Copyright © 2015, American Society for Microbiology. All Rights Reserved.

$\overline{\mathbf{O}}$
\sim
ക
~
S
\circ
•
S S
LD LD
an
\an
۸an
Man
Man
Man
d Man
d Man
ed Man
ed Man
ted Man
oted Man
oted Man
pted Man
spted Man
epted Man
cepted Man
cepted Man
ccepted Man
ccepted Man
Accepted Man

22

Borrelia burgdorferi not confirmed in human-biting Amblyomma americanum ticks from the 1 2 southeastern United States 3 Ellen Y. Stromdahl¹, Robyn M. Nadolny^{1, 2}, Jennifer A. Gibbons^{3,4}, Lisa D. Auckland⁵, Mary A. 4 Vince¹, Chad E. Elkins¹, Michael P. Murphy¹, Graham J. Hickling⁶, Mark W. Eshoo⁷, Heather E. 5 Carolan⁷, Chris D. Crowder⁷, Mark A. Pilgard⁸, Sarah A. Hamer⁵ 6 7 ¹U.S. Army Public Health Command, Aberdeen Proving Ground, MD, USA. 8 ² Department of Biological Sciences, Old Dominion University, Norfolk, VA, USA 9 ³ U.S. Army Edgewood Chemical and Biological Center, Aberdeen Proving Ground, MD, USA 10 ⁴ Science and Technology Corp. Hampton, VA, USA 11 ⁵ Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, 12 USA 13 ⁶ Center for Wildlife Health, University of Tennessee Institute of Agriculture, Knoxville, TN, USA 14 ⁷ Ibis Biosciences, an Abbott Company, Carlsbad, California, USA 15 ⁸Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, CO, 16 USA 17 18 19 #Correspondence: Ellen Y. Stromdahl, U.S. Army Public Health Command, 5158 Blackhawk Rd. Aberdeen Proving Ground, MD, 21010-5403, (Ellen.y.stromdahl.civ@mail.mil). Telephone 410-20 436-5421; FAX 410-436-2037 21

1

23

24 Running title: Borrelia burgdorferi not confirmed in Amblyomma americanum 25 Keywords: Amblyomma americanum, Borrelia burgdorferi sensu lato, Borrelia lonestari, lone star tick, vector-borne disease, southeastern US, 26 27 28 ABSTRACT 29 30 The predominant human-biting tick throughout the southeastern United States is Amblyomma 31 americanum. Its ability to transmit pathogens causing Lyme disease-like illnesses is a subject of 32 ongoing controversy. Results of previous testing by the Department of Defense Human Tick Test Kit Program, and other laboratories, indicated that it is highly unlikely that A. americanum 33 34 transmits any pathogen that causes Lyme disease. In contrast, a recent publication by Clark and colleagues (K.L. Clark, B. Leydet, S. Hartman, Int. J. Med. Sci. 10:915-931, 2013) reported 35 36 detection of Lyme group Borrelia in A. americanum using a nested flagellin gene PCR. We 37 evaluated this assay and by using it, and other assays, to test 1,097 A. americanum collected 38 from humans. Using the Clark assay, in most samples we observed non-specific amplification, 39 and non-repeatability of results on subsequent testing of samples. Lack of reaction specificity and repeatability is consistent with mispriming, likely due to high primer concentrations and 40 41 low annealing temperatures in this protocol. In six suspect-positive samples, Borrelia lonestari 42 was identified by sequencing of an independent gene region; this is not a Lyme-group spirochete and is not considered zoonotic. B. burgdorferi was weakly amplified from one pool 43 44 using some assays, but not others, and attempts to sequence the amplicon of this pool failed,

JCM

as did attempts to amplify and sequence *B. burgdorferi* from the five individual samples
comprising this pool. Therefore, *B. burgdorferi* was not confirmed in any sample. Our results
do not support the hypothesis that *A. americanum* ticks vector Lyme group *Borrelia* infections.

48

49 INTRODUCTION

The vectors and etiologic agents of Lyme-like diseases in the southeastern United States are a 50 subject of ongoing controversy (1, 2). In the US, most Lyme disease is caused by infection with 51 52 Borrelia burgdorferi sensu stricto (ss), a bacterium that is phylogenetically within the B. 53 burgdorferi sensu lato (sl) 'Lyme group' of spirochetes vectored by hard ticks. The Lyme group 54 also includes genospecies implicated as the etiologic agents of Lyme disease in other geographic regions, including B. garinii, B. afzelii, B. spielmanii, and B. valaisiana in Europe. 55 56 Additional Lyme group genospecies continue to be described. In the US, these include B. americana, B. andersonii and B. carolinensis, all of unknown pathogenicity, and B. bissettii, 57 58 which has been implicated in cases of human illness (1). In contrast to the Lyme group, the relapsing fever (RF) group spirochetes, many of which are vectored by soft ticks, are a separate 59 60 phylogenetic cluster that includes agents associated with RF disease in humans. In the US, 61 genospecies within the RF group include *B. hermsii*, *B. turicatae*, and *B. parkeri*, (vectored by soft ticks) and B. miyamotoi, B. davisii, and B. lonestari, (vectored by hard ticks). B. hermsii is 62 the main cause of tick-borne relapsing fever in the US; B. turicatae and B. parkeri have also 63 64 been associated with human disease (3). B. miyamotoi was recently implicated as the cause of 65 human disease in the US (4), and the pathogenicity of B. davisii is unknown. B. lonestari was

ed Online

Pos		
sript		
SL	66	provisionally implicated in a single case of early Lyme disease-like liness (erythema migrans),
ant	67	but subsequent investigation has not established it as a human pathogen (5, 6, 7).
Ч Ч	68	The predominant human-biting tick throughout the Southeast is Amblyomma
pte	69	americanum, accounting for over 90% of tick bites in southeastern states (8, 9). Vector-
ACCE	70	competency studies have concluded repeatedly that <i>B. burgdorferi</i> is unlikely to be transmitted
	71	by A. americanum (10-16), and a potent borreliacidal agent has been identified in A.
	72	americanum saliva (17, 18). From 1997 - 2010, the Department of Defense (DOD) Human Tick
	73	Test Kit Program (HTTKP), a tick identification and PCR testing service provided by the US Army
	74	Public Health Command (USAPHC) for DOD personnel and dependents, tested 22,565 A.
	75	americanum ticks (21,245 adults and nymphs removed from humans, and 1,320 field-collected
y Y	76	larvae) for borrelial agents of Lyme-like diseases using a series of nested and real-time PCR
of Clin biolog	77	assays. These ticks include representation across the majority of the geographic distribution of

78	the s	pecies	(8,	9)	
----	-------	--------	-----	----	--

79 HTTKP methods have evolved across the years in response to changing diagnostic capabilities and new public health threats (2, 19, 20). For example, in 2001, when B. lonestari, a 80 81 RF group Borrelia found in A. americanum, was tentatively linked to a case of southern tick-82 associated rash illness (STARI) (5), HTTKP testing was modified to include testing for B. lonestari 83 (21-24). However, epidemiological studies of STARI patients did not support the hypothesized 84 link between STARI and B. lonestari (6, 7, 25), so targeting of this Borrelia species in the HTTKP ended in 2009. As a summary of our program from 1997-2010, a total of 4,019 A. americanum 85 86 adults, nymphs and larvae were tested with nested primers expected to amplify B. burgdorferi, and 7,421 were tested with primers that would have amplified all Borrelia spp. (23). Although 87

89	believe contamination was involved because all occurred within a short time period in the first
90	year of our study when we initially implemented PCR techniques, and zero positive results were
91	obtained across large numbers of samples in all subsequent years. In contrast, over the same
92	period, a total of 5,458 Ixodes scapularis and 12 Ixodes pacificus adults and nymphs were tested
93	by the HTTKP using equivalent assays; 24.7% of <i>I. scapularis</i> and 8.3% of <i>I. pacificus</i> tested
94	positive for Lyme group Borrelia DNA. To summarize, we found no measureable prevalence of
95	B. burgdorferi in an epidemiologically relevant collection of A. americanum from across a broad
96	geographic range over a 13-year time period.
97	In 2013, however, debate about the role of <i>A. americanum</i> in Lyme disease-like illness
98	intensified, following a publication that reported detection of <i>B. burgdorferi</i> DNA in two <i>A.</i>
99	americanum removed from humans, and B. burgdorferi and B. andersonii DNA in humans bitten
100	by A. americanum (26). Given our extensive background of PCR testing of A. americanum, and
101	in view of the novelty and potential clinical significance of the suggestion by Clark et al. (26)
102	that this tick species is contributing to unrecognized cases of human borreliosis in the
103	southeastern United States, we used the primers and thermocycling protocol of Clark et al. (26)
104	in an attempt to detect Lyme group spirochetes in a large sample (>1,000) of A. americanum
105	removed from humans throughout the eastern US in 2013.
106	

we initially reported that seven samples (0.3%), all from 1997, produced amplicons (19), we

107 MATERIALS AND METHODS

108 **Tick identification and DNA extraction.** *A. americanum* were removed from military personnel

and their families in the mid-Atlantic and southeastern US and submitted to the HTTKP (Table

111	extracted either from individual ticks or from small pools of conspecific ticks removed from the
112	same human on the same date, using a Zymo Genomic DNA II Kit™ (Zymo Research
113	Corporation, Orange, California) (27). Aliquots of DNA from five A. americanum samples were
114	pooled for a screening PCR; individual samples in these pools were archived for later PCR
115	and/or sequencing confirmation if the pool tested suspect-positive. Samples removed from the
116	same person could contain more than one tick, so some pools contained DNA from more than
117	five ticks.
118	PCR and sequence analysis. At our USAPHC laboratory, nested PCR for the <i>flaB</i> gene
119	using primers from Clark et al. (26) was performed in 25 μ l reaction volumes prepared with
120	Ready-To-Go PCR Beads (Amersham Phamacia Biotech, Piscataway, N.J.), containing 10 mM
121	Tris-HCl (pH 9.0), 1.5 mM MgCl _{2,} 200 μ M each dNTP and 1.5 units <i>Taq</i> DNA polymerase.
122	External reactions using outer reaction primers 280F and 754R contained 2.5 μl tick DNA (0.5 μl
123	from individual ticks in pools of 5) and amplified a 475-bp product; internal reactions using
124	inner reaction primers 301F and 737R contained 1.0 μl external PCR reaction and amplified a
125	437-bp product. Of the two internal reaction primer sets published by Clark et al. (26), we used
126	the set that provided the clearest gel results when tested with positive controls. This was the
127	primer combination – 280F, 754R and 301F, 737R – used to amplify Lyme group Borrelia in a
128	subsequent study of human samples by Clark et al. (28). Published thermal-cycling parameters
129	were followed (26, 28). Three positive controls were used, consisting of <i>B. burgdorferi</i> strain
130	B31 (gift of Dr. R. Wirtz, CDC Atlanta) and two B. burgdorferi - positive I. scapularis samples
131	from the HTTKP. Each PCR included at least two negative controls, consisting of a water

1). Submitted ticks were identified to species morphologically. Genomic DNA was then

JCM

template sample that was introduced at the time of DNA extraction and a water template
sample that was introduced at the time of PCR. Amplicons were visualized on 2% agarose gel
cassettes using ethidium bromide (E-Gel, Invitrogen Corp., Carlsbad, Calif.). When a pool
produced an amplicon at the 437-bp position, we then tested DNA from the individual tick
samples that comprised the pool to ascertain individual-level infection, using the same method
as described above.

At our Texas A&M University (TAMU) laboratory, a blinded collection of *flaB* PCR-138 139 suspect-positive and negative samples, along with positive and negative controls, was subjected 140 to further analysis, following whole genome amplification to increase the amount of template 141 DNA available for testing (GenomiPhi, GE Healthcare, Pittsburgh, PA). This amplification 142 process produces a concentrated DNA template, and therefore DNA was diluted 1:25 for 143 subsequent analyses. First, the identification of tick species was confirmed through PCR and DNA sequencing of the 12S rRNA gene (29). Next, a nested PCR for the 16S-23S rRNA intergenic 144 145 spacer region (IGS) of Borrelia was performed, using primers and thermal-cycling parameters 146 described previously (30). This assay amplifies both RF and Lyme group Borreliae, producing approximate 500-bp and 1000-bp fragments, respectively. PCR amplicons from positive 147 148 samples were purified (ExoSAP-IT, Affymetrix, Santa Clara, CA) and bi-directionally sequenced. Sequences were manually edited and the identification of the Borrelia species was ascertained 149 through comparison to sequences published in NCBI Genbank. Finally, real-time quantitative 150 151 PCR (gPCR) was run on the samples using primers and probes for the 16S rRNA gene of Borrelia, 152 including a *B. burgdorferi*-specific probe and a RF-group probe (31).

7

σ	
2	>
C	Ū,
5	<u> </u>
~	<u>.</u> 0
ō	<u> </u>
σ	5
Ε	Ň
2	~

153	At Ibis Biosciences, further testing of PCR-suspect-positive samples was undertaken,
154	using isothermal Borrelia enrichment performed as previously published (32). Enrichment of a
155	negative control was also performed. Following isothermal Borrelia DNA enrichment, a broad-
156	range PCR followed by electrospray ionization mass spectrometry (IA/PCR/ESI-MS) was
157	performed, in which each sample was subjected to a series of eight diagnostic PCR reactions
158	(32, 33). By the selection of <i>Borrelia</i> PCR targets that vary in sequence between <i>Borrelia</i>
159	species and strains (genotypes) it is possible to use the IA/PCR/ESI-MS technology to identify
160	the Borrelia species and distinguish its genotype even when present in mixtures of genotypes
161	(32, 33). A volume of 10ul of isothermal amplified nucleic acid extract was used in each PCR
162	reaction and all PCR reactions were analyzed using an electrospray ionization mass
163	spectrometry system (Abbott Molecular, Des Plaines, IL) as previously described (32, 33).
164	In silico analysis. Potential mispriming genomic loci were identified for each primer
165	assay of Clark et al. (26) using NCBI Primer-BLAST (<u>http://www.ncbi.nlm.nih.gov/tools/primer-</u>
166	blast) default parameters against the nr database (a nonredundant NCBI database that includes
167	all GenBank + RefSeq Nucleotides + EMBL + DDBJ + PDB sequences, excluding HTGS0, 1, 2, EST,
168	GSS, STS, PAT, and WGS). The species of each potential mispriming site was noted for each
169	assay.
170	The flagellin sequences of experimentally identified potential cross-reacting Borrelia
171	species were aligned using Clustalw (http://www.genome.jp/tools/clustalw/). Sequences used
172	were B. burgdorferi B31 (NC_001318.1), B. andersonii (D83762.1), B. americana SCW-30h

8

(HM802232.1), and B. lonestari MO2002-V1 (AY850063.1). B. andersonii, B. americana, and B.

174 *lonestari* genomes are not yet fully assembled, so the longest flagellin sequences deposited in

175 NCBI Nucleotide were chosen for the alignment.

176 The T_m for each primer assay were determined using an online calculator

177 (<u>http://www.idtdna.com/analyzer/Applications/OligoAnalyzer/</u>), adjusting default parameters

to represent our PCR reaction conditions (0.8uM primers, 200uM dNTPs, and 1.5mM MgCl₂)

and identified mismatches.

Sensitivity test. PCRs were performed at USAPHC to compare the sensitivity of the *flaB* 180 181 primers from Clark et al. (26) and the set of nested Borrelia genus fla primers from Barbour et 182 al. (23) routinely used in the HTTKP. Serial dilutions of B. americana SCW-30E, B. andersonii SI-183 10, and B. bissettii FD-1 were tested with the two PCRs. These particular strains are from the southern US and were chosen in order to more rigorously test the sensitivity of these primers 184 185 and their ability to detect all members of these species, because these strains varied the most with the Barbour primers. To identify mismatches between the Barbour fla primers and B. 186 187 americana, B. andersonii, and B. bissettii strains from the United States, an alignment of the 188 flagellin sequences found in NCBI Genbank was made using the MegAlign application in the 189 DNAStar Lasergene 12 software. Protocol for PCR using the Clark primers is described above, 190 and PCR protocol for the Barbour primers is described in Stromdahl et al. (3). Each test 191 contained a positive control containing B. burgdorferi strain B31 and a negative control 192 consisting of a water template sample that was introduced at the time of PCR.

193

194 **RESULTS**

Journal of Clinical

urnal of Clinical	Microbiology	

195	USAPHC testing. PCR using the nested <i>flaB</i> primers from Clark et al. (26) was performed on 171
196	pools, comprising 1,097 individual A. americanum. The geographic origin of these ticks is listed
197	in Table 1, and results of testing are summarized in Table 2. The B31 positive controls, and the
198	two I. scapularis samples previously PCR-positive for B. burgdorferi, all produced major bands at
199	437-bp. In contrast, in most A. americanum samples we observed only a 'ladder' effect (Fig. 1)
200	that typically is indicative of mispriming. For the few samples that produced a distinct major
201	band of the expected length (e.g., Fig. 1A, lane 7; Fig. 1B, lane 8), we classified the sample as
202	suspect-positive and investigated further. Nine of 171 pools (5.3% of pools) P009, P084,
203	P123, P171, P174, P189, P191, P194, P211 were selected by this criterion.
204	Additional testing was conducted on the individual samples comprising the nine pools
205	that produced major bands of 437-bp size. Two of these pools (P009, P171) yielded no suspect-
206	positive individual samples. Accordingly, we repeated the <i>flaB</i> PCR on these and the remaining
207	pools before testing the individual samples from any more pools. The pools P009 and P171
208	with no suspect-positive individual samples, and three additional pools, P189, P191, and P211,
209	were negative in the repeat PCR of the pool, so the individual samples of P189, P191, and P211
210	were not initially tested using the <i>flaB</i> primers. The five individual samples from P189 were
211	later tested (see section below: "Follow-up testing at USAPHC and TAMU"). Four pools (P084,
212	P123, P174, P194) contained individual samples that produced a 437-bp amplicon. Three pools,
213	P084, P123, P194, contained one positive tick each and one pool, P174 contained two positive
214	ticks. Overall, five of 1,097 (0.46%) individual A. americanum ticks (130786, 131114, 131429,
215	131433, 131566) produced major bands of 437-bp. These five samples were submitted from

216 Rhode Island, Virginia, Tennessee, and New Jersey.

217	TAMU testing. The five individual samples (130786, 131114, 131429, 131433, 131566)
218	and eight pools (P009, P123, P171, P174, P189, P191, P194, P211) producing major bands of
219	437-bp in the <i>flaB</i> PCR were sent to the TAMU laboratory for further analysis. The pool (P084)
220	containing the individual suspect-positive sample from Rhode Island was not sent. The 12S
221	rRNA sequence analysis revealed that all samples except one (130786 from P084), contained
222	DNA from A. americanum. Sample 130786, was molecularly identified as I. scapularis, and so
223	had been misidentified by morphology at USAPHC as A. americanum. This tick sample, which
224	had been removed from a human in Rhode Island, was retained as a positive control in
225	subsequent analyses, and was confirmed as positive for <i>B. burgdorferi</i> in all subsequent assays.
226	In the IGS PCR, six of eight pools (P123, P171, P174, P189, P194, P211) produced
227	amplicons, including five amplicons (P123, P171, P174, P194, P211) that were approximately
228	500-bp (indicative of RF group spirochetes) and one very faint amplicon (P189) that was
229	approximately 1000-bp (indicative of Lyme group spirochetes; Table 2). Additionally, all four
230	individual A. americanum ticks (131114, 131429, 131433, 131566) produced amplicons
231	approximately 500-bp in size, and all four were associated with pools producing amplicons
232	approximately 500-bp in size. DNA sequencing of these 500-bp IGS amplicons in each case
233	revealed the presence of <i>B. lonestari</i> (Table 2). The sequence reaction failed for the faint 1000-
234	bp IGS amplicon from pool P189.
235	In the qPCR, six (P123, P171, P174, P189, P194, P211) of eight pools were considered
236	suspect-positive. Consistent with the IGS results reported above, five pools (P123, P171, P174,
237	P194, P211) were positive with the RF-group probe (C $_{ au}$ values ranged from 32 to 35), and one

238 (P189) was weakly positive with the Lyme group *Borrelia* probe (C_T value of 39; Table 2).

240

241	results that indicated the presence of <i>B. lonestari</i> DNA in these samples.
242	IA/PCR/ESI-MS analysis. Nine pools (P009, P084, P123, P171, P174, P189, P191, P194,
243	P211) and four individual samples (131114, 131429, 131433, 131566) producing a major band
244	of 437-bp in the <i>flaB</i> PCR assay, and four pools (P184, P187, P20, P211) and five individual
245	samples (131431, 131559, 131560, 131570, 131571) that were negative in that assay, were sent
246	blinded from USAPHC to Ibis Biosciences for analysis using the IA/PCR/ESI-MS assay.
247	The two pools (P009, P191) that were negative in all TAMU assays were also negative in
248	the Ibis assay. The four previously Borrelia-negative pools (P184, P187, P220, and P221) and
249	two (131431, 131570) of the five <i>Borrelia</i> -negative individual samples sent as controls were also
250	negative using the Ibis assay. Three of the individual samples (131559, 131560, 131571)
251	determined to be negative at USAPHC produced weak positives for <i>B. lonestari</i> in analysis at Ibis
252	(Table 2). All five pools (P123, P171, P174, P194, P211) and four individual samples (131114,
253	131429, 131433, 131566) identified as containing <i>B. lonestari</i> at TAMU were also positive for
254	this organism at Ibis. Pool P189, which was suspect-positive for <i>B. burgdorferi</i> in two assays at
255	TAMU was also positive for <i>B. burgdorferi</i> in the Ibis assay using their IA/PCR/ESI-MS assay, but
256	for only three of eight primers: BCT 3515 (rplB gene), BCT3517 (flagellin gene) and BCT 3519
257	(hbb gene). The pool (P084) containing the <i>B. burgdorferi</i> -positive <i>I. scapularis</i> molecularly
258	identified at TAMU was positive for <i>B. burgdorferi</i> as well as <i>B. lonestari</i> at Ibis.
259	Follow-up testing at USAPHC and TAMU. In order to thoroughly investigate P189, the
260	DNA of the five ticks (131535, 131536, 131537, 131538, 151359) that comprised this pool was

Additionally, all four individual A. americanum ticks (131114, 131429. 131433, 131566) were

positive with the RF-group probe (C_T values ranged from 31 to 33), consistent with the IGS

261	analyzed individually both at USAPHC and at TAMU. Two nested PCRs for Borrelia were used at
262	USPAHC: the <i>flaB</i> assay from Clark et al. (26) and the <i>Borrelia</i> genus <i>fla</i> PCR from Barbour et al.
263	(23). In the former assay, all the individual samples from P189 produced multiple faint bands
264	(laddering) and none had a 437-bp major band; all were scored as negative. Similarly, all
265	samples were negative in the generic <i>fla</i> assay. Using the same <i>flaB</i> assay from Clark et al. at
266	the TAMU laboratory, we also obtained a laddering effect in most samples on the gel, indicative
267	of mispriming. One sample (131536) produced a faint band at the diagnostic 437-bp size (in
268	addition to at least one smaller fragment band of the same intensity). Attempts to obtain a
269	DNA sequence from this sample using a direct approach as well as after excising the 437-bp
270	band from the gel were not successful, and the sample was therefore scored as negative.
271	In silico analysis of the nested PCR assay. NCBI Primer-BLAST analysis of the nested
271 272	<i>In silico</i> analysis of the nested PCR assay. NCBI Primer-BLAST analysis of the nested PCR assay from Clark et al. (26) indicated that the flagellin gene from multiple <i>Borrelia</i> species
271 272 273	<i>In silico</i> analysis of the nested PCR assay. NCBI Primer-BLAST analysis of the nested PCR assay from Clark et al. (26) indicated that the flagellin gene from multiple <i>Borrelia</i> species could be amplified. For the external reaction, a 475-bp amplicon is expected. The BLAST
271 272 273 274	<i>In silico</i> analysis of the nested PCR assay. NCBI Primer-BLAST analysis of the nested PCR assay from Clark et al. (26) indicated that the flagellin gene from multiple <i>Borrelia</i> species could be amplified. For the external reaction, a 475-bp amplicon is expected. The BLAST results yielded amplicons of 445-475-bp that corresponded to 19 Borrelia species, including the
271 272 273 274 275	In silico analysis of the nested PCR assay. NCBI Primer-BLAST analysis of the nested PCR assay from Clark et al. (26) indicated that the flagellin gene from multiple <i>Borrelia</i> species could be amplified. For the external reaction, a 475-bp amplicon is expected. The BLAST results yielded amplicons of 445-475-bp that corresponded to 19 Borrelia species, including the experimentally identified species <i>B. burgdorferi</i> , <i>B. andersonii</i> , <i>B. americana</i> , and <i>B. lonestari</i> .
271 272 273 274 275 276	In silico analysis of the nested PCR assay. NCBI Primer-BLAST analysis of the nested PCR assay from Clark et al. (26) indicated that the flagellin gene from multiple <i>Borrelia</i> species could be amplified. For the external reaction, a 475-bp amplicon is expected. The BLAST results yielded amplicons of 445-475-bp that corresponded to 19 Borrelia species, including the experimentally identified species <i>B. burgdorferi</i> , <i>B. andersonii</i> , <i>B. americana</i> , and <i>B. lonestari</i> . For the internal reaction, a 437-bp amplicon is expected. The BLAST results yielded amplicons
271 272 273 274 275 276 277	In silico analysis of the nested PCR assay. NCBI Primer-BLAST analysis of the nested PCR assay from Clark et al. (26) indicated that the flagellin gene from multiple <i>Borrelia</i> species could be amplified. For the external reaction, a 475-bp amplicon is expected. The BLAST results yielded amplicons of 445-475-bp that corresponded to 19 Borrelia species, including the experimentally identified species <i>B. burgdorferi</i> , <i>B. andersonii</i> , <i>B. americana</i> , and <i>B. lonestari</i> . For the internal reaction, a 437-bp amplicon is expected. The BLAST results yielded amplicons of 407-440-bp. All 19 species identified by the external reaction are also potential mispriming
271 272 273 274 275 276 277 278	In silico analysis of the nested PCR assay. NCBI Primer-BLAST analysis of the nested PCR assay from Clark et al. (26) indicated that the flagellin gene from multiple <i>Borrelia</i> species could be amplified. For the external reaction, a 475-bp amplicon is expected. The BLAST results yielded amplicons of 445-475-bp that corresponded to 19 Borrelia species, including the experimentally identified species <i>B. burgdorferi</i> , <i>B. andersonii</i> , <i>B. americana</i> , and <i>B. lonestari</i> . For the internal reaction, a 437-bp amplicon is expected. The BLAST results yielded amplicons of 407-440-bp. All 19 species identified by the external reaction are also potential mispriming loci with the internal reaction.
271 272 273 274 275 276 277 278 279	In silico analysis of the nested PCR assay. NCBI Primer-BLAST analysis of the nested PCR assay from Clark et al. (26) indicated that the flagellin gene from multiple <i>Borrelia</i> species could be amplified. For the external reaction, a 475-bp amplicon is expected. The BLAST results yielded amplicons of 445-475-bp that corresponded to 19 Borrelia species, including the experimentally identified species <i>B. burgdorferi</i> , <i>B. andersonii</i> , <i>B. americana</i> , and <i>B. lonestari</i> . For the internal reaction, a 437-bp amplicon is expected. The BLAST results yielded amplicons of 407-440-bp. All 19 species identified by the external reaction are also potential mispriming loci with the internal reaction. A more detailed <i>in silico</i> analysis was performed comparing <i>flaB</i> from <i>B. burgdorferi</i> to
271 272 273 274 275 276 277 278 279 280	In silico analysis of the nested PCR assay. NCBI Primer-BLAST analysis of the nested PCR assay from Clark et al. (26) indicated that the flagellin gene from multiple <i>Borrelia</i> species could be amplified. For the external reaction, a 475-bp amplicon is expected. The BLAST results yielded amplicons of 445-475-bp that corresponded to 19 Borrelia species, including the experimentally identified species <i>B. burgdorferi</i> , <i>B. andersonii</i> , <i>B. americana</i> , and <i>B. lonestari</i> . For the internal reaction, a 437-bp amplicon is expected. The BLAST results yielded amplicons of 407-440-bp. All 19 species identified by the external reaction are also potential mispriming loci with the internal reaction. A more detailed <i>in silico</i> analysis was performed comparing <i>flaB</i> from <i>B. burgdorferi</i> to the three experimentally identified cross-reacting <i>Borrelia</i> species. The external and internal

281 primers were also aligned to the sequences. The external primer assay revealed a perfect

282 match to *B. burgdorferi* and *B. andersonii* (due to the degenerate base), and a single mismatch

13

283

284

285

286

287

288

end of the primer.

Sensitivity test. The MegAlign comparison of the flagellin sequences found in NCBI 289 290 Genbank revealed that all four of the Clark primers were an exact match to B. americana SCW-291 30E. Three of the primers (301F, 737R, 745R) were 100% matches to B. andersonii SI-10 and B. 292 bissettii FD-1, although with the 301F primer only 21/23 bases of the primer could be 293 determined. The match of the 280F primer to *B. andersonii* SI-10 and *B. bissettii* FD-1 could not 294 be determined as the sequences are unknown, however, the 280F primer was an exact match to all of the US sequences of B. bissettii (DN127) and B. andersonii (19857, 21038, and 21123) 295 296 that were available in NCBI Genbank.

to B. americana. The external reaction has multiple mismatches to the B. lonestari sequence,

mismatch 3 bp from the 3' terminus of the forward primer. The internal reaction has a perfect

match with B. burgdorferi, B. andersonii, and B. americana. This reaction has four mismatches

between the internal reverse primer and the *B. lonestari* sequence, including two close to the 3'

most importantly a mismatch at the 3' terminal nucleotide in the reverse primer, and a

297 The *B. americana* SCW-30E flagellin sequence was a 100% (24/24) match with the 298 Barbour FlaLL primer, 95% (21/22) match with FlaLS, and its match with FlaRS and FlaRL could 299 not be determined. However, the FlaRS primer was a 100% match (26/26) with the one US 300 sequence of B. americana (SCW-30h) that was available in NCBI Genbank. The B. andersonii SI-10 flagellin sequence was a 100% match (22/22) with the Barbour FlaLL primer over the 22/24 301 302 bases it could be aligned with, 86% (19/22) match with FlaLS, 96% (25/26) match with FlaRS, 303 and a 92% (11/12) match with FlaRL over the 11/24 bases it could be aligned with. The B. 304 bissettii FD-1 flagellin sequence was a 100% match (22/22) with the Barbour FlaLL primer over

<u>छ</u>	
Ē	ြစ်
\mathcal{L}	.0
ō	9
g	<u>.</u>

305 the 22/24 bases it could be aligned with, 100% (22/22) match with FlaLS, 92% (24/26) match 306 with FlaRS, and its match with FlaRL could not be determined. However, the FlaRL primer was a 307 96% match (23/24) with the one US sequence of *B. bissettii* (DN127) that was available in NCBI 308 Genbank.

309 In the PCR comparison, the *flaB* primers from Clark (26) and the *fla* primers from 310 Barbour et al. (23) produced identical results in amplifying increasingly dilute amounts of the three Lyme group spirochetes. The analytical sensitivity (limit of detection = LOD) of both 311 312 primer sets in amplifying *B. americana* DNA was determined to be ~ 0.3 copies/uL (1:10M 313 dilution). The LOD of both primer sets in detecting *B. andersonii* DNA was ~7 copies (1:1M 314 dilution), and the LOD of both primer sets in detecting B. andersonii DNA was ~6 copies (1:1M 315 dilution).

316

DISCUSSION 317

318 We were unable to confirm any Lyme group Borrelia infection in a detailed investigation of 319 1,097 A. americanum ticks removed from humans in the southeastern and mid-Atlantic US. Other recent investigations have similarly failed to reveal B. burgdorferi in A. americanum. No 320 321 B. burgdorferi was detected during an extensive molecular characterization of the microbiome 322 of 732 A. americanum adults and nymphs collected in Texas and Missouri (36), and a study of 323 >3,000 A. americanum from Georgia using PCR with fla primers from Barbour et al. (23) 324 reported detection only of *B. lonestari* (37). The Barbour primers are designed to amplify all 325 Borrelia spp., and analytical sensitivity testing of these primers in this study has indicated that 326 they can detect the strains of *B. americana*, *B. andersonii*, and *B. bissettii* that have the most

mismatches with these primers, suggesting that they can detect all members of each of these 327 328 species.

329 Clark et al. (62) have suggested that A. americanum ticks are a significant source of 330 viable *B. burgdorferi* (sl or ss). In our hands, however, the the *flaB* nested PCR assay upon 331 which that suggestion was based produced many faint non-specific bands, likely indicative of mispriming by amplification of DNA from the tick, human DNA in the tick blood meal, or other 332 333 organisms in the tick midgut microbiome. Amplification was also inconsistent since samples 334 with major 437-bp bands failed to produce amplicons in repeat testing. Similar inconsistent 335 results (i.e., negatives when previously suspect-positive, or inconsistent band sizes and 336 numbers) have been reported in another trial of the Clark et al. flaB assay using I. scapularis ticks (34); in that study, as in ours, sequencing attempts of the PCR products of the unknown 337 338 tick samples failed. This stochastic fluctuation in PCR outcome may be attributable to the low annealing temperature and/or the high primer concentration. The Clark assay utilizes an 339 340 annealing temperature of 52°C for the external reaction and 55°C for the internal reaction (26). 341 The optimal annealing temperature in a PCR should be determined empirically, but must be 342 below the melting temperature (T_m) of the oligonucleotide primers. Results of analysis using 343 the T_m calculator indicate that the T_m for range for the *flaB* primers (26) is 60°C-62°C. However, 344 primer mismatches to the DNA template, such as to the B. lonestari flagellin gene, reduce primer T_m. Including the B. lonestari mismatches into the T_m calculator resulted in a T_m range of 345 346 57°C-64°C (the T_m for some primers increased due to an increase in GC percentage once A/T 347 mismatches were removed). The same analysis could be used for all other potential cross-348 reacting non-target species, which may explain the laddering effect of this nested assay. We

(26).

355 Nucleotide mismatches at the 3' terminus of a primer significantly reduce polymerase 356 extension. However, a low level of polymerase readthrough can still occur (35), and because 357 PCR results in exponential amplification of a template, even a low level of readthrough can 358 become significant after sufficient PCR cycles. The ability of the Clark primers to amplify B. 359 andersonii and B. americana has already been experimentally identified (26, 28) but the B. 360 *lonestari* result is unexpected. We hypothesize that PCR readthrough from the external reaction explains both the *B. lonestari* positive results, and the lack of repeat positive results. If 361 362 the readthrough occurs during the first cycles of the external reaction, then sufficient amplicon 363 is produced to have a high rate of amplification in the internal reaction, resulting in a major 364 band of the expected size. The internal reaction should amplify B. lonestari sequences from the 365 external reaction, since the forward internal primer has an exact match to B. lonestari 366 sequence, and the reverse primer only shows mismatches at the 5' end of the primer, which 367 will not affect amplification. However, if readthrough does not occur until a later cycle of the 368 external reaction, insufficient amplicons are produced, resulting in a negative reaction. 369 Although readthrough and mispriming occur, we would not expect this to be a common 370 event. Therefore, we examined the PCR methods as an additional explanation. The

did not take steps to optimize the PCR primers or protocols described by Clark et al. because

detected in that study. Although these *flaB* primers were described as being specific for Lyme

group Borrelia spp., we used an independent PCR for a different genetic region (30) to amplify

and sequence B. lonestari from samples that appeared to be suspect-positive in the flaB assay

our aim was to closely replicate the conditions by which *B. burgdorferi* DNA was reported

372

373

374

Accept	
of Clinical biology	

Microbiology			

375	mispriming has the result of decreasing the sensitivity of these primers so that a higher target
376	copy number is required for amplification to occur. Although Clark et al. performed a BLAST
377	analysis (26), the analysis would not have identified many of the 19 identified potential cross-
378	reacting Borrelia species if they used the reference genome dataset, or only BLASTed against
379	selected Genbank files. Many Borrelia genomes (including B. lonestari) are not yet fully
380	sequenced. Although we chose the longest deposited <i>B. lonestari</i> flagellin sequence for the
381	alignment to <i>B. burgdorferi</i> , we did an additional alignment with 109 <i>B. lonestari</i> flagellin
382	sequences deposited in NCBI Nucleotide (data not shown). Only three records included the
383	outer forward reaction, but 5 included the inner forward reaction, all of which showed
384	sequence identity. All 109 records included the inner reverse reaction, and 107 records
385	included the outer reverse reaction. Of these alignments, only two did not have sequence
386	identity. This alignment confirmed the accuracy of the sequence we used for the original
387	alignment.
388	As explained above, the assay from Clark et al. (26) would not be expected to

readthrough and mispriming likelihood may have been increased due to the high concentration

of primers and low annealing temperature specified by Clark et al. This analysis reveals that the

low annealing temperatures of the Clark assay are not very stringent, increasing the probability

of mispriming resulting in amplification of B. lonestari and other non-specific targets. This

consistently amplify B. lonestari, therefore, some B. lonestari-positive A. americanum samples 389 might have been missed in the initial screen at USAPHC using only the Clark primers. Testing at 390 391 TAMU and Ibis using assays designed to amplify B. lonestari detected this organism in samples

392 that had produced negative or inconsistent results using the Clark primers at USAPHC (Table 2).

≥ U

393	However, the low prevalence of infection with <i>B. lonestari</i> detected in these samples is
394	congruent with previous surveillance (2, 8, 21, 24, 36, 37). For example, in our program from
395	1997-2010 a total of 18,546 A. americanum ticks were tested with nested and real-time primers
396	that were capable of amplifying <i>B. lonestari</i> , and 195/17,226 (1.1%) of adults and nymphs, and
397	4/1,320 larvae (0.3% minimum infection prevalence) were positive (2, 8, 20).
398	Ibis reported low-level detection of <i>B. burgdorferi</i> DNA in a pooled sample of <i>A</i> .
399	americanum DNA (sample P189) by three of the eight primer pairs capable of detecting B.
400	burgdorferi. This pool had also been weakly positive for B. burgdorferi in the two assays at
401	TAMU. The PCR signal was very different from that provided by <i>B. burgdorferi</i> -infected <i>I.</i>
402	scapularis ticks, furthermore B. burgdorferi sequences were not detected in any of the
403	individual samples in the pool. We suggest the weak result in our assays may reflect low-level
404	contamination of P189, possibly introduced at the DNA isolation and pool-forming step, or the
405	amplification of the remnants of an infected blood meal from a previous life stage. All five
406	samples in this pool were single ticks from Ft. Pickett, VA; two were nymphs, two were females,
407	one was a male, all were unengorged and removed from humans. A few B. burgdorferi-infected
408	I. scapularis have been submitted to the HTTKP from Ft. Pickett, demonstrating that the
409	pathogen is indeed circulating in that environment (E. Stromdahl, unpublished data). Other
410	Lyme group Borrelia species, B. americana, B. andersonii, B. bissetti, etc., were not detected.
411	To summarize, we were unable to confirm any Lyme group Borrelia infection in A.
412	americanum ticks removed from humans in the southeastern and mid-Atlantic US. In our
413	investigation, we utilized the <i>flaB</i> primers and thermal-cycling parameters of Clark et al.
414	because this diagnostic tool was associated with the reported finding of Lyme group <i>Borrelig</i>

436

416	have been fed upon by A. americanum (26). In our investigation, this flaB assay produced
417	indistinct and inconsistent results in A. americanum ticks, and the samples that produced major
418	bands at the expected fragment size were confirmed to be positive for <i>B. lonestari</i> DNA (but not
419	Lyme group Borrelia DNA) in multiple different assays. In agreement with decades of previous
420	research, we therefore conclude that human-biting <i>A. americanum</i> are not a vector of <i>B</i> .
421	burgdorferi. The conclusion of Clark et al. that A. americanum is infected with Lyme group
422	Borrelia spp. is based on the detection of <i>flaB</i> gene sequences alone. Given that this finding is
423	in striking contrast to decades of previous investigations of the topic, a more rigorous approach
424	would have been to more fully characterize the organism through the amplification and
425	sequencing of multiple genes, or verification by culturing of the organism, to provide more
426	convincing evidence of identification (38). Conclusions based on inadequate evidence
427	exacerbate public confusion; findings of <i>Borrelia</i> spp. in novel tick species should in future
428	always be supported by characterization of multiple gene targets.
429	
430	ACKNOWLEDGEMENTS
431	We thank Christopher Johnson for technical support and Zia Mehr for technical review.
432	
433	DISCLAIMER
434	The views expressed in this article are those of the authors and do not reflect the official policy
435	or position of the Department of the Army, Department of Defense or the U.S. Government.

DNA in a small number of A. americanum ticks, and blood samples from humans reported to

The authors, as employees of the U.S. Government (ES, RN, CE, MM, MV, JG), conducted the

438

439

440

441

442

443

444	FIGURE LEGEND
445	Fig. 1. Agarose gels after nested PCR to amplify the Borrelia flaB gene (26) in Amblyomma
446	americanum ticks. Nonspecific binding was present in all tick samples, but absent in the
447	negative control lane (#2) and the <i>B. burgdorferi</i> B31 positive control lane (#12). Only samples
448	with bright bands at 437bp were considered as suspect-positive in our study. (A) Lanes $3 - 11$
449	correspond to pooled samples of ticks; (B) Lanes 3 – 8 correspond to individual tick samples
450	from previously tested pools; lanes 9 – 11 are re-tests of pooled samples. Pooled sample P123
451	(Gel A, lane 7) and individual sample 131114 from P123 (Gel B, lane 8) were confirmed to be
452	infected with <i>B. lonestari</i> by PCR and sequencing of the IGS PCR product and by IA/PCR/ESI-MS
453	(Table 2).
454	
455	REFERENCES

instrumentation used in these studies.

456

Rudenko N, Golovchenko M, Grubhoffer L, Oliver JH, Jr. 2011. Updates on Borrelia burgdorferi 457 1. 458 sensu lato complex with respect to public health. Ticks Tick Borne Dis. 2:123-128.

work as part of their official duties. Title 17 U.S.C. x 105 provides that "Copyright protection

defines a U.S. Government work as a work prepared by an employee of the U.S. Government as

part of the person's official duties. MWE, CDC, and HEC are employees of Ibis Biosciences, an

Abbott company, which developed the PCR/ESI-MS and IA/PCR/ESI-MS assays and

under this title is not available for any work of the U.S. Government." Title 17 U.S.C x 101

459 460	2.	Stromdahl EY, Williamson PC, Kollars TM, Jr., Evans SR, Barry RK, Vince MA, Dobbs NA. 2003. Evidence of <i>Borrelia lonestari</i> DNA in <i>Amblyomma americanum</i> (Acari: Ixodidae) removed from
461		humans. J. Clin. Microbiol. 41: 5557-5562.
462	3.	Dworkin MS, Schwan TG, Anderson Jr. DE, Borchardt SM. 2008. Tick-borne relapsing fever.
463		Infect. Dis. Clin. North Am. 22: 449-468.
464	4.	Chowdri HR, Gugliotta JL, Berardi VP, Goethert HK, Molloy PJ, Sterling SL, Telford SR. 2013.
465		Borrelia miyamotoi infection presenting as human granulocytic anaplasmosis: a case report.
466		Ann. Intern. Med. 159: 21-27.
467	5.	James AM, Liveris D, Wormser GP, Schwartz I, Montecalvo MA, Johnson BJ. 2001. Borrelia
468		lonestari infection after a bite by an Amblyomma americanum tick. J. Infect. Dis. 183:1810-1814.
469	6.	Wormser GP, Masters E, Liveris D, Nowakowski J, Nadelman RB, Holmgren D, Bittker S, Cooper
470		D, Wang G, Schwartz I. 2005. Microbiologic evaluation of patients from Missouri with erythema
471		migrans. Clin. Infect. Dis. 40:423-428.
472	7.	Wormser GP, Masters E, Nowakowski J, McKenna D, Holmgren D, Ma K, Ihde L, Cavaliere LF,
473		Nadelman RB. 2005. Prospective clinical evaluation of patients from Missouri and New York
474		with erythema migrans-like skin lesions. Clin. Infect. Dis. 41: 958-965.
475	8.	Stromdahl EY, Hickling GJ. 2012. Beyond Lyme: aetiology of tick-borne human diseases with
476		emphasis on the south-eastern United States. Zoonoses Public Health 59 Suppl 2:48-64.
477	9.	Springer YP, Eisen L, Beati L, James AM, Eisen RJ. 2014. Spatial distribution of counties in the
478		continental United States with records of occurrence of Amblyomma americanum (Ixodida:
479		Ixodidae). J. Med. Entomol. 51: 342-351.
480	10.	Mather TN, Telford SR, 3rd, Moore SI, Spielman A. 1990. Borrelia burgdorferi and Babesia
481		microti: efficiency of transmission from reservoirs to vector ticks (Ixodes dammini). Exp.
482		Parasitol. 70: 55-61.
483	11.	Mukolwe SW, Kocan AA, Barker RW, Kocan KM, Murphy GL. 1992. Attempted transmission of
484		Borrelia burgdorferi (Spirochaetales: Spirochaetaceae) (JDI strain) by Ixodes scapularis (Acari:
485		Ixodidae), <i>Dermacentor variabilis</i> , and <i>Amblyomma americanum</i> . J. Med. Entomol. 29: 673-677.
486	12.	Oliver JH, Jr., Chandler FW, Jr., Luttrell MP, James AM, Stallknecht DE, McGuire BS, Hutcheson
487		HJ, Cummins GA, Lane RS. 1993. Isolation and transmission of the Lyme disease spirochete from
488		the southeastern United States. Proc. Natl. Acad. Sci. U S A 90: 7371-7375.
489	13.	Piesman J, Happ CM. 1997. Ability of the Lyme disease spirochete Borrelia burgdorferi to infect
490		rodents and three species of human-biting ticks (blacklegged tick, American dog tick, lone star
491		tick) (Acari:Ixodidae). J. Med. Entomol. 34: 451-456.
492	14.	Piesman J, Sinsky RJ. 1988. Ability to Ixodes scapularis, Dermacentor variabilis, and Amblyomma
493		americanum (Acari: Ixodidae) to acquire, maintain, and transmit Lyme disease spirochetes
494		(Borrelia burgdorferi). J. Med. Entomol. 25:336-339.
495	15.	Ryder JW, Pinger RR, Glancy T. 1992. Inability of <i>Ixodes cookei</i> and <i>Amblyomma americanum</i>
496		nymphs (Acari: Ixodidae) to transmit <i>Borrelia burgdorferi</i> . J. Med. Entomol. 29: 525-530.
497	16.	Sanders FH, Oliver JH. 1995. Evaluation of <i>Ixodes scapularis</i> , Amblyomma americanum, and
498		Dermacentor variabilis (Acari, Ixodidae) from Georgia as vectors of a Florida strain of the Lyme-
499		disease spirochete, <i>Borrelia burgdorferi</i> . J. Med. Entomol. 32 :402-406.
500	17.	KE, Zeidner NS, Ribeiro JM, Biggerstaff BJ, Dolan MC, Dietrich G, Vredevoe L, Piesman J. 2005.
501		Borreliacidal activity of saliva of the tick Amblyomma americanum. Med. Vet. Entomol. 19:90-
502		95.
503	18.	Zeidner N, Ullmann A, Sackal C, Dolan M, Dietrich G, Piesman J, Champagne D. 2009. A
504		borreliacidal factor in Amblyomma americanum saliva is associated with phospholipase A(2)
505		activity. Exp. Parasitol. 121: 370-375.

506	19.	Stromdahl EY, Evans SR, O'Brien JJ, Gutierrez AG. 2001. Prevalence of infection in ticks
507		submitted to the human tick test kit program of the US Army Center for Health Promotion and
508		Preventive Medicine. J. Med. Entomol. 38: 67-74.
509	20.	Stromdahl EY, Vince MA, Billingsley PM, Dobbs NA, Williamson PC. 2008. Rickettsia
510		amblyommii infecting Amblyomma americanum larvae. Vector Borne Zoonotic Dis. 8:15-24.
511	21.	Bacon RM, Pilgard MA, Johnson BJ, Piesman J, Biggerstaff BJ, Quintana M. 2005. Rapid
512		detection methods and prevalence estimation for Borrelia lonestari glpQ in Amblyomma
513		americanum (Acari: Ixodidae) pools of unequal size. Vector Borne Zoonotic Dis. 5:146-156.
514	22.	Bacon RM, Pilgard MA, Johnson BJB, Raffel SJ, Schwan TG. 2004. Glycerophosphodiester
515		phosphodiesterase gene (glpQ) of Borrelia lonestari identified as a target for differentiating
516		Borrelia species associated with hard ticks (Acari : Ixodidae). J. Clin. Microbiol. 42:2326-2328.
517	23.	Barbour AG, Maupin GO, Teltow GJ, Carter CJ, Piesman J. 1996. Identification of an uncultivable
518		Borrelia species in the hard tick Amblyomma americanum: possible agent of a Lyme disease-like
519		illness. J. Infect. Dis. 173: 403-409.
520	24.	Williamson PC, Billingsley PM, Teltow GJ, Seals JP, Turnbough MA, Atkinson SF. 2010. Borrelia,
521		Ehrlichia, and Rickettsia spp. in ticks removed from persons, Texas, USA. Emerg. Infect. Dis.
522		16: 441-446.
523	25.	Masters EJ. 2006. Lyme-like illness currently deserves Lyme-like treatment. Clin. Infect. Dis.
524		42: 580-581; author reply 581-582.
525	26.	Clark KL, Leydet B, Hartman S. 2013. Lyme borreliosis in human patients in Florida and Georgia,
526		USA. Int. J. Med. Sci. 10: 915-931.
527	27.	Stromdahl EY, Jiang J, Vince M, Richards AL. 2011. Infrequency of Rickettsia rickettsii in
528		Dermacentor variabilis removed from humans, with comments on the role of other human-
529		biting ticks associated with spotted fever group <i>Rickettsiae</i> in the United States. Vector Borne
530		Zoonotic Dis. 11: 969-977.
531	28.	Clark KL, Leydet BF, Threlkeld C. 2014. Geographical and genospecies distribution of Borrelia
532		<i>burgdorferi sensu lato</i> DNA detected in humans in the USA. J. Med. Microbiol. 63 : 674-684.
533	29.	Beati L, Keirans JE. 2001. Analysis of the systematic relationships among ticks of the genera
534		Rhipicephalus and Boophilus (Acari: Ixodidae) based on mitochondrial 12S ribosomal DNA gene
535		sequences and morphological characters. J. Parasitol. 87:32-48.
536	30.	Bunikis J, Garpmo U, Tsao J, Berglund J, Fish D, Barbour AG. 2004. Sequence typing reveals
537		extensive strain diversity of the Lyme borreliosis agents <i>Borrelia burgdorferi</i> in North America
538		and <i>Borrelia afzelii</i> in Europe. Microbiology 150: 1741-1755.
539	31.	Tsao JI, Wootton JT, Bunikis J, Luna MG, Fish D, Barbour AG. 2004. An ecological approach to
540		preventing human infection: vaccinating wild mouse reservoirs intervenes in the Lyme disease
541		cycle. Proc. Natl. Acad. Sci., U S A 101: 18159-18164.
542	32.	Eshoo MW, Crowder CC, Rebman AW, Rounds MA, Matthews HE, Picuri JM, Soloski MJ, Ecker
543		DJ, Schutzer SE, Aucott JN. 2012. Direct molecular detection and genotyping of <i>Borrelia</i>
544	22	burgdorferi from whole blood of patients with early Lyme disease. PLoS One 7:e36825.
545	33.	Crowder CD, Matthews H, Schutzer S, Rounds MA, Luft BJ, Noite O, Campbell SR, Phillipson
546		CA, LI F, Sampath R, Ecker DJ, Esnoo MW. 2010. Genotypic variation and mixtures of Lyme
547	24	Borrelia in Ixodes ticks from North America and Europe. PLoS ONE 5:E10650 10651-10659.
548	34.	Mays SE, Hendricks Bivi, Paulsen D J, Houston AE, Fryxell RTT. 2014. Prevalence of five tick-
549		borrie bacterial genera in adult <i>ixodes scapularis</i> removed from white-tailed deer in western
550	25	rennessee. Parasit. Vectors, 7:473. Nikelewe NA, Chekeleneter, A, Ténesier, A, Junfeld C, Kästerer, NA, 2000. Evolution of the h
551	35.	INIKUIAUSZ IVI, CHATZINOTAS A, LANCSICS A, IMTEIO G, KASTNET IVI. 2009. EVALUATION OF SINGLE-
552		nucleotide primer extension for detection and typing of phylogenetic markers used for investigation of microbial communities. And, Environ, Microbial, 75 (2000)
222		mvestigation of microbial communities. Appl. Environ. Microbiol. 75 :2850-2860.

554	36.	Yuan DT. 2010. A metagenomic study of the tick midgut. UT GSBS Dissertations and Theses.
555		Paper 85. http://digitalcommons.library.tmc.edu/utgsbs_dissertations/85.
556	37.	Gleim ER. 2013. Ph.D. dissertation. The effects of long-term prescribed burning on ticks and tick-
557		borne pathogen prevalence. The University of Georgia, athens, GA.
558	38.	Margos G, Gatewood AG, Aanensen DM Hanincová K, Terekhova D, Vollmer SA, Kurtenbach K,
559		Cornet M, Piesman J, Donaghy, Bormane A, Hurn M, Feil E, Fish D, Casjens S, Wormser G,
560		Schwartz I, Kurtenbach K. 2008. MLST of housekeeping genes captures geographic population
561		structure and suggests a European origin of <i>Borrelia burgdorferi</i> . Proc. Natl. Acad. Sci. USA 105 :
562		8730-8735.

TABLE 1 Origins of all ticks tested, by state		
State	No. ticks tested	
VA	661	
MD	151	
NJ	53	
NC	48	
KY/TN ^a	40	
KY	33	
KS	27	
TN	24	
МО	22	
DE	14	
SC	11	
AL	4	
AR	2	
FL	2	
GA	2	
FL/GA^{b}	1	
RI	1	
PA	1	
Total	1097	
^{<i>a</i>} Ticks from Ft. Car Kentucky and Tenne	mpbell, on the border of essee, are listed as KY/TN.	

^b One tick was reported as acquired in either Florida or Georgia, and is listed as FL/GA

Sample #

of PCR-

Pool # pool^c

P009

USAPHC USAPHC

(2nd)

Neg

(1st)

Pos

positives in flaB PCR^d flaB PCR^d TAMU Borrelia TAMU IGS TAMU IGS

Neg

qPCR^e

P084 ^a		Pos	nd	nd	nd	nd	Bb, 5/8; Bl 1, 3/5	nd	nd	nd	
	130786 ^a	Pos	nd	nd	1000bp	nd	nd	nd	nd	nd	
P123		Pos	nd	RF	500bp	nd	Bl 1, 3/5	nd	nd	nd	
	131114	Pos	nd	RF	500bp	B. lonestari	Bl 1, 5/5	nd	nd	nd	
P171		Pos	Neg	RF	500bp	B. lonestari	Bl 1, 4/5	nd	nd	nd	
P174		Pos	Pos	RF	500bp	nd	Bl, 4/5; Bl 1, 4/5	nd	nd	nd	
	131429	Pos	nd	RF	500bp	B. lonestari	Bl, 5/5; Bl 1, 5/5	nd	nd	nd	
	131433	Pos	nd	RF	500bp	B. lonestari	Bl 1, 5/5	nd	nd	nd	
P189		Pos	Neg	Bb (very high CT)	1000bp (faint)	Failed	Bb, 3/8	nd	nd	nd	
	131536	nd	nd	nd	nd	nd	nd	Neg	Neg	Pos (very faint)	
P191		Pos	Neg	Neg	Neg	nd	Neg	nd	nd	nd	
P194		Pos	Pos	RF	500bp	nd	Bl , 5/5	nd	nd	nd	
	131559	Neg	nd	nd	nd	nd	Bl, 1/5	nd	nd	nd	
	131560	Neg	nd	nd	nd	nd	Bl, 2/5	nd	nd	nd	
	131566	Pos	nd	RF	500bp	B. lonestari	Bl , 5/5	nd	nd	nd	
	131571	Neg	nd	nd	nd	nd	Bl, 1/5	nd	nd	nd	
P211		Pos	Neg	RF	500bp	B. lonestari	Bl , 5/5	nd	nd	nd	
^a Sampl	le 130786 in P	084 had been in	itially misider	ntified as A. americanu	m at USAPHC ar	nd was later mole	cularly identified as I. sca	pularis at TA	MU		
^b USAP	HC, US Arm	y Public Health	Command;	TAMU, Texas A&M U	niversity; Ibis, Ibis	Biosciences; nd,	not determined.				
^c PCR r	negative samp	les not shown									
^d flaB I	PCR for B. bu	urgdorferi sl(2	6).								
" 16S rF	RNA qPCR fo	or Borrelia spp	(31). C _T , cyc	le threshold.							
168-23	3S rRNA inter	rgenic spacer re	gion (IGS) P	CR for Borrelia spp. (30). RF, relapsing	fever group Born	elia; Bb, B. burgdorferi				
^g PCR,	electrospray i	onization mass s	pectrometry	(IA/PCR/ESI-MS) for	Borrelia (32, 33).	Bl, B. lonestari	; Bl 1, B. lonestari var.1				
h fla PO	CR for Borrel	lia spp. (23).									

 PCR^{f}

Neg

 TABLE 2. Analysis of A. americanum^a samples with bright bands at 437-bp in B. burgdorferi flaB PCR of Clark et al. (26)^b

 Ibis Borrelia
 Follow-up testing of samples

nd

sequencing

genotyping^s (primers

pos/primers)

Neg

Follow-up testing of samples in P189

nd

USAPHC USAPHC TAMU*flaB flaB* PCR^d *fla* PCR^h PCR^d

nd

nd

TAMU

flaB

sequencing

nd nd nd nd nd nd nd

nd nd nd Failed nd nd nd nd nd nd nd

100-bp ladder (O	No-template control	P116	P120	P121	P122	P123	P124	P125	P126	P127	Positive control		100-bp ladder (No-template control	130808 from P084	131108 from P123	131111 from P123	131112 from P123	131113 from P123	131114 from P123	P009	P166	P167	Positive control
1: 1111 C		11111	- 1 1111 C	1411	1.001	1.4111	THE P	TOTAL T	ALTE IS A	1.11.1			4E 1113 3 3					5 2 2 4 · 2		I ST I ST I				
1	2	3	4	5	6	7	8	9	10	11	12 La	an	1 e #	2	3	4	5	6	7	8	9	10	11	12