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Abstract
Vaccination of humans and animals with live attenuated organisms has proven to be an

effective means of combatting some important infectious diseases. In fact, the 20th century

witnessed tremendous improvements in human and animal health worldwide as a conse-

quence of large-scale vaccination programs with live attenuated vaccines (LAVs). Here, we

use the neglected zoonotic diseases brucellosis and bovine tuberculosis (BTb) caused by

Brucella spp. andMycobacterium bovis (M. bovis), respectively, as comparative models to

outline the merits of LAV platforms with emphasis on molecular strategies that have been

pursued to generate LAVs with enhanced vaccine safety and efficacy profiles. Finally, we

discuss the prospects of LAV platforms in the fight against brucellosis and BTb and outline

new avenues for future research towards developing effective vaccines using LAV

platforms.

Background
Vaccination provides the most effective means of preventing and eradicating infectious dis-
eases, and historically, live attenuated vaccines (LAVs) have proven effective in protecting
humans and animals from infection. LAVs are weakened versions of the pathogen, obtained by
disrupting or mutating one or more genes, which renders the pathogen incapable of causing
disease; however, the pathogen remains sufficiently potent to educate the immune system to
initiate and establish highly specific short-term or lifelong immunity [1]. LAVs offer a promis-
ing approach because they fail to induce disease in vaccinated individuals while simultaneously
mimicking natural properties of the virulent organism, including cell invasion and tissue tro-
pism [2], and presentation of a broad repertoire of antigens [3]. Moreover, LAVs have been
successfully used as vaccines for several human diseases of bacterial or viral origin [4–7].
Importantly, for some diseases, including brucellosis and bovine tuberculosis (BTb), LAVs
have demonstrated greater efficacy and/or safety in various model systems than competing
subunit vaccine platforms (Table 1) [8–12]. Therefore, LAVs have demonstrated safety and
efficacy in human and animal populations and provide an attractive strategy for combatting
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neglected zoonotic diseases. Here, we provide a broad overview of LAV technology, describe
recent progress in the development of this approach for neglected diseases, and outline chal-
lenges that must be addressed to develop vaccines with broad safety and efficacy profiles. We
use a comparative model to frame our discussion of these issues, and focus on brucellosis and
BTb, which have been designated as neglected zoonotic diseases by the World Health Organi-
zation [13,14].

Brucellosis, also called Bang’s disease, is a worldwide zoonosis of profound importance [40].
Globally, half a million people develop infection each year [40], and millions of livestock are
either infected or potentially at risk of acquiring infection [41]. Despite these reports, the actual
numbers are suspected to be 2–5 times higher because of chronic under-reporting of infection
and misdiagnosis [40]. Although brucellosis prevalence is low in most of the Western world, it
is endemic in human and livestock populations in Asia, South and Central America, and sub-
Saharan Africa [42–47] and affects not only the health but also the livelihood of people who
rely upon livestock-related economic activities [47].

In humans, brucellosis typically presents as an undulant fever but gradually becomes sys-
temic, affecting practically every organ system of the body with protracted symptoms of artho-
pathy, myalgia, and debilitation [48]. In ruminants, the reproductive system is a common site
of infection, and the disease during gestation increases the risk of spontaneous abortion and
human exposure [49]. Brucellosis has eluded systematic attempts at eradication for more than
a century [50], even in most developed countries, and so far no vaccine is approved for human
use [3]. Human brucellosis is associated with low rates of mortality and high rates of morbidity,
and hence, Brucella has the potential to render patients severely debilitated, which can perpetu-
ate poverty and tax health care resources [51,52]. Although combination antibiotic therapy can
be used to treat Brucella infection, typical treatment regimens are prolonged and are often
accompanied by unwanted side effects [53].

The intracellular bacteriaMycobacterium bovis induces both pulmonary and extrapulmon-
ary symptoms in humans and animals [54].M. bovis shares 99.95% genome sequence similar-
ity withM. tuberculosis and a live attenuated version of the pathogen, Bacillus Calmette–
Guérin (BCG), provides the current and only widely used vaccine against tuberculosis [55].
The global incidence of tuberculosis caused byM. bovis in humans as well as a wide variety of
animal species is increasing. More than 50 million cattle are estimated to be infected with the
pathogen worldwide [56], resulting in more than US$3 billion in agricultural losses annually
[57].M. bovis infection of humans presents with similar symptoms asM. tuberculosis; however,
human infection with virulentM. bovis infection is not responsive to the antibiotic treatment
commonly used to treatM. tuberculosis [58]. Although BTb has been eradicated from most of
the developed world through regular tuberculin testing and culling of infected livestock [59],
wildlife reservoirs of the causative agent constitute a significant global veterinary and public
health threat [60], especially in resource-poor regions where culling is neither affordable nor
practical [59].

The pathogenic programs of Brucella andM. bovis share similar features that support LAV
development. First, the unavailability of highly effective subunit vaccines that protect humans
against these pathogens can be largely attributed to their intricate immune evasion strategies
[61–67]. However, recent advances in vaccinology suggest that improved LAVs for animal
(and eventually human) use against these diseases may be within striking distance [3]. There-
fore, these organisms provide a useful comparative model for considering progress in LAV
development. Second, Brucella spp. andM. bovis are intracellular vacuolar pathogens that
establish replicative niches within acidic compartments of professional phagocytic cells [68]
and therefore have evolved mechanisms to subvert host factors [69] including conserved innate
immune defenses [70], phagosome maturation [67] and phagolysosome acidification [68].
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Table 1. Live attenuated vaccines.

Strain Name or
Gene Deleted

Species
Tested in

Challenge Strain/
Dose/Route

Efficacy/Protection
against Abortion

Vaccination Dose/
Route

USDA Approval Status/
Comments

References

Brucella spp.

B. abortus
Δbp26 Cattle B.a (2308) 3 × 108

(SC)
81% 1 × 1010 (SC) Experimental [15]

Δp39 Mice B.a 2 × 105 (IP) 99% 1 × 105 (SC) Experimental [16]

Δpgk Mice B.a 1 × 105 (IP) 99% 1 × 105 (IP) Experimental [17]

Δpgm Mice B.a (2308) 5 × 105

(SC)
99% 1 × 107 (IP) Experimental [18]

RB51 Cattle B.a (2308) 1.5 × 1010

(IC)
100% 3 × 108 (SC) Approved for animal use [19]

S19 Bison B.a (2308) 1 × 107

(IC)
67% 5.3 × 106 (SC) Approved for veterinary

use
[20]

S19 Cattle B.a (2308) 9 × 104

(IC)
70%–91% 1 × 109 (SC) Approved for veterinary

use
[21]

ΔvjbR Mice B.a 1 × 105 (IP) 99% 1 × 105 (IP) Experimental [22]

ΔwbkC Mice B.a 1 × 106 (SC) 73% 1 × 108 (IP) Experimental [23]

ΔznuA Mice B.a 5 × 104 (SC) 90% 1 × 108 (IP) Experimental [24]

B.melitensis

Δasp24 Goat B.m 1 × 107 (IC) 62% 1 × 106 (IP) Experimental [25]

Δbp26 Sheep B.o 1.7 × 109 (IPre) 100% 1 × 109 (SC) Experimental [26]

Δbp26 and Δomp31 Sheep B.o 1.7 × 109 (IPre) 84% 1 × 109 (SC) Experimental [26]

ΔhtrA Goats B.m 1 × 107 (IC) 100% 1 × 109 (SC) Experimental [27]

ΔmanBA Mice B.m 1 × 104 (IC) 87% 1 × 106 (IP) Experimental [25]

ΔmucR Mice B.m 5 × 109 (IN) 99% 1 × 106 (IP) Experimental [28]

Δomp25 Goats B.m 1 × 107 (IC) 100% 1 × 109 (SC) Experimental [29]

Δper Sheep B.m 4.9 × 107 (IM) 36% 1 × 1010 (SC) Experimental [30]

ΔpurEK Mice B.m 1 × 104 (IN) 99% 1 × 1011 (oral) Experimental [31]

Rev 1 Goats B.m 16M 1.25 × 106

(SC)
100% 1.5 × 106 (SC) Approved for animal use [32]

ΔvirB2 Goats B.m 1 × 107 (SC) 75% 1 × 109 (SC) Experimental [25]

ΔvirB2 Goat B.m 1 × 107 (IC) 75% 1 × 109 (SC) Experimental [25]

ΔvjbR Mice B.m 16M 1 × 105 (IP) 60% 1 × 105 (IP) Experimental [33]

Δwa Sheep B.m 4.9 × 107 (IC) 31% 1 × 1010 (SC) Experimental [30]

ΔwbkF Mice B.m 4.9 × 107 (IC) 54% 1 × 1010 (SC) Experimental [30]

ΔwboA Goat B.m 1 × 107 (IC) 20% 1 × 109 (SC) Experimental [34]

B. ovis
ΔabcBA Rams B.o 3.6 × 109 (IPre/IC) 100% 1 × 109 (SC) Experimental [35]

M. bovis (BCG)
BCG Cattle M.b 1 × 103 (Aer) 64% 1 × 103 (Aer) Approved for animal use [36]

ΔLeuD Cattle M.b 1 × 106 (SC) 60% 1 × 106 (IN) Experimental [37]

Δmce2 Cattle M.b 1 × 106 (SC) 80%–90% 1 × 106 (IT) Experimental [38]

Δp27-p55 Mice M.b 1 × 105 (SC) 96% 1.25 × 106 (IT) Experimental [39]

RD1 Cattle M.b 1 × 103 (Aer) 80% 1 × 103 (Aer) Experimental [36]

Abbreviations: Aer, Aerosol; B.a, Brucella abortus; BCG, Bacillus Calmette–Guérin; B.m, B.melitensis; B.o, B. ovis; IC, intraconjunctival; IM, intramuscular;

IN, intranasal; IP, intraperitoneal, IPre, intrapreputial; IT, intratracheal; M.b,Mycobacterium bovis; SC, subcutaneous; USDA, US Department of Agriculture

doi:10.1371/journal.pntd.0004572.t001
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Therefore, vaccines that activate macrophage-mediated killing of resident pathogens [71] or
stimulate activation of cytotoxic T lymphocytes that kill infected cells are desirable. Finally,
gaining a better understanding of interactions betweenM. bovis and Brucella spp. and their
respective host proteins will reveal novel avenues for engineering next-generation LAVs. The
purpose of this article is not to comprehensively review the development of vaccines forM.
bovis or Brucella spp., which can be found elsewhere [72–76], but rather to use a comparative
approach with vaccines directed against these pathogens to elucidate the utility of LAVs for
neglected zoonotic bacterial diseases.

Early Development and Use of LAVs
Several approaches to LAV generation have been described (Table 2), including serial passage
of the virulent organism [77], use of nonhost species for vaccination, exposure to varying cul-
ture conditions or irradiation [78], or the identification and deletion of genes that contribute to
symptomology or disease progression [33]. Historically, attenuation by serial passage has been
a preferred approach for LAV generation, and based on this, many important vaccines, includ-
ing the BCG vaccine against tuberculosis, have been successfully developed [79]. This approach
involves multiple cycles of growth of the bacteria under cultivation conditions that ultimately
lead to an accumulation of genetic mutations that result in altered virulence. For example, 13
years of serially passagingM. bovis resulted in attenuation and subsequent establishment ofM.
bovis BCG [55]. Serial subculturing has been shown to induce various types of mutations that
significantly alter the virulence of the organism, although serial passage can also sometimes
induce fitness-increasing mutations that enhance bacterial survival [80]. Strains with attenu-
ated virulence and normal replication rates constitute useful reagents for the development of
LAVs againstM. bovis. Serial passage has also been used to generate Brucella vaccines strains.
For example, RB51 is a spontaneous rough mutant derived using repeated passage of Brucella
abortus strain 2308 in vitro [81]. The main drawbacks to serial passage as a strategy for deriv-
ing LAV strains are that it neither reveals the molecular mechanisms that cause attenuation
nor guarantees that a safe and effective vaccine will result from the effort. In fact, some vaccines
prepared in this fashion, including B. abortus strains 45/20 [82], proved to be nonprotective or

Table 2. Approaches to LAV generation.

Approaches Advantages Disadvantages

Multiple Passages, Chemical, Physical,
or Nontargeted Mutagenesis

Contains broad antigenic determinants
[83,84]

May induce disease [83,92,93]

Relatively easy to generate [85] Genomic loci of mutations may be initially unknown, or genetic
instability may be observed [94]

Induction of humoral and cellular immune
responses [86,87]

Risk of acquisition of antibiotic-resistant phenotypes

Various degrees of durable immunity elicited
[88,89]

Difficult to distinguish between animals naturally infected from
those immunized [95]

Adjuvant not required for protective efficacy
[22,89]

Antibiotic resistance selectable markers used for generation of
mutants may lead to regulatory hurdles

Loss of virulence factors encoded by extra
chromosomal plasmids [90,91]

Targeted Gene Deletion Expected genetic stability of mutations Possible recombination events with dormant genes and
consequent safety implications

Reduced risk of reversion [96] Exchange of genetic information with other vaccine or wild-
type strains and consequent safety implicationsAbility to differentiate infected from

vaccinated animals (DIVA) [95,97]

Loss of pathogenicity [98]

doi:10.1371/journal.pntd.0004572.t002
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susceptible to reversion to wild-type virulence. Knowledge of the genetic basis of attenuation is
key to understanding the mode of action of the developed vaccines. Hence, other approaches
have been pursued that involve prior identification of virulence genes followed by the induc-
tion of targeted mutations.

Exposure of microorganisms to irradiation [78,99] or other conditions, including low tem-
perature [100] and chemicals [101], can be used to induce attenuating chromosomal mutations
for the purpose of developing LAVs. B. abortus strain 19 (S19), for example, is a smooth strain
that became attenuated during prolonged cultivation under dehydrating conditions [102]. The
molecular basis for the attenuation of S19 is not yet known. However, studies have demon-
strated that S19 harbors mutations in 24 virulence-associated genes [103], including genes
encoding an outer membrane protein and three proteins involved in erythritol uptake or
metabolism [103]. Irradiation can also be used to generate organisms displaying reduced repli-
cative capacity in vivo while preserving metabolic and transcriptional activity [78,104], an abil-
ity to persist in macrophages [78], and the capacity to confer protection to mice against
virulent bacterial challenge [78]. More recent high-throughput approaches for generating and
screening banks of mutant bacteria include the transposon-site hybridization (TraSH) system
[105] and RNA-guided gene editing using clustered regularly interspaced short palindromic
repeat-CRISPR-associated protein (CRISPR-Cas) technology [106]. The application of these
approaches for LAV generation constitutes an exciting area of future investigation.

Transposon-mediated mutagenesis by random gene inactivation has been used to identify
virulence factors and construct mutations in Brucella [107,108] andM. bovis [109,110]. This
approach inM. bovis yielded mutants with similar efficacy to BCG in a guinea pig model of
tuberculosis [111]. In Brucella spp., this strategy led to the mutation and identification of sev-
eral virulence genes [112]. For example, strains harboring mutations in VjbR, a quorum sens-
ing-related transcriptional regulator [108,113], were demonstrated to be potential vaccine
candidates based on significant reductions in virulence revealed in in vitro and in vivo models
of Brucella infection [22,33,114]. Transcriptomics may also enable the identification of viru-
lence genes. Similarly, protein arrays have been used to identify surface-localized immunogenic
proteins [115]. This strategy involves screening protein arrays using sera from vaccinated or
infected animals to identify target vaccine antigens. Sera from infected or convalescent patients
have also been used to screen protein arrays containing pathogen proteins to characterize rates
of infection and identify bacterial antigens [44]. Following identification of loci of interest, tar-
geted gene mutations can be introduced at these loci using conventional bacterial gene target-
ing approaches [85] or gene editing technology [106]. Finally, the mutated strains can be tested
for virulence (i.e., safety) and for the ability to confer protection against challenge with virulent
organisms (i.e., efficacy).

Recent Progress in the Development of New Brucella Vaccines
Various vaccine modalities, including DNA, protein, viral vector, and live attenuated vaccines,
have been developed for protecting animals or humans from brucellosis [74,76]. For example,
several protective antigens for brucellosis, formulated either as DNA or purified proteins, have
been tested in murine models under various challenge regimes. These antigens include several
outer membrane proteins (OMPs) [116–118], DnaK and SurA [119], and lumazine synthase
[120]. Moreover, live vaccine vectors (e.g., Salmonella enterica serovar Typhimurium) that
express heterologous Brucella protective antigens (e.g., L7/L12 and lumazine fusion protein)
have been tested [121]. Vaccinia virus [122] or Semliki Forest virus [12,123] vectors have also
been used to deliver the Brucella vaccine antigens L7/L12 [122], SodC [123], or translation ini-
tiation factor [12] with the aim of eliciting protective responses in murine models of Brucella
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challenge. However, only modest protection, which was lower than reported for the LAVs
RB51 or S19, was observed in these studies.

While an effective subunit vaccine for Brucella has yet to be developed, several LAV formu-
lations show promise. Although efficacy has been demonstrated in bovine populations with
S19, this vaccine can induce abortion in pregnant animals [124]. It can also cause disease in
humans as a result of secondary exposure and is thus considered to be unsafe for use in
humans. The vaccine strain RB51, which is used in cattle, and Rev.1, which is used in sheep
and goats, can induce abortion in pregnant animals [75,125] or infect humans [126]. The
search for improved LAVs against brucellosis has relied upon advances in our understanding
of Brucella virulence determinants and the role of individual genes in the survival and virulence
of the pathogen in vitro and in vivo. Collectively, this work has provided opportunities to build
upon the merits of the LAV approach by using rational bioengineering of strains for the gener-
ation of attenuated agents that harbor deletions of key genes that are essential for virulence yet
maintain efficacy in vaccine challenge experiments. However, it is often easier said than done
with Brucella spp., as well as with other bacterial pathogens, which unlike their viral counter-
parts have larger genomes and greater genetic complexities that require defining strains with
levels of attenuation that ensure both safety and protection. Continued efforts in our labs to
develop attenuated Brucellamutants as vaccine candidates have yielded promising candidates,
including ΔmucR [28], Δasp24 [127], and ΔvjbRmutants [33]. B.melitensis ΔvjbR strains were
shown to be defective for survival within macrophages and rapidly cleared from the spleen in
BALB/c mice [33]. The safety of the ΔvjbR strains was further revealed by the absence of
splenomegaly in inoculated mice [22]. Even at 2 weeks, when the bacterial load in the spleen
was high, the mean spleen weights in BmΔvjbRmice were 5-fold less than wild-type controls
[33,128]. Remarkably, neither lethality nor osteoarticular disease was observed in severely
immunodeficient interferon regulatory transcription factor 1 (IRF1) mice [114]. Therefore, the
vaccine displayed unprecedented safety in preclinical animal trials. In contrast, the currently
available animal vaccine strains S19 and Rev.1 induce splenomegaly in mice, an undesirable
side effect for human vaccination [22,33]. Differences in survival and inflammatory responses
exhibited by B.melitensis ΔvjbR strains are promising and warrant further evaluation in large
animal and nonhuman primate models to develop an improved vaccine candidate for possible
human use. In addition, an expanded analysis of delivery systems, including encapsulation of
B.melitensis ΔvjbR or other LAV strains, is recommended [33]. For example, a recent study
evaluated the protective and immunogenic potential of an alginate-encapsulated live attenu-
ated B. ovis ΔabcBA vaccine [35]. Remarkably, this vaccine formulation prevented infection,
bacterial shedding, and development of clinical changes and pathogenic lesions following chal-
lenge with wild-type B. ovis in rams [35]. An in vitro evaluation of the ΔabcBA strain in ovine
monocyte-derived macrophages revealed defects in intracellular multiplication, trafficking,
and Brucella-containing vacuole (BCV) maturation compared to wild-type infection [129].
Therefore, evaluation of candidate LAVs with alternative delivery systems and vaccine regi-
mens (including dose and route) can potentially lead to LAVs with better efficacy and safety.

Recent Developments with BTb Vaccines
The application of vaccines to address BTb has benefitted significantly from recent advances in
vaccines for human TB. Live mycobacterial vaccines to replace BCG and subunit vaccines
(virus vector or protein) to boost BCG have been tested. To date, field trials have demonstrated
that BCG vaccination can protect cattle from natural exposure toM. bovis [130]. Similarly,
calves vaccinated with novelM. bovis auxotrophs displayed reduced bacterial burden and
pathology following challenge with virulentM. bovis. These data confirm the efficacy of LAVs
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in preventing infection with this pathogen. In contrast, subunit vaccine antigens, when deliv-
ered alone, have generally proven to be less efficacious than BCG in conferring protection to
cattle fromM. bovis (for review, see [73]). Moreover, culture filtrate proteins (CFP) fromM.
bovis [131] and DNA vaccines encodingM. bovis proteins have failed to provide similar levels
of protection in cattle as BCG [132]. However, prime-boost combinations of BCG with DNA
[133] or virus-vectored vaccines [134,135] have induced better protection than BCG vaccine
alone, thereby demonstrating the utility of protective antigens in enhancing the immune pro-
tection initiated by LAVs [136]. In one example, boosting BCG vaccination with replication-
deficient virus vectors encoding Ag85A induced strong cellular immunity, elevated interferon
gamma (IFN-γ) responses, and enhanced protection with reduced pathogen loads followingM.
bovis challenge [134]. BCG strains overexpressing mycobacterial antigens may also be used as a
delivery platform to increase vaccination efficacy in murine and guinea pig models [137]. Simi-
larly, expression of the bacterial antigens sodC and wboA enhanced protection of Brucella
RB51 vaccination against B. suis 1330 challenge [138,139]. Therefore, protective antigens can
play an important role in prime-boost vaccination strategies.

Sequence analysis of BCG has provided information that can be exploited to develop novel
candidate LAVs. For example, mutation of chromosomal regions of difference 1 (RD1) at the
cfp10-esat6 locus is responsible for loss of virulence [140].M. bovis ΔRD1 displayed a reduced
number and severity of TB lesions as well as reduced bacterial burden in BCG vaccinates [36].
AnotherM. bovismutant, Δmce2, exhibited greater immunological reactivity in response to
tuberculin purified protein derivative (PPD) than BCG vaccinates [141]. Therefore, these
strains may constitute potential vaccine candidates.

Although B.melitensis strains harboring mutations in the LuxR family member ΔvjbR have
exhibited promise as LAVs for reducing brucellosis [22,114], similar targeting of this class of
proteins in the development of BTb LAVs has not yet been thoroughly explored. Just recently,
Mtb strains harboring deletions in the LuxR family transcription factor gene, Rv0195, ofM.
tuberculosis strain H37Rv were shown to decrease cell survival under hypoxic and reductive
stress triggered by vitamin C [142]. Furthermore, Rv0195 deletion diminished bacterial viru-
lence in human macrophage-like cells and resulted in reduced bacterial survival and pathoge-
nicity in a C57BL/6 mouse infection model [142]. These studies raise the intriguing possibility
thatM. bovis strains harboring deletions in LuxR family members may provide a useful frame-
work for the development of LAVs to addressM. bovis infection.

Perspective and Future Directions
As a result of their ability to elicit protective immune responses, LAVs against bacteria may
represent a superior alternative to subunit, killed, or DNA vaccines. Although subunit vaccines
have an advantage in perceived safety over live attenuated organisms, including viruses, their
inability to penetrate deep lymphoid tissue results in a weak immune response lacking recall
and frequently requiring the addition of toxic immune stimulants or attenuated vectors for
delivery [143,144]. Additionally, bacteria and parasites engage multiple host factors and viru-
lence mechanisms to invade cells or to evade or resist immune clearance. Using modern
recombinant techniques, it is possible to irreversibly, temporally, or spatially attenuate the sur-
vival and/or transmissibility of some bacteria without restricting their immune potential. The
one concern that prevents complete acceptance of LAVs is the potential for reversion to viru-
lence, a concern fostered by the use of spontaneously occurring variants without knowledge of
the extent of the genetic lesion, if any. In contrast to the use of such variants, modern tech-
niques provide the opportunity to identify and remove species-defining genetic loci that are
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neither readily reacquired nor restore appropriate function. In addition, multiple loci may be
removed, reducing the chance of reversion to infinitesimal levels.

We have argued that LAVs provide a compelling technology to control the neglected zoo-
notic diseases brucellosis and BTb; this is because of the better immune response they engender
and a history of past successes in disease eradication [145]. We note, however, that LAV devel-
opment across genera is not without potential disadvantages. For example, if the pathogen
exerts significant immunomodulatory effects on the host, then the vaccine may also modulate
aspects of the immune response and prevent the expression of resistance. Prior immunological
exposure to a cross-reactive infectious or environmental agent may render the LAV ineffective
because the vaccinating infection is terminated prematurely. LAVs may also raise safety con-
cerns for immunocompromised individuals, which may preclude their use. The use of BCG in
infants at risk of HIV exposure provides a salient example [146]. The removal of antibiotic
resistance cassettes used for selection of targeted mutations in vaccine strains may be techni-
cally challenging in some organisms, which constitutes a potential impediment to licensure.
Finally, the dependence of LAVs on a reliable cold chain may create challenges for delivery in
resource-poor settings where neglected zoonotic diseases can ravage animal and human
populations.

There are many exciting avenues for future research and testing of LAV vaccines. For exam-
ple, the analyses of prime-boost strategies that pair promising Brucella subunit vaccines with
corresponding candidate LAVs remain in their infancy. Efforts to genetically engineer a multi-
valent or universal Brucella vaccine that affords potent cross protection also constitutes an
exciting area of future research. The development of encapsulation technologies to enhance the
stability and reduce the requirement of cold chain storage for LAVs may also transform the fea-
sibility of large-scale vaccination efforts [33,147]. Engineering LAVs to protect against multiple
pathogens, includingM. bovis and Brucella, provides an exciting avenue of future investigation.
Finally, new advances in genetics, bioinformatics, and pharmaceutical technology may provide
avenues for addressing these challenges and thereby promote development of next-generation
vaccines for addressing neglected zoonotic diseases of global consequence.

Key Learning Points

• LAVs against brucellosis and Btb display greater efficacy and/or safety in various
model systems than competing subunit vaccine platforms against these diseases.

• Some candidate Brucella LAVs have demonstrated excellent efficacy and safety in pre-
clinical studies.

• The potential for reversion to virulence of LAVs has been partly addressed by the use
of modern techniques that remove species-defining genetic loci that are neither readily
reacquired nor restore function, and the removal of multiple loci reduces the risk of
reversion to infinitesimal levels.

• Evaluation of prime-boost strategies, a multivalent or universal Brucella vaccine,
encapsulation technologies to deliver Brucella LAVs, and engineering LAVs to protect
against multiple pathogens, includingM. bovis and Brucella, provides exciting avenues
of future investigation.

• High-throughput approaches for generating and screening banks of mutant bacteria,
including the TraSH system and RNA-guided gene editing using CRISPR-Cas technol-
ogy, provide exciting areas for future investigation.
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