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Epistasis and natural selection shape the
mutational architecture of complex traits
Adam G. Jones1, Reinhard Bürger2 & Stevan J. Arnold3

The evolutionary trajectories of complex traits are constrained by levels of genetic variation

as well as genetic correlations among traits. As the ultimate source of all genetic variation is

mutation, the distribution of mutations entering populations profoundly affects standing

variation and genetic correlations. Here we use an individual-based simulation model to

investigate how natural selection and gene interactions (that is, epistasis) shape the evolution

of mutational processes affecting complex traits. We find that the presence of epistasis

allows natural selection to mould the distribution of mutations, such that mutational effects

align with the selection surface. Consequently, novel mutations tend to be more compatible

with the current forces of selection acting on the population. These results suggest that in

many cases mutational effects should be seen as an outcome of natural selection rather than

as an unbiased source of genetic variation that is independent of other evolutionary

processes.
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T
he relationship between the genotype and the phenotype,
sometimes called the genotype–phenotype map, has taken
centre stage in the study of complex traits for very good

reasons1,2. For instance, many important human disorders, such
as susceptibility to heart disease or Alzheimer’s disease, are
determined by numerous genetic loci as well as environmental
effects, thrusting these traits directly into the realm of quantitative
genetics3,4. An understanding of how genes and the environment
conspire to shape these traits might lead to better screening and
treatment options. The complexity of the problem calls for an
approach based on correlations of genetic variants with trait
values, either in the context of genome-wide association studies
or quantitative trait locus mapping5,6, but these approaches
typically identify genetic loci that explain only a small fraction of
the genetic variance in these sorts of complex traits7. This
insufficiency problem has led to a widespread appreciation that
interactions among genes, a phenomenon called epistasis in
the quantitative genetics literature, could make a substantial
contribution to the genetic variation in complex traits5–9,
although the matter is still hotly debated10–12.

An added wrinkle to these considerations is that traits do not
exist in isolation from other traits. Individuals who express one
trait, such as hypertension, may display a tendency to express
other traits, such as diabetes13. In other words, different traits can
be genetically correlated, and from an evolutionary standpoint we
would like to understand how such genetic correlations arise and
constrain population-level processes14. Genetic correlations can
arise from a number of factors, and chief among them are natural
selection and mutation15,16. If certain trait combinations confer a
fitness advantage relative to others, then the variants that work
well in combination will tend to be inherited together due to the
increased fitness of their bearers17. From a mutation standpoint,
if a mutation that affects one trait in a positive fashion also affects
a second trait in a similar direction due to pleiotropy, then these
new mutations will contribute to a genetic correlation between
traits. This source of genetic correlations can be very strong
indeed18–20. Given the central role of this ‘mutational
architecture’ in the evolution of complex traits and the
apparent importance of epistasis as revealed by studies of
quantitative trait loci9,21–25, our goal in the present study is to
investigate how epistasis influences the spectrum of mutations
entering populations and how the evolution of mutational effects
in turn constrains the genetic architecture of complex traits at
the population level. Our results show that epistasis allows
the mutational architecture of the multivariate phenotype to be
shaped by natural selection and that the evolution of the
mutational architecture in turn affects standing levels of genetic
variance and the ability of a population to respond to selection.

Results
The epistasis model. We model epistasis using an individual-
based Monte Carlo approach to simulate a population of N
individuals, each of which has a two-trait phenotype determined
by both genetic and environmental effects. The genetic effects
arise from a suite of n loci, each of which is pleiotropic
and potentially epistatic. Epistasis is included using the multi-
linear approach26–28, which has been employed extensively to
study the effects of epistasis on a single-trait phenotype29–31. Our
implementation allows pairwise interactions among all loci. As
the loci are pleiotropic, the epistatic effects can occur within or
between trait effects. Our model accommodates both types of
epistasis. An individual’s phenotype is determined by the sum of
additive effects and epistatic terms (see Methods), plus an
environmental effect drawn from a normal distribution with a
mean of zero and variance of one. The life cycle consists of (1)

random mating, (2) production of offspring, including mutation
and recombination, (3) natural selection specified by a bivariate
Gaussian individual selection surface (summarized by the x-
matrix) and (4) population regulation (see Methods for more
details). We start with a core set of parameter values (Table 1)
and vary numerous combinations of parameters to investigate the
evolution of the genetic variance and mutational architecture
under a wide range of biologically plausible conditions. For each
combination of parameters, we run the simulation for 5,000
initial generations to reach a balance between selection, mutation
and genetic drift. These initial generations are followed by 5,000
experimental generations, during which we calculate variables of
interest (see Methods). For each parameter combination, we
conduct 20 independent runs of the complete simulation,
including the 5,000 initial and 5,000 experimental generations.
We average values of interest across these 20 independent runs.
Our main variables of interest in the present model are the
mutational variances (M11 and M22) and mutational correlation
(rM), which together describe the distribution of the phenotypic
effects of new mutations entering the population and can be
thought of as the mutational architecture of the two-trait
phenotype, which we will also refer to as the M-matrix. We are
also interested in the variables describing the distribution of
genetic variation in the population, including the total genetic
variances and covariance (11VG, 22VG and 12VG), the additive
genetic variances and covariance (11VA, 22VA and 12VA), and the
epistatic genetic variances and covariance (11VAA, 22VAA and
12VAA). The additive genetic variances and covariances determine
the response of the population mean to selection, and are often
organized into a matrix known as the G-matrix.

The evolution of the genetic variance and mutation matrix.
Several key results emerge from our analysis. The first major
result is that epistasis affects the evolution of the genetic and
mutational architecture of quantitative traits under a very wide
range of parameter combinations. In particular, the mutational
variances (that is, measures of the absolute size of the phenotypic
effects of new mutations entering populations) of the quantitative
trait loci show apparently adaptive changes in response to
selection when epistasis is present (Table 2), and these changes in
mutational variances carry implications for the standing levels of
genetic variance. One striking result is that the magnitude of
mutational variances is negatively related to population size
(Table 3).

The evolution of the mutational variances has a profound effect
on the standing levels of genetic variation in our simulated
populations. For instance, in a strictly additive model, mutational
variances cannot evolve, and larger populations tend to harbour
greater amounts of genetic variance compared with smaller
populations due to reduced losses of variation because of a less-
important role of genetic drift in the large populations (Fig. 1).
In the presence of epistasis, however, the situation changes
dramatically. Smaller populations evolve larger mutational
variances, and this pattern becomes more pronounced as the
average absolute values of epistatic parameters increase (Fig. 1;
Table 2). These larger mutational variances increase the amount
of genetic variance introduced by mutation each generation,
which in turn increases the standing level of genetic variation.
For moderately strong epistasis (that is, epistatic parameter
variance, s2

e � 0:5), this increase in the mutational variance
results in a tendency for larger populations to harbour less
additive genetic variance than their smaller counterparts (Fig. 1;
Table 3). However, when populations become exceptionally
small, the variance-reducing effects of drift become strong
enough to overcome the increase in mutational variances,
resulting in a non-monotonic relationship between population
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size and additive genetic variance under moderate to strong
epistasis (Fig. 1). Thus, the evolution of the mutational variance,
as a consequence of evolving epistatic effects, has important
implications at the population level in terms of standing levels of
genetic variation.

Triple alignment. Our second major result is that the mutational
covariance evolves in a way that causes adaptive alignment with
the individual selection surface. If selection favors certain com-
binations of traits, then the presence of epistasis allows the
mutational architecture to evolve in a way that new mutations
tend to reinforce these favourable trait combinations. This
alignment result is very general, and it occurs under almost all
investigated parameter combinations, as evidenced by the evo-
lution of a positive mutational correlation whenever we impose
correlational selection (Tables 2 and 3). We investigate the
veracity of the alignment between the individual selection surface

(the x-matrix), the additive genetic architecture (the G-matrix)
and the mutational architecture (the M-matrix), by conducting
simulation runs involving selection surfaces oriented differently
in phenotypic space, but otherwise of identical shape, and
tracking the evolutionary responses of the G-matrix and
M-matrix. When we perform this exercise, we find remarkable
alignment between the x-matrix, the G-matrix and the M-matrix
(Fig. 2). Under our parameter combinations, the elongate selec-
tion surface results in a somewhat less-elongate G-matrix, and in
turn an even less-eccentric M-matrix, but the leading eigenvectors
of all three matrices align almost perfectly in phenotypic space.
These aligned M-matrices tend to remain stable within a run,
and while different runs sometimes produce quantitatively dif-
ferent M-matrices, nearly all of them evolve toward alignment
with the selection surface (Supplementary Table 1). Figure 2
shows results from a large population (N¼ 4,096), but this sort of
triple alignment also occurs in much smaller populations

Table 1 | Key parameters and core parameter values for the multilivariate epistasis model.

Parameter Symbol Core value Range investigated

Adult carrying capacity K 512 64–4,096
Adult population size N 512 64–4,096
Number of offspring per female 2B 4 4
Number of loci n 20 4–50
Mutational variances of reference effects a2

1 ; a
2
2 0.05 0.01–0.50

Mutational correlation of reference effects rm 0 �0.9–0.9
Mutation rate per locus m 0.0005 0.0001–0.001
Selection surface variance o11, o22 49 4–199
Selectional correlation ro 0 0–0.9
Variance of epistatic coefficients s2

e 1 0.1–10

Table 2 | The effects of the epistatic parameter variances on the genetic variance and the M-matrix.

rx r2
e 11VG 22VG rG 11VA 22VA 12VA (rA) 11VAA 22VAA 12VAA M11 M22 rM

0 0 0.53 0.51 0.018 0.52 0.50 0.010 (0.02) 0.007 0.004 0.000 0.05 0.05 0
0.50 0 0.48 0.49 0.126 0.48 0.48 0.065 (0.14) 0.004 0.003 0.001 0.05 0.05 0
0.75 0 0.41 0.39 0.266 0.41 0.39 0.113 (0.28) 0.002 0.002 0.000 0.05 0.05 0
0.90 0 0.30 0.30 0.420 0.30 0.30 0.132 (0.44) 0.002 0.002 0.000 0.05 0.05 0

0 0.1 0.59 0.59 0.014 0.54 0.54 0.009 (0.02) 0.047 0.045 0.000 0.108 0.107 0.007
0.50 0.1 0.53 0.50 0.137 0.49 0.45 0.077 (0.16) 0.038 0.040 0.002 0.103 0.097 0.038
0.75 0.1 0.44 0.44 0.311 0.40 0.41 0.148 (0.37) 0.029 0.029 0.000 0.098 0.097 0.095
0.90 0.1 0.30 0.31 0.455 0.27 0.29 0.147 (0.53) 0.019 0.018 0.002 0.078 0.083 0.120

0 0.5 0.70 0.69 0.019 0.58 0.57 0.014 (0.02) 0.111 0.106 0.000 0.196 0.186 0.003
0.50 0.5 0.62 0.59 0.198 0.53 0.50 0.121 (0.24) 0.091 0.086 0.004 0.191 0.186 0.064
0.75 0.5 0.47 0.49 0.318 0.40 0.41 0.162 (0.40) 0.064 0.067 0.002 0.152 0.163 0.112
0.90 0.5 0.31 0.31 0.453 0.27 0.27 0.146 (0.54) 0.041 0.041 0.004 0.126 0.131 0.151

0 1.0 0.75 0.79 0.002 0.60 0.63 0.001 (0.00) 0.144 0.147 0.002 0.267 0.276 �0.002
0.50 1.0 0.67 0.64 0.185 0.54 0.51 0.124 (0.24) 0.114 0.113 0.002 0.251 0.248 0.057
0.75 1.0 0.45 0.44 0.278 0.36 0.35 0.131 (0.37) 0.082 0.082 0.003 0.195 0.189 0.066
0.90 1.0 0.31 0.31 0.441 0.25 0.26 0.141 (0.55) 0.054 0.048 0.004 0.168 0.167 0.141

0 10.0 0.75 0.74 0.008 0.46 0.44 0.003 (0.01) 0.277 0.280 0.002 0.565 0.553 0.005
0.50 10.0 0.59 0.60 0.134 0.35 0.36 0.078 (0.22) 0.227 0.224 0.010 0.496 0.491 0.047
0.75 10.0 0.42 0.40 0.191 0.25 0.25 0.078 (0.31) 0.151 0.142 0.007 0.411 0.389 0.043
0.90 10.0 0.23 0.23 0.260 0.14 0.14 0.059 (0.42) 0.081 0.085 0.007 0.282 0.284 0.074

Average s.e.m. 0.016 0.017 0.019 0.015 0.016 0.011 0.004 0.004 0.001 0.009 0.009 0.017

These results are derived from a population evolving under the core parameter set, except we use selectional correlations (ro) ranging from 0 to 0.9 (first column), and we use variances in our epistatic
parameters (s2

e ) ranging from 0 (no epistasis) to 10.0 (second column). The variables reported in this table include the total genetic variances for traits one and two (11VG, 22VG), the total genetic
correlation between the traits (rG), the additive genetic variances and covariance (11VA, 22VA, and 12VA) with the additive genetic correlation shown parenthetically (rA), the additive-by-additive epistatic
variances and covariance (11VAA, 22VAA, and 12VAA), and the average mutational variances and mutational correlation across loci (M11, M22, and rM). The last row shows the average s.e.m. across all entries
in the corresponding column to provide a rough guide to the dispersion of the data. In the first four rows of the table, the values for VAA are not precisely zero, despite the absence of epistasis, due to a
small amount of statistical error that arises from our breeding-design approach to estimating genetic variance components.
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(Supplementary Table 2), even though the alignment is
disrupted somewhat in smaller populations by the operation of
genetic drift.

The evolution of larger mutational variances in small
populations can be understood by considering the relationship
between average allelic effects at the quantitative trait loci and the
average epistatic coefficients for each locus. As the epistatic
coefficients are parameters in the multilinear model, they do not
change during a given simulation run (see Methods). Rather,
epistatic contributions, and hence genotypic values, evolve as the
allelic effects of individual loci change over evolutionary time.
Loci with favourable epistatic coefficients can evolve larger allelic
effects that enhance their epistatic effects. Alternatively loci can
evolve allelic effects in opposition to their epistatic coefficients to
reduce the phenotypic effects of new mutations. Figure 3 shows
the relationship between average allelic effects and average
epistatic coefficients in a small population (N¼ 128) in which
large mutational variances evolve, and in a large population
(N¼ 2,048) in which small mutational variances evolve. In the
small population, we see a very weak, non-significant negative
relationship between average allelic effects and average epistatic
coefficients. However, in the large population, we see a strong and
highly significant negative relationship. Thus, in the large
population, loci with negative epistatic effects on average tend
to have positive allelic effects and loci with positive epistatic
effects tend to evolve negative allelic effects, with the consequence
that the reference effects of most new mutations are largely
counteracted by their opposing epistatic effects. This masking
process due to opposing reference and epistatic effects is more
important in larger populations than smaller populations,
resulting in a negative relationship between mutational variances
and population size. In Fig. 3, for the sake of simplicity, we
address only the evolution of the mutational variance at one trait,
but the evolution of mutational covariances arises from similar
processes. In short, the mutational architecture evolves as a

consequence of the quantitative trait loci evolving allelic effects
that interact with their epistatic coefficients according to the
current regime of selection and drift.

One other consequence of the evolution of the mutational
architecture under epistasis is that the alignment of the M-matrix
with the G-matrix will tend to strengthen any additive genetic
correlations that exist in the population (Tables 2 and 3). Except
under very strong epistasis or large population size and strong
epistasis, the majority of genetic variance arising from epistasis is
additive (Tables 2 and 3; Supplementary Table 3), which means
that this genetic variance can contribute to a response to
selection. Indeed, our results indicate that a mutational
architecture evolving under epistasis can enhance a population’s
ability to respond to selection. For instance, in small populations
with very high mutational variances (caused by epistasis), we see a
stronger response to selection compared with larger populations
(Supplementary Table 3). Much of the genetic variance in the
smaller population is attributable to the large mutational
variance, which is a product of the evolution of the mutational
architecture made possible by epistasis. However, the majority of
the genetic variance is nonetheless additive (compare VA with VG

in Supplementary Table 3), and therefore available for natural
selection. Similarly, the genetic covariance, which is strengthened
by the alignment of the G-matrix and M-matrix, is mainly
additive genetic in nature and thus produces a correlated
response to selection (Supplementary Table 3).

Evolution of the M-matrix and triple alignment of the type we
describe here occurs under almost all parameter combinations.
Regardless of the strength of epistasis (Table 2), population
size (Table 3), mutational variance of reference effects
(Supplementary Table 4) or strength of stabilizing selection
(Supplementary Table 5), we see a tendency for the M-matrix to
align with the selection surface, as evidenced by the evolution of a
positive mutational correlation in the presence of positive
correlational selection. However, we do observe that the evolution

Table 3 | The effects of population size on the evolution of the genetic variance and the M-matrix.

rx N 11VG 22VG rG 11VA 22VA 12VA (rA) 11VAA 22VAA 12VAA M11 M22 rM

0 128 0.77 0.79 0.05 0.71 0.72 0.034 (0.05) 0.040 0.049 0.004 0.710 0.818 0.018
0.50 128 0.63 0.66 0.22 0.58 0.61 0.151 (0.25) 0.036 0.035 0.005 0.620 0.628 0.109
0.75 128 0.52 0.51 0.30 0.48 0.47 0.174 (0.37) 0.024 0.026 0.004 0.567 0.561 0.029
0.90 128 0.33 0.32 0.41 0.30 0.30 0.155 (0.52) 0.016 0.017 0.002 0.425 0.423 0.081

0 256 0.80 0.84 �0.02 0.72 0.75 �0.014 (�0.02) 0.065 0.070 0.000 0.463 0.498 �0.011
0.50 256 0.70 0.65 0.19 0.62 0.58 0.136 (0.23) 0.061 0.059 0.004 0.461 0.407 0.031
0.75 256 0.51 0.52 0.33 0.46 0.46 0.185 (0.40) 0.046 0.048 0.005 0.326 0.319 0.102
0.90 256 0.33 0.33 0.45 0.29 0.29 0.160 (0.55) 0.035 0.032 0.004 0.236 0.259 0.135

0 512 0.74 0.74 0.01 0.60 0.59 0.002 (0.00) 0.132 0.141 0.003 0.259 0.261 0.020
0.50 512 0.64 0.64 0.23 0.51 0.50 0.152 (0.30) 0.132 0.131 0.004 0.220 0.223 0.108
0.75 512 0.49 0.49 0.32 0.39 0.40 0.164 (0.42) 0.084 0.082 0.002 0.205 0.221 0.113
0.90 512 0.30 0.30 0.44 0.26 0.25 0.141 (0.55) 0.052 0.054 0.005 0.154 0.150 0.147

0 1,024 0.70 0.70 0.00 0.44 0.44 0.003 (0.01) 0.240 0.246 �0.002 0.168 0.164 �0.009
0.50 1,024 0.60 0.60 0.17 0.39 0.40 0.100 (0.25) 0.200 0.191 0.005 0.158 0.156 0.069
0.75 1,024 0.43 0.43 0.28 0.32 0.30 0.127 (0.41) 0.128 0.125 0.004 0.142 0.135 0.105
0.90 1,024 0.28 0.28 0.40 0.20 0.21 0.111 (0.54) 0.066 0.069 0.005 0.112 0.117 0.163

0 2,048 0.68 0.65 �0.02 0.37 0.34 �0.013 (�0.04) 0.297 0.305 0.000 0.139 0.135 �0.012
0.50 2,048 0.56 0.56 0.15 0.32 0.32 0.085 (0.27) 0.235 0.238 0.002 0.126 0.128 0.065
0.75 2,048 0.40 0.39 0.24 0.25 0.24 0.095 (0.39) 0.147 0.146 0.003 0.112 0.108 0.097
0.90 2,048 0.26 0.27 0.40 0.19 0.19 0.105 (0.55) 0.074 0.074 0.002 0.095 0.097 0.177

Average s.e.m. 0.019 0.018 0.020 0.018 0.016 0.013 0.004 0.004 0.002 0.015 0.016 0.020

Other than population size (N) and selectional correlation (ro), the parameter values used to generate this table are from the core set. The variables reported in this table include the total genetic
variances for traits one and two (11VG, 22VG), the total genetic correlation between the traits (rG), the additive genetic variances and covariance (11VA, 22VA and 12VA) with the additive genetic correlation
shown parenthetically (rA), the additive-by-additive epistatic variances and covariance (11VAA, 22VAA and 12VAA), and the average mutational variances and mutational correlation across loci (M11, M22 and
rM). The last row shows the average s.e.m. across all entries in the corresponding column to provide a rough guide to the dispersion of the data.
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of the mutational correlation becomes less pronounced as
mutations become sufficiently rare (Supplementary Table 6).

Discussion
Our analysis of the two-trait version of the multilinear model of
epistasis provides several important insights into the evolution of
the genetic variance of quantitative traits. The first key insight is
that epistasis allows the evolution of mutational effects and in
particular larger mutational effects and variances in smaller
populations. These larger mutational variances, in turn, cause
smaller populations to harbour greater amounts of additive
genetic variance than larger populations, a counterintuitive result
that is nevertheless consistent with the broader literature on the
evolution of mutational effects and mutational robustness32–34,

which is defined as the ability of an organism or trait to maintain
its function despite the occurrence of novel mutations33. The
second major insight from our model is that epistasis allows
the mutational matrix to evolve towards alignment with the
individual selection surface. As both the mutational matrix and
the individual selection surface influence the shape and
orientation of the G-matrix, we find that epistasis produces a
situation of triple alignment, in which patterns of mutation,
genetic variation and selection evolve towards a common
orientation in phenotypic space. These results illuminate the
potential importance of epistasis and the evolution of mutational
effects in evolutionary processes.

The most counterintuitive result in our study is that smaller
populations evolve larger mutational variances than larger
populations to such a degree that smaller populations tend to
harbour greater levels of additive genetic variance in quantitative
traits. This pattern likely arises from three main processes, one
driven by epistasis and the other two arising from genetic drift.
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Figure 2 | Triple alignment of natural selection, genetic variation and

mutation. Epistasis promotes alignment of the individual selection surface

(the x-matrix), the additive genetic architecture (the G-matrix) and the

mutational architecture (the M-matrix) of a two-trait phenotype. The actual

matrices are shown to the left, and graphical depictions of the overlapping

matrices are shown to the right. These results are from simulations using

our core parameter set, except that population size is 4,096 and the

individual selection surface (described by x) is held at a constant shape but

oriented with its long axis turned in a different direction in phenotypic space

for different simulation runs (but note that within a run the individual

selection surface is always constant). The ellipses are 95-percent

confidence ellipses, and the angle of the long axis of each ellipse is given by

the leading eigenvector of the corresponding matrix (green for M, blue for

G and orange for x) in a plot with trait one on the x axis and trait two on the

y axis. The x-matrix is not drawn to scale, but its orientation and

proportions are correct. As the selection surface rotates, both the G-matrix

and the M-matrix evolve to align with the selection surface in phenotypic

space. This alignment result is extremely general and it occurs under almost

all investigated parameter combinations.
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Figure 1 | The additive genetic variance and the mutational variance of a

trait evolve as a function of underlying levels of epistasis. These

simulation results were produced using our core set of parameters, except

we imposed correlational selection, ro¼0.9, and varied the population size

from 64 to 2,048 across different runs. The top panel (a) shows the

relationship between the equilibrium additive genetic variance for trait one

and the population size. In a strictly additive model, larger populations

maintain larger amounts of additive genetic variance (red diamonds), but

with moderate-to-strong epistasis (green squares, closed circles) the

pattern is reversed (with the exception of the smallest populations). The

bottom panel (b) reveals the cause of this reversal. In an additive model, the

mutational variance has no way to evolve, so small populations have the

same equilibrium mutational variance as large populations (red diamonds).

In the presence of epistasis, however, smaller populations evolve larger

mutational variances than large populations (triangles, squares, circles),

and these larger mutational variances in small populations contribute to a

greater level of standing genetic variance, except when the effects of

genetic drift are extremely strong (that is, when N¼64). In (a) and (b),

error bars show one s.e.m. across 20 independent simulation runs; if error

bars are not visible, then they are smaller than the symbol.
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First, because epistasis is non-directional on average in our model
(that is, positive and negative interactions potentially balance),
mutational variance tends to increase in the absence of other
evolutionary forces (see Methods). Second, the efficacy of
stabilizing selection is lower in smaller populations, allowing
these populations to maintain alleles with larger ‘reference’
effects, which can be thought of as the phenotypic effect the allele
would have in the absence of epistasis. These larger reference
effects in turn increase the absolute magnitude of epistatic
contributions. In particular, large reference effects at some loci
can be compensated for by large reference effects of opposite sign
at other loci, thus leading to more compensatory evolution in
small populations. For a seemingly similar observation in a
different model, see the recent report from Rajon and Masel35.
The third cause of a higher mutational variance in smaller
populations is that stabilizing selection favours the evolution of
smaller additive genetic variances36, a phenomenon that has been
observed in other studies as an increase in mutational robustness
in large populations34,37. As smaller populations tend to have
their phenotypic means displaced away from the bivariate
optimum by the action of genetic drift, they experience larger
absolute forces of directional selection, which favors an increase
in additive genetic variation38, and less stabilizing selection
compared with larger populations. Therefore, the evolution of
mutational robustness is less effective in the smaller populations.
Together, these factors produce large mutational and additive
genetic variances in small populations.

Another possibility is that multiple quasi-stable equilibria exist
in our simulated populations, a phenomenon that has been
observed in other studies of the multilinear model of epistasis26,
and that genetic drift allows smaller populations to shift between
these equilibria more often than larger populations39. Such a
scenario could also produce an increase in genetic variance and
mutational variances in the small populations. Regardless, despite
the fact that selection is less efficient in small populations due to
the effects of genetic drift, our results show that the combined
action of drift and selection can allow these small populations to
maintain large mutational variances. Thus, these conflicting
evolutionary pressures combine to produce a negative correlation
between effective population size and mutational variances, and
we see a pronounced manifestation of this expectation in our
results (Table 3).

Our analysis of the evolution of the orientation of the
mutational matrix extends previous work, which focused
exclusively on the evolution of the mutational correlation. When
the mutational correlation is treated as a quantitative trait in an
additive model, it has a tendency to evolve towards alignment
with the selection surface20. However, a much more realistic way
to model the evolution of the M-matrix is by using an explicit,
general model of epistasis, as we have done here. Our results show
that, indeed, the mutational correlation does evolve towards
alignment with the selection surface, and more importantly, the
mutational variances and covariances evolve in tandem to
produce a mutational matrix nearly perfectly aligned with the
selection surface. Under these circumstances, the selection surface
and mutational matrix both influence the standing genetic
variance in the population, which also results in triple
alignment of the M-matrix, G-matrix and selection surface.
This alignment scenario is important from an evolutionary
standpoint, because constraints imposed by the M-matrix
can be quite strong18,19, but here we see that these mutational
constraints are shaped in part by natural selection. Triple
alignment means that new mutations entering the population
will tend to fall along the ridge of the selection surface, if there is
one, thus mitigating their deleterious impacts. Furthermore, triple
alignment will facilitate evolution along both genetic and selective

lines of least resistance40,41. Thus, the evolution of robustness and
of evolvability occur simultaneously in our model33,42,43.

Our study has several limitations that offer fodder for future
work on how epistasis affects multivariate trait evolution.
Importantly, we follow the convention of other individual-based
studies of quantitative genetic phenomena, including epistasis,
and use unrealistically high per-locus mutation rates. Although
this rate inflation is likely to facilitate the evolution of genetic
architecture34, this device is necessary because realistic per-locus
mutation rates in such simulations tend to produce unrealistically
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Figure 3 | Epistasis allows the mutational variance to evolve as function

of population size. The average allelic effect can evolve to be correlated

with the average epistatic coefficient, and the strength of this relationship

varies with population size. These data are from 20 independent simulation

runs using our core parameter set, except with only 10 quantitative trait

loci. In addition, we allow only within-trait epistasis affecting trait one and

no epistasis involving trait two, with population sizes of (a) N¼ 128 and

(b) N¼ 2,048. Each point represents a single quantitative trait locus. The

x axis shows the magnitude of epistasis (mean epistatic effect of a locus,

averaged across all of its epistatic coefficients), and the y axis presents the

mean allelic effect (or reference effect) of alleles at the corresponding

locus, averaged across all alleles segregating at the locus. In small

populations, large mutational variances are maintained by the evolution of a

large range in allelic effects; we see a slightly negative but non-significant

relationship between epistatic coefficients and allelic effects (linear

regression, N¼ 200, R2¼0.01, P¼0.09). In large populations (b), which

evolve lower mutational variances than small populations, we see a much

smaller range in allelic effects and these effects show a strong negative

relationship with the mean epistatic coefficients across loci (linear

regression, N¼ 200, R2¼0.22, Poo0.0001). Thus, the allelic effects of a

particular locus tend to evolve values that are largely counteracted by the

epistatic effects of the locus in question. This figure is concerned with the

evolution of the mutational variance, but a similar effect explains the

evolution of mutational covariances.
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low levels of additive genetic variance. For instance, with
mutation rates of the order of 10� 6 or 10� 7, our populations
lose all genetic variation and all interesting evolutionary
phenomena cease to occur. This result illustrates that we still
do not fully understand the mechanisms maintaining genetic
variation in natural populations, but it also represents a real
constraint for the type of model we employ here36. It is worth
noting, however, that our mutation rates are much more realistic
than those used in some univariate studies of the multilinear
model. Le Rouzic et al.30, for instance, employed a per-locus
mutation rate of 0.01, arguing that the mutation rate has
little effect on the qualitative dynamics of the system beyond
affecting the timescale of evolution44,45. In addition, our model
typically focused on quantitative traits determined by a small
number of loci, typically 20, due to computational constraints.
Actual traits in living systems may be affected by hundreds or
thousands of loci, which would give them a much larger
mutational footprint than the traits considered here. Moreover,
if quantitative traits are sometimes affected by suites of physically
linked genes, then mutations at these supergenes could occur
more frequently than they would occur for any single gene in the
genome. These sorts of tightly linked gene clusters are
appropriately simulated by the type of model we used here,
where each simulated locus could be interpreted as a group of
physically linked genes affecting the phenotype. Regardless,
progress in reconciling simulation-based models and real data
will require additional data on the genetic details of multivariate,
quantitative phenotypes.

Our results also show that the type of epistasis influences the
evolution of mutational architecture. Most of our simulations
allow all possible pairwise epistatic effects. However, in our model
all loci are pleiotropic, meaning each locus has an effect on trait
one and an effect on trait two, so epistatic effects can potentially
occur within or between trait effects across loci. If only within-
trait effects are allowed (for example, the trait-one effect at one
locus interacts with the trait-one effect at another locus to affect
only the trait-one phenotype), then the mutational correlation
cannot evolve (Supplementary Table 7). Thus, the alignment of
the M-matrix with the selection surface requires at least some
between trait epistasis. Recent empirical studies indicate that this
type of epistasis, necessary for the evolution of mutational
covariances, does exist in natural populations. This type of
epistasis has been termed ‘differential epistasis’ by Cheverud
et al.46 and has been shown to occur for morphological and
physiological traits in mice24,25,47.

The results of the present model should provide a foundation
for studies involving more realistic assumptions, and several
obvious directions for future studies emerge from our results. For
instance, our model ignores complications such as dominance,
directional epistasis and higher-order epistasis, all of which can
influence the evolution of the mutational architecture29,48. We
also allow all pairwise epistatic interactions among loci, whereas
the genetic architectures of actual traits are probably determined
by gene networks with far fewer epistatic interactions.
Furthermore, we constrain the epistatic parameters to remain
constant within a simulation run, a feature that we retain from
the univariate version of the multilinear model. However, in
actual biological systems, the strengths of epistatic interactions
among loci may evolve. A model with evolving epistatic
coefficients would require assumptions about the genetic basis
and inheritance of epistatic effects and is well beyond the scope of
the model we present here, but such a model could be very
enlightening with respect to the evolution of mutational and
genetic architectures of complex traits.

In summary, the application of the multilinear model of
epistasis to a two-trait phenotype results in several startling

insights into the evolutionary process. The most important
insight is that natural selection, embodied by the individual
selection surface, causes mutational architectures to evolve in an
adaptive way. This result contradicts the simplistic view of
mutation presented in most texts in which mutation is claimed to
be random with respect to adaptation. Our results reinforce and
extend the results of other studies that have addressed various
aspects of the evolution of the mutational architecture by
exploring the effects of epistasis in the univariate case28–31,39,
by examining the evolution of mutational correlations20,47, and
by addressing the effects of phenotypic plasticity on the evolution
of mutational processes49. Our approach is unique in that
we allow the mutational variances and covariance to evolve
simultaneously, and our results show a striking pattern of
three-way alignment across levels of biological organization. In
particular, the M-matrix, which describes the distribution of
mutational effects entering the population, evolves to align with
the individual selection surface. This alignment increases
mutational robustness in the sense that it is expected to reduce
the fitness impacts of novel mutations32,34. In turn, the G-matrix,
which describes the standing levels of additive genetic variance in
the population, evolves to align with both the M-matrix and the
selection surface. This three-way alignment of mutation, genetic
variation and selection is significant for a number of reasons.
First, the mutational architecture of traits should not be seen
as something that is independent of natural selection. Rather,
the mutational architecture is partially a product of natural
selection50. Second, the evolution of the M-matrix will tend to
reinforce any genetic correlations produced by selection, and
this reinforcement increases the efficacy of correlated responses
to selection, which determine evolutionary trajectories in
phenotypic space. Finally, the extent of alignment between the
mutational architecture and the selection surface will influence
the fitness effects of new mutations. Stronger alignment reduces
the deleterious impacts of new mutations. In general, our results
suggest that the already impressive forces of natural selection may
extend to the very roots of the evolutionary process by shaping
the nature of variation that enters populations as a consequence
of novel mutations.

Methods
The multivariate multilinear model. Our Monte Carlo simulation is an extension
of the models used by Jones et al.18–20 to study the evolution of additive genetic
variances and covariances in sexually reproducing populations. These models
explicitly simulate all individuals in the population. Every individual has a two-trait
phenotype determined by its genotype and random environmental effects. In the
original models, all loci are assumed to be additive, so an individual’s genetic value
is determined by simply summing across all alleles at all loci. As in the original
model, all loci are assumed to be pleiotropic, so each allele has an effect on both
traits and both effects for a particular allele are inherited together.

The most important difference between the present model and previous models
is the addition of epistasis. Our implementation of epistasis follows the multilinear
model28, which has been used successfully to study the effects of epistasis on a
univariate phenotype29–31. The addition of epistasis to the model changes the way a
multilocus genotype is converted into a phenotype. The multilinear model simply
extends the additive model by specifying additional terms, which describe the
effects of epistasis. Thus, in the univariate multilinear model, the phenotype is
given by

X¼x0 þ
X

i

yðiÞ þ
X

i

X
j:j4i

eði;jÞyðiÞyðjÞ; ð1Þ

where X is the individual’s genotypic value for the quantitative trait, x0 is the value
of an arbitrary reference genotype, which for our model with a stationary
intermediate optimum can be assumed to be zero, y(i) is the reference effect of an
individual’s genotype at locus i (the two allelic values in the diploid organism are
summed to obtain the genotype’s reference effect) and e(i,j) is an epistatic
coefficient, which determines the nature of the interaction between locus i and
locus j. Clearly, if all epistatic coefficients are zero, then this model reduces to a
strictly additive model and the reference effects correspond to additive effects. This
description of the multilinear model includes only pairwise interactions.
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In principle, higher-order interactions can be included in the model, but in the
present study we allow only pairwise interactions between loci.

The multiple trait version of this multilinear model requires additional notation
and additional epistatic terms. In the present paper, we restrict attention to the
two-trait case, which is simple enough to understand yet complex enough to
capture the essence of the evolution of the multivariate phenotype. In our model,
every locus is potentially pleiotropic, in the sense that it has a reference effect on
both traits. In addition, every locus is potentially epistatic, as specified by the
multilinear model. In this model, then, every individual has two genotypic values,
one for each trait, specified by

aX¼ax0 þ
X

i
ayðiÞ þ

X
i

X
j:j4i

X
b

X
c

abceði;jÞbyðiÞcyðjÞ; ð2Þ

where aX is an individual’s genotypic value for trait a, and ax0 is the value of the
reference genotype, which will be zero for our analysis. As in the univariate case,
ay(i) is the individual’s reference genotypic value on trait a at locus i, and in the
absence of epistasis, this value would be the additive effect of the locus. The final
summation term represents the epistatic interactions among loci, where abce(i,j)

gives the epistatic effect on trait a of the interaction between the effects of locus i on
trait b and locus j on trait c. We assume that no locus interacts with itself, so
abce(i,i)¼ 0 and that interactions are symmetric in the sense that abce(i,j)¼ acbe(j,i).
Each epistatic term is simply the product of the relevant epistatic coefficient and
the reference effects at the two interacting loci. However, this model allows the
reference effects of the two loci on one trait to affect an individual’s genotypic value
at another trait, so the model is general, and most forms of epistasis can be
represented as special cases of this multivariate multilinear model.

Equation (2) allows us to calculate an individual’s genotypic value across all loci
at both traits, taking into account all possible pairwise epistatic interactions. We
simulate environmental variance by drawing a value from a normal distribution
with a mean of zero and a variance of one independently for each trait. These
environmental effects are added to the genotypic values to determine an
individual’s phenotypic value for each quantitative trait.

The life cycle: mating, recombination and mutation. Each generation of the
simulated life cycle begins with the adults of the previous generation mating and
producing zygotes. The epistasis model employs a mating system in which each
female mates with exactly two males and produces a total of four offspring, two
from each father. Mates are chosen at random, and individual males can mate as
many times as they are chosen. This breeding design facilitates the estimation of
quantitative genetic values, as described below. Alleles are inherited in a Mendelian
fashion, and we assume that all loci are physically unlinked.

Each gamete contributing to a zygote has a probability of nm of carrying a new
mutation, where n is the number of loci affecting the quantitative traits and m is the
per-locus mutation rate. Recalling that each locus affects both quantitative traits, we
draw mutational effects at random from a bivariate normal distribution with
mutational variances of a2

1 (for trait one) and a2
2 (for trait two) and a mutational

correlation specified by rm. These mutational effects are then added to the existing
reference effects of the allele undergoing the mutation. Hence, each time a mutation
occurs, it alters the pleiotropic allele’s effects on both traits. The changes are at the
level of reference effects, which will be additive effects if all the epistatic parameters are
zero. However, in the presence of epistasis, changes in reference effects do not
necessarily translate directly into changes in additive effects. Even though the epistatic
coefficients remain constant throughout a simulation run, the epistatic interactions
can evolve as the allelic effects present at various loci change over time. As the
epistatic interactions also determine the mapping of reference effects to the genotypic
value of an individual, this model allows the M-matrix, which summarizes the
distribution of new mutations entering the population, to evolve as well.

The life cycle: selection. We impose selection by assuming an individual selection
surface with the shape of a bivariate Gaussian function. Assuming z is a vector of
an individual’s phenotypic values at the traits under consideration, the probability
of surviving selection is

WðzÞ¼ exp � 1
2
ðz� hÞTx� 1ðz� hÞ

� �
; ð3Þ

where h is a vector of trait optima, T represents matrix transposition and x is a
matrix that describes the shape of the selection surface. In our two-trait case, x is a
symmetric 2� 2 matrix with diagonal elements, analogous to variances, indicating
the strength of stabilizing selection on each trait. Smaller values result in a steeper
surface with stronger stabilizing selection. The off-diagonal element, analogous to
the covariance, indicates the strength of correlational selection, and can be
conveniently summarized as the selectional correlation, ro, with larger absolute
values corresponding to stronger correlational selection (see below).

We impose viability selection by choosing a uniformly distributed
pseudorandom number between 0 and 1 for each individual. If the number
is less than W(z), then the individual survives to the next phase of the life cycle,
population regulation.

The life cycle: population regulation. In this evolutionary model, we assume that
a population is near its carrying capacity, K. We restrict attention to cases in which
the population invariably produces more than K offspring, and we impose
population regulation by choosing K individuals at random from the survivors of
selection. We also impose an equal sex ratio on these adults. These individuals are
the adults of the new generation, and they will go on to mate as described above to
produce the next generation of progeny.

Important parameter values. In this model, we restrict attention to a population
evolving in response to a stationary individual selection surface. Thus, genetic drift
and stabilizing selection are the main sources of evolutionary change. Some
directional selection occurs when drift moves the population away from the
bivariate optimum, and this directional selection moves the population back
toward the optimum.

In the present analysis, we explore a large swath of parameter space, and we
report results from the most important parameters. An exhaustive exploration of
parameter space is intractable for this sort of model, so we start with a core set of
parameter values and examine how deviations from this core set affect evolutionary
dynamics. The core parameter set is given in Table 1.

Several of these parameters require some explanation. As noted above, the
parameters describing the selection surface, x, whose elements are o11, o22 and
o12, are critically important because they determine the strength of selection and
the extent to which correlational selection acts on the population. For convenience,
we use the selectional correlation (ro) rather than o12, because ro, which is
constrained to fall between � 1 and 1, is more conceptually understandable. Of
course, ro is simply o12=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o11o22
p

, so the conversion between the selectional
correlation and the selectional covariance is trivial. The mutational variances
(a2

1; a
2
2) and mutational correlation (rm) for reference effects determines the

distribution of new mutations entering the population. Epistasis can cause the
reference effects to be only loosely connected to the effects of the mutation on the
genotype, so we specify the latter as the M-matrix (see below). The M-matrix is
thus a variable (of considerable interest) in this model rather than a parameter,
whereas the effects of mutations on the reference effects of alleles are true
parameters that can be specified and remain constant for a given simulation run.
As we are interested in the tendency for epistasis to generate mutational
correlations, we use a value of zero for the mutational correlation of reference
effects (rm).

Another feature of the epistasis model is that there are many epistatic
coefficients. For instance, in a single-trait multilinear model, there will be a total of
n(n� 1)/2 such coefficients, where n is the number of loci. In the two-trait
multilinear model, there are six times as many coefficients, because all interactions
between reference effects within and between traits must be considered. Thus, a
model with 20 loci has a total of 1140 unique epistatic coefficients. The only
feasible way to model epistasis, then, is to draw these coefficients from a
distribution. We draw them from a normal distribution with a mean of zero and a
variance of s2

e . This approach allows a mixture of positive and negative epistasis.
One key aspect of this model is that the epistatic parameters are set at the
beginning of each independent simulation run, and they do not change during the
run. As the epistatic coefficients remain constant, the epistatic effects evolve as a
consequence of changes in the reference effects of loci, which do evolve as a
consequence of mutation, drift and selection. The other parameters listed in
Table 1 also remain constant throughout a particular simulation run.

Evolution of mutational effects. We show for the univariate case that the
mutational variance will increase in the absence of other evolutionary forces if there
is no directional epistasis, that is, if E[e]¼ 0, as assumed throughout this paper.
Consider just two loci. Then, by equation (1), the effect of a mutation of size a at
the first locus is

Dm¼ðx0 þ yð1Þ þ aþ yð2Þ þ eðyð1Þ þ aÞyð2ÞÞ � ðx0 þ yð1Þ þ yð2Þ þ eyð1Þyð2ÞÞ
¼að1þ eyð2ÞÞ;

ð4Þ

where we write e¼ e(1,2). As E[a]¼ 0, also E[Dm]¼ 0. Taking expectations with
respect to mutational effects, epistasis parameters and locus effects, the variance of
mutational effects becomes

E Dmð Þ2
� �

¼E a2 1þ eyð Þ2
� �

¼E a2
� �

1þ 2E e½ �E y½ � þ E e2
� �

E y2
� �� �

; ð5Þ

where we used pairwise independence of a, e and locus effects. Now, the
assumption E[e]¼ 0 yields

E Dmð Þ2
� �

¼E a2
� �
ð1þs2

eE y2
� �
Þ � E a2

� �
: ð6Þ

However, at each particular locus mutational variances may increase or
decrease, depending on the particular choice of epistatic parameters.

Statistical and estimation issues. The addition of epistasis to our model carries
with it a number of challenges regarding the estimation of variables of interest. In
this study, we are interested in the distribution of total and additive genetic var-
iance in the population at any given time, and we are also keenly interested in the
evolution of the M-matrix, which serves as the central source of motivation of this
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study. We represent the elements of the M-matrix as M11, M22 and M12, and we
also specify the mutational correlation as rM (which is equal to M12=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M11M22
p

).
We estimate the genetic variance components by building a half-sib breeding

design into the model. By having each simulated female mate twice, we generate a
number of half-sib families equal to the number of females in the population. The
analysis of this breeding design can be accomplished through a standard analysis of
variance approach51. Our population lacks dominance, so the total genetic variance
can be partitioned into parts arising from additive genetic variance and additive-
by-additive epistatic variance. Even when epistatic effects are large, much of the
genetic variance arising from the epistatic terms in equation (2) is additive and thus
contributes to parent–offspring resemblance.

The M-matrix is prohibitively difficult to estimate analytically, due to the
many epistatic interactions and the possible presence of linkage disequilibrium
among loci, so we use an empirical approach to determine the distribution of
mutational effects. Every 100 or 200 generations, we make a copy of all progeny
produced and induce individual mutations 50 times per locus for each individual.
After each single-locus mutation, we refigure each individual’s genotypic value
for the two traits, as described in equation (2), and compare this new genotypic
value to the value before mutation. The individual’s genotype is then set back
to its original value before the next mutation. The change in the genotypic
value is the effect of the mutation, and we use this approach to compile a
distribution for each locus separately. In most cases, we report the average
M-matrix, which we calculate as the mean mutational variances and mutational
correlation across loci.

For each simulation run, we start with an initial population of adults with
population size (N) equal to the carrying capacity (K), and indeed N¼K for the
duration of each run. Each locus starts with five equally frequent alleles with allelic
effects drawn from a bivariate normal distribution with a mean of zero, s.d. of the
corresponding mutational s.d. divided by the number of loci, and covariance of
zero. This initial population is then permitted to evolve for a period of 5,000
generations to reach a state of quasi-equilibrium between genetic drift, selection
and mutation. These initial generations are followed by 5,000 experimental
generations during which we calculate values of interest. For each combination of
parameter values, we typically conduct 20 independent simulation runs. Variables
are often averaged across generations within a run and then these means are
averaged across runs to give the values we report.
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