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We investigate quantum nonlocality of a single-photon entangled state under feasible measurement
techniques consisting of on-off and homodyne detections along with unitary operations of displace-
ment and squeezing. We test for a potential violation of the Clauser-Horne-Shimony-Holt (CHSH)
inequality, in which each of the bipartite party has a freedom to choose between 2 measurement
settings, each measurement yielding a binary outcome. We find that single-photon quantum nonlo-
cality can be detected when two or less of the 4 total measurements are carried out by homodyne
detection. The largest violation of the CHSH inequality is obtained when all four measurements
are squeezed-and-displaced on-off detections. We test robustness of violations against imperfections
in on-off detectors and single-photon sources, finding that the squeezed-and-displaced measurement
schemes perform better than the displacement-only measurement schemes.

I. INTRODUCTION

Ever since the monumental discovery by Bell that
quantum nonlocality (QN) can be tested experimentally
[1], quantum entanglement has captured interest of many
scientists, ultimately leading to the development of the
field of quantum information and computation [2].
Traditionally, quantum nonlocality has been investi-

gated in systems with two or more particles, following the
pioneering exposition by Einstein, Podolsky, and Rosen
[3], but in the early 90’s it has been realized that single-
photon states are also capable of exhibiting QN [4–6].
This came as a surprise, because single particle states
show no signs of entanglement when expressed as a simple
superposition of wavefunctions, and initially there were
doubts as to whether single-particle quantum nonlocality
is genuine. Subsequent theoretical [7–13] and experimen-
tal [14–20] investigations confirmed that single-particle
QN is indeed genuine and clarified that the entanglement
lies between the spatial modes, rather than between the
particles (a clear and concise summary can be found in
Ref. [10]). Furthermore, it has been shown that single-
photon entangled states are useful for quantum informa-
tion processing tasks [21–24].
Direct experimental verifications of single-photon

quantum nonlocality (SPQN) [18, 19] involved post-
selection and therefore were not decisive. For this reason,
the search for experimentally feasible tests of SPQN still
holds a merit. In fact, a direct verification of a less re-
strictive nonlocality measure called EPR-steering [25, 26]
has been demonstrated very recently [27, 28]. Further-
more, a robust experimentally-feasible SPQN test will

∗ papercrane79@gmail.com
† changsuk@kias.re.kr

be useful for checking the security of quantum key dis-
tribution protocols that use vacuum-one-photon qubits
[22, 29], as well as for making a non-trivial self-testing
statement [30].

In this work, we investigate the feasibility of test-
ing SPQN using widely-employed experimental measure-
ment techniques of on-off detection and homodyne mea-
surements. We test the violation of the Clauser-Horne-
Shimony-Holt (CHSH) [31] inequality using these detec-
tion techniques, further allowing unitary squeezing and
displacement operations to assist the measurements. The
latter are chosen because they have been demonstrated in
many quantum optics experiments. Because homodyne
measurements are generally more efficient than photon
counting, we pay close attention to whether they can
be used to detect QN. A survey of possible combina-
tions of Gaussian-assisted on-off and homodyne detec-
tions reveals that on-off detections are necessary to de-
tect QN, while the addition of homodyne measurements
is detrimental. No violation of the CHSH inequality is
observed when three or more homodyne measurements
are involved.

Within the scheme, the maximum violation is achieved
when all measurements are squeezed-and-displaced on-off
detections, giving a larger violation than the previously
reported displaced on-off detection scheme. We show
that additional squeezing operations provide robustness
against imperfections in the single-photon source and also
against detection losses. The remainder of this paper is
organized as follows. Sect. II describes our scheme for
testing QN, including measurement strategies and ana-
lytic formulae involved. Whether QN can be observed
in various scenarios within the scheme is reported in
Sect. III and robustness of violations against imperfec-
tions are treated in Sect. IV. We conclude with a discus-
sion in Sect. V.
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II. SCHEMES FOR TESTING QUANTUM

NONLOCALITY

As mentioned above, we will focus on two experimen-
tally feasible measurement techniques, on-off detection
and homodyne measurement, assisted by two unitary
(Gaussian) operations, displacement and squeezing. The
single-photon state is chosen to be

|ψ〉 = 1√
2
(|1〉A|0〉B + |0〉A|1〉B) . (1)

The Bell-type scheme for detecting SPQN is illustrated in
Fig. 1: two spatially separated parties Alice and Bob per-
form a set of possible measurementsMA andMB, respec-
tively. We consider two-types of measurements denoted
M1 and M2, which we take to be Gaussian operation-
assisted on-off and homodyne measurements respectively.
We focus on the case in which each party has two mea-
surement settings with binary outcomes.

Signal

+1/-1 +1/-1

Alice Bob

M1 M2

LO

Signal
ÛG ÛG

MA MB

FIG. 1. Schemes for testing single-photon quantum nonlo-
cality using feasible measurement setups. MA (MB) denote
possible measurement settings of Alice (Bob), and +1/ − 1
denote their measurement outcomes. MA,B can be either
an on-off (M1) or a homodyne detection (M2), assisted by

Gaussian-operations. ÛG denotes a Gaussian operation com-
prised of displacement and/or squeezing, and LO denotes a
local oscillator (strong laser field).

Let us denote Alice’s (Bob’s) measurements by Am

(Bm) with eigenvalues ∈ {+1,−1} and the corresponding
measurement settings am (bm) ∈ {1, 2}. The ‘amount’ of
QN can be measured by the degree of violation of the
CHSH inequality [31]

S = |E(A1B1) + E(A1B2) + E(A2B1)− E(A2B2)| ≤ 2,

(2)

where E(AmBn) is the expectation value of the operator
product AmBn, that is, 〈AmBn〉.

A. Measurement strategies

An on-off detector measures the presence (on) or ab-
sence (off) of photons and is generally not able to resolve
the number of photons. To test the CHSH inequality, we
allocate a value 1 to the on (click) events and -1 to the off

(no-click) events. Accordingly, the on-off detection oper-

ator can be written as Ô ≡
∑∞

n=1 |n〉〈n| − |0〉〈0| = Î −
2|0〉〈0|. The effects of Gaussian operations can be taken

into account by changing the operator to Ô′ = Û †
GÔÛG

A (balanced) homodyne detector measures the inten-
sity difference between the two output modes produced
by combining the signal and local oscillator fields us-
ing a 50:50 beam splitter (see Fig. 1). The resulting
photoelectric current is related to the expectation value
of a field quadrature operator via the result 〈X̂θ〉 =

∆I/(
√
2|αLO|), where ∆I is the intensity difference, αLO

is the amplitude of the local oscillator field (a laser field),
and θ is the phase of the local oscillator [32]. To adopt
this detection technique in the CHSH scheme, one must
subject an outcome to a binary binning process: when
a measurement outcome falls within a certain region,
Z+, on the real line we assign a value +1, whereas if it
falls in the rest of the real line, Z−, we assign a value
−1. We can thus define a homodyne-binning opera-
tor X̂θ ≡ (

∫

Z+
−
∫

Z−
)|xθ〉〈xθ |dxθ. For pure homodyne

measurements, we adopt the center-binning convention
Z+ = [−z, z] (Z− = (−∞,∞) − Z+) [33]. Then a gen-
eral Gaussian operation shifts, rescales, and rotates the
profile.
To see this, we explictly look into how a homodyne

distribution hρ(xθ) for a quantum state ρ changes under

a general Gaussian operation ÛG = D̂(−α)Ŝ(ξ), where
−α is a complex displacement amplitude and ξ = reiϕ

is a complex squeezing parameter. Using the relation
between the characteristic function Cρ(λ) ≡ tr[ρD̂(λ)]
and homodyne distribution [34],

hρ(xθ) =
1√
2π

∫ ∞

−∞
dkei

√
2kxθCρ(λ = −ikeiθ), (3)

and CÛGρÛ†

G

(λ) = Cρ(λ cosh r + λ∗eiϕ sinh r)eλ
∗α−λα∗

[35], we obtain

hÛGρÛ†

G

(xθ) =
1

s
h(
xφ + δ

s
), (4)

where

δ =
αe−iθ + α∗eiθ√

2
,

s =
√

cosh(2r)− sinh(2r) cos(ϕ− 2θ),

φ = θ − arctan

[

sinh r sin(ϕ− 2θ)

cosh r − sinh r sin(ϕ− 2θ)

]

. (5)

The displacement shifts the center of the profile, and the
squeezing operation rotates and rescales the profile. It
yields

tr(ÛGρÛ
†
GX̂θ) =

(

2

∫ (z+δ)/s

(−z+δ)/s

−
∫ ∞

−∞

)

dxφhρ(xφ), (6)

indicating that we can incorporate the effects of the
Gaussian operation by setting a proper phase angle and
modifying the integration region.
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B. Expectation values of the correlation operators

To evaluate the correlation function S in Eq. (2), one
needs to calculate the four expectation values E(AmBn),
the functional form of which will be provided in this
subsection. There are four-types of correlation func-
tions depending on whether Am and Bn correspond to
homodyne-binning or on-off measurements. Following
the notations in the previous subsection, the four pos-
sible correlation functions can be written as

E(A1B1) = 〈ψ|Û †a
G ÔaÛ

a
G ⊗ Û †b

G ÔbÛ
b
G|ψ〉

≡ E11(α, β, ξa, ξb), (7a)

E(A1B2) = 〈ψ|Û †a
G ÔaÛ

a
G ⊗ Û †b

G X̂
b
θÛ

b
G|ψ〉

≡ E12(α, ξa, z3, z4), (7b)

E(A2B1) = E12(β, ξb, z1, z2), (7c)

E(A2B2) = 〈ψ|Û †a
G X̂a

θ Û
a
G ⊗ Û †b

G X̂
b
θÛ

b
G|ψ〉

≡ E22(z1, z2, z3, z4), (7d)

where the operators are given by Û †
GÔÛG = Î −

2Û †
G|0〉〈0|ÛG and Û †

GX̂θÛG = 2
∫ z2
z1
dxφ|xφ〉〈xφ| − Î, and

the input state |ψ〉 is given in Eq. (1). The subscripts 1
and 2 refer to (Gaussian-assisted) on-off and homodyne
measurements respectively. The subscript (superscript)

attached to ξ, Ô (ÛG, X̂θ) refer to Alice (a) and Bob
(b), while the displacement amplitudes of Alice and Bob
are denoted by α and β respectively.

All results in this work have been obtained by nu-
merically optimizing (maximizing) the CHSH correla-
tion S, as a function of squeezing ξ, displacement α,
and integration interval [z1, z2] parameters. For ex-
ample, when each party uses both the homodyne and
on-off schemes, S is a function of 14 real parameters
(α, β, ξa, ξb, z1, z2, φ1, z3, z4, φ2), which is optimized.

III. VIOLATION OF THE CHSH INEQUALITY

As we have mentioned in the introduction, homodyne
measurements enjoy significantly higher efficiencies than
on-off detectors in general. It is thus easier to close the
detection loophole when a scheme involves more homo-
dyne detectors than on-off detectors. For this reason
we start from the case in which all measurements are
homodyne and decrease the number of homodyne mea-
surements in subsequent subsections: (A) 4 homodyne
measurements, (B) 3 homodyne and 1 on-off, (C) 2 ho-
modyne/2 on-off, (D) 1 homodyne/3 on-off, (E) 4 on-off
detections. Our calculation shows that the violation of
the CHSH inequality occurs only in cases (C), (D), and
(E). That is, when there are 2 or less homodyne measure-
ments involved. The maximum values are obtained when
there are small amounts of displacement and squeezing.

A. 4 homodyne measurements

In this case, Alice and Bob perform homodyne mea-
surements only. The measurement operators are A1 =
M1(z

a
1 , z

a
2 , φ

a) and A2 = M2(z
′a
1 , z

′a
2 , φ

′a) for Alice and
B1 = M2(z

b
1, z

b
2, φ

b) and B2 = M2(z
′b
1 , z

′b
2 , φ

′b) for Bob.
Numerical optimization indicates that QN cannot be
demonstrated using this measurement scheme. In the
sign-binning case, (Z+ = (−∞, 0]), the measurement op-

erator reduces to X̂φ =
√

2/π(cosφσx + sinφσy), and it
is quite simple to see that there can be no violation of
the CHSH inequality (this result was also found indepen-
dently by some of us in Ref. [36]) because of the factor
√

2/π [37, 38]. Our results indicate that a more general
‘off-center’ binning strategy does not change this result.

B. 3 homodyne measurements

We choose Alice as the one who performs the only on-
off measurement. Thus the measurement operators are
given by A1 =M1(α, ξa) and A2 =M2(z

a
1 , z

a
2 , φ

a) for Al-
ice and B1 =M2(z

b
1, z

b
2, φ

b) and B2 =M2(z
′b
1 , z

′b
2 , φ

′b) for
Bob. Equations (7b) and (7d) along with numerical opti-
mization reveal that no violation of the CHSH inequality
occurs.

C. 2 homodyne measurements

There are two possible scenarios: i) one party uses
Gaussian-assisted on-off detection only, while the other
party uses homodyne binning strategy only; ii) Each
party uses both types of measurements.

1. Case i

Alice’s measurement operators are A1 =
M1(α, ξa), A2 = M1(β, ξb), and Bob’s measurement
operators are B1 =M2(z

b
1, z

b
2, φ

b), B2 =M2(z
′b
1 , z

′b
2 , φ

′b).
Equations (7b) and (7c) along with numerical opti-
mization yield a maximum value of S ≈ 2.126 when
the parameters are set to: α = −0.815 − i0.171,
ξa = −0.332ei0.413, β = −0.155 + i0.818,
ξb = 0.332ei0.374, zb1 = −0.139, zb2 = 5.237, φb = −0.589,
z′b1 = 0, z′b2 = 8.256, and φ′b = 0.982.

2. Case ii

The measurement operators are given by A1 =
M1(α, ξa), A2 = M2(z

a
1 , z

a
2 , φ

a) for Alice and B1 =
M1(β, ξb), B2 = M2(z

b
1, z

b
2, φ

b) for Bob. We find a maxi-
mum value of S ≈ 2.231 when the parameters are set to:
α = 0.264 + i0.578, ξa = 0.24e−i0.858, za1 = −11.7, za2 =
0.143, φa = −0.55, β = 0.153− i0.617, ξb = 0.24ei0.486,
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zb1 = 0.143, zb2 = 9.7, and φb = 0.363. We note that a
similar violation (≈ 2.25) has been found for the 2-photon
equivalent of our entangled state in Ref. [39], although
Gaussian operations were not included. It would be in-
teresting to see how much the violation can be enhanced
with the help of displacement and squeezing in that case.

D. 1 homodyne measurement

The measurements are A1 = M1(α, ξa) and A2 =
M2(z

a
1 , z

a
2 , φ

a) for Alice and B1 = M1(β, ξb) and B2 =
M1(β

′, ξ′b). Equations (7a-c) along with numerical op-
timization yield a maximum value of S ≈ 2.557 when
the parameters are set to: α = 0.0, ξa = 0.0, za1 =
−11.5, za2 = 0.0, φa = −0.146, β = −0.344 + i0.051,
ξb = −0.099e−i0.293, β′ = 0.344 − i0.151, and ξ′b =
−0.099e−i0.293.

E. 0 homodyne measurement

We first consider the displacement-only scenario. Alice
(Bob) can choose between two displacement amplitudes α
(β) and α′ (β′). We find violations of the CHSH inequal-
ity with the maximum correlation value as large as 2.688,
which is obtained for the parameters |α| = |β| ≈ 0.165,
|α′| = |β′| ≈ 0.563, φα ≈ −3.395, φβ ≈ 2.888, and
φα′ = φβ′ ≈ −0.253. The same result has been reported
in Ref. [40].
Next, considering local squeezing only, we find no vi-

olation of the CHSH inequality. However, using both
the displacement and squeezing, we observe a larger vi-
olation, which is also more robust against source- and
detection-inefficiencies as we show in the next section.
Displacement and squeezing operations have been shown
to be helpful for detecting the violation of two-mode
squeezed state with on-off detectors in Ref. [41], and fur-
thermore single-mode squeezing was shown to be useful
for protecting non-Gaussian states from a loss channel
[42, 43]. Let us discuss the ideal case first. Using Eqs. (7)
and numerical optimization, we find that S ≈ 2.782 at
ξa = ξb = 0.032, ξ′a = ξ′b = 0.243, α = β ≈ i0.186, and
α′ = β′ ≈ −i0.642. Compared to the case with displace-
ment alone, the maximum correlation value has moved
closer to the Tsirelson bound 2

√
2 ≈ 2.828, which is the

upper limit of the CHSH correlations allowed by quantum
mechanics. The squeezing parameters r = 0.032, 0.243
correspond to 0.28, 2.11 dB, respectively, which lie within
the experimentally achievable limit.

IV. ROBUSTNESS AGAINST IMPERFECTIONS

To test the robustness of the violations found in the
previous section, we consider two types of imperfections:
photon losses in on-off detections and noise in the single-
photon source. Imperfections in homodyne measure-

ments are neglected for simplicity. We also test the role of
squeezing by comparing the maximum value of the CHSH
correlation for both the squeezed-and-displaced and the
displacement-only cases.

The effects of losses in on-off detection can be rep-
resented by a two-component positive-operator-valued
measure Π̂0 =

∑

n(1 − η)n|n〉〈n| (no click) and Π̂1 =

1̂− Π̂0 (click), where η is the detection efficiency [44, 45].
To describe the efficiency of the single-photon source, we
adopt a simple model in which an incoherent mixture of
the vacuum component is added: p|1〉〈1|+ (1− p)|0〉〈0|.

1. 2 homodyne measurements

Let us denote the maximum value of the CHSH cor-
relation as S

(2i)
SDO (S

(2ii)
SDO) and S

(2i)
DO (S

(2ii)
DO ), where the

subscripts refer to squeezed-and-displaced on-off (SDO)
and displaced on-off (DO) schemes. The superscript i (ii)
refers to the case i (ii) in Sec. III. Figure 2 compares the
two cases as functions of the detection efficiency η, show-
ing that quantum nonlocality of the single-photon entan-
gled state can be verified with a finite detection efficiency.
For case i (two homodyne by one party), violations can
only be observed when both squeezing and displacement
are performed, while for case ii, the displacement-only
scenario also shows violation although the values are
lower than the squeezed-and-displaced scenario.

!!"#
!$ !"

!"#
!$ !"

!"# !"$ %"!
!

&"!

&"&
"

!!"#
!$ %%"

!"#
!$ %%"

!"# !"$ %"!
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&"!

&"&
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(a) (b)

FIG. 2. Maximum values of the CHSH correlation as func-
tions of the detection efficiency for the 2-homodyne case:
(a) One party uses two Gaussian-assisted on-off detection,
while the other party uses homodyne binning strategies only.
(b) Each party uses both types of measurements. The solid
(red) curves correspond to the squeezed-and-displaced cases,
whereas the dashed (blue) curves are for the displacement-
only case.

The effects of single-photon source efficiency p and the
detection efficiency are depicted in Fig. 3. The lower
bounds for observing quantum nonlocality are located at

η ≈ 0.91 and p ≈ 0.942 for S
(2i)
SDO, at η ≈ 0.905 and

p ≈ 0.940 for S
(2ii)
DO , and at η ≈ 0.870 and p ≈ 0.908 for

S
(2ii)
SDO.
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(a)

(b)

FIG. 3. Maximum values of the CHSH correlation as func-
tions of the detection efficiency η and the source efficiency p
for the 2-homodyne cases: (a) One party uses two Gaussian-
assisted on-off detection, while the other party uses homo-
dyne binning strategies only. (b) Each party uses both types
of measurements. Squeezed-and-displaced schemes perform
better than the displacement-only schemes in both cases.

2. 1 homodyne measurement

The maximum values of the CHSH correlation are de-
noted S

(1)
SDO and S

(1)
DO. Figure 4 compares the two as

functions of the detection efficiency η, showing a similar
behaviour to the 2-homodyne case: higher violation is
observed with extra squeezing. Figure 5 plots the max-
imum values for the two cases as functions of both the
detection and source efficiencies. A slightly larger area of
violation is observed for the squeezed-and-displaced case.

FIG. 4. Maximum values of the CHSH correlation as a func-
tion of the detection efficiency for the 1-homodyne case. The
solid (red) curve is for the squeezed-and-displaced on-off de-
tection scheme, whereas the dashed (blue) curve is for the dis-
placed on-off detection scheme. The squeezed-and-displaced
scheme performs slightly better than the displacement-only
scheme.

FIG. 5. Maximum values of the CHSH correlation as
functions of the detection- and source-efficiencies for the
1-homodyne case: (a) the squeezed-and-displaced on-off
detection scheme and (b) the displaced on-off detection
scheme. The squeezed-and-displaced scheme has a slightly
lower bound for both efficiencies than the displacement-only
scheme.

3. 0 homodyne measurements

Let us denote the maximum values of the CHSH corre-
lation as S

(0)
SDO and S

(0)
DO. One more (Gaussian-assisted)

on-off detection has been added to the measurement
scheme, so one would expect the effect of detection ef-
ficiency to be more detrimental. This expectation can
be verified by comparing the slopes of the curves in
Figs. 4 and 6. The slopes in the 1-homodyne case are
indeed shallower. However, all in all, the 0 homodyne-
measurement scheme is more robust against imperfec-
tions as can be verified by comparing Fig. 5 and Fig. 7:
In the squeezed-and-displaced case, the lower bounds for
observing quantum nonlocality are located at η ≈ 0.82
and p ≈ 0.85 for the 1-homodyne scheme, and at η ≈ 0.78
and p ≈ 0.8 for the 0-homodyne scheme. In the displace-
ment only case, the corresponding bounds are located
at η ≈ 0.83, p ≈ 0.855 and η ≈ 0.825, p ≈ 0.83 (the
same bound for η was also obtained in Ref. [46], and the
bounds for the W-state input were found in Ref. [47]) .
This behaviour can be understood as a result of higher
maximum values of the correlation.
As for the effects of an extra squeezing operation, we

see that the bounds have moved from (η ≈ 0.825, p ≈
0.83) to (η ≈ 0.78, p ≈ 0.8). Compared to the 1-
homodyne case, the squeezing adds significant robustness
to the testing scheme against source and detector ineffi-
ciencies.

V. SUMMARY AND DISCUSSION

We have investigated the feasibility of demonstrating
quantum nonlocality of a single-photon entangled state
using on-off and homodyne measurements assisted by lo-
cal Gaussian operations, i.e., displacement and single-
mode squeezing operations. We have found that the
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FIG. 6. Maximum values of the CHSH correlation as a func-
tion of the detection efficiency for the 0-homodyne case. The
solid (red) curve is for the squeezed-and-displaced on-off de-
tection scheme, whereas the dashed (blue) curve is for the dis-
placed on-off detection scheme. The squeezed-and-displaced
scheme performs better than the displacement-only scheme.

FIG. 7. Maximum values of the CHSH correlation as func-
tions of the detection- and source-efficiencies for the 0-
homodyne case: (a) the squeezed-and-displaced on-off detec-
tion scheme and (b) the displaced on-off detection scheme.
The squeezed-and-displaced scheme has significantly lower
bounds for both inefficiencies than the displacement-only
scheme.

violation of the CHSH inequality can be demonstrated
when there are two or less homodyne-measurement in-
volved (out of 4 total measurements). The maxi-
mum CHSH correlation values are: S ≈ 2.231 for
two homodyne-measurement case, S ≈ 2.557 for one
homodyne-measurement case, and S ≈ 2.782 for the 0
homodyne-measurement case. Previously reported max-
imum value was at S ≈ 2.688 using on-off measurements
with displacement operations only. Our result shows that
the additional single-mode squeezing operations enhance
the violation. Table I summarizes our finding for all pos-
sible measurements, displaying the maximum achievable
CHSH correlations.

We have further investigated the robustness of the
nonlocality-testing schemes against imperfections in de-
tection and source preparation. In those cases in which
quantum nonlocality could be observed, we found that
the single-mode squeezing operation improves the ro-
bustness with respect to both the detection efficiency,
η, and the single-photon source efficiency, p. The im-

TABLE I. Testing single-photon entangled states using Ho-
modyne Detection (HD) and On-off Detection with displace-
ment (D) operation and single-mode squeezing (S) operation,
in CHSH inequality.

Alice (A1, A2) Bob (B1, B2) CHSH

HD HD ≤ 2

HD HD, On-off with D & S ≤ 2

HD On-off with D ≤ 2

HD On-off with D & S 2.126

HD, On-off with D HD, On-off with D 2.166

HD, On-off with D & S HD, On-off with D & S 2.231

HD, On-off with D On-off with D 2.543

HD, On-off with D & S On-off with D & S 2.557

On-off with D On-off with D 2.688

On-off with D & S On-off with D & S 2.782

provements were relatively small for the 1 homodyne-
measurement case, but quite significant for the 0
homodyne-measurement scheme. In the latter scheme,
the improvements in the bounds were from η ≈ 0.825 to
η ≈ 0.78 and p ≈ 0.83 to p ≈ 0.8. The observed increase
in violation and robustness can be explained as follows.
In the 0 and 1 photon manifold, any measurement can
be represented as a mixture of the identity and three
Pauli operators. The on-off detection in our scheme cor-
responds to the σz operator and the effect of displacement
and squeezing is to rotate this operator in the operator
space. By choosing the displacement and squeezing am-
plitudes carefully, one can therefore maximize the CHSH
violation within the measurement setting.

The required numbers are within reach of state-of-the-
art techniques. Superconducting transition-edge sensors
offer single-photon detection with an efficiency as high
as 95% at 1,550 nm [48] whereas a resonantly driven
quantum dot in a micropillar can generate near-perfect
single photons [49]. Squeezing, the more difficult of
the two operations, has also been demonstrated with a
high-fidelity in Ref. [50], based on which we expect that
r = 0.24 ≈ 2.1dB to be implemented with more than
90% fidelity. At this point, a discussion on the fidelity of
the Gaussian operations is perhaps in order. We have not
studied the effects of imperfections in the operations in
this work, but they will certainly play an important role
in actual experiments. This issue will be best addressed
in more specialized works that have specific implementa-
tions in mind, but some general features can be postu-
lated. Firstly, given that the role of these operations are
to ‘rotate’ the effective spin operators (when combined
with an on-off detection), possible non-Gaussianity need
not necessarily be harmful. Instead depending on actual
implementations they could help enlarge the achievable
effective spin-operator space and thus achieve a larger vi-
olation than those reported in this work. Secondly, non-
unitarities in the operations are most likely to be detri-
mental as they signify departure from ideal spin measure-
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ments.

Potential future works include checking whether gen-
eralizations to many settings with binary outcomes [51]
and/or two settings with ternary outcomes [52] (with 2
on-off detectors) are useful for detecting single-photon
quantum nonlocality with homodyne measurements. An-
other interesting avenue is to check what other experi-
mentally doable operations can be used to improve ro-
bustness against imperfections further or consider other
types of imperfections such as dark-counts in on-off de-

tectors and imperfections in Gaussian operations.
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