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Abstract

Specification and development of the apical membrane in epithelial cells requires the function of polarity proteins,
including Pard3 and an atypical protein kinase C (PrkC). Many epithelial cells possess microtubule-based organelles, known
as cilia, that project from their apical surface and the membrane surrounding the cilium is contiguous with the apical cell
membrane. Although cilia formation in cultured cells required Pard3, the in vivo requirement for Pard3 in cilia development
remains unknown. The vertebrate photoreceptor outer segment represents a highly specialized cilia structure in which to
identify factors necessary for apical and ciliary membrane formation. Pard3 and PrkC localized to distinct domains within
vertebrate photoreceptors. Using partial morpholino knockdown, photo-morpholinos, and pharmacological approaches,
the function of Pard3 and PrkC were found to be required for the formation of both the apical and ciliary membrane of
vertebrate photoreceptors. Inhibition of Pard3 or PrkC activity significantly reduced the size of photoreceptor outer
segments and resulted in mislocalization of rhodopsin. Suppression of Pard3 or PrkC also led to a reduction in cilia size and
cilia number in Kupffer’s Vesicle, which resulted in left-right asymmetry defects. Thus, the Par-PrkC complex functions in cilia
formation in vivo and this likely reflects a general role in specifying non-ciliary and ciliary compartments of the apical
domain.
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Introduction

Cilia are hair-like structures that protrude from the apical

surface of almost all vertebrate cells, including polarized epithelial

cells. These cilia serve diverse functions, including sensory

reception, motility-driven fluid flow, and signaling [1–3]. Within

the cilium, the microtubule-based axoneme projects from a basal

body anchored at the apical surface. This structure is surrounded

by a ciliary membrane that is contiguous with the plasma

membrane. The formation and continued maintenance of cilia

requires intraflagellar transport (IFT), which refers to the

bidirectional movement of IFT particles along the axoneme.

Anterograde movement up the cilium is controlled by two kinesin

motors, the heterotrimeric kinesin-II and the homodimeric Kif17

[4–7], while retrograde movement is controlled by the cytoplasmic

dynein-2 complex [8–11].

Ciliogenesis initiates with the positioning of the centrosome/

basal body at the apical surface of epithelial cells. While the precise

mechanisms controlling this action have not been fully elucidated,

components of the cytoskeleton as well as determinants of cell

polarity have been implicated. In primary cultures of multiciliated

epithelial cells, basal body docking coincided with the assembly of

an actin web at the apical surface [12,13]. Pharmacological

inhibition of actin assembly prevented the apical accumulation of

basal bodies and blocked ciliogenesis [12]. Although disruption of

microtubules did not affect basal body migration in cultured quail

oviducts [14], a dynamic microtubule reorganization was required

for apical positioning of centrosomes and ciliogenesis within the

zebrafish neural tube [15]. This microtubule reorganization and

centrosome migration was also dependent upon the polarity

protein Pard3 [15].

Pard3 is one of three key polarity determinants, along with

Par6, and protein kinase C iota (PrkCi; formerly known as

aPKCl), that form a heterotrimeric complex responsible for

regulating apico-basal polarity in animal cells [16]. In zebrafish,

three pard3 paralogs exist: pard3a, pard3ba, and pard3bb. We

have focused on pard3a, which has been the subject of previous

studies [15,17], and will be referred to herein as pard3.
Pard3, Par6, and PrkCi function in the maturation of tight

junctions and adherens junctions but also determine the apical

membrane domain (for reviews see [18,19]). Par6 and PrkCi

physically interact through their N-terminal domains, while PrkCi

physically interacts with Pard3 in a dynamic fashion. Following

cell-cell contact, Pard3 recruits the Par6-PrkCi complex to contact

sites, upon which tight junctions eventually form [20–22].

Following tight junction formation, growing evidence suggests

that the PrkCi-Par6 complex dissociates from Pard3 and moves to
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the apical surface, where it localizes with other apical factors like

Cdc42 and the Crumbs (Crb) complex [21,23–26]. Elimination of

any of these proteins or mutations that disrupt their interactions

reduces the size of the apical membrane. Thus, while Pard3, Par6,

and PrkCi all regulate apical domain size, only the Par6-PrkCi

complex migrates to the apical surface to interact with the Crb

complex [18].

The relationship between apical membrane size and ciliogenesis

has been extensively studied in vertebrate photoreceptors.

Vertebrate photoreceptors exhibit strong differences, both molec-

ularly and morphologically, along the apical-basal axis. The

presynaptic machinery localizes at the basal end of the cell while

the apical domain consists of the distal part of the inner segment

and the large outer segment. The photoreceptor outer segment is

considered a modified ‘‘sensory cilium’’ [27] and extends from the

apical surface of the inner segment. Numerous studies have

implicated the Crb complex as a regulator of apical identity and

outer segment size in both Drosophila and vertebrates [26,28–31].

Loss of the zebrafish ortholog crb2b results in a reduction of apical

domain size and loss of outer segments [28], while mutation of

Crumbs homolog 1 (CRB1) causes early vision loss and

photoreceptor degeneration [32,33]. Overexpression of the

intracellular domain of Crb2a in zebrafish photoreceptors leads

to an expansion of the outer segments, supporting a role for the

Crb complex in positively regulating the size of the apical domain,

including cilia [29]. The role other apical determinants play in

ciliogenesis remains less clear. Zebrafish lacking either PrkCi or

the MAGUK protein Nagie Oko do not exhibit obvious cilia

defects in the retina, pronephros, or otic vesicle [28]. In contrast,

Pard3, Par6 and PrkCi localize to cilia in cultured Madin Darby

canine kidney (MDCK) cells and suppression of Pard3 or PrkCi by

siRNA blocked ciliogenesis in cell culture [34,35]. Cilia growth in

the neural tube was reported to be delayed, but not blocked,

following suppression of zebrafish pard3 by morpholinos [15] but

a role for pard3 in photoreceptor ciliogenesis was not investigated

in a previous report [17]. Thus, it remains poorly understood

whether the role of Crb in ciliogenesis is independent of other

factors in vivo, or if other apical proteins, such as Pard3 and

PrkCi, also play a role.

To better understand the role of apical identity proteins in

ciliogenesis, we examined zebrafish photoreceptors following

suppression of Pard3 or PrkCi. Partial suppression of these

proteins by multiple experimental approaches dramatically

reduced the size of the apical domain in photoreceptors and

reduced cilia growth, resulting in smaller outer segments and

mislocalization of rhodopsin. Our analysis suggests a general role

for apical identity proteins in cilia formation in vivo and that cilia

growth depends, in part, on the size of the apical membrane.

Materials and Methods

Nomenclature
In this paper, Pard3 (also known as Par3, Baz, Pard3a, or ASIP)

will be referred to as Pard3. PrkCi (also known as aPKC lambda/

iota or aPKCl) will be referred to as PrkCi. PrkCz (also known as

aPKC zeta or aPKCf) will be referred to as PrkCz. The term PrkC

will refer to the combined activity of PrkCi and PrkCz in

photoreceptors.

Ethics Statement
Wild-type zebrafish of a mixed AB-Ekkwill strain were housed,

bred and staged according to standard procedures [36]. This study

was carried out in strict accordance with the recommendations in

the Guide for the Care and Use of Laboratory Animals of the

National Institutes of Health. The protocol was approved by the

Institutional Animal Care and Use Committees at Texas A&M

University (Protocol Number: 2011-62) and the Cleveland Clinic

(Protocol number: 2012-0853).

Morpholino microinjection and design
One to two cell stage zebrafish embryos were injected as

described [37]. All morpholinos (MOs) and photo-morpholinos

(photo-MOs) were synthesized by Gene Tools, LLC. (Philomath,

OR). The pard3 MO1 (59

TCAAAGGCTCCCGTGCTCTGGTGTC 39) was injected at

1.5–2.0 ng per embryo and was and described and validated

previously [15,17]. The pard3 mismatch MO (59 TCAAT-

TACTCCCGTGAACTGTTGTC 39) contains six mismatches

to the pard3 MO1 sequence and was injected at 3.5 ng per

embryo. Both morpholinos were designed as translation-blocking

morpholinos and targeted the 59 UTR of the pard3 mRNA. The

prkci morpholino sequence (59 TGTCCCGCAGCGTGGGCAT-

TATGGA 39) and prkcz morpholino (59 GATCCGTTACTGA-

CAGGCATTATA 39) were designed to inhibit translation and

were used at 5 ng and 8 ng per embryo, respectively, as previously

described [38,39].

Sense photo-morpholinos (S-photo-MOs [40]) for pard3 (59

ACACCAGAGCApGGGAGCC), prkci (59 ATAATGCC-

CApGCTGCGGGA 39) and prkcz (59 TATAATGCCTGpCAG-

TAACGGAT 39) incorporate a photo-sensitive subunit (p) near

the middle of the oligonucleotide, which can be cleaved by UV-

light. S-photo-MOs can hybridize in a complementary fashion to

the standard unmodified MOs, thereby permitting normal gene

expression. Upon illumination by UV light, the photo-MO is

cleaved and the standard MO is then free to bind the target RNA

and block translation. Photo-MOs were mixed with their

complementary MOs in 1:1 or 0.9:1.0 molar ratios in Milli-Q

water at concentrations used for the standard MOs alone. The

solutions were then heated to 100uC for 10 minutes and then

slowly cooled to room temperature to permit hybridization. These

solutions were stored as stock solutions at room temperature in the

dark. At the appropriate time points, embryos were placed in petri

dish and illuminated for 10–15 minutes with a light from a broad

spectrum LED light source that passed through a Zeiss AxioZoom.

V16 macroscope equipped with a FL Filter Set 49 for DAPI

(Thornwood, NY, USA) at a magnification of 15x.

Mosaic analysis
Mosaic retinas were produced by blastomere transplantation

[41]. Clutches of embryos from wild-type matings were dechor-

ionated and injected at the 1-to 4-cell stage with morpholinos and

a lineage-tracing label (1:9 mix of lysine fixable rhodamine-

dextran (Molecular Probes) at a total concentration of 5% w/v). At

the 1000-cell stage, 10–40 donor cells from morpholino-injected

embryos or wild-type embryos were transplanted to the animal

pole of the dechorionated wild-type hosts, the region fated for eye

and forebrain [42]. Host embryos were fixed in 4% paraformal-

dehyde at 4.5 dpf. Donor cells in host embryos were assessed by

microscopy as described below. At least four independent

blastomere transplantation experiments were conducted, with

n$8 surviving embryos from each genotype combination.

Histology and electron microscopy
Larvae were fixed in a primary fixation solution of 2.5%

glutaraldehyde, 1.0% paraformaldehyde prepared in a 0.06 M

phosphate rinse buffer for 1.5 hours at 4uC. Larvae were then

postfixed in 1% osmium tetroxide (prepared in 0.06 M phosphate

rinse buffer for 1.5 hours and then dehydrated through a series of
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ethanol-water solutions. Specimens were then infiltrated in araldite

resin. Fixation and dehydration was facilitated by a Pelco Biowave

cold microwave. Transverse serial sections (1.0 mm) were cut and

stained with an aqueous solution of 1% methylene blue, 1% azure

blue, 1% borax. For electron microscopy transverse sections

(0.1 mm) were cut and stained with uranyl acetate and lead citrate

and viewed on a JOEL 1200EX transmission electron microscope.

SDS-PAGE and Western blotting
Adult retinas were homogenized in Laemmli buffer containing

protease inhibitor cocktail and centrifuged for two minutes at

10006g. Two dilutions of the soluble fraction were separated by

electrophoresis on 5–15% gradient SDS-PAGE gels (Biorad,

Hercules, CA), and transferred to PVDF membranes. Rabbit anti-

Pard3 (1:200) was used for Western blotting using standard

protocols.

Immunohistochemistry and immunocytochemisry
A rabbit polyclonal anti-Pard3 antibody was generated against

the synthetic peptide SPYTQKQNGRNGHPSTSDRY, which

corresponds to amino (amino acids 1093–1112 in the C-Terminus

of zebrafish Pard3, and was affinity purified by Open Biosystems.

This antibody was used at 1:200 dilution.

Immunolabeling procedures followed standard protocols, with

the following specifications. Whole mount immunostaining was

performed as previously described [43] with an anti-acetylated

tubulin antibody at 1:1000. For immunohistochemistry larvae

were fixed in 4% paraformaldehyde in phosphate buffered saline

with 0.1% Tween-20 (PBST) for 2–18 hours at 4uC. Specimens

were then washed twice in PBST and infiltrated with 30% sucrose

(in PBST). Larvae were embedded in Tissue Freezing Medium

(Triangle Biomedical Sciences) and frozen. Cryosections (10 mm)

were mounted on gelatin-coated glass slides and dried for at least

two hours at room temperature. Sections were washed in PBST

and treated with block solution (PBST, 5% normal goat serum,

0.5% BSA (w/v), 1% DMSO, 1% Tween-20) prior to immuno-

labeling using standard procedures. Specimens were imaged with a

Zeiss AxioImager microscope fitted with an ApoTome and

AxioCam using 63x or 100x Plan-Neo-Fluar objectives and

utilizing AxioVision software (Zeiss, Thornwood, NY). Each

experiment was performed at least three independent times and

at least 10 larvae from each condition were sectioned and stained

per experiment.

The following antibodies were used: mouse-anti-ZO-1 (Zymed)

at 1:100; mouse anti-acetylated tubulin (Sigma) at 1:1000; Zpr-1

monoclonal antibody (Zebrafish International Resource Center,

ZIRC, Eugene, OR), 1D1 monoclonal antibody (a gift from Dr.

James Fadool, Florida State University [44]); rabbit anti-aPKCf at
1:1000 (C-20, sc-216, Santa Cruz Biotechnology); rabbit anti-Ift88

at 1:5000 [45]; and rabbit anti-Crb at 1:500 (a gift from Dr.

Jarema Malicki, University of Sheffield).

In situ hybridization
Antisense riboprobes corresponding to southpaw were synthe-

sized and in situ hybridizations performed as described [46].

Images were obtained on a Stereo LUMAR stereomicroscope

(Zeiss).

Measurements and statistics
Measurements were performed with AxioVision software (Zeiss)

and analyzed using GraphPad Prism5. The inner segment lengths

were measured from the most proximal edge of the outer

Figure 1. Spatial distribution of cell junction proteins and cilia in 5 dpf zebrafish. (A–E) Left-most panels show transverse cryosections
stained with phalloidin (red) to label actin in the adherens junctions at the outer limiting membrane (OLM) and the outer plexiform layer (OPL). The
middle panels show staining for determinants of apico-basal polarity (green), while the right-most panels show the merged images. (A1–A3) PrkCi/z
immunoreactivity. (B1–B3) Pard3 immunoreactivity localizes to the OPL (arrow) and at cell junctions (arrowhead). (C1–C3) ZO-1 staining at the OLM.
(D1–D3) Ift88 immunoreactivity stains cilia. (E1–E3) Acetylated tubulin immunoreactivity was seen in cilia and neural processes throughout the inner
nuclear layer and plexiform layers. (F1–F3) Pard3 staining (red) was seen at the OLM (arrowhead), but did not colocalize with acetylated tubulin signal
in the cilia (arrows). All sections were counterstained with DAPI (blue). Scale bar = 10 mm.
doi:10.1371/journal.pone.0104661.g001
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plexiform layer to the most distal edge of Zpr-1 staining. To

measure the apical domain, the distance from the outer limited

membrane to the distal edge of Zpr-1 staining was quantified. All

measurements were taken from the central part of the retina in

transverse cryosections sections at or near the optic nerve (n = 8–

15 larvae) and analyzed using a 1-way ANOVA and Tukey post-

test.

PKC inhibitor treatments
The myristolated PKCf pseudosubstrate inhibitor (EMD4Bios-

ciences; 539624) and the non-myristolated form (EMD4Bios-

ciences; 539610) were dissolved in water to a concentration of

1 mM and then diluted to a concentration of 3 mM in embryo

media containing 0.5% DMSO [36]. Embryos were dechorio-

nated at 50 hours post fertilization (hpf) and added to wells of a 24-

well culture plate containing 500 mL of compound at a density of

no more than 8 embryos/well. Treatment at earlier time points

resulted in lethality within 2–6 hours. The plates were stored at

28.5uC. At 96 hpf, larvae were collected and processed for

immunohistochemistry.

Results

Localization of polarity proteins in zebrafish
photoreceptors
To investigate the link between polarity proteins and ciliogenesis

in vivo, we first examined the spatial distribution of Pard3 and

PrkC in cryosections of larval zebrafish retinas. Previous studies

found that Pard3 localized to the apical surface of the retina and

brain neuroepithelia at 33 hpf [17]. We generated a rabbit

polyclonal antibody against a peptide of Pard3 (see Materials and

Methods) and confirmed the specificity of this antibody by

Western blotting (Fig. S1). Although the antibody should recognize

both splice isoforms, we only detected the 180 kDa protein on

Western blots (Fig. S1). Photoreceptor outer segments, which are

considered specialized sensory cilia, are well-developed by 5 dpf

and we examined the localization of Pard3 and other junction

Figure 2. Pard3 expression is reduced at 5 dpf following injection of pard3 morpholinos. (A–C) Transverse cryosections of wild-type
retinas, (D–F) pard3 morphant retinas and (G–I) control morphant retinas with Pard3 antiserum (left column) and the monoclonal antibody zpr-1
(middle column). The right panels show the merged images. Pard3 immunoreactivity was seen in the outer plexiform layer (OPL) and at cell junctions
(A, arrowhead and arrows, respectively) in wild-type and control MO retinas but was significantly reduced in morphants retinas. All sections were also
counterstained with DAPI (blue). ONL=outer nuclear layer; OPL = outer plexiform layer; INL = inner nuclear layer. Scale bar = 10 mm.
doi:10.1371/journal.pone.0104661.g002
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markers relative to cilia proteins (Fig. 1). Phalloidin was used to

stain the actin belt at the adherens junctions of the outer limiting

membrane (OLM). As previously observed [28], actin localized

vertically along the sides of the photoreceptors, immediately apical

to the OLM, in a pattern resembling longitudinal fibers within the

ellipsoid [47]. As expected, immunostaining for the cell junction

proteins protein kinase C iota/zeta (PrkCi), Pard3, and ZO-1

revealed colocalization with actin at the OLM, although each

protein had a distinctive spatial distribution (Fig. 1A–C). An

antibody that recognizes an epitope shared by PrkCi and the close

paralog, protein kinase C zeta (PrkCz), colocalized with actin at

the OLM and along the sides of the photoreceptor in the domain

apical to the OLM. Crumbs proteins and the FERM domain

protein Mosaic eyes (Moe), which function as apical determinants,

also localized on the apical side of the OLM [28,48]. Consistent

with earlier studies [17], the strongest Pard3 staining colocalized

with actin at the outer plexiform layer (Fig. 1B). Pard3 also

localized in a punctate pattern near the OLM, although the signal

intensity was less pronounced than at the outer plexiform layer.

ZO-1 distribution was restricted to the OLM (Fig. 1C). Immuno-

reactivity to Ift88, a component of the IFT particle, was seen in

connecting cilia as previously described, but did not colocalize

with actin (Fig. 1D; [45]). Ciliary axonemes were visualized by

immunostaining for acetylated tubulin, which also did not

colocalize with actin (Fig. 1D, E). As Pard3 localized to primary

cilia in MDCK cells [34,35], we then asked if Pard3 localized to

the photoreceptor connecting cilia or outer segments. While Pard3

was seen with other apical determinant proteins at the OLM, we

did not observe Pard3 localizing with acetylated tubulin in the

connecting cilia of photoreceptors (Fig. 1F). These results show

that while Pard3, PrkC, and Crumbs proteins appeared at cell

junctions, Pard3 was found at the outer plexiform layer, PrkC and

Crumbs were seen in the domain immediately apical to the OLM,

and none could be detected in the cilia in vivo.

Genetic mosaic analysis of pard3-deficient cells
Pard3 physically interacts with PrkCi and this interaction is

necessary for establishing apical identity cultured cells [23].

Testing the role of Pard3 or PrkCi in photoreceptors, however,

poses a number of experimental challenges. Complete loss-of-

function mutations in genes required for apico-basal polarity,

including heart and soul (has/PrkCi), mosaic eyes (moe), the

Crumbs ortholog oko meduzy (ome), and nagie oko (nok/Stardust),
disrupt the laminar organization of the retina and impair

photoreceptor cell differentiation [28,38,39,49–51]. Additionally,

PrkCi and PrkCz function redundantly and suppression of both

proteins may be necessary to fully test the role of PrkC activity in

photoreceptors. These phenotypes are, however, cell-non-auton-

omous and can be rescued in genetically mosaic animals

[38,49,50]. Injection of 4–5 ng of a previously characterized

pard3 morpholino (MO1) fully suppressed Pard3 function but also

caused cyclopia and disrupted retinal lamination and patterning

[15,17]. In an attempt to examine the role of Pard3 on

photoreceptor structure, morpholino oligonucleotides (MOs)

against pard3 were injected into 1-cell embryos and we conducted

genetic mosaic experiments using rhodamine-dextran as a lineage

dye. At 4 dpf, wild-type donor cells contributed to all retinal cell

types in wild-type hosts (Fig. S2A). The pard3 morphant donor

cells also migrated to the appropriate laminar position in the wild-

type hosts, indicating that the retinal cell positioning defect is cell-

non-autonomous. We noticed, however, that the pard3 morphant

cells formed few, if any, photoreceptors and only individual

photoreceptors were ever observed in mosaic retinas (Fig. S2B).

These rare pard3-deficient photoreceptors formed normal ad-

Figure 3. Effects of pard3 suppression on apical determinants. Immunohistochemistry was performed on transverse cryosections of wild-type
and pard3 morphants. Phalloidin was used to label actin (red) in all panels. (A–B) Transverse cryosections of wild-type and pard3 morphants stained
with phalloidin (red) and PrkCi immunoreactivity (green). Arrows mark longitudinal fibers in the ellipsoid. (C–D) Cryosections stained with phalloidin
(red) and Crb immunoreactivity (green). (E–F) Cryosections stained with phalloidin (red) and ZO-1 immunoreactivity (green). Sections were also
counterstained with DAPI (blue). ONL=outer nuclear layer; OPL = outer plexiform layer; INL = inner nuclear layer. Scale bar = 10 mm.
doi:10.1371/journal.pone.0104661.g003
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herens junctions with neighboring wild-type cells, as determined

by actin and ZO-1 staining (data not shown). In agreement with

previous results [38], we also noticed that few photoreceptors

formed when cells from prkci morphants or prkci/prkcz double

morphants were transplanted into wild-type hosts (Figs. S2C and

S2D). These results suggest that Pard3 and PrkC may function to

limit cell fate or differentiation. Indeed, the loss of Pard3 activity in

progenitor cells within the subventricular zone of the mouse

cerebral cortex resulted in early neurogenic differentiation and

fewer progenitor cell divisions [52]. This may explain why pard3-
deficient cells largely failed to differentiate. Given these results, we

were reluctant to draw conclusions regarding cilia formation from

single pard3-deficient photoreceptors due to the earlier effect of

pard3 loss on retinal progenitor cell proliferation/differentiation.

Partial suppression of pard3 by morpholinos
To avoid the effects on retinal patterning and photoreceptor

differentiation, but still partially suppress Pard3, doses of MO1

ranging from 1.2–1.5 ng were injected into 1-cell embryos. To

verify that Pard3 expression was reduced, cryosections of wild-type

and pard3 MO1-injected larvae were immunolabled with Pard3

antisera and colabeled with zpr-1, a marker for red-green double

cones (Fig. 2). Pard3 immunostaining was seen at the OPL

(Fig. 2A, arrowhead) and in two rows of cell junctions (Fig. 2A,

arrows). In morphant retinas, Pard3 immunoreactivity was

significantly reduced at the OPL and almost entirely absent at

the OLM (Fig. 2D). Importantly, the Zpr-1 staining showed that

photoreceptor differentiation was not impeded following Pard3

suppression (Fig. 2F). Injection of a control morpholino, which

contained a 6-basepair mismatch, did not affect Pard3 expression

(Fig. 2G–I). From these results, we concluded that smaller doses of

pard3 morpholino could reduce Pard3 proteins levels without

impairing photoreceptor differentiation.

The formation of cellular junctions requires Pard3 and

suppression of Pard3 by RNAi disrupted the localization of other

polarity proteins to tight junctions in cultured cells [20]. Studies in

zebrafish, however, found normal ZO-1 localization to the apical

midline in 12–13 somite pard3 morphants [15]. We asked if the

loss of Pard3 at the OLM affected the cellular distribution of other

polarity proteins within photoreceptors. Morpholino knockdown

of pard3 did not alter the OLM localization of actin but the

staining pattern appeared rough and less organized (compare

Fig. 3A to 3B, D, F). The localization of PrkC to the apical side of

the OLM was unaffected in pard3 morphants, but the apical

surface (Fig. 3B’’; arrows) was reduced and most of the signal was

Figure 4. Apical domain size is reduced in pard3 morphants. (A–C) Transverse cryosections of 5 dpf retinas were stained with phalloidin to
label actin (red) and zpr-1 to label double cones (green). The length of the photoreceptor (m) and the length of the apical region of the inner
segment (n) are noted by arrows. (D–F) Transverse sections stained with phalloidin (red) and ZO-1 (green) to label the outer limiting membrane.
Sections were also counterstained with DAPI (blue). (G) Quantification of apical domain as a percentage of total photoreceptor inner segment length.
All values are plotted as a percentage of n/m, as defined in the text. Wild type= 53%; pard3 morphants = 25%; control morphants = 52%. Blue error
bars indicate the mean 6 standard deviation. ONL=outer nuclear layer; OPL =outer plexiform layer; INL = inner nuclear layer. Scale bar = 20 mm.
doi:10.1371/journal.pone.0104661.g004
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aggregated at the OLM (Fig. 3B). Immunohistochemistry with a

polyclonal antibody that recognizes multiple Crumbs polypeptides

gave a staining pattern similar to that of PrkC (Fig. 3C). In pard3
morphants, Crumbs staining was aggregated at the OLM and the

apical membrane was reduced (Fig. 3D). ZO-1 staining was not

lost in pard3 morphants, although the signal at the OLM was less

discrete (compare Figs. 3E and F). Taken together, these results

suggest that partial suppression of Pard3 was not sufficient to block

the normal localization of polarity proteins or the formation of

adherens junctions.

Pard3 promotes formation of the apical membrane domain

[23], and the loss of PrkCi and Crumbs from the region

immediately apical to the OLM may reflect a reduction in the

apical domain size. The OLM divides the photoreceptor

membrane into apical and basolateral domains, with the inner

segment corresponding to the area between the OLM and the base

of the outer segment. When wild-type retinas are stained with Zpr-

1 at 5 dpf, the inner segments of cone photoreceptors are

partitioned almost equally between the apical and basolateral

domains [28]. We stained photoreceptors with Zpr-1 and

quantified the size of the apical inner segment domain (Fig. 4A;

‘‘n’’) relative to total length of Zpr-1 staining (Fig. 4A; ‘‘m’’).

Consistent with previous reports [28], the apical domain accounts

for approximately 50% of the length of Zpr-1 staining in 5 dpf

larvae (Fig. 4A, quantified in Fig. 4G). In pard3 morphants, the

apical domain was considerably smaller and was less than 30% of

the total length of Zpr-1 staining (Fig. 4B). We found similar

results when we labeled the OLM with ZO-1 and measured the

distance from the outer plexiform layer to the most distal point of

DAPI staining, which corresponded to the nuclei of the red/green

double cones (Fig. 4D). Control morpholinos had no effect on

apical domain size (Fig. 4C, F). Overall, these results indicate that

low doses of pard3 morpholino reduced the apical domain in

photoreceptors.

Figure 5. Morpholino suppression of Pard3 causes variable cyclopia and loss of photoreceptor outer segments. (A–C) Transverse
plastic sections of 4 dpf larvae heads from wild-type and pard3 morphants show variable degrees of cyclopia but normal lamination. (D–F) Higher
magnification of the boxed areas in A–C revealed the photoreceptor outer segments in wild-type retinas (Panel D, arrows), which were missing in
pard3 morphants. Morphants with fused eyes also exhibited patchy pigmentation in the RPE (Panel E, arrowheads). (G–H) Transmission electron
microscopy of wild-type and pard3 morphant retinas showed truncation of photoreceptor outer segments. ONL, outer nuclear layer; OPL, outer
plexiform layer; INL, inner nuclear layer; IPL, inner plexiform layer. Scale bar = 50 mm (A–C); 10 mm (D–F); 1 mm (G–H).
doi:10.1371/journal.pone.0104661.g005
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Photoreceptor outer segment formation is reduced in
pard3 morphants
As cilia formation occurs on the apical surface of the inner

segment, we next asked photoreceptor outer segment formation

was affected. Histological sections of 4 dpf larvae confirmed that

retinal lamination and organization was largely unaffected by

suppression of Pard3 (Fig. 5), although some degree of disorgani-

zation was occasionally observed at higher morpholino concen-

trations (data not shown). Even at lower doses of morpholino,

however, the pard3 morphants exhibited varying degrees of

cyclopia, with some larvae having partially fused eyes and other

larvae exhibiting only a slight reduction in distance between the

eye fields (Fig. 5A–C). Morphants with more pronounced cyclopia

also showed reduced pigmentation of the RPE when compared to

morphants without fused eyes (Fig. 5, panels E and F, respective-

ly). Photoreceptors were present in the outer nuclear layer of

pard3 morphants, but outer segments were not observed (Fig. 5D–

F). Transmission electron microscopy confirmed that outer

segments were significantly reduced, and often missing, from

photoreceptors in pard3 morphants (Fig. 5G–H). The truncated

outer segments that did form on pard3 morphant photoreceptors

contained regularly stacked disc membranes, indicating that loss of

Pard3 does not affect disc membrane organization. The position-

ing of the mitochondria and nucleus were normal, suggesting that

apicobasal positioning of organelles was not disrupted.

The formation and growth of photoreceptor outer segments

requires the process of Intraflagellar Transport, or IFT [45,53,54],

and the Par-PrkCi complex has been linked to IFT [34]. Pard3

physically associates with Kif3a, the anterograde motor for IFT,

and PrkCi binds to the complex through its association with Pard3

[34,55]. Furthermore, the interaction between the Par-PrkCi

complex and the Crb complex is required for photoreceptor

differentiation in Drosophila [26]. The absence of outer segments

in pard3 morphants may reflect a failure in apical assembly of IFT

particles. To investigate whether loss of Pard3 affected the

localization of ciliary proteins, we examined transverse sections

stained with antibodies against acetylated tubulin to label cilia and

with Ift88, a component of the IFT particle. Although acetylated

Figure 6. Connecting cilia are reduced in pard3 morphants. (A–C) Transverse cryosections were stained for Ift88 (left, red) and acetylated
tubulin (middle, green) to label cilia in 5 dpf retinas. Merged images are shown in right panels. Ift88 localizes to the connecting cilia emanating from
the apical surface of photoreceptors (arrows). Staining is also seen in connecting cilia of UV cones (arrowheads), which are tiered below the other
cones. Sections were also counterstained with DAPI (blue). ONL=outer nuclear layer; OPL =outer plexiform layer; INL = inner nuclear layer. Scale
bar = 10 mm.
doi:10.1371/journal.pone.0104661.g006
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tubulin staining was concentrated at the apical surface of pard3
morphants, very few cilia could be seen projecting toward the RPE

(Fig. 6, compare panels A’’ and B’’). Ift88 immunoreactivity was

also reduced in pard3 morphants, although the remaining signal

localized at the apical surface (Fig. 6B and B’’).

IFT facilitates the trafficking of proteins, such as rhodopsin, to

the photoreceptor outer segment. While opsin molecules function

primarily to detect photons of light for the visual response, they are

also the most abundant proteins in the outer segment and provide

structural support to the outer segment [56]. Mutations in

components of the IFT particle or in Kif3a cause opsin to

accumulate in the photoreceptor inner segment and even partial

loss of IFT results in severe outer segment defects [45,53,54,57].

As pard3 morphants show reduced levels of Ift88 and loss of outer

segments, we anticipated that rhodopsin would be mislocalized.

Indeed, opsin immunoreactivity could be seen in the inner

segments of pard3 morphants (Fig. 7E, bracket) and the outer

segment staining was reduced (Fig. 7E, compare to 7B). Thus, the

loss of Pard3 reduces outer segment size and results in

mislocalization of opsin.

Temporal regulation of pard3 and prkc by photo-
morpholinos
In an attempt to more effectively block Pard3 and PrkC activity

at later time points, we utilized sense photo-active morpholinos (S-

photo-MOs) to keep morpholinos temporarily inactive (See

Materials and Methods and [40]). Standard MOs and the

complementary S-photo-MOs specific for pard3, prkci or prkcz
were hybridized to form dimers in vitro prior to injection into 1-

cell embryos. Larvae injected with MO/S-photo-MO hybrids

specific for either pard3 or prkci did not exhibit any overt

morphological phenotypes or disruption to retinal structure in the

absence of UV irradiation (Figs. S3 and S4). Larvae injected with

the MO/S-photo-MO hybrids and subsequently irradiated with

UV at 5 hpf showed both morphological and retinal lamination

phenotypes that resembled the phenotypes seen in pard3
morphants and prkci mutants (Figs. S3 and S4; [17,38,51]). No

adverse phenotypes were observed in larvae injected of S-photo-

MOs alone. These results suggest that embryos retain endogenous

Pard3 or PrkCi activity until the S-photo-MO is cleaved by UV

light and the unmodified MO can target the cognate mRNA to

suppress function.

To block the activity of Pard3 or PrkC at time points

corresponding to the beginning of photoreceptor ciliogenesis,

embryos were injected with MO/S-photo-MO hybrids and

irradiated with UV light at 30 hpf. Although photoreceptor

differentiation begins at 52 hpf, we found that irradiation at 30 hpf

was required to give robust photoreceptor phenotypes at 4 dpf

consistent with the loss of Pard3/PrkC activity. This may reflect

the time needed to for the S-photo-MO to fully degrade, the MO

to bind and inhibit the cognate mRNA, and for protein turnover.

Irradiation at later times (e.g. 42 hpf or 50 hpf) resulted in little to

no phenotype at 4 dpf (data not shown). Similar to the previous

experiments, morphant retinas were stained with Zpr-1 and we

Figure 7. Rhodopsin is mislocalized in pard3 morphants. (A) Immunohistochemistry was performed on transverse cryosections through the
retina of 5 dpf wild-type larvae. Left most panels show phalloidin staining to label actin (red). Rhodopsin immunoreactivity (green) is shown in middle
panels. (D–F) In pard3 morphants, outer segments appear slightly shorter and opsin staining within the inner segment is observed (bracket). (G–I)
Rhodopsin localizes normally in control morphants. Sections were also counterstained with DAPI (blue). ONL= outer nuclear layer; OPL = outer
plexiform layer; INL = inner nuclear layer. Scale bar = 20 mm.
doi:10.1371/journal.pone.0104661.g007
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quantified the size of the apical domain. At 4 dpf, the apical

domain constitutes approximately 40% of the wild-type photore-

ceptors (Figs. 8A, E). When larvae were UV irradiated at 30 hpf,

the apical domain was significantly reduced compared to wild-type

larvae (Fig. 8; n/m value: 38% vs. 16%, p,0.0001; n =$34).

When larvae were irradiated at 30 hpf following co-injection of

MO/S-photo-MO hybrids simultaneously targeting prkci and

prkcz, the apical domain was essentially lost (Fig. 8D). The outer

limiting membrane could not be detected by phalloidin, and zpr-1

staining was lost, suggesting that cells in the outer nuclear layer

failed to differentiate into photoreceptors. Larvae injected with

MO/S-photo-MO hybrids also showed significant reduction in the

number of 1D1+ rod photoreceptors and mislocalization of

rhodopsin (Fig. 9). Whereas rhodopsin localized predominantly

to the outer segment of wild-type photoreceptors, suppression of

Pard3 resulted in small outer segments and inner segment

localization of rhodopsin. Suppressing PrkCi alone or all PrkC

activity had more pronounced phenotypes, with few rhodopsin-

positive cells being observed and rhodopsin localizing throughout

the inner segments and cell bodies (Fig. 9). We quantified the

Figure 8. Photo-Morpholinos reduce apical domain size. (A–D) Transverse cryosections of 4 dpf retinas were stained with phalloidin to label
actin (red) and zpr-1 to label double cones (green). Sections were also counterstained with DAPI (blue). (E) Quantification of apical domain as a
percentage of total photoreceptor inner segment length. All values are plotted as a percentage of n/m, as defined in the text. Wild type= 38%; pard3-
pard3pMO morphants = 16%; prkci-prkcipMO morphants = 9.72%; prkc-prkcpMO was non-detectable. Blue error bars indicate the mean 6 standard
deviation. ONL=outer nuclear layer; OPL =outer plexiform layer; INL = inner nuclear layer. Scale bar = 20 mm.
doi:10.1371/journal.pone.0104661.g008
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number of 1D1+ rod photoreceptors in 10-micron cryosections.

Compared to wild-type larvae, the number of rods was reduced

45% in pard3 photo-morphants (36 vs. 20 per section; p#0.001; n

$10). Rods were reduced by 77% in prkci photo morphants and

92% following in larvae injected with both prcki and prkcz photo-
MOs (Fig. 9I). As photoreceptors were missing almost entirely

from the prcki/prkcz photo-morphants, cilia lengths were not

assessed.

Pharmacological inhibition of PrkC reduced apical
membrane size
Finally, we used a pharmacological approach to test the role of

PrkC activity in photoreceptors. Zebrafish embryos were treated

with a cell-permeable PKC-specific inhibitor peptide (3 mM,

myristoylated PKCf pseudosubstrate inhibitor), which inhibits the

activity of both PrkCi and PrkCz, and can block ciliogenesis in

MDCK cells [34,58]. As a control, we used a non-myristoylated

form of the peptide. Zebrafish were treated with the PKC inhibitor

at 50 hpf, a time at which photoreceptors have become post-

mitotic but have not yet initiated outer segment formation [59],

and were examined at 4 dpf, after two days of exposure to the

peptide. Treatment at 24 hpf or 36 hpf caused lethality within 2–6

hours and embryos effectively disintegrated, possibly due to

disrupting the integrity of the ectodermal epithelia. Similar to the

previous experiments, retinas were stained with Zpr-1 and we

quantified the size of the apical domain (Fig. 10). Compared to

wild-type, inhibition of PrkC significantly reduced the size of the

apical domain (45% vs. 28%; p#0.001; n$12 larvae). Treatment

with the non-myristolated form of the inhibitor did not have any

effect on apical domain size (Fig. 10C, D). Rhodopsin was

mislocalized in animals treated with the PKC inhibitor but not

in control animals (Figs. 11A–C). Cilia length was also reduced

following inhibition of PrkC (Fig. 11D–G) but the number of cilia

was not statistically altered (data not shown).

Loss of pard3 or prkc affected cilia in Kupffer’s Vesicle
Vertebrates exhibit an asymmetry across the left-right (LR) axis

that is linked to the function of motile cilia in Kupffer’s Vesicle

(KV) in zebrafish, or the node of mouse (reviewed in [60].

Disruption of KV specification or of KV cilia function randomizes

Figure 9. Photo-Morpholinos cause rhodopsin mislocalization and loss of rod photoreceptors. (A, E) Transverse retinal cryosections from
4 dpf wild-type; (B, F) pard3MO-pard3pMO; (C, G) prkciMO-prkcipMO; (D, H) prkci/zMO-prkci/zpMO injected larvae. Embryos were injected with MO/S-
photo-MO hybrids and irradiated at 30 hpf with UV light. Immunohistochemistry was performed on transverse cryosections of 4 dpf larvae and
stained with 1D1 to label rhodopsin (green) and phalloidin (red) and counterstained with DAPI to label nuclei. Bottom row shows 1D1 and DAPI
staining only. (I) Quantification of total 1D1+ rod photoreceptors in 10 micron cryosections. (*** = p#0.0001) ONL=outer nuclear layer; INL = inner
nuclear layer. Scale bar = 100 mm (A–D) or 20 mm (E–H).
doi:10.1371/journal.pone.0104661.g009
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LR asymmetry in zebrafish [61–63]. The nodal-related gene

southpaw (spaw) is one of the earliest markers of LR asymmetry

and is normally expressed in the left lateral plate mesoderm of 18–

20 somite stage embryos [64]. Approximately 87% of wild-type

embryos express spaw on the left side (L) with small percentages (,

9%) showing right-sided (R) expression, bilateral (B) expression, or

an absence (A) of expression (Fig. 12A). Even with modest

suppression of pard3 (1.2 ng morpholino), 48% show left-sided

expression of spaw, while the others show right-sided (9%),

bilateral (15%), or an absence (27%) of spaw expression.

Interestingly, injection of either prkci MO or prkcz MO alone

did not cause LR asymmetry defects, whereas injection of both

prkci and prkcz MOs together did alter LR asymmetry. This

indicates PrkCi and PrkCz function redundantly. As Pard3

functions with PrkCi and the function of Pard3 was only partially

suppressed, we asked if morpholino suppression of both pard3 and

prkci would show an additive, or perhaps synergistic, effect on LR

asymmetry. However, suppression of pard3 and prkci did not alter

the percentage of embryos showing left-sided expression of spaw,
compared to suppression of pard3 alone (Fig. 12B).

We performed immunocytochemistry on 8–10 somite stage

embryos and labeled cilia with acetylated tubulin antibodies

(Fig. 12C). While the size of the KV was similar between wild-type

and pard3 morphant embryos, the number of KV cilia was

reduced (Fig. 12E) and cilia length was noticeably shorter

(Fig. 12F). Taken together, the results suggest that Pard3 controls

cilia formation in tissues other than the retina.

Discussion

The purpose of this study was to investigate the role of the Par-

PrkCi complex in cilia formation in vivo, with a specific emphasis

on photoreceptor outer segment formation. The roles for the Par-

PrkCi complex and Crb proteins as apical determinants has been

well established [19]. From flies to humans the Crb proteins are

required for photoreceptor morphogenesis, particularly in forma-

tion of the light-sensitive rhabdomeres or outer segments

[28,31,48,65]. This requirement reflects a role for Crb proteins

in ciliogenesis [34]. While the Par-PrkCi complex was implicated

in ciliogenesis in tissue culture [34,35], it was unclear if such

function occurred in vivo, particularly in photoreceptors. Bazooka

(the Drosophila homolog of Pard3), PrkCi, and Par6 are required

for targeting Crb to the rhabdomere stalk [26]. However, Crb also

regulates rhodopsin trafficking through interactions with myosin V

[66], thereby raising the possibility Crb role in ciliogenesis may be

independent of Par-PrkCi. Consistent with this hypothesis, the loss

of prkci or pard3 in zebrafish clearly disrupted apico-basal

polarity, but cilia defects were not previously reported

[17,38,39,51]. Nevertheless, a recent study reported that inhibition

of the PrkCi ortholog in sea urchin embryos dramatically

shortened cilia, suggesting a conserved role for this complex in

ciliogenesis [67]. We report that inhibition of Pard3 or PrkCi/z

activity impairs cilia formation.

Role of pard3 in apico-basal polarity
The loss of pard3 impacts apico-basal polarity in two distinct

events within the retina. Wei and colleagues [17] previously

showed that a strong morpholino suppression of pard3 disrupted

retinal lamination and reduced photoreceptor numbers. The loss

of prkci or crb produces similar phenotypes, suggesting that these

genes function in a similar pathway [28,38]. Based on observations

in Drosophila and tissue culture, it is believed that Pard3 recruits

PrkCi to cellular junctions, while Crb maintains junction integrity

[21,26]. Thus, the retinal lamination defect in strong pard3
morphants likely reflects an initial requirement for pard3 to

establish apical cellular junctions within the developing neuroep-

ithelium, similar to prkci [38]. The second role for pard3 occurs in

photoreceptors. Once photoreceptor cells acquire the appropriate

laminar position, Pard3 and PrkC regulate the size of the apical

domain. Suppression of pard3 by sub-saturating doses of

morpholinos or by the use of photo-morpholinos did not affect

retinal lamination (Figs. 5, 8) but apical membrane size was

reduced (Fig. 4, 8). Similarly, inhibition of PrkC activity by photo-

morpholinos or by pharmacological inhibition resulted in a

reduction of the apical membrane (Fig. 8, 10).

The precise mechanism by which Pard3 and PrkCi regulate

apical size is unclear, but it likely involves the function of Crb

proteins. Two crb2 paralogs, crb2a and crb2b, are expressed in

zebrafish photoreceptors. The loss of crb2b function in zebrafish

photoreceptors reduced apical membrane size similar to our

results with Pard3 and PrkC [28]. In contrast, overexpression of

various domains of crb2a significantly increased the size of the

apical membrane and outer segment [29]. Whether these protein

complexes function together or in a sequential process remains

poorly understood. Based on protein localization, it is unlikely that

Pard3 participates in a complex with PrkCi or Crb to regulate

apical membrane size. While Pard3 localizes to the OLM and the

outer plexiform layer, PrkC and Crb localize immediately apical to

the OLM and extend apically along the inner segment in a region

that lacks Pard3. This is consistent with studies showing PrkC and

Crb excluding Pard3 from the apical surface [23,68]. It should be

noted, however, that the formation of a Par-PrkC complex was

Figure 10. Pharmacological inhibition of PrkC activity reduces
apical domain size. (A–C) Transverse cryosections of 4 dpf retinas
were stained with phalloidin to label actin (red) and zpr-1 to label
double cones (green). (A) DMSO-control treated larvae; (B) Larvae
treated with 3 mM PrkC inhibitor; (C) Larvae treated with 3 mM control
inhibitor. Sections were also counterstained with DAPI (blue). (D)
Quantification of apical domain as a percentage of total photoreceptor
inner segment length. All values are plotted as a percentage of n/m, as
defined in the text. Control = 45%; PrkC inhibitor = 28%; non-myristoy-
lated control inhibitor = 44%. Blue error bars indicate the mean 6
standard deviation. Scale bar = 10 mm.
doi:10.1371/journal.pone.0104661.g010

Par-PrkC in Photoreceptor Cilia Formation

PLOS ONE | www.plosone.org 12 August 2014 | Volume 9 | Issue 8 | e104661



required for apical membrane growth [23]. This suggests a

sequential model where a temporary Par3-PrkC complex must

assemble prior to PrkC migration to the apical surface [23].

Although modest suppression of Pard3 did not impact localization

of PrkC or Crb to the region immediately apical to the OLM, we

cannot exclude the possibility that some Pard3 activity remained.

Role of pard3 in cilia formation
As the ciliary axoneme grows during ciliogenesis, the ciliary

membrane extends from the apical surface. The ciliary membrane

is distinct from the apical cell membrane [69] and some cells form

elaborate ciliary structures, such as the vertebrate photoreceptor

outer segment. It is clear, however, that formation of the ciliary

membrane requires the same apical determinants used to form the

apical cell membrane. Manipulating crb expression can increase or

decrease both apical and ciliary membranes [28,29], while

inhibition of Pard3 or PrkC similarly reduces apical size and

leads to loss of cilia (this study). Previous work in zebrafish found

that positioning of centrosomes and basal bodies within the early

neural tube requires Pard3 [15]. We found normal basal body

localization in photoreceptors following suppression of pard3 by

photo-MOs (data not shown), but this may reflect the early

polarization of the retinal neuroepithelium.

The mechanism by which these apical determinants control

ciliogenesis remains unclear. One possibility is that these proteins

facilitate some aspect of intraflagellar transport (IFT). Work in

tissue culture found that Pard3, PrkCi, and Crb3 localized in cilia

and Pard3 and PrkCi immunoprecipitated with acetylated tubulin

Figure 11. Pharmacological inhibition of PrkC activity reduces cilia length and causes opsin mislocalization. (A–C) Transverse
cryosections of 4 dpf retinas were stained with phalloidin to label actin (red) and 1D1 to label rhodopsin (green). (D–F) Immunohistochemistry on
cryosections to label Ift88 in cilia (red) and acetylated tubulin to label ciliary microtubules (green). Arrows identify cilia. Sections were also
counterstained with DAPI (blue). (G) Quantification of cilia length. Cilia length in 4 dpf wild-type photoreceptors (43.2 microns) and the non-
myristoylated control inhibitor (48.9 mm) were not statistically different from each other, but both were statistically different from larvae treated with
the PrkC inhibitor (27.1 microns). Error bars show standard deviation. (***p#0.0001) Scale bar = 10 mm.
doi:10.1371/journal.pone.0104661.g011
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[34]. Pard3 can also directly bind to Kif3a, the anterograde motor

for IFT [55]. In contrast, numerous studies in Drosophila and

mammalian cells have found Pard3 localizing to a subapical

domain in a pattern distinct from PrkCi and Par6 [19,23,26]. We

failed to observe colocalization of Pard3 with acetylated tubulin in

the connecting cilia of photoreceptors and Pard3 did not localize

along the apical surface with PrkC or Crb. While we cannot

exclude the possibility that ciliary localization of Pard3 escaped

our detection, our results are consistent with previous studies

where a different polyclonal antibody did not detect Pard3 in

photoreceptor cilia [17], and those showing a Pard3-GFP fusion

protein not localizing to cilia when expressed within the zebrafish

Figure 12. Left-right asymmetry requires pard3. (A) In situ hybridization for southpaw (spaw) expression in the lateral plate mesoderm in 18–20
somite stage embryos. pard3 morphants show left-sided, right-sided, bilateral, or an absence of spaw expression. (B) Graphical summary from three
independent experiments showing the percentage of control and morphant embryos with left-sided (L), right-sided (R), bilateral (B), or absence (A)
spaw expression. The number (n) of embryos analyzed is given next to each set of bars. (C) KV cilia in a wild-type and pard3 morphant. (D)
Quantification of KV length across the longest axis. (E) Quantification of KV cilia number. (F) Quantification of KV cilia length. Bars show mean 6
standard deviation (*p#0.05; ***p#0.0001) Scale bar = 20 mm.
doi:10.1371/journal.pone.0104661.g012
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neural tube [15]. Given the distinct localization patterns between

Pard3 and other apical determinants, our results favor a

mechanism whereby Pard3 regulates the size of the entire apical

membrane. While the ciliary and non-ciliary compartments have

distinct protein profiles [69], cilia formation typically requires

prior specification of the apical membrane.

The apical determinant factors pard3, prkci, nok, moe, and ome
all give similar retinal phenotypes when fully mutated or

suppressed, yet cilia defects in other tissues (e.g. kidney, otic

vesicle, Kupffer’s Vesicle) are not always observed

[17,28,39,49,50]. We observed defects in left-right asymmetry

and KV cilia in pard3 morphants and hydrocephalus was

previously noted [15], although kidney cysts were not observed.

In many cases, however, genetic redundancy by paralogs can

compensate for the loss of individual genes. With crb genes, for

example, ome functions in neuroepithelia, crb2b functions in the

retina and kidney, while crb3a functions in the otic vesicle [28].

Similarly, prkci and prkcz exhibit functional redundancy within the

retina [38]. A pard3b paralog [70], may explain why pard3
morphants do not exhibit other ciliary defects.

We used three distinct experimental approaches to inhibit

Pard3 and PrkC activity and all gave similar results. Sub-optimal

concentrations of morpholinos permitted retinal lamination in

pard3 morphants and partially abrogated cilia and outer segment

formation. A well-established peptide inhibitor of PrkC was

effective in reducing apical domain size, but the inhibitor was

toxic at earlier time points, which likely limits its utility for studies

in embryos. The use of photo-morpholinos gave the strongest

effects, particularly when targeting the prkc genes. While these

reagents did not completely inhibit the MO activity over several

days, the ability to cleave the photo-MO provided temporal

control over MO activity and permitted normal retina lamination

with before suppression of either pard3 or prkc. It should be noted

that photo-morpholino suppression of prkci or prkci/z resulted in

much more severe retinal effects than suppression of pard3.
Although a biological difference cannot be definitively ruled out,

these observations may reflect a difference in the efficacy of photo-

MOs at different gene targets. While Tallafuss and colleagues

reported strong suppression with 5–10 minutes of UV irradiation

at 5 hpf [40], at least 20 minutes of irradiation was required to

suppression gene function in our studies at either 5 hpf or 30 hpf.

Longer irradiation times (e.g. 30 minutes) did not enhance the

phenotype, although it is possible that the pard3 photo-MO was

still not completely cleaved. As with any antisense reagent, the

efficacy of photo-MOs can vary from target to target and this may

explain the differences in phenotype.

In summary, we show that cilia formation in vertebrate

photoreceptors requires the Par-PrkC complex in a manner that

likely reflects a role in apical membrane regulation. Mutations in

CRB1 cause retinitis pigmentosa [65] and crb genes were known

to play key roles in apical differentiation. We now show that cilia

formation in vivo requires the involvement of the Par-PrkC

complex as well.

Supporting Information

Figure S1 Immunoblot of Pard3 from retinal homoge-
nate. Retinal homogenates at 1:50 or 1:200 dilutions were

separated on SDS-PAGE incubated with anti-Pard3 antiserum. A

immunoreactive band was seen at ,180 kDa. A second, higher

molecular weight band was nonspecific. BioRad molecular weight

ladder (in kDa) is shown to the left.

(TIF)

Figure S2 Genetic analysis of photoreceptor formation
at 96 hpf. (A) Wild-type donor cells with rhodamine-dextran

lineage label (pseudo-colored green) in a wild-type host retina. (B)

pard3-morphant donor cells in a wild-type host retina. Only one

photoreceptor formed from donor cells. (C) prkci-morphant donor

cells in a wild-type host retina. Two photoreceptors were formed

by donor cells. (D) prkci/prkcz-double morphant donor cells in a

wild-type host retina. No donor cells contributed to the

photoreceptor layer. All sections were counterstained with DAPI

(blue). Scale bar = 10 mm.

(TIF)

Figure S3 Assessing photo-morpholino efficacy by mor-
phological phenotypes at 3 dpf following UV irradiation.
(A, B) wild type larvae with and without UV irradiation, (C) pard3
morphant, (D) prkci morphant, (E, F) larvae injected with pard3 or

prkci MO/S-photo-MOs hybrids without UV irradiation, (G, H)

larvae injected with pard3 or prkci MO/S-photo-MOs hybrids

and irradiated with UV light at 5 dpf, (I, J) larvae injected with

pard3 or prkciMO/S-photo-MOs hybrids and irradiated with UV

light at 30 hpf, and (K, L) larvae injected with pard3 or prkci S-
photo-MOs only. When S-photo-MOs were cleaved by UV light

irradiation at 5 hpf, embryos showed similar phenotypes (e.g. body

curvature problems, patchy ocular pigmentation, reduced eye size,

similar to the pard3-MO or prkci morphants (compare panels E

and F to panels G and H). Scale bar = 500 mm.

(TIF)

Figure S4 Photo-morpholinos inhibit the action of
morpholinos in the absence of UV irradiation and
preserve retinal structure. (A–F) Transverse cryosections of

3 dpf retinas were stained with phalloidin to label actin (red) and

DAPI to label nuclei (blue). The top row shows retinal

organization in various larvae following UV-irradiation at 5 hpf

while the bottom row is without UV irradiation. (A, D) Wild type;

(B, E) pard3 MO/S-photo-MO hybrid; (C, F) prkci MO/S-photo-

MO hybrid. Retinal architecture is disrupted and the plexiforms

layers more disorganized when photo-MOs are cleaved by UV

irradiation (top row). Retinal lamination is largely preserved when

photo-MOs remain intact in the absence of UV irradiation,

indicating inhibition of morpholino action (bottom row). Scale

bar = 100 mm.

(TIF)
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