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Abstract

We derive the low-energy effective action for the spinning (GKP) string in AdS3 ×
S3 ×M4 where M4 = S3 × S1 or T 4. In the first case the action consists of two

O(4) non-linear sigma models which are coupled through their interaction with four

massless Majorana fermions (plus one free decoupled scalar). While in the second case

it consists of one O(4) sigma model coupled to four Majorana fermions together with

four free scalars from the T 4. We show that these models are classically integrable

by constructing their Lax connections.
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1 Introduction

String theory on AdS3 × S3 ×M4 with M4 = (S3 × S1, T 4) preserving 16 supercharges and

supported by pure Ramond-Ramond (RR) flux arises as the gravity side of the AdS3/CFT2-

correspondence.1 As in earlier incarnations of AdS/CFT there are strong hints of integrability,

both at the classical and quantum level [2], although much less is known on the CFT side. Sparked

by the discovery of the integrable structure, AdS3/CFT2 has recently enjoyed an increased

interest in the literature. While strings on AdS3 × S3 ×M4 have many similarities with strings

in AdS5×S5 and AdS4×CP3 there are nevertheless crucial differences. The biggest issue seems

to be the appearance of massless modes on the worldsheet which are difficult to deal with in

the standard approach to integrability. Nevertheless, if one focuses on just the massive modes

the Bethe equations and the exact S-matrix for these can be derived along similar lines as in

earlier AdS/CFT examples, see [3] for a review. Based on the algebraic curve technique the

first study of the integrable structure was initiated in [2] and later a full set of Bethe equations

was conjectured in [4] and the exact S-matrix in [5]. These conjectures passed a few initial tests

but the mixing of modes from the two S3 factors turned out to be problematic [6]. This was

subsequently addressed in [7, 8] and later confirmed to match with the tree-level worldsheet

S-matrix in [9].2 As in other integrable AdS/CFT examples the underlying symmetry can only

determine the Bethe equations up to overall scalar phase factors. The one-loop strong coupling

contribution to the phases was engineered in [11–13], see also [14, 15], and later generalized to

all orders in [16]. For the massless excitations the situation is, as mentioned, more complicated

and currently it is not known how to include them in the exact solution. However, by looking

at the decompactifying case where one S3 blows up, i.e. the AdS3 × S3 × T 4 limit, some first

steps were taken in [17].

In this paper we will take a somewhat different approach to trying to understand the in-

tegrable structures of the AdS3 × S3 ×M4 string. We will consider the spinning or Gubser-

Klebanov-Polyakov (GKP) string solution [18]. By performing a fluctuation analysis around the

solution it is known that the excitations come in both massive and massless [19,20] modes. Gen-

erally, the full Lagrangian describing all excitations is fairly involved. However, by restricting to

the low-energy sector, capturing the dynamics of the massless modes, the theory becomes much

simpler [21,22]. Since the full sigma model is believed to be integrable beyond the classical level,

the low-energy GKP string should inherit this property. This opens up new avenues for testing

the quantum integrability, see for example [23–25] for recent results in AdS4/CFT3.

1For the case of both NSNS and RR flux see [1].
2A mismatch appears at one loop (at least in the T 4 limit). This issue was resolved for AdS3×S3×T 4 with

the exact S-matrix conjectured in [10].
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For the simplest case of AdS5 × S5 the massless modes of the GKP string are described by

an O(6) sigma model [21] while the low-energy dynamics of the AdS4 × CP3 GKP string are

captured by a CP3 sigma model coupled to a Dirac fermion [22]. For the AdS3 × S3 × S3 × S1

case we will demonstrate that the low-energy dynamics of the GKP string is described by two

O(4) non-linear sigma models coupled to four Majorana fermions together with one decoupled

scalar,3

L =
1

2
ei
âeiâ +

1

2
ei
a′eia

′
+

1

2
∂iy∂

iy +
i

4
tr
(
Ψ̄ρi∂iΨ

)
− 1

16
(εâb̂ĉωi

b̂ĉ + 2
√
α δije

jâ) tr
(
Ψ̄ρiΨσâ

)
+

1

16
(εa

′b′c′ωi
b′c′ + 2

√
1− α δijeja

′
)tr
(
Ψ̄ρiσa

′
Ψ
)
, (1.1)

where primed and hatted indices refer to the first and second S3 factor respectively. Here eâ

and ea
′

are the vielbeins of the two S3’s and ωâb̂, ωa
′b′ the corresponding spin connections,

while the parameter 0 ≤ α ≤ 1 controls the relative size of the two S3’s. The four Majorana

fermions ΨI have been grouped into a 2× 2 matrix Ψ = σIΨI . The Pauli matrices σâ and σa
′

and the trace act in this space while the ρi are the 2d gamma-matrices acting on the spinor

indices only. See section 4.3 for more details. Note that the presence of δij in the coupling to the

fermions explicitly breaks the 2d Lorentz invariance. This is a novel property as compared to

the AdS5×S5 and AdS4×CP3 strings whose low-energy dynamics are described by relativistic

sigma models. Note also the absence of Ψ4-terms which were present in the AdS4 ×CP3 case.

Despite these differences we will show that this model is also integrable, at least at the classical

level.

The structure of the paper is as follows. We begin by describing the structure of the AdS3×
S3 × S3 × S1 Green-Schwarz string action up to fourth order in fermions in section 2. We then

introduce suitable coordinates and derive the low-energy effective action in sections 3 and 4. This

is done by first integrating out the massive bosonic coordinate and then putting all remaining

massive fields to zero by hand. We also introduce a kappa symmetry gauge-fixing which turns

out to be useful. It is shown that the low-energy effective action reduces to (1.1). In section 5

we show that this model is classically integrable by constructing its Lax representation. We end

the paper with some conclusions.

2 The Green-Schwarz string in AdS3 × S3 × M4

The type II Green-Schwarz superstring action in a general supergravity background can be

expanded in the fermions as

S = −T
∫
d2σL , L = L(0) + L(2) + L(4) + . . . (2.1)

The purely bosonic Lagrangian is

L(0) =
1

2
γijei

Aej
BηAB , γij =

√
−g gij , (2.2)

where ei
A(X) (A = 0, 1, · · · , 9) are the vielbeins of the purely bosonic part of the background

pulled back to the worldsheet and gij is an independent worldsheet metric with g = det gij .

The terms quadratic in fermions take the form [26]

L(2) = iei
A Θ̄ΓAK

ijDjΘ , Kij = γij − εijΓ11 . (2.3)

3The AdS3×S3×T 4 case is obtained by taking α→ 1 giving a single O(4) sigma model coupled to fermions
with four decoupled free scalars coming from the T 4.
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The appearance of the matrix Kij is related to kappa symmetry. The Killing spinor derivative

D is given below.

The quartic fermion terms in the action were recently found in [27]. They take the form4

L(4) = −1

2
Θ̄ΓADiΘ Θ̄ΓAK

ijDjΘ +
i

6
ei
A Θ̄ΓAK

ijMDjΘ +
i

48
ei
Aej

B Θ̄ΓAK
ij
(
M + M̃

)
SΓBΘ

+
1

48
ei
Aej

B Θ̄ΓA
CDKijΘ

(
3Θ̄ΓBUCDΘ− 2Θ̄ΓCUDBΘ

)
− 1

48
ei
Aej

B Θ̄ΓA
CDΓ11K

ijΘ
(
3Θ̄ΓBΓ11UCDΘ + 2Θ̄ΓCΓ11UDBΘ

)
. (2.4)

The definition of D, M, M and UAB for a general type II supergravity background can be

found in [27]. Here we will only give the expressions for the case of interest here: the type

IIA AdS3 × S3 × S3 × S1 supergravity solution with RR four-form flux. Θ is taken to be a

32-component Majorana spinor and the Killing spinor derivative is given by

DiΘ = (∂i −
1

4
ωi
ABΓAB +

1

8
ei
A SΓA)Θ where S = −4Γ0129

(
1− P

)
. (2.5)

Here P is a projection matrix given by

P =
1

2
(1 +

√
αΓ012345 +

√
1− αΓ012678) (2.6)

and is in fact the projector which singles out the 16 supersymmetries preserved by the back-

ground. The AdS3-directions are indexed by (0, 1, 2) the first S3 by (3, 4, 5), the second S3 by

(6, 7, 8) and the S1 by (9). The parameter 0 ≤ α ≤ 1 determines the relative size of the two

S3’s. In units of the AdS3-radius the S3 radii are

R̂ =
1√
α
, R′ =

1√
1− α

. (2.7)

The case α = 0, 1 corresponds to AdS3×S3×T 4 where one of the three-spheres is decompactified.

The remaining objects appearing in (2.4) reduce, in AdS3 × S3 × S3 × S1, to

UAB =
1

32
SΓ[ASΓB] −

1

4
RAB

CDΓCD ,

Mα
β =

i

16
Θ̄SΘ δαβ −

i

8
Θα (Θ̄S)β +

i

8
(ΓASΘ)α (Θ̄ΓA)β , M̃ = Γ11MΓ11 ,

Mα
β = Mα

β + M̃α
β +

i

8
(SΓAΘ)α (Θ̄ΓA)β −

i

16
(ΓABΘ)α (Θ̄ΓASΓB)β , (2.8)

where the nonzero components of the Riemann tensor of AdS3 × S3 × S3 × S1 are

Rab
cd = 2δc[aδ

d
b] , Râb̂

ĉd̂ = −2αδĉ[âδ
d̂
b̂]
, Ra′b′

c′d′ = −2(1− α)δc
′

[a′δ
d′

b′] , (2.9)

where a, â and a′ refer to AdS3, the first S3 and the second S3 respectively.

3 Parameterization

The metric of AdS3 in global coordinates is

ds2 = − cosh2 ρ dt2 + dρ2 + sinh2 ρ dϕ2 . (3.1)

4Our normalization of Θ differs from that of [27] by a factor of
√

2.
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And the long spinning string solution is given by [18]

t = ϕ = κτ ρ = κσ , (3.2)

with κ a constant. It will be more convenient for our purposes however to use different coordi-

nates. Defining new coordinates by

sinh 2ζ = − sin(t− ϕ) sinh 2ρ

e4iu = e2i(t+ϕ)
cos(t− ϕ) + i cosh 2ρ sin(t− ϕ)

cos(t− ϕ)− i cosh 2ρ sin(t− ϕ)

sinh 2χ =
cos(t− ϕ) sinh 2ρ√

1 + sin2(t− ϕ) sinh2 2ρ
(3.3)

the metric takes the form [21]

ds2 = −du2 + dχ2 − 2 sinh 2ζ dudχ+ dζ2 . (3.4)

Defining further

u = z+ + z− , χ = z+ − z− , ζ = log
1 + 1

2z

1− 1
2z

(3.5)

the metric becomes

ds2 = −4dz+dz− + 4
z + 1

4z
3(

1− 1
4z

2
)2(− (dz+)2 + (dz−)2

)
+

dz2(
1− 1

4z
2
)2 . (3.6)

The upshot is that this metric is invariant under constant shifts of the two light-cone coordinates

z±, something which will prove convenient in solving the Virasoro constraints.

In terms of these new coordinates, the long spinning (GKP) string solution is given by

z± = κσ± , σ± =
1

2
(τ ± σ) . (3.7)

We will leave the S3 metric unspecified and work directly in terms of the spin connection and

vielbeins.

4 Low-energy effective action

Having defined the AdS3 metric it is now straightforward to expand the action around the

spinning string solution (3.7). To find the spectrum we consider the quadratic action. Taking

the conformal gauge γij = ηij with η+− = 2 and using (3.6) the bosonic action (2.2) reduces to

L(0)
2 = −2∂−z

+∂+z
−+2κz(∂+z

−−∂−z+)+
1

2
∂+z∂−z+

1

2
∂+y

m̂∂−ym̂+
1

2
∂+y

m′
∂−ym′+

1

2
∂+y∂−y .

(4.1)

As we will see below solving the Virasoro constraints will eliminate z± from the physical spectrum

and generate a mass term for the remaining AdS-coordinate z. The seven remaining scalars, three

(ym̂) from the first S3, three (ym
′
) from the second S3 and one (y) from the S1 remain massless.

To find the low-energy effective action we will integrate out the massive boson z leaving only

the seven massless bosons.

Let us now turn to the spectrum of the fermions. Using the spinning string solution (3.7) in
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the quadratic fermion action (2.3) and using (2.5) we find at the quadratic level5

L(2)
2 = iῡΓ+P∂−υ + iῡΓ−P∂+υ + iϑ̄Γ+P∂−ϑ+ iϑ̄Γ−P∂+ϑ− iκϑ̄Γ29+−Pϑ , (4.2)

where Γ± = Γ0 ± Γ1 and

P =
1

2

(
1 + Γ01Γ11

)
(4.3)

is the kappa symmetry projection matrix which ensures that only 16 of the 32 components of Θ

are physical. We have used the projection operator P defined in (2.6) to split the fermions into

16 + 16

Θ = PΘ + (1− P)Θ = ϑ+ υ . (4.4)

The 16 fermions ϑ are in one-to-one correspondence with the supersymmetries of the background.

They are the fermions described by the supercoset D(2,1;α)×D(2,1;α)
SU(1,1)×SU(2)×SU(2) [2,6] and we refer to them

as supercoset fermions. As can be seen from (4.2) it is precisely these fermions which acquire

mass for the spinning string and since we are interested only in the low-energy effective action

we will set them to zero in the following. The 16 non-coset fermions υ are massless and they

are to be kept in the low-energy effective action. We see that it is important that we started

with the full Green-Schwarz superstring action. If we had tried to use instead a partially kappa

gauge-fixed version like the supercoset action we would have missed these fermions.6

Coordinate Mass Multiplicity
z 2κ 1

ym̂, ym
′
, y 0 7

υ 0 4
ϑ κ 4

Table 1: Spectrum of excitations around the GKP string.

The spectrum is summarized in table 1. To get the low-energy effective action we can simply

set the massive fermions to zero but the massive boson z should be integrated out more carefully.

We will now describe how to do this.

4.1 Integrating out the massive boson z

Since the discussion here will affect only the the AdS-coordinates (z±, z) we will work only

with the terms in the Lagrangian involving these fields. For the low-energy effective action only

the terms of mass-dimension two or less are relevant. Using the fact that z± have dimension

zero, υ has dimension 1
2 and z as it will be integrated out effectively has dimension 1 we get by

expanding (2.2) and (2.3)

Lz = −2∂+z
−∂−z

+ + 2κ
(
∂+z

− − ∂−z+
)
z +

i

2
(∂+z

− + ∂−z
+) ῡΓ2+−υ − iκz ῡΓ11Γ2+−υ + . . .(4.5)

where we have used the expansion of the AdS vielbein and spin connection to O(z)

e+ ∼ dz+ − zdz− , e− ∼ dz− + zdz+ , ω2− ∼ dz+ + zdz− , ω2+ ∼ −dz− + zdz+ .

(4.6)

The quadratic fermion terms come from the spin connection inside D in (2.5). We also have the

Virasoro constraints G++ = 0 = G−− where Gij = Ei
AEj

BηAB is the induced metric on the

5We have rescaled the fermions by a factor κ−1/2.
6This was true also for the AdS4 ×CP3 string, see Bykov [22].
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worldsheet. Using the fact that

Ei
A = ei

A + iΘ̄ΓADiΘ +O(Θ4) (4.7)

we find

0 =
1

4κ
G++ = −∂+z− − κz +

i

4
ῡΓ2+−υ + . . . (4.8)

0 =
1

4κ
G−− = −∂−z+ + κz +

i

4
ῡΓ2+−υ + . . .

where we have dropped all terms of dimension greater than one. Again the fermion terms come

from the AdS spin connection (4.6). Using (4.8) to solve for ∂±z
∓ allows us to write Lz as

Lz = −2κ2z2 − iκz ῡΓ11Γ2+−υ −
1

8
(ῡΓ2+−υ)2 + . . . (4.9)

Since the kinetic term for the massive boson is 1
2∂+z∂−z we see that z has mass 2κ. Finally,

integrating out the massive boson z gives

Lz = −1

8
(ῡΓ11Γ2+−υ)2 − 1

8
(ῡΓ2+−υ)2 . (4.10)

As it turns out, once we impose the kappa symmetry gauge-fixing this will completely vanish.

Thus, in hindsight we could have put the massive bosons and fermions in the action to zero

directly but only if we fix the kappa symmetry in a certain way.

4.2 z-independent part

In the previous section we took care of all terms in the low-energy effective action which involved

the AdS-coordinates. The remaining terms are obtained by simply setting (z±, z) to zero (recall

that we are also setting the massive (coset) fermions to zero). From (2.2) the purely bosonic

part of the Lagrangian is simply

L(0) =
1

2
e+

âe−
â +

1

2
e+

a′e−
a′ +

1

2
∂+y∂−y , (4.11)

where eâ and ea
′

are the vielbeins of the first and second S3 respectively and y is the S1

coordinate.

Using (2.3), (2.5) and, that to leading order, e+
+ ∼ e−

− ∼ ω+
2− ∼ −ω−2+ ∼ κ the terms

quadratic in fermions become

L(2) = iῡΓ+P (∂− −
1

4
ωA

′B′

− ΓA′B′)υ + iῡΓ−P (∂+ −
1

4
ωA

′B′

+ ΓA′B′)υ

+
i

2
e+

A′
ῡΓA′Γ2+Pυ −

i

2
e−

A′
ῡΓA′Γ2−Pυ + . . . (4.12)

where the ellipsis denotes terms of mass dimension higher than two which are to be dropped

in the low-energy effective action. Here A′ = (â, a′) runs over the indices of the two S3’s (note

that the S1-coordinate y decouples due to the projection condition υ = (1− P)υ with P given

in (2.6)). Also note that the coupling of the vielbeins to the fermions breaks the 2d Lorentz

invariance. This is in contrast to the AdS5 × S5 and AdS4 × CP3 case where the low-energy

effective action is Lorentz invariant.

The kappa-symmetry projector P is defined in (4.3). A natural choice of kappa-symmetry

6



gauge is7

υ = Pυ =
1

2
(1 + Γ01Γ11)υ . (4.13)

This gauge has the additional benefit that Lz, the the terms in the Lagrangian resulting from

integrating out z, in (4.10) vanishes. We are left with the low-energy effective action

L = L(0) + iῡΓ+∂−υ + iῡΓ−∂+υ +
i

2
e+

A′
ῡΓA′2+υ −

i

2
e−

A′
ῡΓA′2−υ

− i

4
ω−

A′B′
ῡΓA′B′+υ −

i

4
ω+

A′B′
ῡΓA′B′−υ + L(4) (4.14)

where L(4) denotes the υ4-terms arising from (2.4). We will now show that in fact these terms

give no contribution to the low-energy effective action in the present case.

The third term in (2.4) is easily seen to give no contribution at dimension two due to the

projection condition υ = (1 − P)υ, the form of S in (2.5) and the fact that (1 − P)Γa = ΓaP
(a = 0, 1, 2). Using (2.8), the fact that the only contribution from D comes from the AdS spin

connection and the kappa-gauge choice υ = Pυ one can show that the second term in (2.4) also

gives no contribution. The remaining terms become, after some simplification,

L(4) =
1

4
ῡΓA

′

2−υ ῡΓA′2+υ +
1

48
ῡΓ+

CDυ
(
3ῡΓ−(1− Γ11)UCDυ − 2ῡΓC(1 + Γ11)UD−υ

)
+

1

48
ῡΓ−

CDυ
(
3ῡΓ+(1 + Γ11)UCDυ − 2ῡΓC(1− Γ11)UD+υ

)
. (4.15)

Using the form of U in (2.8) the contribution from the UD±-terms is easily seen to vanish due

to the kappa gauge condition (4.13). For the remaining U -terms only the term involving the

Riemann tensor contributes due to the fact that υ = (1− P)υ and we are left with

L(4) =
1

4
ῡΓA

′

2−υ ῡΓA′2+υ −
1

16
RAB

CD ῡΓ+
ABυ ῡΓCD−υ . (4.16)

Using the relations

PΓa
′
(1− P) =

1

2

√
1− α εa

′b′c′ Γ012Γb′c′(1− P) , PΓâ(1− P) =
1

2

√
α εâb̂ĉ Γ012Γb̂ĉ(1− P)

(4.17)

and the form of the Riemann tensor in (2.9) we find that the two terms cancel so that there

is no contribution from the quartic fermion terms to the low-energy effective action. This is in

contrast to the AdS4 ×CP3 case where such terms were found to contribute [22].

4.3 2d fermion notation

It will be useful to write the action using a 2d notation for the fermions. Before gauge-fixing

we have sixteen real massless non-coset fermions υ. Fixing the kappa-symmetry gauge (4.13)

reduces these to eight real fermions. These can be combined into four two-component Majorana

fermions ΨI (I = 1, . . . , 4) as described in detail in appendix A. The Lagrangian (4.14) then

7The more standard gauge Γ+Θ = 0 is clearly not a good choice here since the fermion kinetic operator
degenerates in this case.
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becomes

L = L(0) +
i

2
Ψ̄Iρ

i∂iΨI −
i

2
(ωi

34 +
√
α δije

j5) (Ψ̄1ρ
iΨ2 + Ψ̄3ρ

iΨ4)

− i

2
(ωi

53 +
√
α δije

j4) (Ψ̄2ρ
iΨ4 − Ψ̄1ρ

iΨ3)− i

2
(ωi

45 +
√
α δije

j3) (Ψ̄1ρ
iΨ4 + Ψ̄2ρ

iΨ3)

+
i

2
(ωi

78 +
√

1− α δijej6) (Ψ̄1ρ
iΨ4 − Ψ̄2ρ

iΨ3) +
i

2
(ωi

86 +
√

1− α δijej7) (Ψ̄2ρ
iΨ4 + Ψ̄1ρ

iΨ3)

+
i

2
(ωi

67 +
√

1− α δijej8) (Ψ̄3ρ
iΨ4 − Ψ̄1ρ

iΨ2) . (4.18)

Worldsheet indices (i, j, . . .) are raised and lowered with the worldsheet metric ηij with η+− = 2.

Note that the explicit appearance of δij (δ++ = δ−− = 2) breaks the 2d Lorentz-invariance of

the action. This somewhat complicated Lagrangian can be written in a much simpler and more

illuminating form by combining the four spinors into a 2× 2 matrix

Ψ = σIΨI , σI =
(
σ1, σ2, σ3, i1

)
,

(
Ψ̄ = Ψ†ρ0 = σ̄IΨ̄I , σ̄I =

(
σ1, σ2, σ3, −i1

))
.(4.19)

The Lagrangian then becomes

L =
1

2
ei
âeiâ +

1

2
ei
a′eia

′
+

1

2
∂iy∂

iy +
i

4
tr
(
Ψ̄ρi∂iΨ

)
− 1

16
(εâb̂ĉωi

b̂ĉ + 2
√
α δije

jâ) tr
(
Ψ̄ρiΨσâ

)
+

1

16
(εa

′b′c′ωi
b′c′ + 2

√
1− α δijeja

′
)tr
(
Ψ̄ρiσa

′
Ψ
)
, (4.20)

where σâ = (σ1, σ2, σ3) and similarly for σa
′
. This Lagrangian describes two O(4) sigma models

which are coupled through their interactions with the fermions. In addition there is a completely

decoupled scalar y coming from the S1. The action is invariant under the two SO(3) ∼ SU(2)

which correspond to rotations in the first and second S3 factor of AdS3 × S3 × S3 × S1. The

fermions transform as

Ψ→ U†ΨV (Ψ̄→ V †Ψ̄U) with U ∈ SU(2)1 , V ∈ SU(2)2 . (4.21)

In fact (4.20) is invariant under the full isometry group of the two S3 i.e. SO(4) × SO(4).

This can for example be seen by verifying explicitly the invariance under the (appropriately

restricted) superisometry transformations given in [28]. It also follows from the Lax connection

construction in the next section. Unlike the AdS5×S5 and AdS4×CP3 case we have not found

a form of the Lagrangian that makes the full SO(4)× SO(4) symmetry manifest.

As a side note, the fermion terms in the action can be written in a more compact form as

i

4
tr
(
Ψ̄ρiDiΨ

)
, (4.22)

where the generalized ”covariant” derivative is defined as

DiΨ = ∂iΨ +
i

4
(εâb̂ĉωi

b̂ĉ + 2
√
α δije

jâ)Ψσâ − i

4
(εa

′b′c′ωi
b′c′ + 2

√
1− α δijeja

′
)σa

′
Ψ (4.23)

or, equivalently,

DiΨ = ∂iΨ−
1

4
ω′i
IJσIJΨ +

1

4
ω̂i
IJΨσIJ σIJ = σ̄[IσJ] (4.24)

with

ω′i
a′b′ = ωi

a′b′ , ω′i
a′4 =

√
1− α δijeja

′
, ω̂i

âb̂ = ωi
âb̂ , ω̂i

â4 =
√
α δije

jâ . (4.25)
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Note however that DiΨ is not 2d Lorentz-covariant.

So far what we have said refers to the AdS3×S3×S3×S1 case. The AdS3×S3×T 4 case is

however easily obtained by taking the limit α→ 1 (or, equivalently, α→ 0) so that ei
a′ → ∂iy

a′

and ωi
a′b′ → 0. This leads to an O(4) sigma model coupled to four Majorana fermions together

with four decoupled scalars from the T 4.

5 Classical integrability

Since the low-energy effective action has no quartic fermion terms its Lax connection can be

obtained from [28] by a suitable truncation. In that paper a Lax connection was written for the

complete AdS3 × S3 × S3 × S1 superstring with 32 fermions, up to quadratic order in fermions

(see [29–31] for similar Lax connections for AdS4 ×CP3 and AdS2 × S2 × T 6). Normally this

Lax connection would have zero curvature, i.e.

dL− L ∧ L = 0 or εij(∂iLj + LiLj) = 0 , (5.1)

only modulo Θ4-terms. Additional terms would then be needed in the Lax connection at order

Θ4 to cancel these terms. However, in the present case the low-energy effective action actually

terminates at the quadratic order in fermions. Since we expect this model to be integrable we

should find that the υ4-terms coming from L∧L actually cancel in this case. We will now show

that this is precisely what happens.

The Lax connection splits into two pieces8

L = L̂+ L′ , (5.2)

coming from the two S3’s respectively. In terms of the components of the Maurer-Cartan form

K on S3 satisfying (see [28] for more details)

dK = K ∧K ⇒ [Kâ,Kb̂] = ∇âKb̂ , [Kĉ,∇âKb̂] = −2αδĉ[âKb̂] , (5.3)

and similarly for Ka′ with α→ 1− α, these Lax connection pieces are given by

L̂i = (α1δ
j
i + α2ηikε

kj)ej
âKâ −

α2

8

√
α εijδ

jktr
(
Ψ̄ρkΨσâ

)
Kâ

− α2

16
(α2ηij + (1 + α1)εij)ε

âb̂ĉtr
(
Ψ̄ρjΨσĉ

)
∇âKb̂ (5.4)

L′i = (α1δ
j
i + α2ηikε

kj)ej
a′ Ka′ +

α2

8

√
1− α εijδjktr

(
Ψ̄ρkσ

a′Ψ
)
Ka′

+
α2

16
(α2ηij + (1 + α1)εij)ε

a′b′c′tr
(
Ψ̄ρjσc′Ψ

)
∇a′Kb′ . (5.5)

These two pieces obviously commute with each other since they are constructed using generators

from different algebras. It is also worth noting that due to the explicit appearance of δij Li is

not covariant under 2d Lorentz-transformations. This is to be expected since the low-energy

effective action lacks this symmetry as we have seen. The parameters α1 and α2 are related by

the equation

α2
2 = 2α1 + α2

1 (5.6)

and can therefore be expressed in terms of a single (spectral) parameter. Let us now show that

the curvature (5.1) of L̂i indeed vanishes on-shell. The same is true for L′i by an essentially

8We drop the additional S1 boson y since it decouples completely. It can of course be trivially included in
the Lax connection.
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identical calculation. Computing the second term in (5.1) we find using (5.6)

εijL̂iL̂j = −α1ε
ijei

âej
b̂ [Kâ,Kb̂] +

α2

16
ei
d̂
(

2
√
α (α1δ

i
k − α2ε

ijηjk)δkltr
(
Ψ̄ρlΨσ

â
)

[Kâ,Kd̂]

+ (α1δ
i
k + α2ε

ijηjk)εâb̂ĉtr
(
Ψ̄ρkΨσĉ

)
[Kd̂,∇âKb̂]

)
+

α2
2

256

(
εijtr

(
Ψ̄ρiΨσ

â
)
tr
(
Ψ̄ρjΨσ

b̂
)
(2α[Kâ,Kb̂] +

1

2
εâĉd̂εb̂êf̂ [∇êKf̂ ,∇ĉKd̂])

− 2
√
α δik(α2ηkj + (1 + α1)εkj)tr

(
Ψ̄ρiΨσ

ĉ
)
tr
(
Ψ̄ρjΨσd̂

)
εâb̂d̂[Kĉ,∇âKb̂]

)
. (5.7)

Using the relations (5.3) it is easy to see that the terms quartic in Ψ indeed vanish as advertised

earlier. Using these relations and the fact that ∂iKb̂ = ei
â∇âKb̂+ωib̂

ĉKĉ we get for the curvature

of L̂i

εij(∂iL̂j + L̂iL̂j) = α2

(
∇ieiâ −

√
α

4
tr
(
Ψ̄ρiδijD

jΨσâ
))
Kâ

+ i
α2

8
tr
(
Ψ̄((1 + α1) + α2ρ

3)ρiDiΨσ
âb̂
)
∇âKb̂ , (5.8)

where ρ3 = ρ0ρ1. The first term is the equation of motion for ym̂ following from the action

(4.20) (modulo a term proportional to the fermionic equation of motion) and the second term

is proportional to the fermionic equation of motion. Note however that the ea
′

and ωa
′b′ -terms

inside Di in (4.23) don’t contribute here due to the fact that

tr
(
Ψ̄ρiσa

′
Ψσâ

)
= 0 . (5.9)

It is clear that the curvature of L̂i (5.8) vanishes on-shell. It is also clear that the flatness of

L̂i by itself does not imply all the equations of motion, only the equations for ym̂ and part of

the fermionic equation due to the missing contributions involving ea
′

and ωa
′b′ as mentioned

above. However, together the flatness of L̂i and L′i imply all the equations of motion of (4.20)

demonstrating the classical integrability of the model.

6 Conclusions

In this paper we have derived the Lagrangian that captures the low-energy dynamics of fluc-

tuations of the AdS3 × S3 ×M4 string around the GKP vacuum [18]. The starting point of

our analysis was the GS action up to quartic order in fermions, recently derived in [27]. The

classical GKP solution is a spinning string in AdS3 with a fluctuation spectrum of both massive

and massless modes. While the full fluctuation Lagrangian is very involved, it simplifies dras-

tically in the low-energy limit where only the massless modes contribute. We have found that

the resulting theory consists of two O(4) sigma models coupled through their coupling to four

Majorana fermions. In addition there is a free boson coming from the S1. In contrast to earlier

examples in AdS5 × S5 and AdS4 × CP3 we find that the model is not 2d Lorentz invariant.

Furthermore, a curious fact is that the quartic fermion terms completely drop out due to a

delicate cancellation. This is somewhat unexpected, since, at least for α = 1
2 , the AdS4 ×CP3

and AdS3 × S3 × S3 × S1 strings share many similar features, see [28] for some examples. The

special case where one S3 blows up (i.e. α→ 0, 1) describes the AdS3×S3×T 4 GKP string and

the low-energy effective action reduces to a single O(4) sigma model coupled to four Majorana

fermions with four free bosons coming from the T 4.

There are several interesting possible extensions of this work. It would be very interesting

to perform a similar analysis as [23–25] and try to find the Bethe ansatz and exact S-matrix
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for this model. Since the full AdS3 × S3 × S3 × S1 string is believed to be quantum integrable

it is natural to expect that the low-energy string should inherit this integrability. For example,

as in [24], one can derive the S-matrix for the low-energy excitations and match the resulting

asymptotic equations with the low-energy part of the full set of conjectured equations in [16,10].

It would also be interesting to derive the low-energy limit of the GKP string for the case of

AdS3×S3×S3×S1 with mixed RR and NSNS flux. Superficially this case is considerably more

complicated but recent S-matrix calculations [32, 33] have shown that this case is very similar

to the pure RR flux case. It would be interesting to understand what happens in the limit of

pure NSNS flux since one can then connect to the RNS description of the string.
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A 2d spinors and gamma-matrices

Starting from the fermions υ with eight real components (after fixing the kappa symmetry (4.13))

we define one-component fermions by the following projections

ψ±±± =
1

2
(1± Γ01)

1

2
(1± iΓ34)

1

2
(1± iΓ67)υ . (A.1)

In the space of υ the gamma-matrices are effectively eight-dimensional and we take a realization

such that

C ∼ −iσ2 ⊗ σ2 ⊗ σ2 , Γ± ∼ iσ2(1± σ3)⊗ 1⊗ 1 , Γ45 ∼ 1⊗ iσ1 ⊗ 1 , Γ78 ∼ 1⊗ 1⊗ iσ1 ,(A.2)

where C is the charge-conjugation matrix. As defined the spinors ψ are not real but satisfy

ψ†±+− = ψ±−+ , ψ†±++ = −ψ±−− , (A.3)

as follows from the Majorana condition on υ. We can define real spinors as

ψ1 =
√

2(ψ−−− − ψ−++) , ψ2 = i
√

2(ψ−−− + ψ−++) ,

ψ3 = −
√

2(ψ−+− + ψ−−+) , ψ4 = i
√

2(ψ−+− − ψ−−+) ,

χ1 =
√

2(ψ+−− − ψ+++) , χ2 = i
√

2(ψ+−− + ψ+++) ,

χ3 = −
√

2(ψ++− + ψ+−+) , χ4 = i
√

2(ψ++− − ψ+−+) .

(A.4)

These can be combined into four 2d Majorana spinors

ΨI =

(
ψI
χI

)
(I = 1, . . . , 4) . (A.5)

We take the 2d gamma-matrices to be

ρ0 = σ2 , ρ1 = iσ1 , ρ± =
1

2
(ρ0 ± ρ1) (A.6)

and the conjugate spinor is defined as Ψ̄ = Ψ†ρ0.
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