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Well-Balanced Positivity Preserving Central-Upwind

Scheme on Triangular Grids for the Saint-Venant System

Steve Bryson∗, Yekaterina Epshteyn†, Alexander Kurganov‡

and Guergana Petrova§

Abstract

We introduce a new second-order central-upwind scheme for the Saint-Venant system
of shallow water equations on triangular grids. We prove that the scheme both preserves
stationary steady states (lake at rest) and guarantees the positivity of the computed fluid
depth. Moreover, it can be applied to models with discontinuous bottom topography and
irregular channel widths. We demonstrate these features of the new scheme, as well as its
high resolution and robustness in a number of numerical examples.

AMS subject classification: 76M12, 35L65

Key Words: Hyperbolic systems of conservation and balance laws, semi-discrete central-upwind
schemes, Saint-Venant system of shallow water equations.

1 Introduction

We consider the two-dimensional (2-D) Saint-Venant system of shallow water equations:





ht + (hu)x + (hv)y = 0,

(hu)t +
(
hu2 +

1

2
gh2
)

x
+ (huv)y = −ghBx,

(hv)t + (huv)x +
(
hv2 +

1

2
gh2
)

y
= −ghBy,

(1.1)

where the function B(x, y) represents the bottom elevation, h is the fluid depth above the bottom,
(u, v)T is the velocity vector, and g is the gravitational constant. This system is widely used in
many scientific and engineering applications related to modeling of water flows in rivers, lakes and
coastal areas. The development of robust and accurate numerical methods for the computation
of its solutions is important and challenging problem that has been extensively investigated
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in the recent years. One of the difficulties encountered is the fact that system (1.1) admits
nonsmooth solutions: shocks, rarefaction waves and, when the bottom topography function B is
discontinuous, contact discontinuities. In the latter case, the solution may not be unique, which
makes the design of robust numerical methods more challenging even in the one-dimensional
(1-D) case (see, e.g., [2] and the references therein).

A good numerical method for (1.1) should have two major properties, which are crucial for its
stability:

(i) The method should be well-balanced, that is, it should exactly preserve the stationary
steady-state solutions h+B ≡ const, u ≡ v ≡ 0 (lake at rest states). This property dimin-
ishes the appearance of unphysical waves of magnitude proportional to the grid size (the
so-called “numerical storm”), which are normally present when computing quasi steady-
states;

(ii) The method should be positivity preserving, that is, the water depth h should be nonnega-
tive at all times. This property ensures a robust performance of the method on dry (h = 0)
and almost dry (h ∼ 0) states.

In the past decade, a number of well-balanced [4, 9, 15, 17, 19, 23, 27, 28, 31, 32, 33, 34,
39, 40] and positivity preserving [4, 19, 23, 32] schemes for (1.1) have been proposed, but only
few of them satisfy both major properties (i) and (ii). Among the methods developed are
generalizations of the class of accurate, efficient and robust Godunov-type semi-discrete central-
upwind schemes, introduced in [20, 21, 24, 25, 22] as universal Riemann-problem-solver-free
methods for general multidimensional hyperbolic systems. More precisely, the central-upwind
schemes have been extended to compute the solutions of both the 1-D and 2-D Saint-Venant
systems. For example, see [19], where well-balanced and positivity preserving central-upwind
schemes have been introduced. However, the schemes presented in [19] do not simultaneously
satisfy (i) and (ii) over the entire computational domain. In a recent work [23], a new second-
order central-upwind scheme, which is well-balanced and positivity preserving at the same time,
has been proposed. The key ideas in the development of this scheme are:

• Replacement of the bottom topography function B with its continuous piecewise linear (or
bilinear in the 2-D case) approximation;

• Change of conservative variables from (h, hu, hv)T to (w := h + B, hu, hv)T ;

• Special positivity preserving correction of the piecewise linear reconstruction for the water
surface w;

• Development of a special finite-volume-type quadrature for the discretization of the cell
averages of the geometric source term.

In both [19] and [23], the central-upwind schemes for the 2-D system (1.1) are developed for
Cartesian grids. Many real world engineering applications require the use of triangular meshes
due to the complicated structure of the computational domains of the problems being investi-
gated. A well-balanced central-upwind scheme on triangular grids has been recently developed
in [6], where the presented “triangular” scheme is a (nonconservative) modification of the “tri-
angular” central-upwind scheme from [22] with a special quadrature for the source average over
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arbitrary triangular cells. The method in [6] is not claimed to be positivity preserving, and is
expected to fail on dry states.

In this paper, we present a new second-order semi-discrete central-upwind scheme for com-
puting the solutions of the system (1.1) on triangular grids. Like the central-upwind scheme
from [6], our scheme is well-balanced, but the new quadrature for the discretization of the ge-
ometric source, presented in §2.2, is much simpler than the one proposed in [6]. In addition,
unlike the scheme from [6], the proposed central-upwind scheme is positivity preserving. The
latter property is achieved by replacing the (possibly discontinuous) bottom topography function
B with its continuous piecewise linear approximation (§2.1) and adjusting the piecewise linear
reconstruction for w according to the piecewise linear approximation of B (§2.3). This technique
is borrowed from [23] and naturally adopted to triangular meshes.

The new central-upwind scheme is derived in §2 and its positivity preserving property is proved
in §2.4. In §3, we demonstrate the high resolution and robustness of the new scheme on a variety
of numerical examples.

2 Description of the Scheme

In this section, we describe our new second-order semi-discrete central-upwind scheme for solving
the Saint-Venant system of shallow water equations on triangular grids. We first denote the water
surface by w := h + B and rewrite (1.1) in terms of the vector U := (w, hu, hv)T :

Ut + F(U, B)x + G(U, B)y = S(U, B), (2.1)

where the fluxes and the source terms are:

F(U, B) =

(
hu,

(hu)2

w − B
+

1

2
g(w − B)2,

(hu)(hv)

w − B

)T

, (2.2)

G(U, B) =

(
hv,

(hu)(hv)

w − B
,

(hv)2

w − B
+

1

2
g(w − B)2

)T

, (2.3)

S(U, B) =
(
0,−g(w − B)Bx,−g(w − B)By

)T

. (2.4)

We assume that a triangulation T :=
⋃

j

Tj of the computational domain, consisting of trian-

gular cells Tj of size |Tj|, is given. We denote by ~njk := (cos(θjk), sin(θjk)) the outer unit normals
to the corresponding sides of Tj of length ℓjk, k = 1, 2, 3, see Figure 2.1. Let (xj , yj) be the
coordinates of the center of mass for Tj and Mjk = (xjk, yjk) be the midpoint of the k-th side of
the triangle Tj , k = 1, 2, 3. We denote by Tj1, Tj2 and Tj3 the neighboring triangles that share a
common side with Tj .

A semi-discrete scheme for (2.1) is a system of ODEs for the approximations of the cell averages
of the solution:

Uj(t) ≈
1

|Tj|

∫

Tj

U(x, y, t) dxdy.
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Figure 2.1: A typical triangular cell with three neighbors.

We refer the reader to [22], where a general form of a “triangular” central-upwind scheme for
systems of hyperbolic conservation laws is derived. Its second-order version (see [6, 22]) reads:

dUj

dt
= − 1

|Tj|

3∑

k=1

ℓjk cos(θjk)

ain
jk + aout

jk

[
ain

jkF(Ujk(Mjk), B(Mjk)) + aout
jk F(Uj(Mjk), B(Mjk))

]

− 1

|Tj|

3∑

k=1

ℓjk sin(θjk)

ain
jk + aout

jk

[
ain

jkG(Ujk(Mjk), B(Mjk)) + aout
jk G(Uj(Mjk), B(Mjk))

]

+
1

|Tj|

3∑

k=1

ℓjk

ain
jka

out
jk

ain
jk + aout

jk

[
Ujk(Mjk) − Uj(Mjk)

]
+ Sj , (2.5)

where Uj(Mjk) and Ujk(Mjk) are the corresponding values at Mjk of the piecewise linear recon-
struction

Ũ(x, y) := Uj + (Ux)j(x − xj) + (Uy)j(y − yj), (x, y) ∈ Tj (2.6)

of U at time t, that is:

Uj(Mjk) := lim
(x,y)→Mjk;(x,y)∈Tj

Ũ(x, y), Ujk(Mjk) := lim
(x,y)→Mjk;(x,y)∈Tjk

Ũ(x, y). (2.7)

The numerical derivatives (Ux)j and (Uy)j are (at least) first-order, componentwise approxi-
mations of Ux(xj, yj, t) and Uy(xj , yj, t), respectively, computed via a nonlinear limiter, used to
minimize the oscillations of the reconstruction (2.6). One can use any nonlinear limiter. A vari-
ety of nonoscillatory reconstructions can be found, for example, in [1, 3, 7, 8, 13, 14, 18, 22, 38].
In our numerical experiments, we have used a componentwise piecewise linear reconstruction,
which is a modification of the Cartesian grid minmod reconstruction (see, e.g., [26, 29, 30, 36]).

To calculate the numerical derivatives of the ith component of U, (U
(i)
x )j and (U

(i)
y )j , we con-

struct three linear interpolations L12
j (x, y), L23

j (x, y) and L13
j (x, y), which are conservative on the

triangle Tj and two of the neighboring triangles (Tj1, Tj2), (Tj2, Tj3) and (Tj1, Tj3), respectively.
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More precisely, the plane L12
j (x, y), for example, passes through the points whose first two coor-

dinates are the coordinates of the centers of mass of the triangles Tj , Tj1 and Tj2, and the third
coordinates are the cell averages of U(i) over the corresponding triangles. We then select the
linear piece with the smallest magnitude of the gradient, say, Lkm

j (x, y), and set

((U(i)
x )j, (U

(i)
y )j)

T = ∇Lkm
j . (2.8)

We minimize the oscillations by checking the appearance of local extrema at the points Mjk,

1, 2, 3. If for some k one of the reconstructed point values U
(i)
j (Mjk) or U

(i)
jk (Mjk) is not between

the cell averages U
(i)

j and U
(i)

jk , we replace (2.8) by

(U(i)
x )j = (U(i)

y )j = 0.

The quantity Sj in (2.5) is an appropriate discretization of the cell averages of the source term:

Sj(t) ≈
1

|Tj |

∫

Tj

S(U(x, y, t), B(x, y)) dxdy.

In §2.2, we discuss in detail how to compute Sj in a simple way, which guarantees the well-
balanced property of the proposed scheme.

Finally, the directional local speeds ain
jk and aout

jk in (2.5) are defined by

ain
jk(Mjk) = −min{λ1[Vjk(Uj(Mjk))], λ1[Vjk(Ujk(Mjk)], 0},

aout
jk (Mjk) = max{λ3[Vjk(Uj(Mjk))], λ3[Vjk(Ujk(Mjk)], 0},

(2.9)

where λ1 [Vjk] ≤ λ2 [Vjk] ≤ λ3 [Vjk] are the eigenvalues of the matrix

Vjk = cos(θjk)
∂F

∂U
+ sin(θjk)

∂G

∂U
.

If both ain
jk and aout

jk are zero (or very close to zero), the scheme (2.5) reduces to

dUj

dt
= − 1

|Tj |

3∑

k=1

ℓjk cos(θjk)

2
[F(Ujk(Mjk), B(Mjk)) + F(Uj(Mjk), B(Mjk))]

− 1

|Tj |

3∑

k=1

ℓjk sin(θjk)

2
[G(Ujk(Mjk), B(Mjk)) + G(Uj(Mjk), B(Mjk))] + Sj.

A fully discrete scheme is obtained from (2.5) by using a stable ODE solver of an appropriate
order. In our numerical experiments, we have used the third-order SSP-RK ODE solver, see [12].
The time step size should satisfy the CFL-condition:

∆t <
1

3
min
j,k

[
rjk

max{aout
jk , ain

jk}

]
, (2.10)

where rjk, k = 1, 2, 3 are the three corresponding altitudes of the triangle Tj ∈ T .
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2.1 Piecewise Linear Approximation of the Bottom

We start by replacing the bottom topography function B with its continuous piecewise linear
approximation B̃, which over each cell Tj is given by the formula:

∣∣∣∣∣∣∣∣

x − x̃j12 y − ỹj12 B̃(x, y) − Bj12

x̃j23 − x̃j12 ỹj23 − ỹj12 Bj23 − Bj12

x̃j13 − x̃j12 ỹj13 − ỹj12 Bj13 − Bj12

∣∣∣∣∣∣∣∣
= 0, (x, y) ∈ Tj. (2.11)

Here, Bjκ
are the values of B̃ at the vertices (x̃jκ

, ỹjκ
), κ = 12, 23, 13, of the cell Tj (see Figure

2.1), computed according to the following formula:

Bjκ
:=

1

2

(
max

ξ2+η2=1
lim

h,ℓ→0
B(x̃jκ

+ hξ, ỹjκ
+ ℓη) + min

ξ2+η2=1
lim

h,ℓ→0
B(x̃jκ

+ hξ, ỹjκ
+ ℓη)

)
,

which reduces to

Bjκ
= B(x̃jκ

, ỹjκ
),

if the function B is continuous at (x̃jκ
, ỹjκ

).
Let us denote by Bjk the value of the continuous piecewise linear reconstruction at Mjk, namely

Bjk := B̃(Mjk), and by Bj := B̃(xj , yj) the value of the reconstruction at the center of mass
(xj , yj) of Tj . Notice that, in general, Bjk 6= B(Mjk) and

Bj =
1

|Tj|

∫

Tj

B̃(x, y) dxdy.

Moreover, one can easily show that

Bj =
1

3
(Bj1 + Bj2 + Bj3) =

1

3
(Bj12 + Bj23 + Bj13) . (2.12)

Notice that the approach described above is applicable to any bottom topography function, both
continuous and discontinuous.

2.2 Well-Balanced Discretization of the Source Term

The well-balanced property of the scheme is guaranteed if the discretized cell average of the
source term, Sj , exactly balances the numerical fluxes so that the right-hand side (RHS) of (2.5)
vanishes for stationary steady states U ≡ (C, 0, 0)T , where C = const. Notice that for these
states Ujk(Mjk) ≡ Uj(Mjk) ≡ (C, 0, 0)T , ∀j, k. After a substitution of a stationary steady state
into (2.5) and taking into account that in this case, ain

jk = aout
jk , see (2.27), the source quadrature

should satisfy the following two conditions:

− g

|Tj |

3∑

k=1

ℓjk cos(θjk)
(C − B(Mjk))

2

2
+ S

(2)

j = 0 (2.13)



Well-Balanced Central-Upwind Scheme on Triangular Grids 7

and

− g

|Tj |

3∑

k=1

ℓjk sin(θjk)
(C − B(Mjk))

2

2
+ S

(3)

j = 0, (2.14)

where Sj = (0,S
(2)

j ,S
(3)

j ),

S
(2)

j ≈ − g

|Tj|

∫

Tj

(C − B(x, y))Bx(x, y) dxdy,

and

S
(3)

j ≈ − g

|Tj |

∫

Tj

(C − B(x, y))By(x, y) dxdy.

To derive the desired quadrature, we first apply Green’s formula,

∫

Tj

div ~G dxdy =

∫

∂Tj

~G · ~n ds,

to the vector field ~G = (1
2
(w(x, y)− B(x, y))2, 0) and obtain:

−
∫

Tj

(w(x, y)− B(x, y))Bx(x, y) dxdy =
3∑

k=1

∫

(∂Tj)k

(w(x, y) − B(x, y))2

2
cos(θjk) ds

−
∫

Tj

(w(x, y) − B(x, y))wx(x, y) dxdy, (2.15)

where (∂Tj)k is the k-th side of the triangle Tj , k = 1, 2, 3. Next, we apply the midpoint rule
to the integrals on the RHS of (2.15) and arrive at the following quadrature for the cell average

S
(2)

j :

− g

|Tj |

∫

Tj

(w − B)Bx dxdy ≈ g

2|Tj|

3∑

k=1

ℓjk(w(Mjk) − B(Mjk))
2 cos(θjk) − gwx(xj , yj)(wj − Bj),

(2.16)
where

Bj :=
1

|Tj|

∫

Tj

B(x, y) dxdy.

Likewise, we obtain the quadrature for the cell average S
(3)

j :

− g

|Tj |

∫

Tj

(w − B)By dxdy ≈ g

2|Tj|

3∑

k=1

ℓjk(w(Mjk) − B(Mjk))
2 sin(θjk) − gwy(xj , yj)(wj − Bj).

(2.17)
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Notice that since wx ≡ wy ≡ 0 for w ≡ const, the quadratures (2.16)–(2.17) satisfy (2.13)–(2.14)
when U ≡ (C, 0, 0)T .

We then replace B with its continuous piecewise linear interpolant B̃. Since the interpolant
(2.11) is second order accurate for smooth B, this replacement does not affect the (formal)
order of both the central-upwind fluxes in (2.5) and the quadratures (2.16)–(2.17). Finally, the
discretization of the source term in (2.5) becomes:

S
(2)

j =
g

2|Tj|

3∑

k=1

ℓjk(wj(Mjk) − Bjk)
2 cos(θjk) − g(wx)j(wj − Bj),

S
(3)

j =
g

2|Tj|

3∑

k=1

ℓjk(wj(Mjk) − Bjk)
2 sin(θjk) − g(wy)j(wj − Bj),

(2.18)

where Bjk = B̃(Mjk) and Bj is given by (2.12).

Remark. The well-balanced quadrature (2.18) is much simpler than the well-balanced source
term discretization proposed in [6].

2.3 Positivity Preserving Reconstruction for w

In this section, we describe an algorithm that guarantees positivity of the reconstructed values
of the water depth hj(Mjk), k = 1, 2, 3, for all j, which are obtained from the corresponding
point values of w̃ (obtained with the help of the minmod-type reconstruction, described in the

beginning of §2) and B̃:

hj(Mjk) := wj(Mjk) − Bjk, k = 1, 2, 3. (2.19)

Notice that (see the proof of Theorem 2.1) in order to show that the scheme is positivity pre-
serving, one only needs to verify that hj(Mjk) ≥ 0. None of the aforementioned second-order
piecewise linear (or even the first-order piecewise constant) reconstructions for w can guarantee
this since it may obviously happen that the cell average wj > Bj, but wj < Bjk for some k.
Therefore, we have to correct the original reconstruction w̃ so that we ensure the nonnegativity
of hj(Mjk) for k = 1, 2, 3. There are numerous correction procedures that would guarantee that.
The one that we have selected and describe below has less oscillations than some other choices,
but we have not conducted a complete study of the dependence of the numerical solution on the
the various corrections. Our proposed algorithm modifies w̃ so that we achieve w̃(x, y) ≥ B̃(x, y)
throughout the entire computational domain. The reconstruction w̃ should be corrected only in
those triangles, where w̃(x̃jκ

, ỹjκ
) < Bjκ

for some κ, κ = 12, 23, 13. Since wj ≥ Bj , it is impossible
to have w̃(x̃jκ

, ỹjκ
) < Bjκ

for all three values of κ, that is, at all three vertices of the triangle Tj .
Thus, only two cases in which a correction is needed are possible: either there are two indices κ1

and κ2, for which w̃(x̃jκ1
, ỹjκ1

) < Bjκ1
and w̃(x̃jκ2

, ỹjκ2
) < Bjκ2

, or there is only one index κ1, for
which w̃(x̃jκ1

, ỹjκ1
) < Bjκ1

.
In the first case, we will correct the reconstruction w̃ so that w̃(x̃jκ1

, ỹjκ1
) = Bjκ1

and w̃(x̃jκ2
, ỹjκ2

) =
Bjκ2

. These two conditions, together with the conservation requirement for the corrected recon-
struction w̃, uniquely determine the following correction algorithm:

if w̃(x̃jκ1
, ỹjκ1

) < Bjκ1
and w̃(x̃jκ2

, ỹjκ2
) < Bjκ2

,

set w̃(x̃jκ1
, ỹjκ1

) := Bjκ1
and w̃(x̃jκ2

, ỹjκ2
) := Bjκ2

, (2.20)
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and replace the linear function, originally reconstructed over the triangle Tj , with a new function
(still denoted by w̃) defined by

∣∣∣∣∣∣∣∣

x − xj y − yj w̃(x, y) − wj

x̃jκ1
− xj ỹjκ1

− yj Bjκ1
− wj

x̃jκ2
− xj ỹjκ2

− yj Bjκ2
− wj

∣∣∣∣∣∣∣∣
= 0, (x, y) ∈ Tj . (2.21)

Note that the corrected reconstruction is the restriction over Tj of the plane that passes through
the three points with coordinates (x̃jκ1

, ỹjκ1
,Bjκ1

), (x̃jκ2
, ỹjκ2

,Bjκ2
), and (xj, yj, wj).

In the second case, we will only need to make sure that after the correction w̃(x̃jκ1
, ỹjκ1

) = Bjκ1
,

while we still have w̃(x̃jκ2
, ỹjκ2

) ≥ Bjκ2
and w̃(x̃jκ3

, ỹjκ3
) ≥ Bjκ3

. This leaves one degree of freedom
in the construction of the corrected linear piece over the triangle Tj. To minimize the oscillations,
we decide to determine w̃(x̃jκ2

, ỹjκ2
) and w̃(x̃jκ3

, ỹjκ3
) from the relation

w̃(x̃jκ2
, ỹjκ2

) − Bjκ2
= w̃(x̃jκ3

, ỹjκ3
) − Bjκ3

=
3

2
(wj − Bj), (2.22)

and thus replace the original reconstruction over the triangle Tj , with a new one (still denoted
by w̃) defined by

∣∣∣∣∣∣∣∣

x − xj y − yj w̃(x, y) − wj

x̃jκ1
− xj ỹjκ1

− yj Bjκ1
− wj

x̃jκ2
− xj ỹjκ2

− yj W − wj

∣∣∣∣∣∣∣∣
= 0, (x, y) ∈ Tj , (2.23)

where W = 3
2
(wj − Bj) + Bjκ2

. The corrected reconstruction is the restriction over Tj of the
plane that passes through the three points with coordinates (x̃jκ1

, ỹjκ1
,Bjκ1

), (x̃jκ2
, ỹjκ2

, W ), and
(xj , yj, wj).

The correction procedure (2.20)–(2.23) guarantees that the reconstruction of w is conservative

and its values are greater or equal to the corresponding values of B̃ over the whole triangle Tj .
Hence the point values of the water height, defined by (2.19), will be nonnegative.

Equipped with the positivity preserving reconstruction w̃, we now proceed with the computa-
tion of the velocities u and v, and the one-sided local speeds needed in (2.5). Since the obtained
values of h may be very small (or even zero), we calculate the velocities the same way as in [23],
namely (we omit the j, k, indexes):

u =

√
2 h (hu)√

h4 + max(h4, ε)
, v =

√
2h (hv)√

h4 + max(h4, ε)
, (2.24)

where ε is a prescribed tolerance (we have taken ε = max
j

{|Tj |2} in all our computations). After

evaluating h, u, and v, we recompute the x- and y-discharges and fluxes accordingly, that is, we
set:

(hu) := h · u, (hv) := h · v,

F(U, B) :=

(
hu, hu · u +

1

2
g(w − B)2, hu · v

)T

, (2.25)

G(U, B) :=

(
hv, hv · u, hv · v +

1

2
g(w − B)2

)T

,
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at the points where these quantities are to be calculated. As noted in [23], this is an important
step that allows us to preserve the positivity of the fluid depth h (see Theorem 2.1).

Finally, we denote by uθ
j(Mjk) and uθ

jk(Mjk) the normal velocities at the point Mjk:

uθ
j(Mjk) := cos(θjk)uj(Mjk) + sin(θjk)vj(Mjk), uθ

jk(Mjk) := cos(θjk)ujk(Mjk) + sin(θjk)vjk(Mjk),
(2.26)

and write the formulae for the local one-sided speeds of propagation:

aout
jk = max

{
uθ

j(Mjk) +
√

ghj(Mjk) , uθ
jk(Mjk) +

√
ghjk(Mjk) , 0

}
,

ain
jk = −min

{
uθ

j(Mjk) −
√

ghj(Mjk) , uθ
jk(Mjk) −

√
ghjk(Mjk) , 0

}
.

(2.27)

2.4 Positivity Preserving Property of the Scheme

In this section, we prove the positivity preserving property of our new well-balanced central-
upwind scheme for triangular grids in the case when the system of ODEs (2.5) is discretized in
time, using the forward Euler method or a higher-order SSP ODE solver, [12]. The following
theorem holds.

Theorem 2.1 Consider the system (2.1)–(2.4) and the central-upwind semi-discrete scheme
(2.5)–(2.7), (2.18), (2.20)–(2.23), (2.27). Assume that the system of ODEs (2.5) is solved by the
forward Euler method and that for all j, wn

j −Bj ≥ 0 at time t = tn. Then, for all j, wn+1
j −Bj ≥ 0

at time t = tn+1 = tn + ∆t, provided that ∆t ≤ 1

6a
min
j,k

{rjk}, where a := max
j,k

{aout
jk , ain

jk} and rjk,

k = 1, 2, 3, are the altitudes of triangle Tj.

Proof: We write the first component in equation (2.5) together with the forward Euler temporal
discretization as:

wn+1
j = wn

j − ∆t

|Tj|

3∑

k=1

ℓjk cos(θjk)

ain
jk + aout

jk

[
ain

jk(hu)jk(Mjk) + aout
jk (hu)j(Mjk)

]

− ∆t

|Tj|

3∑

k=1

ℓjk sin(θjk)

ain
jk + aout

jk

[
ain

jk(hv)jk(Mjk) + aout
jk (hv)j(Mjk)

]

+
∆t

|Tj|

3∑

k=1

ℓjk

ain
jka

out
jk

ain
jk + aout

jk

[
wjk(Mjk) − wj(Mjk)

]
, (2.28)

where all quantities on the RHS of (2.28) are evaluated at time level t = tn. Since the piecewise

linear interpolant B̃ of the bottom topography function is continuous, (2.19) implies that

wjk(Mjk) − wj(Mjk) = hjk(Mjk) − hj(Mjk). (2.29)

Moreover, (2.12), (2.19), and the fact that wn
j = 1

3

3∑
k=1

wj(Mjk) give:

wn
j − Bj =

1

3

3∑

k=1

hj(Mjk). (2.30)
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Using (2.29)–(2.30), subtracting Bj from both sides of (2.28), and using the notation (2.26), we
arrive at:

h
n+1

j =
∆t

|Tj|

3∑

k=1

hjk(Mjk)
ℓjka

in
jk

ain
jk + aout

jk

[
aout

jk − uθ
jk(Mjk)

]

+

3∑

k=1

hj(Mjk)

(
1

3
− ∆t

|Tj |
·

ℓjka
out
jk

ain
jk + aout

jk

[
ain

jk + uθ
j(Mjk)

]
)

, (2.31)

where, as mentioned in (2.25), we have used the fact that (hu) = h · u and (hv) = h · v. Next,
from the definitions of the local speeds (2.27) we obtain that aout

jk ≥ uθ
jk(Mjk) and therefore, all

terms in the first sum on the RHS of (2.31) are nonnegative since the corrected reconstruction
for w guarantees that hjk(Mjk) ≥ 0 for all j and k = 1, 2, 3. We also obtain:

∆t

|Tj|
·

ℓjka
out
jk

ain
jk + aout

jk

[
ain

jk + uθ
j(Mjk)

]
≤ ∆t

|Tj |
·

ℓjka
out
jk

ain
jk + aout

jk

[
ain

jk + aout
jk

]
≤ 1

3
,

provided ∆t ≤ 1
3α

maxj,k{ |Tj |

ℓjk
}, where α := maxj,k{aout

jk }. From (2.10) and the fact that |Tj| =

0.5rjkℓjk, we conclude that all terms in the second sum on the RHS of (2.31) are also nonnegative

as long as ∆t <
1

6a
min

jk
{rjk}, a := max

j,k
{aout

jk , ain
jk}, since hj(Mjk) ≥ 0 for all j and k = 1, 2, 3.

This completes the proof of the theorem. �

Remark. Theorem 2.1 is still valid if one uses a higher-order SSP ODE solver (either the Runge-
Kutta or the multistep one), because such solvers can be written as a convex combination of
several forward Euler steps.

3 Numerical Experiments

We test our well-balanced positivity preserving central-upwind scheme on several problems in
which (almost) dry stationary steady states and/or their small perturbations are present. These
examples clearly demonstrate the ability of the proposed scheme to accurately resolve quasi-
steady states (small perturbations of stationary steady states) and, at the same time, to preserve
the positivity of the fluid depth h (as proved in Theorem 2.1).

In all examples that follow, the gravitational constant is g = 1. In Examples 1, 2, and 3,
the computational domain is a rectangle, and we use the structured triangular mesh outlined in
Figure 3.1, while in Example 4, where we simulate a flow in a converging-diverging channel, the
mesh is unstructured, see Figure 3.11 (right).

Example 1 — Accuracy Test

The goal of this numerical example is to experimentally check the order of accuracy of the
proposed central-upwind scheme. The scheme is applied to the system (2.1)–(2.4) subject to the
following initial data and bottom topography:

w(x, y, 0) = 1, u(x, y, 0) = 0.3, B(x, y) = 0.5 exp(−25(x − 1)2 − 50(y − 0.5)2). (3.1)
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Figure 3.1: Structured triangular mesh. Horizontal to vertical cathetus ratio is 2:1.

For a reference solution, we solve this problem with our method on a 2×400×400 grid. By t = 0.07,
the solution converges to the steady state, which is in this case nontrivial (nonstationary) but
smooth. We show the water surface for the reference solution at time t = 0.07 in Figure 3.2. We
use this reference solution to test the numerical convergence. The L1- and L∞-errors are shown
in Table 1. The obtained errors and the rate of convergence are similar to the ones reported
in [23, Table 4.1] for the 1-D problem on a uniform grid of the same size. Tests of our method
on a finer mesh are prevented by the size of the problem and available computer resources. We
believe that further mesh refinement would increase the rates, similar to the behavior shown in
[23, Table 4.1].

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

Figure 3.2: w component of the solution of the IVP (2.1)–(2.4), (3.1) on a 2×400 ×400 grid: the
3-D view (left) and the contour plot (right).

Example 2 — Small Perturbation of a Stationary Steady-State Solution

Here, we first solve the initial value problem (IVP) proposed in [27]. The computational domain
is [0, 2] × [0, 1] and the bottom consists of an elliptical shaped hump:

B(x, y) = 0.8 exp(−5(x − 0.9)2 − 50(y − 0.5)2). (3.2)
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Table 1: Example 1: L1- and L∞-errors and numerical orders of accuracy.

Number of cells L1-error Order L∞-error Order
2 × 50 × 50 6.59e-04 – 8.02e-03 –

2 × 100 × 100 2.87e-04 1.20 3.59e-03 1.16
2 × 200 × 200 1.00e-04 1.52 1.21e-03 1.57

Initially, the water is at rest and its surface is flat everywhere except for 0.05 < x < 0.15:

w(x, y, 0) =

{
1 + ε, 0.05 < x < 0.15,
1, otherwise,

u(x, y, 0) ≡ v(x, y, 0) ≡ 0, (3.3)

where the perturbation height is ε = 0.01. Figure 3.3 displays the right-going disturbance as it
propagates past the hump. The water surface, w(x, y, t), is presented at times t = 0.6, 0.9, 1.2, 1.5
and 1.8. One can observe the high resolution of complex small features of the flow (compare
with [6, 19, 27]).

We then modify the initial data (3.3) by taking a very small perturbation height ε = 10−14,
which is comparable with the machine error, and numerically verify property (i) of the proposed
central-upwind scheme. In Figure 3.4, we plot max

x,y
(w − 1) as a function of t, computed on a

very coarse 2× 10× 10 mesh, on time. As one can clearly see, no instabilities are developed and
the balance between the fluxes and the geometric source terms is preserved numerically.

Next, we modify the IVP (2.1)–(2.4), (3.2), (3.3) to numerically study the case of a submerged
flat plateau, see Figure 3.5 (left). Notice that the plateau is very close to the water surface, and
that the initial water depth over the plateau is equal to the perturbation height ε = 0.01. The
computational domain is now [−0.5, 0.5]× [−0.5, 0.5], the radially symmetric bottom topography
is given by

B(r) =






0.99, r ≤ 0.1,
9.9(0.2 − r), 0.1 < r < 0.2,
0, otherwise,

(3.4)

where r :=
√

x2 + y2, and the initial data are:

w(x, y, 0) =

{
1 + ε, − 0.4 < x < −0.3,
1, otherwise,

u(x, y, 0) ≡ v(x, y, 0) ≡ 0. (3.5)

The solution, computed on two different grids, is shown at both early stages of the disturbance
propagation, see Figure 3.6, and at later times, see Figure 3.7. Since the area over the plateau is
almost dry, the right-going disturbance mostly bends around that area, while only small portion
of the wave propagates over the area. As one can see from Figures 3.6 and 3.7, the general
structure of the solution is well resolved on the coarser mesh, while a finer mesh is clearly needed
to achieve high resolution of the solution over the plateau area. Notice that the positivity of h

is preserved and no instabilities are developed at the almost dry area.
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Figure 3.3: w component of the solution of the IVP (2.1)–(2.4), (3.2), (3.3) with ε = 0.01 on
2×200 ×200 (left column) and 2×400×400 (right column) grids.
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Figure 3.4: max
x,y

(w − 1) as a function of t, where w is the solution of the IVP (2.1)–(2.4), (3.2),

(3.3) with ε = 10−14.

0.01
ε=0.01 ε=0.01

Figure 3.5: 1-D slice of the bottom topographies (3.4), left, and (3.6), right. These plots are not to
scale.

In the final part of Example 2, we consider the situation in which the bottom hump is above
the water surface so that there is a disk-shaped island at the origin, see Figure 3.5 (right):

B(r) =





1.1, r ≤ 0.1,
11(0.2 − r), 0.1 < r < 0.2,
0, otherwise.

(3.6)

The computational domain is [−0.5, 0.5] × [−0.5, 0.5] and the initial data are given by

w(x, y, 0) =

{
1 + ε, −0.4 < x < −0.3,

max
{

1, B(
√

x2 + y2)
}

, otherwise,
u(x, y, 0) ≡ v(x, y, 0) ≡ 0. (3.7)

As one can see from Figure 3.8, where the computed water surface w is shown, the right-
going disturbance bends around the island while the general solution structure is quite similar
to the one obtained in the submerged plateau case. The major difference is that completely dry
states and states that change their status back and forth between dry and almost dry (at the
areas around the island) are now present. Nevertheless, the solution obtained by the proposed
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Figure 3.6: w component of the solution of the IVP (2.1)–(2.4), (3.4), (3.5) at small times on
2×200 ×200 (left column) and 2×400×400 (right column) grids.

positivity preserving central-upwind scheme remains consistent and stable. This demonstrates
the robustness of our method.

Example 3 — Saint-Venant System with Friction and Discontinuous Bottom

It is a well-known fact that more realistic shallow water models based on the Saint-Venant system
(1.1) should include additional friction and/or viscosity terms. In [10], such models were derived
from the Navier-Stokes equations for incompressible flows with a free moving boundary. Presence
of friction and viscosity terms guarantees uniqueness of the steady state solution, especially in
the case when the fluid propagates into a certain region and gradually occupies parts of initially
dry areas, as, for example, in Figure 3.10.

We consider the simplest model in which only friction terms, −κ(h)u and −κ(h)v, are added
to the RHS of the second and third equations in (1.1):





ht + (hu)x + (hv)y = 0,

(hu)t +
(
hu2 +

1

2
gh2
)

x
+ (huv)y = −ghBx − κ(h)u,

(hv)t + (huv)x +
(
hv2 +

1

2
gh2
)

y
= −ghBy − κ(h)v.

(3.8)

We numerically solve the system (3.8) on the domain [−0.25, 1.75] × [−0.5, 0.5], assuming that
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Figure 3.7: w component of the solution of the IVP (2.1)–(2.4), (3.4), (3.5) at larger times on
2×200 ×200 (left column) and 2×400×400 (right column) grids.

the friction coefficient is κ(h) = 0.001(1 + 10h)−1, and the bottom topography function has a
discontinuity along the vertical line x = 1 and is given by:

B(x, y) = 100y4 +





1, x < 0,

cos2(πx), 0 ≤ x ≤ 0.4,

cos2(πx) + 0.28(cos(10π(x − 0.5)) + 1), 0.4 ≤ x ≤ 0.5,

0.5 cos4(πx) + 0.28(cos(10π(x − 0.5)) + 1), 0.5 ≤ x ≤ 0.6,

0.5 cos4(πx), 0.5 ≤ x < 1,

0.28 sin(2π(x − 1)), 1 < x ≤ 1.5,

0, x > 1.5.

(3.9)

This topography B mimics a mountain river valley, which, together with the surrounding moun-
tains, is shown in Figure 3.9. We take the following initial data:

w(x, y, 0) =

{
max

{
1.8, B(x, y)

}
, x < 0,

B(x, y), x > 0,
u(x, y, 0) ≡ v(x, y, 0) ≡ 0, (3.10)

and implement solid wall boundary conditions. These data correspond to the situation when
the second of the three dams, initially located at the vertical lines x = −0.25 (the left boundary
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Figure 3.8: w component of the solution of the IVP (2.1)–(2.4), (3.6), (3.7) on 2×200 ×200 (left
column) and 2×400 ×400 (right column) grids.
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of the computational domain), x = 0, and x = 1.75 (the right boundary of the computational
domain), breaks down at time t = 0, the water propagates into the initially dry area x > 0, and
a stationary steady state is achieved after a certain period of time (this problem is a modification
of the 1-D test problem from [23]).
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Figure 3.9: River valley topography — three-dimensional view (left) and contour plot (right).

We apply the well-balanced positivity preserving central-upwind scheme to this initial-boundary
value problem (IBVP). The friction term in (3.8) is discretized in a straightforward manner. No-
tice that this affects neither the well-balanced (since u ≡ v ≡ 0 at stationary steady states) nor
the positivity preserving (since the first equation has not been changed) properties of our scheme.
The solution of the IBVP (3.8)–(3.10) at times t = 0.3, 1, 4 and 7 is computed using two different
grids. At later times, the computed solution almost does not change, thus the solution at time
t = 7 can be viewed as a numerical stationary steady state. The solution (the water depth h) is
shown in Figure 3.10, where one can clearly see the dynamics of the fluid flow as it moves from
the region x < 0 into the initially dry area x > 0 and gradually settles down into a stationary
steady state. Notice that this state includes dry areas and therefore its computation requires a
method that is both well-balanced and positivity preserving on the entire computational domain.

Example 4 — Flows in Converging-Diverging Channels

In the last example, borrowed from [14] (see also [6]), we study water flow in open converging-
diverging channel of length 3 with symmetric constrictions of length 1 at the center. The exact
geometry of each channel is determined by its breadth, which is equal to 2yb(x), where

yb(x) =

{
0.5 − 0.5(1 − d) cos2(π(x − 1.5)), |x − 1.5| ≤ 0.5,
0.5, otherwise,

and d is the minimum channel breadth (in our numerical experiments we take d = 0.9 and
d = 0.6). Thus, the computational domain is [0, 3] × [−yb(x), yb(x)], see Figure 3.11 (left). We
take the following initial data:

w(x, y, 0) = max
{

1, B(x, y)
}
, u(x, y, 0) = 2, v(x, y, 0) = 0. (3.11)
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Figure 3.10: Solution (h) of the IBVP (2.1)–(2.4), (3.6), (3.7) on 2×200 ×200 (left column) and
2×400 ×400 (right column) grids.
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In the case of a flat bottom B(x, y) ≡ 0, these initial data correspond to the data considered in
[14] with the Froude number equals to 2. Both the upper and lower y-boundaries are reflecting
(solid wall), the left x-boundary is an inflow boundary with u = 2 and the right x-boundary is a
zero-order outflow boundary. Finally, the bottom topography, shown in Figure 3.12, is given by

B(x, y) = Bmax

(
e−10(x−1.9)2−50(y−0.2)2 + e−20(x−2.2)2−50(y+0.2)2

)
, (3.12)

where Bmax is a parameter.

d

Figure 3.11: Example 4: computational domain (left) and its unstructured triangulation (right).

0.5 1 1.5 2 2.5

−0.4

−0.2

0

0.2

0.4

Figure 3.12: Example 4: bottom topography for (d, Bmax) = (0.6, 1).

We apply the proposed central-upwind scheme on an unstructured triangular mesh obtained
from the structured one, outlined in Figure 3.1, using the mapping

(x, y) →
{

(x, (1 − (1 − d) cos2(π(x − 1.5)))y), |x − 1.5| ≤ 0.5,
(x, y), otherwise.

The resulting triangulation is shown in Figure 3.11 (right). We test our method on the following
4 sets of parameters: (d, Bmax) = (0.9, 0), (0.9, 1), (0.9, 2) and (0.6, 1). In every test, we run
the simulations on 2×200 ×200 and 2×400 ×400 grids until the steady state (which is, in this
case, not a stationary one) is reached at about t = 2. The obtained results are shown in Figures
3.13–3.16.
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Figure 3.13: Example 4: steady-state solution (w) for (d, Bmax) = (0.9, 0) on 2×200 ×200 (left)
and 2×400 ×400 (right) grids.

We first verify that in the flat bottom case, (d, Bmax) = (0.9, 0), the results obtained by the
central-upwind scheme are in good agreement with the solution computed by an alternative
finite-volume scheme, see Figure 3.13, and compare it with Figure 10 (e) in [14].

We then modify the IBVP by including two asymmetric elliptical Gaussian mounds in the
bottom topography, that is, by taking (d, Bmax) = (0.9, 1). This bottom function is similar
to the one used in [6], but in our case the water depth at the top of both mounds is zero.
The proposed central-upwind scheme successfully captures the complicated steady-state solution
emerging in this case, see Figure 3.14.
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Figure 3.14: Example 4: steady-state solution (w) for (d, Bmax) = (0.9, 1) on 2×200 ×200 (left)
and 2×400 ×400 (right) grids.

Next, we increase Bmax to 2, which models the presence of two Gaussian-shaped islands. Our
scheme still exhibits a superb performance in this case, as one can see in Figure 3.15, where we
show both the water surface (w) and depth (h) to better illustrate the structure of the computed
steady-state solution at/near the islands.
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Figure 3.15: Example 4: steady-state solution (w – top, h – bottom) for (d, Bmax) = (0.9, 2) on
2×200 ×200 (left) and 2×400×400 (right) grids.

Finally, we modify the shape of the channel by taking d = 0.6, and compute the steady-state
solution for Bmax = 1. The results, presented in Figure 3.16, are of the same high quality as in
the case of a wider channel studied above.
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