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CONVERGENCE ANALYSIS OF AN ADAPTIVE INTERIOR
PENALTY DISCONTINUOUS GALERKIN METHOD

R. H. W. HOPPE∗† , G. KANSCHAT‡ , AND T. WARBURTON§

Abstract. We study the convergence of an adaptive Interior Penalty Discontinuous Galerkin
(IPDG) method for a 2D model second order elliptic boundary value problem. Based on a residual-
type a posteriori error estimator, we prove that after each refinement step of the adaptive scheme we
achieve a guaranteed reduction of the global discretization error in the mesh dependent energy norm
associated with the IPDG method. In contrast to recent work on adaptive IPDG methods [29], the
convergence analysis does not require multiple interior nodes for refined elements of the triangulation
and thus leads to a more efficient adaptive scheme. In fact, it will be shown that bisection of elements
is sufficient. The main ingredients of the proof of the error reduction property are the reliability and
a perturbed discrete local efficiency of the estimator, a bulk criterion that takes care of a proper
selection of edges and elements for refinement, and a perturbed Galerkin orthogonality property
with respect to the energy inner product. Results of numerical experiments are given to illustrate
the performance of the adaptive method.

1. Introduction. During the past decade, discontinuous Galerkin (DG) meth-
ods have emerged as a powerful algorithmic tool in the numerical solution of boundary
and initial-boundary value problems for partial differential equations (PDE) (cf., e.g.,
[15, 16] and the references therein). For second order elliptic problems, one may
distinguish between primal schemes and mixed methods. Primal schemes rely on
augmenting the elliptic operator by an appropriate penalization of the discontinuous
nodal shape functions. On the other hand, in mixed methods the second order PDE
is reformulated as a system of first order PDEs for which suitable numerical fluxes
are designed. The most prominent primal schemes are Interior Penalty Discontinuous
Galerkin (IPDG) methods, whereas a widely used class of mixed techniques is given
by the Local Discontinuous Galerkin (LDG) methods. Both IPDG and LDG methods
have been intensively studied with regard to an a priori error analysis in terms of error
estimates for the global discretization error (see, e.g., [4, 12, 22, 27]).

The a posteriori analysis of finite element methods (FEM) is in some state of
maturity as documented by a series of monographs that have been published in recent
years [1, 5, 6, 19, 33, 38]. As far as DG methods are concerned, a posteriori error
estimators have been developed and analyzed for elliptic problems in H1 in [7, 26, 28,
34, 35], for elliptic problems in H(curl) in [23, 24], and for the Stokes problem in [25].

In this paper, we will be concerned with a convergence analysis of an adaptive
IPDG method in the sense that for a 2D second order elliptic model problem we
will prove guaranteed error reduction with respect to the problem related mesh de-
pendent energy norm. We note that for standard conforming P1 approximations of
elliptic problems the convergence analysis of adaptive finite element methods (AFEM)
has been initiated in [18] and further studied in [30, 31, 32], whereas the issue of op-
timal order of convergence has been addressed in [8] and [37]. Non-standard finite
element techniques such as mixed and nonconforming methods and edge element dis-
cretizations of Maxwell’s equations have been recently investigated in [9, 10, 11]. In
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the recent paper [29], a convergence analysis of symmetric IPDG methods has been
provided. In contrast to [29], our analysis does not require multiple interior nodes
for refined elements of the triangulation. In fact, we show that it suffices to refine by
bisection. Hence, we end up with a computationally more efficient adaptive scheme.

The paper is organized as follows: In section 2, we briefly introduce the IPDG. Sec-
tion 3 describes the adaptive loop consisting of the basic steps SOLVE, ESTIMATE,
MARK and REFINE and states the main convergence result. Section 4 recalls the
reliability of the estimator from [28] and establishes a perturbed discrete local ef-
ficiency, whereas section 5 is devoted to the proof of the error reduction property.
Finally, Section 6 contains a documentation of the results of numerical experiments
that illustrate the performance of the AIPDG.

2. The interior penalty discontinuous Galerkin method. We assume Ω ⊂
R2 to be a bounded, polygonal domain with boundary Γ = ∂Ω,Γ = ΓD ∪ ΓN ,ΓD ∩
ΓN = ∅. We adopt standard notation from Sobolev space theory and refer to (·, ·)k,D

and ‖ · ‖k,D, k ∈ N0, D ⊆ Ω, as the Hk(D)-inner product and associated norm, re-
spectively.

As a model problem, for given f ∈ L2(Ω), uD ∈ H1/2(ΓD), uN ∈ L2(ΓN ) we
consider Poisson’s equation with inhomogeneous Dirichlet and Neumann boundary
data

−∆u = f in Ω, (2.1a)

u = uD on ΓD, (2.1b)

∂nΓN
u = uN on ΓN , (2.1c)

whose variational formulation amounts to the computation of a solution u ∈ V :=
{v ∈ H1(Ω) | v|ΓD

= uD} such that

a(u, v) = (f, v)Ω + 〈uN , v〉ΓN
, v ∈ H1

0,ΓD
(Ω) , (2.2)

where a(u, v) :=
∫
Ω
∇u · ∇vdx.

For the discontinuous Galerkin approximation of (2.2) we further assume that TH(Ω)
is a simplicial triangulation of Ω which aligns with ΓD,ΓN on the boundary Γ. For
D ⊆ Ω, we denote by |D| the volume of D and by Πp(D), p ∈ N0, the linear space of
polynomials of degree p on D, and we refer to NH(D), EH(D) and TH(D) as the sets
of vertices, edges and elements in D. For T ∈ TH(Ω), hT stands for the diameter of
T , whereas for E ∈ EH(Ω) we denote by hE the length of E. Moreover, for an interior
edge E ∈ EH(Ω) such that E = T+ ∩ T−, T± ∈ TH(Ω), we refer to ωE := T+ ∪ T− as
the patch formed by the union of the elements sharing E as a common edge. Finally,
for a function g ∈ L2(D), D ⊂ Ω̄, the quantity ĝD stands for the integral mean of g
with respect to D, i.e., ĝD := |D|−1

∫
D
gdx.

We define the product space VH :=
∏

T∈TH(Ω) Πp(T ), p ∈ N, and introduce the bilinear
form aH(·, ·) : VH × VH → R according to

aH(uH , vH) :=
∑

T∈TH(Ω)

(∇uH ,∇vH)T

−
∑

E∈EH(Ω∪ΓD)

{
(∂nE

{uH} , [vH ])E + ([uH ]E , ∂nE
{vH})E

}
+

∑
E∈EH(Ω∪ΓD)

α
hE

([uH ]E , [vH ]E)E , (2.3)
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where the normal vector on E points from T+ to T− and with v±H := vH |T± on E

[vH ]E := v+
H − v−H E ∈ EH(Ω),

[vH ]E := vH |E , E ∈ EH(Γ),

{vH}E := 1
2 (v+

H + v−H), E ∈ EH(Ω),
{vH}E := vH |E , E ∈ EH(Γ).

The penalty parameter α > 0 has to be chosen properly. Its lower limit can be
computed for each cell by an inverse estimate on each cell. The correct formulation
would therefore involve the diameter of the cell perpendicular to E instead of hE ; for
shape regular meshes, we replace it by hE to simplify the presentation below. Ideally,
α on each edge E should be chosen separately as the sum of the values obtained from
both adjacent cells. We remark here, that the arguments below hold for such local
stabilization parameters as well.

Then, the (symmetric) interior penalty method amounts to the computation of
uH ∈ VH such that

aH(uH , vH) = `(vH) , vH ∈ VH . (2.4)

where

`(vH) := (f, vH)Ω + (uN , vH)ΓN
−

∑
E⊂ΓD

(
uD, ∂nvH − α

hE
vH)E . (2.5)

On VH , we introduce the mesh-dependent H1-norm defined by

‖vH‖2
1,H,Ω :=

∑
T∈TH(Ω)

‖∇vH‖2
T +

∑
E∈EH(Ω)

(
hE‖∂nE

{vH} ‖2
E + α

hE
‖[vH ]‖2

E

)
. (2.6)

As has been shown in [28], the bilinear form aH(·, ·) is bounded

|aH(uH , vH)| ≤ (1 + α) ‖uH‖1,H,Ω‖vH‖1,H,Ω, uH , vH ∈ VH (2.7)

and for sufficiently large α coercive with respect to the ‖·‖1,H,Ω-norm, i.e., there exist
positive constants αmin and γ such that for α ≥ αmin

aH(vH , vH)| ≥ γ ‖vH‖2
1,H,Ω , vH ∈ VH . (2.8)

It follows from (2.7) and (2.8) that for α ≥ αmin the IPDG (2.4) admits a unique
solution uH ∈ VH . Moreover, for such α the mesh-dependent energy norm

|||vH |||H,Ω := aH(vH , vH)1/2 , vH ∈ VH (2.9)

is equivalent to the ‖ · ‖1,H,Ω-norm

γ ‖vH‖2
1,H,Ω ≤ |||vH |||2H,Ω ≤ (1 + α) ‖vH‖2

1,H,Ω , vH ∈ VH . (2.10)

For a subset DH ⊂ TH(Ω) of the triangulation, ‖ · ‖1,H,DH
and ||| · |||H,DH

are defined
analogously.
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3. The adaptive loop and the main convergence result. An adaptive fi-
nite element method for the IPDG (2.4) consists of successive loops of the following
sequence

SOLVE → ESTIMATE → MARK → REFINE . (3.1)

Here, SOLVE stands for the numerical solution of (2.4) with respect to the given tri-
angulation TH(Ω). We remark that for this purpose efficient preconditioned iterative
solvers have been developed, analyzed and implemented (cf., e.g., [2, 20, 21, 26]).

The following residual-type a posteriori error estimator ηH has been introduced
and analyzed in [28]:

η2
H :=

∑
T∈TH(Ω)

η2
T +

∑
E∈EH(Ω)

η2
E . (3.2)

Here, ηT stands for the element residual

ηT := hT ‖f + ∆uH‖T , T ∈ TH(Ω). (3.3)

On the other hand, ηE summarizes the edge residuals

η2
E := η2

E,1 + η2
E,2 + η2

E,N + η2
E,D, (3.4)

given by

ηE,1 := h
1/2
E ‖∂nE

[uH ] ‖E , E ∈ EH(Ω), (3.5a)

ηE,2 :=
√

α
hE
‖[uH ]‖E , E ∈ EH(Ω), (3.5b)

ηE,N := h
1/2
E ‖uN − ∂nE

uH‖E , E ∈ EH(ΓN ), (3.5c)

ηE,D :=
√

α
hE
‖uD − uH‖E , E ∈ EH(ΓD). (3.5d)

The convergence analysis further invokes the data oscillations

osc2
H := osc2

H(f) + osc2
H(uD) + osc2

H(uN ), (3.6)

where

osc2
H(f) :=

∑
T∈TH(Ω)

osc2
T (f), (3.7a)

oscT (f) := hT ‖f − f̂T ‖T ,

osc2
H(uD) :=

∑
E∈EH(ΓD)

osc2
E(uD), (3.7b)

oscE(uD) :=
√

α
hE
‖uD − ûD

E‖E ,

osc2
H(uN ) :=

∑
E∈EH(ΓN )

osc2
E(uN ), (3.7c)

oscE(uN ) := h
1/2
E ‖uN − ûN

E ‖E .
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In the Step ’MARK’ of the adaptive loop, given a universal constant Θ, we choose
subsets MT ⊂ TH(Ω) and ME ⊂ EH(Ω̄) such that the following bulk criterion is
satisfied

Θ
∑

T∈TH(Ω)

η2
T ≤

∑
T∈MT

η2
T , (3.8a)

Θ
∑

E∈EH(Ω̄)

η2
E ≤

∑
E∈ME

η2
E . (3.8b)

The bulk criterion can be realized by a greedy algorithm.
As far as the data oscillations are concerned, for simplicity we assume that the sets
MT and ME selected by (3.8a) and (3.8b) are already rich enough such that there
exists a constant 0 ≤ ρ2 < 1 such that

osc2
h ≤ ρ2 osc2

H . (3.9)

We note that the data oscillations may be included in the bulk criterion as well to
guarantee (3.9). We refer to [31, 32] for details.
The refinement strategy in the final step REFINE of the adaptive loop is as follows:
If an element T ∈ TH(Ω) has been marked for refinement, it will be refined by longest
edge bisection. If an edge E ∈ EH(Ω), E = T+ ∩ T−, (resp. E ∈ TH(Γ), E = ∂T ∩ Γ)
has been marked, the triangles T± (resp. the triangle T ) will be refined by bisection.
We note that this refinement leads to a much more efficient adaptive scheme compared
to [29] where the refinement of a triangle requires multiple interior nodes based on
subsequent regular refinements.

The main result of this paper is a guaranteed error reduction of the global discretiza-
tion error measured in the mesh dependent energy norm associated with the IPDG
method.

Theorem 3.1. Let u ∈ V be the solution of (2.2) and suppose that uH ∈ VH

and uh ∈ Vh are the solutions of IPDG (2.4) with respect to the triangulation TH(Ω)
and the adaptively refined triangulation Th(Ω) generated according to the refinement
rules described before. Assume that (3.9) holds true. Then, for sufficiently large
penalization parameter α there exist positive constants %1 < 1 and C which only depend
on α,Θ and the shape regularity of the triangulations such that for eH := u−uH and
eh := u− uH there holds(

ah(eh, eh)
osc2

h

)
≤

(
ρ1 C
0 ρ2

) (
aH(eH , eH)

osc2
H

)
. (3.10)

The proof of Theorem 3.1 will be given in section 5 based on the reliability and a
perturbed discrete local efficiency of the estimator (3.2) which will be studied in the
following section.

4. Reliability and perturbed discrete local efficiency. The reliability of
the residual type a posteriori error estimator (3.2) has been established in [28] using
standard techniques from AFEM [38]. Here, we prove that it is also locally efficient in a
relaxed way. We will derive the main lemmas for the case of newest edge bisection [13,
14, 36].

Theorem 4.1. Let u ∈ V and uH ∈ VH be the solution of (2.2) and its IPDG
approximation (2.4) and let ηH and oscH be the residual error estimator and the data
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oscillations as given by (3.2) and (3.6), respectively. Then, for eH := u − uH there
holds

aH(eH , eH) . η2
H + osc2

H . (4.1)

Discrete local efficiency means that up to data oscillations the local contributions
of the estimator can be bounded from above by the energy norm of the difference
between the fine mesh and coarse mesh approximations on a refined triangle and the
patch ωE associated with a refined edge, respectively [18, 31]. In the framework of the
IPDG approximations under consideration, we can only prove a perturbed discrete
local efficiency in the sense that the upper bounds involve additional quantities in
terms of the fine mesh approximation. In particular, the following result holds true.

Theorem 4.2. Let u ∈ V and uH ∈ VH , uh ∈ Vh be the solution of (2.2) and its
IPDG approximations (2.4) with respect to TH(Ω) and Th(Ω), respectively. Moreover,
let ηH and oscH be the residual error estimator (3.2) and the data oscillations (3.6).
Then, there holds∑

T∈MT

η2
T +

∑
E∈ME

η2
E . ah(uh − uH , uh − uH) +

+
∑

E∈ME∩Eh(Ω)

α
hE
‖[uh]‖2

E +
∑

E∈ME∩Eh(ΓD)

α
hE
‖uD − uh‖2

E + osc2
H . (4.2)

Proof. The proof of (4.2) follows by collecting the estimates from the subsequent
series of lemmas.

Lemma 4.3. Let T ∈ TH(Ω) be a refined triangle such that T = T1 ∪ T2, Ti ∈
Th(Ω). Then, there holds

h2
T ‖f + ∆uH‖2

T . ah|T (uh − uH , uh − uH) + osc2
T (f)

+
∑

E∈EH(∂T∩Ω)

η2
E,2 +

∑
E∈EH(∂T∩ΓD)

η2
E,D +

∑
E∈EH(∂T∩ΓN )

osc2E(uN ). (4.3)

Proof. We denote by CRp(Ω; Th(Ω)), p ∈ N, the nonconforming Crouzeix-Raviart
finite element space where vh|T ′ ∈ Πp(T ′), T ′ ∈ Th(Ω), is uniquely determined by the
degrees of freedom ∫

E

vhqE ds, qE ∈ Πp−1(E), E ∈ Eh(T ′),

∫
T

vhqT ′ dx, qT ′ ∈ Πp−3(T ′).

For i = 1, 2, we choose ϕh ∈ Vh with ϕh|Ti
∈ Πp(Ti) and ϕh|T ′ ≡ 0, T ′ ∈ Th(Ω) \ {T},

such that

h2
Ti
‖f̂T + ∆uH‖2

Ti
= (f̂T + ∆uH , ϕh)Ti , (4.4a)

‖ϕh‖2
Ti

. h4
Ti
‖f̂T + ∆uH‖2

Ti
, (4.4b)

(qh, ϕh)E = 0, qh ∈ Πp−1(E), E ∈ Eh(∂T ). (4.4c)
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In particular, in case p ≤ 2 we choose ϕh as a linear combination of the basis functions
associated with the interior edge E ∈ Eh(int(T )), whereas for p ≥ 3 we choose ϕh as
a linear combination of the basis functions associated with int(Ti). Using (4.4a),
Green’s formula, we obtain

h2
T ‖f̂T + ∆uH‖2

T =
2∑

i=1

(f̂T + ∆uH , ϕh)Ti

=
2∑

i=1

(
− (∇uH ,∇ϕh)Ti

+ (f, ϕh)Ti
+ (f̂T − f, ϕh)Ti

)
, (4.5)

where we have used that

(∂nE
uH , ϕh)E = 0, E ∈ Eh(∂T ), p ≥ 1, (4.6a)

(∂nE
uH , [ϕh])E = 0, E ∈ Eh(int(T )), p ≥ 1. (4.6b)

On the other hand, ϕh is an admissible test function in the fine grid equation (2.4)
whence

2∑
i=1

(
(∇uh,∇ϕh)Ti

− (f, ϕh)Ti

)
(4.7)

+
∑

E∈Eh(∂T∩ΓD)

(uD, ∂nE
ϕh − α

hE
ϕh)E

−
∑

E∈Eh(∂T∩ΓN )

(uN , ϕh)E

−
∑

E∈Eh(T )

(
(∂nE

{uh} , [ϕh])E + ([uh], ∂nE
{ϕh})E

)
+

∑
E∈Eh(T )

α
hE

([uh], [ϕh])E = 0.

Adding (4.5) and (4.7) and observing again (4.6a)-(4.6b) as well as [uH ] = 0 on
7



E ∈ Eh(int(T )), it follows that

h2
T ‖f̂T + ∆uH‖2

T =
2∑

i=1

(
(∇(uh − uH),∇ϕh)Ti + (f̂T − f, ϕh)Ti

)
−

∑
E∈Eh(T )

(
(∂nE

{uh − uH} , [ϕh])E

+ ([uh − uH ], ∂nE
{ϕh})E

)
−

∑
E∈Eh(∂T∩Ω)

([uH ], ∂nE
{ϕh})E

+
∑

E∈Eh(∂T∩ΓD)

(uD − uH , ∂nE
ϕh − α

hE
ϕh)E

−
∑

E∈Eh(∂T∩ΓN )

(uN − ûN
E , ϕh)E

+
∑

E∈Eh(T )

α
hE

([uh − uH ], [ϕh])E

+
∑

E∈Eh(∂T\ΓD)

α
hE

([uH ], [ϕh])E .

(4.8)

In view of (4.4b), the inverse inequality and the trace inequalities imply that

‖∇ϕh‖2
Ti

. h2
Ti
‖f̂T + ∆uH‖2

Ti
, (4.9a)

‖[ϕh]‖2
E . h3

E ‖f̂T + ∆uH‖2
Ti
, E ∈ Eh(∂Ti), (4.9b)

‖∂nE
{ϕh} ‖2

E . hE ‖f̂T + ∆uH‖2
Ti
, E ∈ Eh(∂Ti). (4.9c)

Then, using (4.4b) and (4.9a)-(4.9c) straightforward estimation of the terms on the
right-hand side in (4.8) gives the assertion.

Lemma 4.4. Let E ∈ EH(Ω), E = T+ ∩ T−, T± ∈ TH(Ω), be a refined edge and
ωE := T+ ∪ T−. Then, there holds

hE‖∂nE
[uH ] ‖2

E .
∑

T±∈TH(ωE)

η2
T± +

∑
E′∈EH(ωE∩Ω)

η2
E′,2

+
∑

E′∈EH(∂ωE∩ΓD)

η2
E′,D +

∑
E′∈EH(∂ωE∩ΓN )

osc2E′(uN ). (4.10)

For a refined edge E ∈ EH(ΓN ) with E = ∂T ∩ ΓN , T ∈ TH(Ω) we have

hE‖uN − ∂nE
uH‖2

E . η2
T +

∑
E′∈EH(T∩Ω)

η2
E′,2. (4.11)

Proof. For the proof of (4.10) let us assume that E = T+ ∩ T−, T± ∈ TH(Ω). We
choose ϕH ∈ CRp(Ω; TH(Ω)) as a linear combination of the basis functions associated
with the edge E such that

hE‖∂nE
[uH ] ‖2

E = (∂nE
[uH ] , ϕH)E , (4.12a)

‖ϕH‖T± . h
3/2
E ‖∂nE

[uH ] ‖E , (4.12b)
(qE′ , ϕH)E′ = 0, qE′ ∈ Πp−1(E′), (4.12c)
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for any edge E′. Using the definition of ∂nE
[uH ], it follows that

(∂nE
[uH ] , ϕH)E = (4.13)

= (ν+
E · ∇u+

H , ϕH)E + (ν−E · ∇u−H , ϕH)E .

By Green’s formula, we find

(∇uH ,∇ϕH)T± = (4.14)

= −(∆uH , ϕH)T± +
∑

E′∈EH(∂T±)

(∂nE′uH , ϕH)E′ .

By (4.12c) we have

(∂nE′uH , ϕH)E′ = 0 , E′ ∈ EH(∂ωE) , (4.15)

whence

hE ‖∂nE
[uH ] ‖2

E = (4.16)
= (∂nE

[uH ] , ϕH)E = (∇uH ,∇ϕH)ωE
+ (∆uH , ϕH)ωE

.

On the other hand, since ϕH is an admissible test function in (2.4), we have

(∇uH ,∇ϕH)ωE
= (f, ϕH)ωE

+
∑

E′∈EH(∂ωE∩ΓN )

(uN , ϕH)E′−

−
∑

E′∈EH(∂ωE∩ΓD)

(uD, ∂nE′ϕH − α
h′E
ϕH)E′ +

+
∑

E′∈EH(ωE)

([uH ], ∂nE′ {ϕH})E′ −
∑

E′∈EH(∂ωE)

α
h′E

([uH ], [ϕH ])E′ , (4.17)

where we have used (4.15) and (4.12c) on E. Combining (4.16) and (4.17) results in

hE ‖∂nE
[uH ] ‖2

E = (f + ∆uH , ϕH)ωE

+
∑

E′∈EH(ωE\ΓD)

([uH ], ∂nE′ {ϕH})E′

−
∑

E′∈EH(∂ωE\ΓD)

α
h′E

([uH ], [ϕH ])E′

+
∑

E′∈EH(∂ωE∩ΓN )

(uN − ûN
E′ , ϕH)E′

−
∑

E′∈EH(∂ωE∩ΓD)

(uD − uH , ∂nE′ϕH − α
h′E
ϕH)E′ .

(4.18)

Observing (4.12b), the trace inequalities yield

‖[ϕH ]‖E′ . hE‖∂nE
[uH ] ‖E , E′ ∈ EH(∂ωE), (4.19a)

‖∂nE′ {ϕH} ‖E′ . ‖∂nE
[uH ] ‖E , E′ ∈ EH(∂ωE). (4.19b)

Taking advantage of (4.12b),(4.19a) and (4.19b), the assertion can be deduced by
straightforward estimation of the terms on the right-hand side in (4.18). The proof
of (4.11) follows by similar arguments.
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Lemma 4.5. Let E ∈ EH(Ω), E = T+ ∩ T−, T± ∈ TH(Ω), be a refined edge and
ωE := T+ ∪ T−. Then, there holds

α
hE
‖[uH ]|E‖2

E . ah|ωE
(uh − uH , uh − uH) +

∑
E′∈Eh(E)

α
h′E
‖[uh]‖2

E′ (4.20)

Likewise, if E ∈ EH(ΓD) is a refined edge such that E = ∂T ∩ ΓD, T ∈ TH(Ω), there
holds

α
hE
‖uD − uH‖2

E . ah|T (uh − uH , uh − uH)

+
∑

E′∈Eh(E)

α
h′E
‖uD − uh‖2

E′ + osc2
E(uD). (4.21)

Proof. For the proof of (4.20) choose ψ±H ∈ CRp(Ω; TH(Ω)) with supp(ψ±H) = T±
as a linear combination of basis functions associated with E such that

([uH ], ψ±H)E = ± 1
2‖[uH ]‖2

E , (4.22a)

‖ψ±H‖T± . h
1/2
E ‖[uH ]‖E . (4.22b)

We define ϕH ∈ VH by ϕH |T± = ψ±H and ϕH |T ≡ 0, T ∈ TH(Ω) \ {ωE}. Then, it
follows from (4.22a) that

α
hE
‖[uH ]|E‖2

E = α
hE

([uH ], [ϕH ])E . (4.23)

Since ϕH is an admissible test function in (2.4), we have

α
hE

([uH ], [ϕH ])E = (f, ϕH)ωE
− (∇uH ,∇ϕH)ωE

+
∑

E′∈EH(∂ωE∪{E})

(∂nE′ {uH} , [ϕH ])E′

+
∑

E′∈EH(∂ωE)∪{E}

([uH ], ∂nE′ {ϕH})E′

−
∑

E′∈EH(∂ωE)

α
h′E

([uH ], [ϕH ])E′

+
∑

E′∈EH(∂ωE∩ΓN )

(uN , ϕH)E′

−
∑

E′∈EH(∂ωE∩ΓD)

(uD, ∂nE′ϕH − α
h′E
ϕH)E′ .

(4.24)

On the other hand, (ϕH |T ′)T ′∈Th(Ω) is an admissible test function in the fine grid
10



equation (2.4). Hence, observing [ϕH ] = 0 and [uH ] = 0 on E′ ∈ Eh(int(T±)), we get

0 = (∇uh,∇ϕH)ωE
− (f, ϕH)ωE

−
∑

E′∈Eh(∂ωE∪{E})

(∂nE′ {uh} , [ϕH ])E′

−
∑

E′∈Eh(∂ωE∪{E})

([uh], ∂nE′ {ϕH})E′

−
∑

E′∈Eh(int(ωE)\{E})

([uh − uH ], ∂nE′ {ϕH})E′

+
∑

E′∈Eh(∂ωE∪{E})

α
h′E

([uh], [ϕH ])E′

−
∑

E′∈Eh(∂ωE∩ΓN )

(uN , ϕH)E′

+
∑

E′∈Eh(∂ωE∩ΓD)

(uD, ∂nE′ϕH − α
h′E
ϕH)E′ .

(4.25)

In view of (4.22b), the inverse inequality and the trace inequalities imply

‖∇ψ±H‖T± . h
−1/2
E ‖[uH ]‖E , (4.26a)

‖ψ±H‖E′ . ‖[uH ]‖E , E′ ∈ EH(ωE), (4.26b)

‖∂nE′ψ
±
H‖E′ . h−1

E ‖[uH ]‖E , E′ ∈ EH(ωE). (4.26c)

Combining (4.24),(4.25) and using (4.22b),(4.26a)-(4.26c), straightforward estimation
gives the assertion.
The proof of (4.21) can be established similarly.

5. Proof of the error reduction property. In the convergence analysis of
standard finite element methods [18, 31], the proof of the error reduction property
makes essential use of Galerkin orthogonality which in the framework of IPDG reads
as follows

ah(uh − uH , uh − uH) = ah(eH , eH) − ah(eh, eh). (5.1)

However, we measure the error eH with respect to the mesh dependent energy norm
aH(·, ·) associated with the coarse mesh TH(Ω) and hence, (5.1) can not be used di-
rectly. It is known from the convergence analysis of adaptive nonconforming finite
elements [10] or of mixed finite elements [11] that in the absence of Galerkin or-
thogonality convergence can be established provided some sort of perturbed Galerkin
orthogonality holds true. For the IPDG under consideration, we can rewrite (5.1)
according to

ah(uh − uH , uh − uH) =
(
1 + δh,H(eH)

)
aH(eH , eH) − ah(eh, eh), (5.2)

where in case aH(eH , eH) 6= 0 the perturbation term δh,H(eH) is given by

δh,H(eH) :=
ah(eH , eH)− aH(eH , eH)

aH(eH , eH)
. (5.3)

11



We would be able to conclude, if we can show that δh,H(eH) can be made sufficiently
small.

Lemma 5.1 (Perturbed Galerkin orthogonality). There exists a positive con-
stant C1 depending only on the local geometry of the triangulations such that for the
perturbation term δh,H(eH) there holds

δh,H(eH) ≤ C1

α
. (5.4)

Proof. From (2.3), it is obvious (see also (3.8) in [21]) that

ah(eH , eH) ≤ aH(eH , eH) +
∑

E∈EH(Ω)

α
hE
‖[uH ]‖2

E +
∑

E∈EH(ΓD)

α
hE
‖uD − uH‖2

E .

On the other hand, the local efficiency of the residual estimator (cf. [28]) tells us
that there exists a positive constant C1 depending only on the local geometry of the
triangulations such that

∑
E∈EH(Ω)

α
hE
‖[uH ]‖2

E +
∑

E∈EH(ΓD)

α
hE
‖uD − uH‖2

E ≤ C1

α
aH(eH , eH). (5.5)

Combining the two preceding estimates allows to conclude.
Proof of Theorem 3.1. The reliability, the bulk criterion, and the discrete local

efficiency infer the existence of a positive constant C2 depending only on γ,Θ and the
local geometry of the triangulations such that

aH(eH , eH) ≤ C2

(
ah(uh − uH , uh − uH) + osc2

H

+
∑

E∈Eh(Ω)

α
hE
‖[uh]‖2

E +
∑

E∈Eh(ΓD)

α
hE
‖uD − uh‖2

E

)
.

Using (5.2),(5.4) and (5.5) with h instead of H, we obtain the existence of a positive
constant C3 such that

aH(eH , eH) ≤ C2

(
1 +

C1

α

)
aH(eH , eH)−

(
C2 −

C3

α

)
ah(eh, eh) + C2 osc2

H ,

from which we deduce

ah(eh, eh) ≤
(
C2 −

C3

α

)−1 [((
1 +

C1

α

)
C2 − 1

)
aH(eH , eH) + C2 osc2

H

]
.

For α > C1C2 + C3, the error reduction property (3.10) results with

ρ1 :=
(
C2 −

C3

α

)−1 ((
1 +

C1

α

)
C2 − 1

)
< 1.
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Table 6.1
Decline of energy norm and data oscillation in terms of refinement step, polynomial degrees 1

and 4

P1 P4

l Ndof ‖el‖A oscl Ndof ‖el‖A oscl

0 36 2.81e-1 9.32e-2 180 6.07e-2 9.32e-2
1 114 1.98e-1 6.83e-2 570 3.83e-2 6.83e-2
2 252 1.39e-1 3.35e-2 960 2.60e-2 5.38e-2
3 630 9.53e-2 1.66e-2 1440 1.75e-2 3.35e-2
4 1428 6.48e-2 1.07e-2 2280 1.23e-2 2.28e-2
5 3180 4.42e-2 5.85e-3 3000 7.72e-3 1.71e-2
6 6714 3.00e-2 4.10e-3 4020 4.86e-3 1.15e-2
7 14076 2.08e-2 2.46e-3 5355 3.06e-3 8.41e-3
8 28368 1.43e-2 1.51e-3 6330 1.93e-3 6.20e-3
9 58461 9.91e-3 9.18e-4 7620 1.22e-3 4.31e-3

6. Computational results. In the following numerical experiments we used the
bisection algorithm, for all test cases, derived from the AFEM@Matlab implementation
[14].

We verify the suitability of our theoretical results using standard test cases
(see [10]). They are studies of the behavior of the algorithm in case of the stan-
dard singularities induced by a reentrant corner of the domain. The right hand side
is chosen to zero and therefore, data oscillations are only present on the the boundary
edges not adjacent to the singularity, where values of the analytical solutions are pre-
scribed. First, we study the L-shaped domain with Dirichlet data uD = 0 on the two
edges adjacent to the reentrant corner and Neumann data on the remaining bound-
ary. The refinement parameter is chosen as Θ = 0.6. Table 6.1 shows a decline of the
energy norm for this case by a factor of about 2/3 in each refinement step. This factor
is only slightly better for quartic shape functions, confirming that the reduction rate
depends mostly on Θ. Nevertheless, the meshes for P4 are growing much slower and
in both cases we obtain the optimal approximation rates in terms of Ndof, namely
N
−1/2
dof and N−2

dof . Data oscillation occurs only at the outer boundary and is negligible
in this case.

Next, we study the higher singularity of the slit domain. Here, Dirichlet boundary
conditions are used on the whole boundary. Table 6.2 shows that for Θ = 0.4, we
obtain again constant error reduction rates.

The solution in this example is highly singular and we expect that at least for
higher order polynomials, the refinement should be very local. Indeed, Figure 6.1
shows that the parameter Θ must be chosen carefully in order to obtain optimal
approximation with respect to the degrees of freedom, confirming results from [37] for
standard AFEM. Only the very small value of Θ = 0.1 is able to reproduce the optimal
convergence order of N−2. Figure 6.2 shows, that this corresponds asymptotically to
only adding 1/16th of the current number of cells in each step.

Even with the small size of Θ = 0.1, the optimal N -term approximation rate
is only obtained after several thousand degrees of freedom. Comparing Figures 6.1
and 6.2, we note that this corresponds to the fact that the bulk criterion refines much
faster than the asymptotic rate in its initialization phase. On the other hand, this
fast refinement allows the method to reach the asymptotic regime in only about 10
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Table 6.2
Decline of energy and data oscillation in terms of refinement step, polynomial degrees 1 and 4

P1 P4

l Ndof ‖el‖A oscl Ndof ‖el‖A oscl

0 18 8.83e-1 2.32e-1 90 5.16e-1 2.37e-1
1 48 6.90e-1 2.09e-1 165 4.39e-1 2.20e-1
2 138 5.76e-1 1.80e-1 285 3.61e-1 1.95e-1
3 219 4.86e-1 1.61e-1 690 3.03e-1 1.83e-1
...
18 54804 4.42e-2 3.59e-2 32400 2.27e-2 4.69e-2
19 76809 3.73e-2 3.21e-2 39630 1.91e-2 4.22e-2
20 106821 3.16e-2 2.88e-2 52605 1.59e-2 3.79e-2
21 149829 2.67e-2 2.57e-2 63480 1.34e-2 3.41e-2
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Fig. 6.1. Error versus number of degrees of freedom for the slit domain, quartic polynomials

steps. Figure 6.3 shows that the refinement for Θ = 0.1 is much more concentrated
at the central singularity, while Θ = 0.4 puts more weight in reducing the boundary
projection errors.
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Universitätsverlag, 2007.

[27] G. Kanschat and R. Rannacher. Local error analysis of the interior penalty discontinuous
Galerkin method for second order problems. J. Numer. Math. 10, 249–274, 2002.

[28] O. Karakashian and F. Pascal. A posteriori error estimates for a discontinuous Galerkin ap-
proximation of second-order elliptic problems. SIAM J. Numer. Anal. 41, 2374–2399, 2003.

[29] O. Karakashian and F. Pascal. Convergence of adaptive discontinuous Galerkin approxima-
tions of second-order elliptic problems. Preprint. Department of Mathematics, University
of Tennessee, 2007.

[30] K. Mekchay and R. Nochetto. Convergence of adaptive finite element methods for general
second order linear elliptic PDE. SIAM J. Numer. Anal. 43, 1803–1827, 2005.

[31] P. Morin, R.H. Nochetto, and K.G. Siebert. Data Oscillation and convergence of adaptive
FEM. SIAM J. Numer. Anal., 38, 466–488, 2000.

[32] P. Morin, R.H. Nochetto, and K.G. Siebert. Convergence of adaptive finite element methods.
SIAM REVIEW 44 631–658, 2002.
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