Millstein et al., 2009) and applied the method to our time-course gene expres-
sion study. We used the 137 eQTL SNP-transcript pairs from the 20 loci with the strongest evidence 
of genetic variation influencing the immune response to the vaccine, as described above. We 
found that the patterns in the data trend toward the causal model compared to the reactive model 
(Figure 7B), but a power analysis based on the distribution of the empirical effect sizes of our 
observed associations also indicates that our sample size is too modest to support definitive conclusions 
(Figure 7C).

Figure 3. Content analysis shows enrichment for genes involved in membrane trafficking, antigen processing, and 
antigen presentation. Barplots show categories with significant overrepresentation in the list of 98 genes with a 
strong cis-eQTL and a response to vaccination expressed as either a transcriptional response or a change in the 
genetic effect in both cohorts. The negative log(p-value) is plotted on the x-axis.
DOI: 10.7554/eLife.00299.005
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Discussion
The results provide an unbiased integrative survey of the genetic and transcriptional components of 
the humoral immune response to influenza vaccination in humans. They suggest that variation at the 
level of genes involved in antigen processing and intracellular trafficking is an important determinant 
of vaccine immunogenicity. Even in healthy, young individuals, there are a significant number of people 
who do not develop a protective antibody response after influenza vaccination. If these individuals 
could be identified prior to vaccination, modifications to the type or dose of vaccine could be attempted, 
with the goal of reducing the number of unprotected vaccinated individuals. The genes identified 
in this study as playing a role in variation in the humoral response to vaccination would be a logical 
starting point for the development of DNA- or RNA-based predictive biomarkers. Prospective evaluation 
of such biomarkers would be the next step towards clinical implementation.

Understanding the mechanisms that underlie variation in response to the vaccine may also direct 
modification of factors that enhance the response. Most of the efforts to date have focused on vaccine 
adjuvants that activate known immunologic mechanisms. Surprisingly, many of the genes identified in 
this study encode proteins that are not specifically immune but play a more general role in membrane 
trafficking and intracellular transport. Interventions aimed at increasing vaccine antigen affinity to 
these proteins or altering their intracellular concentrations could represent new avenues in vaccine 
development.

More broadly, the results demonstrate that a longitudinal, integrative genomic analysis study design, 
applied to a clinical intervention, is an efficient alternative to cross-sectional methods for the identification 
of genes involved in medically relevant complex traits. By making repeated measurements on the 
same individual over time after a controlled experimental perturbation, we were able to account for 
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Figure 4. Gene expression at specific loci correlates with the antibody response to vaccination. (A) Examples of 
positive (DYNLT1) and negative (ANKRD33) correlation between gene expression on day 1 and the magnitude of 
the antibody response to the vaccine. Data points and regression lines in the scatterplots display the results for the 
discovery (blue) and validation (magenta) cohorts. (B) A total of 301 genes showed evidence of significant correlation 
between gene expression and the antibody response to the vaccine in both cohorts. Of these, 281 showed 
evidence of positive correlation and 83 of negative correlation. Each individual is represented by a column in the 
heatmaps. The top heatmaps display the magnitude of the antibody response (titer response index). The bottom 
heatmaps display the deviations around the expression mean for each gene. Individual gene identifiers and 
correlation coefficients are presented in the Interactive Results Tool.
DOI: 10.7554/eLife.00299.006
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individual variation in a way that would not have been possible otherwise. The dynamic nature of the 
measurements also allowed us to uncover genetic effects that are either enhanced by or only evident 
after the experimental perturbation. The specificity of gene identification in this study emerges from 
the genome’s acute response to the perturbation, which cannot be assessed by a cross-sectional eQTL 
analysis or a genome-wide association study. This approach could be used for a broad variety of 
medically important problems whenever there is the opportunity to test a well-controlled intervention 
such as drug, dietary, or vaccine responses.

Several limitations of the study are worth noting. First, we studied two samples of healthy young 
adults, thereby excluding the segments of the population that are most likely to have a poor response 
to influenza vaccination: children, the elderly, and individuals with severe illnesses. Second, in order to 
minimize the risk of false associations related to population stratification, we studied an ethnically 
homogeneous group of individuals. Third, while an interesting aspect of our study design is that it 
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Figure 5. Genetic variation in intracellular antigen transport and processing influences the human immune 
response to influenza vaccination. 20 genes show evidence of a transcriptional response to vaccination, significant 
genotype effects on gene expression, and correlation between the transcriptional and antibody responses. 
Remarkably, seven of these are involved in intracellular antigen transport, antigen processing, and antigen 
presentation.
DOI: 10.7554/eLife.00299.007
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could open the door for direct comparisons of 
causal and reactive models, the sample size in this 
study was not sufficient to establish whether or 
not there is a causal relationship between the loci 
for which an association was identified and the 
antibody response to the vaccine. Finally, while 
antibody titers have historically been used to 
evaluate vaccine responsiveness, it is clear that 
they do not capture the complexity of the human 
immune response to vaccination. Additional studies 
would be necessary to determine whether the 
genes identified are also related to variation in 
influenza vaccine responses in groups other than 
the one chosen for this study, whether there is a 
causal relationship between these genes and 
the antibody response, or whether they also  
influence the cell-mediated immune response to 
the vaccine.

Materials and methods
Visual summary
A visual representation of the study design, the 
resulting data sets, and the integrative analysis 
scheme, is presented in Figure 8.

Study subjects
Healthy volunteers ages 18 to 40 years were 
enrolled. Individuals who were known to have 
received an influenza vaccine in the previous  

3 years or who had signs or symptoms of an active infection at the time of enrollment were excluded. 
To minimize false-positive results related to population stratification, enrollment was limited to individuals 
of self-reported Caucasian ancestry. Enrollment, vaccination and sample collections were conducted 
at a university campus. The initial (discovery) cohort was restricted to males. The validation cohort was 
enrolled approximately 18 months after the initial cohort and was restricted to females. The protocol 
was approved by the institutional review boards of all participating institutions. Informed consent was 
obtained from each subject prior to enrollment.

Vaccine
Study participants were immunized on day 0. Those enrolled in the initial cohort received the 2008–
2009 inactivated trivalent influenza vaccine (A/Brisbane/59/2007[H1N1], A/Brisbane/10/2007[H3N2], 
B/Florida/4/2006; Sanofi-Pasteur, Lyon, France). The validation cohort received the 2009–2010 
vaccine, which came from the same manufacturer and included (A/Brisbane/59/2007), (A/Brisbane/ 
10/2007[H3N2]), and (B/Brisbane/60/2008) strains.

DNA samples
Whole blood samples (7 ml) for DNA purification were collected in Vacutainer acid citrate dextrose 
(ACD) tubes (Beckton-Dickinson, Franklin Lakes, NJ), on day 1 after vaccination. DNA was purified 
using Qiagen Gentra Puregene Blood Kits (Qiagen Sciences, Germantown, MD). Quantitation and 
quality control were performed with a NanoDrop-1000 spectrophotometer (Thermo Fisher Scientific, 
Waltham, MA) and using the Quant-iT PicoGreen dsDNA Reagent (Life Technologies, Carlsbad, CA) in 
a Tecan GENios microplate reader (Tecan Group, Mannendorf, Switzerland).

RNA samples
Peripheral blood samples for RNA purification were obtained immediately before (day 0) and on days 
1, 3, and 14 after vaccination. To minimize changes in gene expression induced by sample handling 
and processing, whole-blood samples (2.5 ml) were collected in PAXgene RNA stabilization tubes 
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Figure 6. SNPs at the 20 loci identified show evidence 
of association with the antibody response to the 
vaccine. 137 SNP-transcript pairs with evidence of a 
strong cis-eQTL, a dynamic response to the vaccine 
(a change in transcript abundance or in the magnitude 
of the genetic effect), and correlation between the 
transcriptional and antibody responses were selected 
(result SNPs, in red). The empirical quantile-quantile 
plot of the result SNPs shows significant deviation from 
the empirical distribution of the entire data set 
(background SNPs, in blue).
DOI: 10.7554/eLife.00299.008
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(Qiagen Inc., Valencia, CA) and frozen at −80°C. RNA purification was performed using the PAXgene 
Blood RNA system (Qiagen Inc.). All RNA samples from an individual were consistently purified in the 
same batch. Spectrophotometry (NanoDrop-1000 Spectrophotometer; Thermo Fisher Scientific) and 
microfluidic electrophoresis (Experion Automated Electrophoresis System; Bio-Rad Laboratories, 
Hercules, CA) were used for quality control.

Whole-genome genotyping
Genotyping was performed on Illumina HumanOmniExpress microarrays (Illumina, Inc., San Diego, 
CA) following the manufacturer’s instructions. The arrays include 730,525 SNP markers. Basic quality 
control of the genotyping data was performed on GenomeStudio software, version 2010 (Illumina, 
Inc.). All microarrays had call rates >0.99.

Measurement of global transcript abundance
In vitro transcription was performed using Ambion Illumina TotalPrep RNA Amplification Kits (Applied 
Biosystems/Ambion, Austin, TX). cRNA was hybridized onto Illumina HumanHT-12v3 or HumanHT-
12v4 Expression BeadChips (Illumina, Inc.), following the manufacturer’s protocol. All samples for 
a given individual were processed on the same slide. The arrays have 48,742 (v3) and 47,301 (v4) 
reporters, representing approximately 25,000 genes and non-annotated gene candidates.

B C

A

Figure 7. The study design permits causal and reactive model analyses. (A) Three models were evaluated, 
each showing a candidate hypothesis for the three-way association between genotype (G), expression (E) and 
trait (T). In the independent model, expression and trait each associate with genotype but are not themselves 
directly related. In the causal model, expression mediates the association between genotype and trait. In the 
reactive model, genotype and expression relate through the trait, so that gene expression changes are a 
downstream response to the trait. (B) p-values for independent-versus-reactive and independent-versus-causal 
hypothesis tests. Each point shows the result for one SNP-transcript pair. Points to the right of the solid 
vertical line are significant (p<0.05) for the reactive hypothesis and points above the solid horizontal line are 
significant for the causal hypothesis. The dashed line shows a p=0.1 threshold. (C) Power for rejection of the 
independent hypothesis. Non-independent data were simulated with effect sizes and variances similar to 
those in the enrichment set (the set of SNP-transcript pairs that were found to be significant in our study). The 
curve shows the proportion of cases in which the simulated data rejected the independent (null) hypothesis. 
The dotted line indicates the combined sample size in our study.
DOI: 10.7554/eLife.00299.009
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Serum samples and antibody titer measurements
Whole blood (10 ml) was collected in Vacutainer Serum Separator Tubes (Beckton–Dickinson). Serum 
was separated by centrifugation prior to storage at −20°C. Hemagglutination inhibition (HAI) tests 
were performed as previously described (Dowdle et al., 1979), except for a starting serum dilution of 
1:4 and the use of turkey red blood cells. HAI test antigens were allantoic fluid harvests from infected 
embryonated hen’s eggs (whole-virus antigens). Neutralizing antibody tests were performed as previously 
described (Frank et al., 1980) except that hamster serum was not included. Test strains were the same 
as those used in the vaccine.

Antibody titer data analysis
HAI and neutralizing antibody titers were measured for each viral antigen included in the vaccine. For 
all antigens, the change in antibody titer post-vaccination is known to be negatively correlated with 
the pre-vaccination titer. The responses to the individual viral antigens were correlated within individuals. 
For each individual, we computed a Titer Response Index (TRI), as previously described (Bucasas 
et al., 2011). The TRI characterizes the magnitude of an individual’s antibody rise accounting for their 
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Figure 8. Study design and integrative analysis scheme. (A) Individuals were immunized on day 0 and peripheral 
blood RNA samples were obtained on days 0, 1, 3, and 14. Antibody titers were measured on pre-immune sera and 
on days 14 and 28. Genotyping was carried out on a peripheral blood genomic DNA sample obtained on day 1. 
Identical sample collection schemes were used, 1 year apart, for the discovery (males) and validation (females) 
cohorts. (B) Sample sizes and data generation platforms. (C) Integrative analysis involved identification of loci that 
exhibit a transcriptional response to vaccination, evidence of genetic regulation of expression (constitutive eQTL), 
evidence of correlation between gene expression and the antibody response, and evidence of correlation between 
genotype and the antibody response (QTL). Because transcript abundance was measured serially, we were able to 
evaluate changes in the magnitude of the genetic effect on expression at different time points following vaccination. In 
addition, the study design permitted QTL analysis conditional on gene expression, which led to the identification 
of loci whose genetic effects on the antibody response are causally linked through the eQTL.
DOI: 10.7554/eLife.00299.010
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pre-vaccination titer and integrating the responses across the three vaccine components to provide an 
overall measure of vaccine responsiveness.

Expression data processing and quality control
Raw signal intensity data from all individuals and all time points in the discovery cohort were first 
processed in a single batch. Background adjustment, variance stabilization transformation (Lin 
et al., 2008) and robust spline normalization were performed using the lumi package (Du et al., 2008) 
in R (R Development Core Team, 2009). Eight individuals had missing expression data from two or 
more time points and were excluded. We required a detection p-value of <0.01 in at least 80% of the 
samples for a transcript to be considered detected. We also aligned the entire set of expression 
reporter sequences to the human genome reference sequence (Build 36 [March 2006]/hg18) by applying 
the BLAT algorithm in BlatSuite34 software (Kent, 2002), and excluded any reporters that did not map 
or mapped to more than one region. Using these two thresholds for the data in the discovery cohort, 
the final data set included 9809 detected transcripts. This data set was then used for eQTL analysis in 
the discovery cohort.

Once data generation for the validation cohort was completed, the expression microarray signal 
intensity data from all individuals and all time points in that cohort were processed in a single batch. 
Background adjustment, variance stabilization transformation, robust spline normalization, and the 
application of detection thresholds were performed identically to the discovery cohort. Five individuals had 
missing expression data from two or more time points and were excluded. Because two different array 
versions were used (HT12-v3 and HT12-v4), unique reporter identifiers (ProbeID and nuID) for the 
9809 reporters selected in the discovery cohort were used to subset the data from the validation 
cohort. This data set was then used for eQTL analysis in the validation cohort.

The analysis of correlation between gene expression and antibody titer in the discovery cohort was 
previously published (Bucasas et al., 2011). As part of the integrative genomic analysis described in the 
present study, we performed a similar analysis of this expression/titer correlation, but included expression 
data from both cohorts. For this purpose, the two data sets described above were combined, and an 
additional quantile normalization step was performed to account for batch effects between cohorts.

Genotyping data processing and quality control
Array quality was initially assessed using GenomeStudio software (Illumina, Inc.). Default algorithms 
were used to normalize, generate SNP clusters, and make genotype calls. SNPs with minor allele 
frequency (MAF) <0.05 and Hardy-Weinberg Equilibrium (HWE) χ2 < 1 × 10−7 were removed prior to 
analysis. For local eQTL mapping, we restricted the analyses to SNPs within 1 Mb (500 kb upstream or 
downstream) of each unambiguously mapped expression reporter sequence. We used the genotype 
information to reliably establish that the individuals in each cohort were indeed unrelated and 
ethnically matched. For this, we estimated pairwise identity-by-descent (IBD) metrics on the basis of 
identity-by-state (IBS) information from their genome-wide SNP genotyping results, followed by 
multidimensional scaling (MDS) analysis on the resulting matrix of pairwise distances, using PLINK 
(Purcell et al., 2007). The first three components of the MDS analysis on our study samples and 
the founders from six HapMap populations were plotted with R package Scatterplot3D (Ligges and 
Machler, 2003) and are shown in Figure 9. As expected, our study samples from both cohorts cluster 
with the HapMap CEU population. In the male cohort, we identified four pairs of individuals with 
cryptic or undisclosed familial relationships (pi-hat ≥ 0.125). 12 outliers were identified by component 
2; two of the four pairs of cryptic or undisclosed relatives were among the outliers. One individual from 
each related pair and all remaining outliers were removed prior to analysis. In the female cohort, 
we identified one pair of individuals with cryptic or undisclosed familial relationship (pi-hat ≥ 0.125). 
11 outliers were identified by component 2 and one by component 1. One individual from the related 
pair and all outliers were removed prior to analysis.

Integrative genomic analysis
Analyses were carried out separately for each cohort and in the combined data set. Because we have 
repeated gene expression measurements on the same individuals over a series of time points, we 
performed a random effects linear model analysis. For each SNP-transcript pair, we fit a model with terms for 
day, additive effects for genotype and day–genotype interactions, and a random effect for each person:

, ,
= + + + +β ββ ββ ββ βi j i j i j j i jY D g g P e

http://dx.doi.org/10.7554/eLife.00299
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Figure 9. Study samples cluster with the HapMap CEU population. Pairwise identity-by-descent metrics were estimated based on genotype data from 
our two study samples and six HapMap populations. Multidimensional scaling analysis was performed on the resulting pairwise distances. Components 
1–3 of this analysis are plotted for the male (top) and female (bottom) cohorts, and the comparison populations. As expected, the study samples cluster 
with the HapMap CEU population. 12 outliers were identified in each cohort and were removed prior to analysis.
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Where Y = observed expression value, i = day (0, 1, 3, 14), j = individual, D = day effect, g = genotype 
effect, P = person effect (random), and e = random error. We fit this model using the R package nlme 
and the estimation method of the same name. The day effect (D) is a shift term which considers 
time-ordered change in expression. The genotype effect (g) is a main effect for genotype that 
considers the expression differences between genotypes to be additively related to the number 
of copies of a reference allele. The day–genotype interaction allows the additive effect to vary by 
day (see Figure 10 for a visual representation of the analysis scheme). The person effect (P) is 
modeled as a random effect; this term helps to efficiently account for the fact that the same individual 
appears in each time point, without overfitting the expression model to the particular sample 
ascertained in our study. We explored different parametrizations, such as allowing the person  
effect to vary by day, and found that the simplest model with a single term for each person was 
effective. This person effect can account for inter-individual or batch differences which are stable 
within individuals for the duration of the study.

In addition to the random effects linear model, we analyzed each expression trait with respect to 
genotype at each time point using

,
= +ββββj i kY G e

where Yj denotes the matrix of expression traits of individuals j at a given time point (days 0, 1, 3, 14) 
and Gi,k is a matrix of genotypes for individuals j at SNP locus k such that each element is assigned 
0, 1 or 2 according to the number of minor alleles at the kth locus of the jth individual. This allowed 
estimates of the proportion of expression variance explained by individual genotypes from the model’s 
coefficient of determination (R2

g). This model permitted a more detailed examination of the changes 
in the strength of the genotypic association with expression at each time point. To detect SNP-
transcript pairs where the magnitude of the genotype effect varied after immunization, we took the 
difference in R2

g measures (ΔR2
g) from pairwise linear models fitted after (days 1, 3 and 14) and before 

Figure 10. Genetic and transcriptional analysis on a prospective cohort. The figure displays hypothetical results for 
a single SNP-transcript pair. For any such pair, one may observe changes in transcript abundance at different time 
points after the experimental perturbation (lower box plots). In addition, gene expression at each time point may 
be different for different genotypes when there is evidence of an eQTL (upper box plots). Finally, the slope of the 
expression-genotype association (β), as well as the proportion of the variance in expression explained by genotype 
(R2

g), may vary across time points.
DOI: 10.7554/eLife.00299.012
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vaccination (day 0). We then took the top 1% ΔR2
g values between day 0 and a later time point. This 

cis-acting eQTL subset represents the loci that show significant changes in the genetic effect as a 
result of the vaccine.

Correlation of transcripts with the humoral immune response
The titer response index was treated as a dependent variable and modeled as a linear combination of 
expression values for each transcript across the time course. A single F-statistic p-value was determined  
to evaluate the explanatory value of the expression data using all days. Separate evaluations were 
made in each cohort and in the combined data. The 301 genes displayed in Figure 4B had F-statistic 
p-values in the combined data <0.01 and absolute values of the maximum average correlation between 
expression and titer response in the two cohorts >0.15.

Content analyses
Enriched biological and functional pathways were analyzed using DAVID Bioinformatics Resources 
(Dennis et al., 2003), and Ingenuity Pathway Analysis (IPA) software.

Causal and reactive model analyses
To evaluate the relationship between the associations identified in our study, we extended a recently 
published analysis framework for causal modeling in eQTL data (Millstein et al., 2009). The relationship 
is modeled as

+T E G

where T is trait, E is gene expression, and G is genotype at a locus. In our experiment, the term E 
includes a separate value for each day. The term G has a separate effect on the trait under the independent 
null model, while under the causal alternative, where it acts through gene expression, its influence is 
entirely transmitted through E. The statistic used to assess the influence of G is the partial F reported 
by the ‘aov’ function in R (version 2.15.1). The analyses utilize an equivalence test approach, where the 
null hypothesis is that the second independent variable has an effect on the response conditional on 
the first variable, while the alternative is complete co-linearity in the associations. The null distribution 
of the F statistic–which under parametric assumptions would have a non-central F distribution—is 
derived using a permutation test procedure, as follows: The relationship between E and T is decoupled 
by regressing E on G, permuting the resulting residuals, then adding the permuted residuals to 
the predicted values to arrive at E*, which is independent of T but maintains the marginal variance and 
G-correlation of E. This procedure enforces the assumption of the independent model, while leaving 
other properties unchanged. The partial F statistic for G in

~ +
*

T E G

represents a sample from the distribution under the independent null hypothesis. This process, repeated 
1000 times, provided a null distribution. The p-value for the observed F is the proportion of the null 
distribution that is below the observed value.

The reactive model is evaluated using the same approach, but with the expression and trait terms 
swapped, that is

~ +E T G

This scheme tests the extent to which the trait value mediates the relationship between genotype 
and gene expression. In this analysis, the permutation step decouples the expression-to-trait relation-
ship from the eQTL association and asks if the eQTL association disappears after accounting for the 
expression-to-trait association.

Power analyses for these models apply the same scheme to simulated data. The term G is simulated 
as binomial, while E and T are normal, with parameters chosen to match the minor allele frequency, 
variance, and correlations observed in our data set. The power to reject the false (independent) model 
is shown using a threshold of p<0.05. The power properties for the tests used to evaluate both the 
reactive and causal models are equivalent because the model structures and r2 relationships are 
symmetric between the two alternatives.

http://dx.doi.org/10.7554/eLife.00299
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