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Broccoli contains high levels of bioactive molecules and is considered a functional food.
In this study, postharvest treatments to enhance the concentration of glucosinolates
and phenolic compounds were evaluated. Broccoli whole heads were wounded to
obtain florets and wounded florets (florets cut into four even pieces) and stored for
24 h at 20 ◦C with or without exogenous ethylene (ET, 1000 ppm) or methyl jasmonate
(MeJA, 250 ppm). Whole heads were used as a control for wounding treatments.
Regarding glucosinolate accumulation, ET selectively induced the 4-hydroxylation of
glucobrassicin in whole heads, resulting in ∼223% higher 4-hydroxyglucobrassicin
than time 0 h samples. Additionally, glucoraphanin was increased by ∼53% in whole
heads treated with ET, while neoglucobrassicin was greatly accumulated in wounded
florets treated with ET or MeJA, showing increases of ∼193 and ∼286%, respectively.
On the other hand, although only whole heads stored without phytohormones
showed higher concentrations of phenolic compounds, which was reflected in ∼33,
∼30, and ∼46% higher levels of 1,2,2-trisinapoylgentiobose, 1,2-diferulolylgentiobiose,
and 1,2-disinapoyl-2-ferulolylgentiobiose, respectively; broccoli florets stored under
air control conditions showed enhanced concentrations of 3-O-caffeoylquinic acid,
1,2-disinapoylgentiobiose, and 1,2-disinapoyl-2-ferulolylgentiobiose (∼22, ∼185, and
∼65% more, respectively). Furthermore, exogenous ET and MeJA impeded individual
phenolics accumulation. Results allowed the elucidation of simple and effective
postharvest treatment to enhance the content of individual glucosinolates and phenolic
compounds in broccoli. The stressed-broccoli tissue could be subjected to downstream
processing in order to extract and purify bioactive molecules with applications in the
dietary supplements, agrochemical and cosmetics markets.

Keywords: broccoli, glucosinolates, phenolic compounds, wounding stress, ethylene, methyl jasmonate,
neoglucobrassicin
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INTRODUCTION

Broccoli (Brassica oleracea L. var. Italica) is a very important crop
in economic terms. According to the Food and Agricultural
Organization of the United Nations statistical database
(FAOSTAT), in the year 2013 ∼22 million tons of broccoli
and cauliflowers were produced worldwide. Broccoli production
and consumption per capita has greatly increased over the
last two decades. From 1993, broccoli worldwide production
augmented by ∼120% (Food and Agricultural Organization
of the United Nations [FAOSTAT], n.d.), whereas broccoli
consumption per capita increased by ∼50% in the United States
(Economics, Statistics, and Market Information System [ERS],
n.d.). The increased economic importance of broccoli is in part
due to an increase in the number of consumers interested in
eating more functional foods (Agricultural Marketing Resource
Center [AgMRC], n.d.).

Broccoli contains high levels of phenolics and glucosinolates,
which are among the most effective bioactive molecules that
prevent chronic and degenerative diseases (Vinson et al.,
1998; Fahey and Talalay, 1999; Heo et al., 2007; Rodríguez-
Cantú et al., 2011). Phenolic compounds are widely known as
potent antioxidants (Rice-Evans et al., 1997; Jacobo-Velázquez
and Cisneros-Zevallos, 2009; Brewer, 2011; Del Rio et al.,
2013). Likewise, glucosinolates are amino acid-derived secondary
metabolites that when hydrolyzed by a β-thioglucosidase
(myrosinase) yield isothiocyanates (Radojčić-Redovniković et al.,
2008), which are strong inducers of phase II enzymes, helping
to prevent oxidative stress caused by reactive electrophile species
(Fahey and Talalay, 1999). Besides, sulforaphane, one of the most
common isothiocyanates in broccoli, has been shown to eradicate
infections by Helicobacter pylori (Fahey et al., 2002) and inhibit
chronic inflammatory processes (Juurlink, 2001).

It has been reported that the application of postharvest abiotic
stresses (i.e., wounding, UV-light radiation, and exogenous
phytohormones) induce the accumulation of health-promoting
compounds in plants (Cisneros-Zevallos, 2003). In addition,
when horticultural crops are subjected to extreme postharvest
abiotic stress conditions, the genetic potential of plants to
produce secondary metabolites can be exploited inducing the
accumulation of high levels of bioactive molecules (Jacobo-
Velázquez and Cisneros-Zevallos, 2012). In the particular case
of broccoli, the application of certain postharvest abiotic stress
conditions could be used as an approach to induce the activation
of phenolic and glucosinolate biosynthesis pathways, leading
to an enhancement of its nutraceutical content. This becomes
particularly relevant when alternative uses for horticultural crops
are needed; especially in fresh produce not meeting quality
standards for human consumption, which represent one third of
worldwide production (Food andAgriculture Organization of the
United Nations [FAO], n.d.).

Plant hormones such as methyl jasmonate (MeJA) and
ethylene (ET) have been used as elicitors of high-value
antioxidants in several plant models. MeJA, a phytohormone
involved in diverse developmental processes and plant defense
mechanisms, has been studied as a pre-harvest elicitor to enrich
glucosinolate and/or phenolic content in Brassica rapa and

broccoli (Liang et al., 2006; Kim and Juvik, 2011; Ku et al.,
2014; Liu et al., 2014). Moreover, ET has also been shown to
be effective in the activation of glucosinolate biosynthetic genes
in Arabidopsis (Mikkelsen et al., 2003). On the other hand,
the accumulation of phenolic compounds in fresh produce in
response to postharvest treatment with ET or MeJA has been
previously reported (Heredia and Cisneros-Zevallos, 2009a).
In the specific case of broccoli, the pre-harvest application
of MeJA has been shown to increase the concentration of
total glucosinolates in broccoli florets (Ku et al., 2013a,b).
Additionally, previous reports have shown thatMeJAmay induce
the accumulation of total phenolics and glucosinolates in broccoli
sprouts (Pérez-Balibrea et al., 2011). However, the effect of
postharvest treatments with exogenous ET and MeJA on the
accumulation of glucosinolates and phenolic compounds in
broccoli has not been reported.

Recently, it was reported that wounding triggers the
production of reactive oxygen species (ROS), which induce
the activation of primary and secondary metabolism in plants
(Jacobo-Velázquez et al., 2015). Furthermore, the authors
reported that other signaling molecules, such as ET and
jasmonic acid (JA), which are produced after wounding,
play key roles as ROS levels modulators, and mediate the
expression of secondary metabolism genes, triggering the
accumulation of specific secondary metabolites. Therefore,
the accumulation of antioxidants in plants has also been
studied as an effect of wounding during postharvest (Reyes
and Cisneros-Zevallos, 2003; Jacobo-Velázquez et al., 2011;
Surjadinata and Cisneros-Zevallos, 2012; Torres-Contreras et al.,
2014a,b). In the case of broccoli, it has been reported
that wounding triggers the biosynthesis and accumulation of
indolic glucosinolates (Verkerk et al., 2001). Abiotic stress
has been previously evaluated as a strategy to enhance the
nutritional content of broccoli samples. However, the study
of postharvest treatments has been scarce and the effect of
combined application of two or more postharvest abiotic stresses
has not been thoroughly evaluated although previous reports
have shown that the de novo biosynthesis of glucosinolates is
more likely to occur during postharvest storage (Ku et al.,
2013a).

Wounding has been proven to be one of the most
effective postharvest abiotic stresses for the activation of the
phenylpropanoid metabolic pathway in plants (Reyes and
Cisneros-Zevallos, 2003; Surjadinata and Cisneros-Zevallos,
2012; Torres-Contreras et al., 2014a). In addition, the application
of ET and MeJA in wounded broccoli samples and their effect
on the accumulation of phenolic compounds and glucosinolates
has not been evaluated yet. Therefore, the objective of this
research was to evaluate the effect of wounding stress alone and in
combination with exogenous ET or MeJA, on the accumulation
of total and individual phenolic compounds and glucosinolates
during storage (24 h at 20◦C) of broccoli tissue. Although it is
well known that ET induces chlorophylls degradation in broccoli
(Tian et al., 1994), in the present study quality parameters were
not considered relevant to evaluate, since the objective was
to find alternative uses to broccoli not intended for human
consumption, such as biofactory of high value phenolic and
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glucosinolate compounds. The stressed-broccoli tissue could be
subjected to downstream processing in order to extract and purify
bioactive molecules with applications in the dietary supplements,
agrochemical and cosmetics markets.

MATERIALS AND METHODS

Chemicals
Sulfatase from Helix pomatia, sinigrin hydrate, sephadex A-
25, 3-O-caffeoylquinic acid (3-O-CQA), acetonitrile (HPLC
grade), methanol (HPLC grade), sodium acetate, MeJA, and
orthophosphoric acid were obtained from Sigma Chemical
Co. (St. Louis, MO, USA). ET was purchased from Infra
(Naucalpan, MEX, Mexico). Acetic acid was purchased from
Desarrollo de Especialidades Quimicas (Monterrey, NL,
Mexico). Desulfoglucoraphanin was obtained from Santa Cruz
Biotechnology (Dallas, TX, USA).

Plant Material, Processing, and Storage
Studies
Broccoli (Brassica oleracea) was obtained on June 2014, once
from a local market (HEB, Monterrey, Mexico), washed, and
disinfected with chlorinated water (200 ppm, pH 6.5). All samples
were supplied by the same grower. Whole heads were used
as control samples for wounding stress. Florets and wounded
florets (cut into four even pieces with a commercial straight-
edged knife) were used as wounding treatments. Wounded and
whole samples were stored inside hermetic plastic containers with
periodic ventilation to avoid CO2 accumulation over 0.5% (v/v).
One broccoli head was used per replica of each treatment. Three
biological replicates were performed for each treatment.

Ethylene and MeJA were applied as reported by Heredia and
Cisneros-Zevallos (2009a), where ET was directly injected into
the plastic containers (1 mL/L) and MeJA was applied by wetting
a Whatman No. 4 filter paper (Whatman Inc., Piscataway, NJ,
USA) over a Petri dish (0.25 mL/L). All samples were stored
for 24 h in an incubator (VWR, Radnor, PA, USA) at 20◦C to
determine the treatment that yields a maximum accumulation
of phenolic compounds and glucosinolates. Collected samples
were freeze-dried (Labconco, Kansas City, MO, USA) prior to
extraction of phytochemicals. The concentration of individual
phenolics and glucosinolates was determined before and after
storage.

Analysis of Phenolic Compounds by
High-Performance Liquid
Chromatography-Diode Array Detection
(HPLC-DAD) and HPLC-Electrospray
Ionization (ESI)-MSn

Extraction of Phenolic Compounds
For the chromatographic detection and quantification of
individual phenolic compounds, a methanol extract was
prepared. Broccoli powder (0.5 g) was homogenized with
methanol (20 mL) using a tissuemizer (Advanced homogenizing
system, VWR). Subsequently, homogenates were centrifuged

(9000 x g, 1 h, 4◦C). The clear supernatant was filtered using
nylon membranes (0.45 μm, VWR) prior to injection to the
chromatographic systems.

Analysis of Phenolic Compounds by HPLC-DAD and
HPLC-ESI-MSn

The identification and quantification of individual phenolic
compounds were performed as described by Torres-
Contreras et al. (2014a). Briefly, 10 μL of the extract were
injected in the HPLC-DAD system (1260 Infinity, Agilent
Technologies, Santa Clara, CA, USA). Separation was done on
a 4.6 mm × 250 mm, 5 μm particle size, C18 reverse phase
column (Luna, Phenomenex, Torrance, CA, USA). Mobile
phases consisted of water (phase A) and methanol/water (60:40,
v/v, phase B) both adjusted at pH 2.4 with orthophosphoric acid.
The gradient solvent system was 0/100, 3/70, 8/50, 35/30, 40/20,
45/0, 50/0, and 60/100 (min/% phase A) at a constant flow rate
of 0.8 mL/min. Phenolic compounds were detected at 320 nm.
Chromatographic data of analyses was processed with OpenLAB
CDS ChemStation software (Agilent Technologies, Santa Clara,
CA, USA).

Mass spectra were obtained on a MS Finnigan LCQ Deca
XP Max, Ion trap mass spectrophotometer coupled at the exit
of the DAD and equipped with a Z-spray ESI source, and
run by Xcalibur version 1.3 software (Thermo Finnigan, San
Jose, CA, USA). Separations were conducted in a Phenomenex
SynergiTM 4 μm Hydro-RP 80 Å (2 mm × 150 mm) with a
C18 guard column, and a flow rate of 200 L/min from the
DAD eluent was directed to the ESI interface using a flow-
splitter. Mobile phases were adjusted to pH 2.4 with formic
acid. Nitrogen was used as desolvation gas at 275◦C and a
flow rate of 60 L/h, and helium was used as damping gas. ESI
was performed in the negative ion mode using the following
conditions: sheath gas (N2), 60 arbitrary units; spray voltage,
1.5 kV; capillary temperature, 285◦C; capillary voltage, 45.7 V;
tube lens offset, 30 V.

Individual phenolics were identified on the basis of retention
time, UV spectra, and their mass-to-charge ratio as compared
with authentic standards and a previous report (Vallejo et al.,
2003). For the quantification of phenolic compounds, a standard
curve of 3-O-CQA was prepared in the range of 0.5–100 μM.
The concentration of phenolics was expressed as mg of 3-O-CQA
equivalents per kg of broccoli dry weight (DW).

Analysis of Glucosinolates by
High-Performance Liquid
Chromatography-Diode Array Detection
(HPLC-DAD) and HPLC-Electrospray
Ionization (ESI)-MSn

Extraction and Desulfation of Glucosinolates
For the chromatographic determination of glucosinolates,
extraction, and desulfation was done as described by Kiddle et al.
(2001) with modifications described by Saha et al. (2012). Briefly,
10 mL of methanol:water (70:30, v:v), previously heated for
10 min at 70◦C, were added to broccoli powder (0.2 g) followed
by 50 μL of a 3 mM solution of sinigrin as internal standard.
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Samples were vortexed and incubated at 70◦C for 30 min to
ensure myrosinase inactivation. The extracts were removed from
the water bath, left to cool at room temperature and centrifuged
(3000 × g, 5 min, 4◦C).

Afterward, glucosinolates were desulfated and purified using
disposable polypropylene columns (Thermo Fisher Scientific,
Waltham, MA, USA). To prepare the columns, 0.5 mL
of water were added, followed by 0.5 mL of prepared
Sephadex A-25 and an additional 0.5 mL of water. Clear
supernatant (3 mL) was added into a prepared column and
was allowed to drip through slowly. Columns were washed
with 2 × 0.5 mL of water followed by 2 × 0.5 mL of 0.02 M
sodium acetate. Purified sulfatase (75 μL) was added to each
sample and was left at room temperature overnight (12 h).
Desulfoglucosinolates were eluted with a total of 1.25 mL of water
(0.5 mL + 0.5 mL + 0.25 mL).

Analysis of Desulfoglucosinolates by HPLC-DAD and
HPLC-ESI-MSn

Determination of desulfoglucosinolates was performed as
reported by Vallejo et al. (2003) with slight modifications.
Chromatographic separations were done on the same
chromatographic systems and reverse phase columns used
for the analysis of phenolic compounds. Separation of
desulfoglucosinolates in the HPLC-DAD system was achieved
using water (phase A) and acetonitrile (phase B) as mobile phases
with a flow rate of 1.5 mL/min and a gradient of 0/100, 28/80,
30/100 (min/% phase A) with an injection volume of 20 μL. All
compounds were detected at 227 nm.

For the HPLC-ESI-MSn analyses, the gradient of the solvent
system used to obtain mass spectra was 0/99, 16/80, 18/10 (min/%
phase A) and a flow rate of 350 μL/min. Nitrogen was used as
desolvation gas at 275◦C and a flow rate of 60 L/h, and helium
was used as damping gas. ESI was performed in the negative
ion mode using the following conditions: sheath gas (N2), 60
arbitrary units; spray voltage, 5 kV; capillary temperature, 285◦C;
capillary voltage, 48.5 V; tube lens offset, 30 V.

Individual glucosinolates were identified on the basis of
retention time, UV spectra, and their mass-to-charge ratio
as compared with authentic standards and previous reports
(Hansen et al., 1996; Vallejo et al., 2003; Barbieri et al., 2008;
Miglio et al., 2008). A standard curve of desulfoglucoraphanin
was prepared in the range of 0–700 μM for the quantification
of glucosinolates. The concentration of individual glucosinolates
was expressed as mmol of desulfoglucoraphanin equivalents per
kg of broccoli.

Statistical Analysis
Replication was achieved by repeating treatment under the same
conditions. All treatments were run concurrently. All reported
data were pooled from repeated independent treatment. There
were three replicates per treatment (n = 3). Statistical analyses
were performed using the three replicates. Data represent the
mean values of samples and their standard error. Analyses of
variance (ANOVA) were conducted using JMP software version
9.0 (SAS Institute Inc., Cary, NC, USA) and mean separations
performed using the LSD test (p < 0.05).

RESULTS AND DISCUSSION

Effect of Wounding Stress,
Phytohormone Treatment, and Storage
Time on the Accumulation of Phenolic
Compounds
The identification of individual phenolic compounds present in
broccoli treated with or without wounding and phytohormones
is shown in Figure 1 and Table 1. The chemical structure
of individual phenolic compounds identified are shown
in Figure 2 (compounds 1–7) and included 3-O-CQA
(compound 1), 5-O-caffeoylquinic acid (5-O-CQA, compound
2), 1,2-disinapoylgentiobiose (1,2-DSG, compound 3), 1-
sinapoyl-2-ferulolylgentiobiose (1-S-2-FG, compound 4),
1,2,2-trisinapoylgentiobiose (1,2,2-TSG, compound 5),

FIGURE 1 | Typical HPLC-DAD chromatogram (shown at 320 nm) from
methanol extracts of broccoli whole heads before storage. Tentative
identification of peaks was performed as indicated in Table 1. Peak
assignment: (1) 3-O-CQA; (2) 5-O-CQA; (3) 1,2-DSG; (4) 1-S-2-FG (5)
1,2,2-TSG; (6) 1,2-DFG; (7) 1,2-DS-2-FG.

TABLE 1 | Tentative identification of individual phenolic compounds in
broccoli.

Peak number
(retention time, min)

λmax (nm) Tentative
identification

[M-H]− (m/z)

1 (12.8) 295, 332 3-O-CQAa,b 353

2 (17.2) 295, 332 5-O-CQAb 353

3 (30.1) 328 1,2-DSGb 753

4 (44.3) 295, 328 1-S-2-FGb 723

5 (45.8) 328 1,2,2-TSGb 959

6 (47.1) 290,328 1,2-DFGb 693

7 (48.2) 295, 328 1,2-DS-2-FGb 929

Identification was obtained by HPLC-DAD-ESI-MSn.
a Identified based on their spectra characteristics and their mass-to-charge
ratio as compared with authentic standards. bIdentified based on their spectra
characteristics and their mass-to-charge ratio as compared with a previous report
(Vallejo et al., 2003). 3-O-caffeoylquinic acid (3-O-CQA); 5-O-caffeoylquinic acid (5-
O-CQA); 1,2-disinapoylgentiobiose (1,2-DSG); 1-sinapoyl-2-ferulolylgentiobiose (1-
S-2-FG); 1,2,2-trisinapoylgentiobiose (1,2,2-TSG); 1,2-diferulolylgentiobiose (1,2-
DFG); 1,2-disinapoyl-2-ferulolylgentiobiose (1,2-DS-2-FG).
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FIGURE 2 | Chemical structures of phenolic compounds identified in broccoli subjected to wounding stress and exogenous ET and MeJA:
5-O-caffeoylquinic acid (3-O-CQA, 1), 5-O-caffeoylquinic acid (5-O-CQA, 2), 1,2-disinapoylgentiobiose (1,2-DSG, 3), 1-sinapoyl-2-ferulolylgentiobiose
(1-S-2-FG, 4), 1,2,2-trisinapoylgentiobiose (1,2,2-TSG, 5), 1,2-diferulolylgentiobiose (1,2-DFG, 6), and 1,2-disinapoyl-2-ferulolylgentiobiose
(1,2-DS-2-FG, 7).

1,2-diferulolylgentiobiose (1,2-DFG, compound 6), and 1,2-
disinapoyl-2-ferulolylgentiobiose (1,2-DS-2-FG, compound 7).
Phenolic compounds identified in broccoli samples herein
evaluated (Figures 1 and 2; Table 1) agree with a previous report
(Vallejo et al., 2003). However, in the present study 1,2,2-TSGwas
identified as the major phenolic compound in broccoli instead
of 3-O-CQA. The observed differences in phenolic profiles may
be due to different cultivation conditions and genetic variation,
although extraction parameters are also likely to influence the
quantification of phytochemicals (Luthria, 2012).

The phenolic profile of broccoli was affected by the treatments
applied (Table 2). In the specific case of broccoli heads, storage
at 20◦C for 24 h resulted on higher levels of phenolics, which
were reflected on ∼33, ∼30, and 46% higher levels of 1,2,2-TSG,
1,2-DFG, and 1,2-DS-2-FG, respectively, while the content of 3-
O-CQA, 5-O-CQA, 1,2-DSG, and 1-S-2-FG was not affected by
storage. Similar observations have been previously reported in the
literature. For instance, Starzyńska et al. (2003) reported ∼22%
higher levels of total phenols in broccoli heads stored for 24 h at
20◦C. Similarly, Costa et al. (2006) showed that broccoli heads
stored for 2 days at 20◦C had ∼36% more total phenols than

samples before storage. These increments in phenolics observed
after storage of broccoli heads could be attributed to a transient
increase in the activity of phenylalanine ammonia-lyase (PAL), a
key enzyme involved in the biosynthesis of phenolic compounds,
as has been previously reported during the first 12 h of storage of
broccoli heads stored at 20◦C (Porras-Baclayon et al., 2007).

On the other hand, when exogenous ET was applied to
whole heads, the accumulation of 1,2,2-TSG was inhibited,
whereas MeJA induced a decrease by ∼19% in the content
of 3-O-CQA as compared to time 0 h control samples, and
repressed the accumulation of 1-S-2-FG, 1,2,2-TSG, 1,2-DFG,
and 1,2-DS-2-FG (Table 2). Although the effects of postharvest
treatments with ET and MeJA on the accumulation of phenols
in broccoli heads has not been previously studied, Heredia
and Cisneros-Zevallos (2009a) reported that the postharvest
exposure of whole fresh produce, such as asparagus, potatoes,
apples, peaches, strawberries, and grapes, to ET and MeJA
had no effect on the total phenolic content of each crop
after four days of storage at 20◦C. Additionally, other reports
by the same authors showed that the concentration of total
phenolics in whole carrots treated with ET or MeJA remained
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unchanged throughout 12 days of storage at 15◦C (Heredia
and Cisneros-Zevallos, 2009b). However, in both cases, whole
tissues stored under air control conditions did not show an
enhanced content of total phenolic compounds. This particular
difference between the results obtained herein and previous
reports may be due to a variation among crops in the response to
the stress caused by storage conditions (time and temperature).
Moreover, Yuan et al. (2010) reported that the treatment
of broccoli florets with 1-methylcyclopropene (1-MCP), an
inhibitor of ET action, induced an increase on the activity of
the enzyme superoxide dismutase, which produces hydrogen
peroxide (H2O2), a signaling molecule involved on the activation
of PAL gene expression and enzymatic activity (Jacobo-Velázquez
et al., 2011). Besides, Jacobo-Velázquez et al. (2015) reported
a repression in ROS levels as a response to ET treatment in
shredded carrots. Therefore, it is likely that broccoli heads treated
with exogenous ET could present lower levels of ROS, leading
to lower activation of PAL and lower accumulation of total
phenolics.

Regarding the concentration of phenolic compounds in
broccoli florets before and after storage under air control
conditions, the content of 3-O-CQA, 1,2-DSG, and 1,2-DS-2-FG
showed an increase of ∼22, ∼185, and ∼65%, respectively, as
compared to time 0 h control samples, whereas the concentration
of 5-O-CQA, 1,2-DFG, 1-S-2-FG, and 1,2,2-TSG remained
unaltered (Table 2). In agreement with this observation, a
previous report showed that the total phenolic content remained
unchanged during the first twelve days of storage of broccoli
florets stored at 5◦C (Amodio et al., 2014). Likewise, Du et al.
(2014) reported that broccoli florets stored for three days at
15◦C showed a slight but significant increase in total soluble
phenols (1.1-fold) due to wounding. Chlorogenic acid (3-O-
CQA) is one of the principal precursors of lignin, whereas
1,2-DSG, and 1,2-DS-2-FG are glycosides of sinapic and ferulic
acid, which aglycones are also utilized for the biosynthesis of
coniferyl alcohols, precursors of lignin (Vanholme et al., 2010;
Torres-Contreras et al., 2014a,b). Therefore, the higher levels
of 3-O-CQA, 1,2-DSG, and 1,2-DS-2-FG observed after storage
of broccoli florets under air control conditions may be related
with the wound-induced activation of the phenylpropanoid
metabolism, which is required for the biosynthesis of lignin that
in wounded plant tissue serves as a water impermeable barrier
that prevent excessive water loss (Whetten and Sederoff, 1995;
Boerjan et al., 2003; Becerra-Moreno et al., 2015).

The application of ET to broccoli florets during storage
inhibited the accumulation of 3-O-CQA, and 1,2-DS-2-FG,
whereas the accumulation of 1,2-DSG was decreased by ∼12%
as compared to air control florets (Table 2). Likewise, ET
treated broccoli florets showed ∼36% lower levels of 5-O-
CQA as compared with samples before storage (Table 2). It
has been reported that 1-MCP induces the downregulation
in the expression of genes related with lignin biosynthesis in
Brassica chinensis, while ET upregulates them (Zhang et al., 2010).
Therefore, the less intense accumulation of 1,2-DSG and 1,2-
DS-2-FG, as well as the impeded accumulation of 3-O-CQA and
lower levels of 5-O-CQA observed in ET treated florets, suggests
an increased rate of lignin biosynthesis induced by ET. Florets
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treated with MeJA showed amore moderate accumulation of 1,2-
DSG and 1,2-DS-2-FG and a decrease of 5-O-CQA as compared
with the air control (Table 2). Additionally, lower concentrations
of 1-S-2-FG and 1,2-DFG were observed. Previous reports
showed that JA downregulates genes involved in the biosynthesis
of phenolic compounds, such as PAL and 4-coumarate-CoA ligase
(4CL), as well as genes involved in the biosynthesis of lignin,
such as the caffeoyl-CoA 3-O-methyltransferase (CCoAOMT)
gene (Jacobo-Velázquez et al., 2015). Therefore, unlike ET-treated
samples, the observed MeJA induced decrease and repression of
accumulation of individual phenolic compounds are likely due to
a downregulation of genes involved in the secondary metabolic
pathways leading to the biosynthesis of phenolic compounds.

The application of additional wounding stress to broccoli
florets (florets cut into four even pieces) induced a decrease in
concentration of 1-S-2-FG by∼69% after 24 h of storage, whereas
the concentration of the other phenolics remained unchanged
(Table 2). As earlier described, the decrement in phenolics
induced by wounding could be attributed to their conversion
into lignin, which is needed to prevent excessive water loss in
wounded plants (Whetten and Sederoff, 1995; Boerjan et al., 2003;
Becerra-Moreno et al., 2015). Therefore, it is likely that wounded
broccoli florets experienced a higher rate of lignification than
the rate of phenolics biosythesis, and thus, lower levels of 1-
S-2-FG were detected. The phenolic compounds identified in
broccoli have a glycosylated structure in which two or three
simple phenolics may be attached (compounds 3–7, Figure 2). In
the case of wounded florets stored under air control conditions,
the main phenolic compound affected by wounding (1-S-2-
FG) has one sinapic acid and one ferulic acid attached to the
carbohydrate moiety. Therefore, it could be hypothesized that
phenolic glycosides with a lower number of simple phenolics in
their structures are more prone to be hydrolyzed and used as
lignin building blocks.

ET applied to wounded-florets resulted on ∼53% higher levels
of 1,2-DS-2-FG as compared to samples before storage and∼30%
higher content than air control wounded florets. Furthermore,
the application of ET in wounded florets impeded the decrease
in concentration observed in 1-S-2-FG after 24 h of storage of
wounded florets (Table 2). As described earlier, previous reports
indicates that ET activates the expression of genes related with
phenolics and lignin biosynthesis in wounded plants (Jacobo-
Velázquez et al., 2015). In the specific case of wounded carrots,
the application of exogenous ET to the tissue increased PAL
activity and phenolics accumulation (Heredia and Cisneros-
Zevallos, 2009b). Therefore, it is likely that in wounded broccoli
florets, exogenous ET increased the biosynthesis rate of phenolic
compounds as compared to the air control, and since phenolic
biosynthesis increased, the balance between phenolic production
and utilization for lignin biosynthesis resulted in no change in
total phenolic content.

The application of MeJA to wounded florets only affected
the concentration of 1,2-DS-2-FG as compared to air control
samples, where exogenous MeJA impeded the wound-induced
decrease in concentration observed after storage. These results
are in agreement with a previous report, where the application
of MeJA to wounded carrots stored for 12 day at 15◦C did

not induce a significant increase in the concentration of total
phenolics (Heredia and Cisneros-Zevallos, 2009b). Additionally,
pre-harvest studies have shown that the concentration of
phenolic compounds in broccoli is not affected in response to
treatment with MeJA. For instance, Barrientos-Carvacho et al.
(2014) reported that the treatment of broccoli sprouts with three
different concentrations of MeJA (10, 50, 90 μM) induced a
decrease in total phenolic compounds. Similarly, a study by Ku
and Juvik (2013) showed that the application of MeJA (250 μM)
to aerial tissues of broccoli 4 days prior to harvest had no effect
on the concentration of phenolic compounds in broccoli florets.
These observations may be due to the downregulation that JA
exerts on genes related with phenolics and lignin biosynthesis
in wounded plants (Jacobo-Velázquez et al., 2015). Therefore,
results presented herein indicate that MeJA is not an elicitor
for the phenylpropanoid pathway in broccoli, however, since 1-
S-2-FG content was increased in wounded-florets treated with
MeJA as compared with the air control, it is likely that MeJA
selectively induce the accumulation of 1-S-2-FG in wounded
tissue (Table 2).

Given their health-promoting properties, the production of
phenolic compounds in broccoli would be of great interest for the
pharmaceutical and dietary supplements industry. For instance,
3-O-caffeoylquinic acid has been associated with the reduction
of the risk of developing cardiovascular diseases, type II diabetes,
and neurodegenerative diseases (Farah et al., 2008). Furthermore,
ferulic acid and sinapic acid, the phenolic aglycones of 1,2-DSG,
1-S-2-FG, 1,2,2-TSG, 1,2-DFG, and 1,2-DS-2-FG, are important
antioxidants that inhibit the peroxidation of LDL, helping to
prevent the progression of atherosclerosis (Natella et al., 1999).

Effect of Wounding Stress,
Phytohormone Treatment, and Storage
Time on the Accumulation of
Glucosinolates
The identification of individual glucosinolates present in
broccoli treated with or without wounding and phytohormones
is shown in Figure 3 and Table 3. The chemical structure
of individual glucosinolates identified is shown in Figure 4
(compounds 1–4) and includes one aliphatic glucosinolate
(glucoraphanin, compound 1), and three indolic glucosinolates
(4-hydroxyglucobrassicin, compound 2; glucobrassicin,
compound 3; and neoglucobrassicin, compound 4). Likewise,
their concentration in broccoli treated with or without wounding
and phyhormones is shown in Figure 5.

Whole heads stored for 24 h at 20◦C showed an increase of
∼84% in the content of 4-hydroxyglucobrassicin as compared
to the control (time 0 h samples), whereas the content of
the other three individual glucosinolates remained unchanged
(Figure 5). When whole broccoli heads were treated with ET,
the concentration of glucoraphanin and 4-hydroxyglucobrassicin
increased by ∼52 and ∼223%, respectively, as compared with
the control (Figures 5A,C). These results are in agreement
with a previous report, where the expression levels of genes
related with glucosinolate biosynthesis strongly correlated
with endogenous ET production in broccoli (Ku et al.,
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FIGURE 3 | Typical HPLC-DAD chromatogram (shown at 227 nm) from
methanol/water (70/30, v/v) extracts of broccoli whole heads before
storage. Tentative identification of peaks was performed as indicated in
Table 3. Peak assignment: (1) Glucoraphanin; (2) 4-hydroxyglucobrassicin; (3)
Glucobrassicin; (4) Neoglucobrassicin; (IS) Internal standard (sinigrin).

2013b). In the indolic glucosinolate biosynthetic pathway,
glucobrassicin is synthesized by sulfotransferases 16 and 18
(SOT16 and SOT18), and then glucobrassicin is converted into
neoglucobrassicin and 4-hydroxyglucobrassicin by the subfamily
of CYP81F genes by methylation and hydroxylation reactions,
respectively. Therefore, these observations suggest that, in the
specific case of broccoli whole heads, the hydroxylation of
glucobrassicin was favored by postharvest storage and ET
treatments.

The application of MeJA in whole broccoli heads did not
induce additional accumulation of glucosinolates as compared
to the air control (Figure 5). A previous report where
MeJA was applied four days before harvest of broccoli
reported an increase in the expression levels of hydrolytic
enzymes (myrosinase), which converts glucosinolates into
isothiocyanates (Ku et al., 2013b). This suggests that MeJA
also acts as a signal that leads to a higher myrosinase activity
in whole heads, making it more available for glucosinolate
hydrolysis, therefore, it is likely that the glucoraphanin
and 4-hydroxyglucobrassicin produced by storage conditions
are being hydrolyzed into isothiocyanates, and thus, no
accumulation of any individual glucosinolate was observed
(Figure 5).

Florets stored for 24 h at 20◦C under air control conditions
did not show significant difference in the glucosinolate
profiles as compared with the control (time 0 h samples,
Figure 5). Treating broccoli florets with ET or MeJA did
not affect the concentration of individual glucosinolates as
compared with air control samples. The application of additional
wounding stress to florets (wounded florets) did not affect
the glucosinolate profile of broccoli when stored under air
control conditions. However, when wounded florets were
treated with ET, the concentration of neoglucobrassicin and
4-hydroxyglucobrassicin was enhanced by ∼193 and ∼117%
as compared to the control (time 0 h samples), whereas
the concentration of the other individual glucosinolates

TABLE 3 | Identification of individual glucosinolates in broccoli.

Peak number
(retention time, min)

λmax (nm) Tentative identification [M-H]− (m/z)

1 (7.1) 222 Glucoraphanina,b,c 380

2 (14.8) 221 4-hydroxyglucobrassicinb –

3 (23.1) 222, 280 Glucobrassicinb,c 391

4 (27.5) 222 Neoglucobrassicinb,c 421

Identification was obtained by HPLC-PDA-ESI-MSn.
a Identified based on their spectra characteristics and their mass-to-charge
ratio as compared with authentic standards. bIdentified based on their spectra
characteristics and order of elution as compared with a previous report (Hansen
et al., 1996; Vallejo et al., 2003; Barbieri et al., 2008; Miglio et al., 2008). c Identified
based on their spectra characteristics and their mass-to-charge ratio as compared
with a previous report (Vallejo et al., 2003).

FIGURE 4 | Chemical structures of glucosinolates identified in broccoli
subjected to wounding stress and exogenous ET and MeJA:
glucoraphanin (1), 4-hydroxyglucobrassicin (2), glucobrassicin (3),
neoglucobrassicin (4).

remained unaltered as compared with the air control.
Likewise, MeJA treatments induced significant increments
in the levels of neoglucobrassicin and 4-hydroxyglucobrassicin,
where their concentrations were increased by ∼286 and
∼117% as compared with time 0 h samples. Results suggest
that MeJA and ET induced the activation of CYP81F genes
involved on glucobrassicin hydroxylation and methoxylation,
forming 4-hydroxyglucobrassicin and neoglucobrassicin,
respectively. These results are in agreement with studies
in Arabidopsis indicating that genes related to indolic
glucosinolate biosynthesis are more susceptible to be induced
by exogenous phytohormones rather than those playing a
role in aliphatic glucosinolate biosynthesis, although the
latter may also be up-regulated (Mikkelsen et al., 2003).
Interestingly, in the present study, it was shown that to
accumulate indolic glucosinolates (neoglucobrassicin and
4-hydroxyglucobrassicin) the combination of wounding
stress with MeJA or ET was required, whereas for the
accumulation of aliphatic glucosinolate (glucoraphanin)
the sole application of ET on broccoli heads was sufficient
(Figure 5). The unchanged levels of glucoraphanin in
response to exogenous phytohormones in broccoli treated

Frontiers in Plant Science | www.frontiersin.org 8 February 2016 | Volume 7 | Article 45

http://www.frontiersin.org/Plant_Science/
http://www.frontiersin.org/
http://www.frontiersin.org/Plant_Science/archive


Villarreal-García et al. Broccoli as Biofactory of High-Value Bioactives

FIGURE 5 | Effect of wounding and exogenous ET and MeJA on the concentration of glucoraphanin (A), glucobrassicin (B), 4-hydroxyglucobrassicin
(C), and neoglucobrassicin (D) of broccoli stored for 24 h at 20◦C. Data represent the mean of three repetitions and their standard errors. Data reported for
samples before storage represent values of time 0 h whole heads. Bars with different letters indicate statistical difference by the LSD test (p < 0.05).

with wounding stress (florets and wounded florets) may be due
to a selective wound-induced activation of an aliphatic-specific
myrosinase.

The accumulated glucosinolates in stressed broccoli have
diverse industrial applications. For instance, in the
pharmaceutical and dietary supplements industry, glucoraphanin
has gained interest in the last few years due to the
anticarcinogenic properties of its hydrolysis product,
sulforaphane (Fahey and Talalay, 1999). Additionally,
glucosinolates can also be used as insecticides to protect
horticultural crops, as reported by El Sayed et al. (1996), who
showed an inhibiting effect of glucobrassicin and its hydrolysis
product, indol-3-ylmethylisothiocyanate, on Schistocerca
gregaria, an insect that threatens crop production mainly in
Africa, Middle East, and Asia.

CONCLUSION

Results presented herein showed that simple postharvest
treatments such as wounding applied alone or in combination
with exogenous phytohoromnes (ET and MeJA) can be

used as an effective emerging technology that allows the
accumulation of specific glucosinolate and phenolic compounds
in broccoli. For instance if the accumulation of specific
phenolic compounds such as 2,2-TSG, 1,2-DFG, and 1,2-DS-
2- FG are desired whole broccoli heads can be stored for
24 h at 20◦C. Furthermore, for the accumulation of 3-O-
CQA, 1,2-DSG, and 1,2-DS-2-FG, broccoli florets should be
stored under the same condition. However, when broccoli
was treated with ET or MeJA the accumulation of these
individual phenolics was impeded. On the other hand, if the
accumulation of glucoraphanin and 4-hydroxyglucobrassicin
is desirable, whole broccoli heads should be treated with
exogenous ET for 24 h. Likewise, for the accumulation of
neoglucobrassicin wounded broccoli florets should be treated
with exogenous ET andMeJA during 24 h at 20◦C. This particular
observation suggests a complex cross-talk between wounding
and the applied phytoregulators acting on the metabolism of
glucosinolates. Despite that quality changes in broccoli were
not a factor evaluated in this study, the visual quality of
broccoli heads was not affected within the 24-h period of
storage, suggesting that it could be used as a functional food.
However, further studies should be performed to validate
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consumers acceptability and microbial safety of the tissue.
Additionally, the stressed broccoli tissue with increased levels of
bioactive molecules could be subjected to downstream processing
in order to extract and purify the bioactive compounds for their
subsequent use on the dietary supplements, agrochemical and
cosmetics markets.
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