metal-organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

John Bacsa,* Hanhua Zhao and Kim R. Dunbar

Department of Chemistry, Texas A&M University, PO Box 30012, College Station, Texas 77842-3012, USA

Correspondence e-mail: jbacsa@mail.chem.tamu.edu

Key indicators

Single-crystal X-ray study T = 110 K Mean σ (C–C) = 0.003 Å R factor = 0.036 wR factor = 0.080 Data-to-parameter ratio = 11.7

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Bis(pyridin-2-ylmethanolato- $\kappa^2 N$,O)bis-(trifluoroacetato)nickel(II)

The Ni^{II} atom in the title compound, $[Ni(C_2F_3O_2)_2 \cdot (C_6H_7NO)_2]$, is located on an inversion centre and is in an irregular coordination environment. Two trifluoroacetate ions and two pyridin-2-ylmethanol molecules coordinate to the Ni^{II} atom. The pyridin-2-ylmethanol ligand coordinates *via* its pyridyl N atom and its methanol O atom, resulting in a five-membered chelate ring. The ring is puckered in an envelope conformation, with the methanol O atom as flap. The trifluoroacetate ions coordinate *via* one O atom only. The second O atom accepts a strong hydrogen bond from the methanol hydroxy group.

Comment

The molecule of the title compound, (I), is neutral, and consists of an Ni^{II} atom coordinated by two pyridin-2-ylmethanol (pym) molecules and two trifluoroacetate (tfa) ions (Fig. 1). The Ni^{II} atom is located on an inversion centre and there is one crystallographically unique pym ligand and one unique tfa ion. The pym ligand coordinates to Ni^{II} *via* its pyridyl N atom and its methanol O atom, resulting in a fivemembered chelate ring. This ring is puckered in a envelope configuration, with O1 as flap (Evans & Boeyens, 1989).

The C–O bond distances [1.242 (3) and 1.247 (3) Å] are intermediate between single and double bonds (bond order 1.5). The trifluoroacetate ion coordinates to Ni^{II} *via* one O atom only. The negative charge on the second O atom is partially stabilized since this O atom accepts a strong intramolecular hydrogen bond from the methanol hydroxy group. By treating this hydrogen bond as part of the bonding framework, the carboxylate ion is bidentate and, together with

© 2004 International Union of Crystallography Printed in Great Britain – all rights reserved Received 21 June 2004 Accepted 28 June 2004 Online 9 July 2004

 $\Delta \rho_{\rm min} = -0.38 \ {\rm e} \ {\rm \AA}^{-3}$

View of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are shown as circles of arbitrary radius and hydrogen bonds are shown as dashed lines.

the intramolecular hydrogen bond, forms a distorted, nearly planar six-membered ring. The coordination environment about the Ni^{II} atom deviates substantially from ideal octahedral geometry due to the conformational preferences of the bidentate pym ligand. Other mononuclear divalent first-row transition metal complexes (M = Mn, Fe, Co, Ni, Cu, and Zn) of pym and the saccharinate anion have been characterized by X-ray crystallography (Yilmaz et al., 2002). The structure of a mononuclear Cu^{II} complex of pym and the salicylate anion has also been published (Hoang et al., 1992). The metal atoms in these complexes are also six-coordinate, and the pym ligands bidentate (binding through the N and O atoms). Each of these complexes is also stabilized by a strong intramolecular hydrogen bond, but in these cases either the carbonyl O or N atoms of the saccharinate or salicylate anions are the acceptors.

Experimental

A solution of pyridin-2-ylmethanol (0.54 g, 5.0 mmol) in tetrahydrofuran (15 ml) was added to a suspension of NiBr₂ (0.62 g, 0.53 mmol) and NaO₂CCF₃ (0.62 g, 4.5 mmol) in tetrahydrofuran (15 ml) with stirring. The color of the suspension changed from light green to blue after adding pyridin-2-ylmethanol. The suspension was refluxed for 4 h and filtered at room temperature. Blue crystals were obtained after the blue filtrate was evaporated slowly under an N₂ atmosphere for 3 d.

Crystal data

$[Ni(C_2F_3O_2)_2(C_6H_7NO)_2]$	$D_x = 1.802 \text{ Mg m}^{-3}$
$M_r = 503.00$	Mo $K\alpha$ radiation
Monoclinic, C2/c	Cell parameters from 2173
a = 12.539(3) Å	reflections
b = 11.113 (2) Å	$\theta = 2.4-27.3^{\circ}$
c = 13.315 (3) Å	$\mu = 1.15 \text{ mm}^{-1}$
$\beta = 92.23 \ (3)^{\circ}$	T = 110 (2) K
V = 1854.0 (7) Å ³	Prism, blue
Z = 4	$0.29 \times 0.26 \times 0.13 \text{ mm}$

Bruker SMART 1K CCD	2012 independent reflections 1760 reflections with $L > 2\sigma(I)$
diffactometer	1709 Tellections with $T > 20(T)$
v scans	$R_{\rm int} = 0.024$
Absorption correction: multi-scan	$\theta_{\rm max} = 27.2^{\circ}$
(SADABS; Bruker, 2003)	$h = -16 \rightarrow 14$
$T_{\min} = 0.733, \ T_{\max} = 0.865$	$k = -11 \rightarrow 14$
4350 measured reflections	$l = -12 \rightarrow 17$
Refinement	
Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.022P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.036$	+ 5.385P]
$vR(F^2) = 0.080$	where $P = (F_o^2 + 2F_c^2)/3$
S = 1.09	$(\Delta/\sigma)_{\rm max} < 0.001$
2012 reflections	$\Delta \rho_{\rm max} = 0.35 \ {\rm e} \ {\rm \AA}^{-3}$

All H-atom parameters refined

Table 1

172 parameters

Selected geometric parameters (Å, °).

Ni-N1	2.041 (2)	C2-C3	1.391 (4)
Ni-O1	2.070 (2)	C3-C4	1.388 (4)
Ni-O2	2.077 (2)	C4-C5	1.383 (3)
C1-N1	1.347 (3)	C5-C6	1.508 (3)
C1-C2	1.377 (3)	C7-C8	1.549 (3)
O1-C6	1.437 (3)	C8-F3	1.322 (3)
N1-C5	1.346 (3)	C8-F2	1.333 (3)
O2-C7	1.247 (3)	C8-F1	1.342 (3)
O3-C7	1.242 (3)		
N1-Ni-N1 ⁱ	180	C5-C4-C3	119.0 (2)
N1-Ni-O1	80.50(7)	N1-C5-C4	121.8 (2)
N1 ⁱ -Ni-O1	99.50 (7)	N1-C5-C6	115.6 (2)
O1-Ni-O1 ⁱ	180	C4-C5-C6	122.6 (2)
N1-Ni-O2 ⁱ	92.26(7)	O1-C6-C5	111.0 (2)
O1-Ni-O2 ⁱ	93.50 (6)	O3-C7-O2	129.9 (2)
O1-Ni-O2	86.51 (6)	O3-C7-C8	114.8 (2)
N1-Ni-O2	87.74 (7)	O2-C7-C8	115.2 (2)
O2 ⁱ -Ni-O2	180	F3-C8-F2	106.9 (2)
N1-C1-C2	122.0 (2)	F3-C8-F1	108.2 (2)
C5-N1-C1	119.2 (2)	F2-C8-F1	106.0 (2)
C5-N1-Ni	113.8 (2)	F3-C8-C7	113.4 (2)
C1-N1-Ni	127.0 (2)	F2-C8-C7	112.2 (2)
C1-C2-C3	119.0 (2)	F1-C8-C7	109.8 (2)
C4-C3-C2	119.0 (2)		

Symmetry code: (i) $\frac{1}{2} - x, \frac{1}{2} - y, 1 - z$.

Table 2			
Hydrogen-bonding geometry	(Å,	°).	

$D - H \cdot \cdot \cdot A$	D-H	$H \cdots A$	$D \cdots A$	$D - H \cdots A$
$O1-H7\cdots O3^i$	0.981 (10)	1.670 (13)	2.628 (2)	164 (3)
Symmetry code: (i)	$\frac{1}{2} - x, \frac{1}{2} - y, 1 - z$			

All the H atoms were located in difference electron-density maps and refined isotropically.

Data collection: *SMART* (Bruker, 2001); cell refinement: *SAINT* (Bruker, 2001); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS*97 (Sheldrick, 1997); program(s) used to refine structure: *SHELXL*97 (Sheldrick, 1997); molecular graphics: *X-SEED* (Barbour, 2001) and *SHELXTL* (Bruker, 2000); software used to prepare material for publication: *PLATON* (Spek, 2003).

We gratefully acknowledge the service provided by Dr Joseph Reibenspies and the X-ray facility at Texas A&M University. We thank the National Science Foundation for PI and NIRT grants (CHE-9906583 and DMR-0103455) and for equipment grants for the CCD X-ray equipment (CHE-9807975). We thank the Department of Energy for a PI grant (DE-FG03-02ER45999). Support from the Welch Foundation (A-1449) and from a Telecommunications and Informatics Task Force (TITF) Grant from Texas A&M University is also gratefully acknowledged.

References

Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.

- Bruker (2000). SHELXTL. Version 6.12. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2001). SMART (Version 5.625) and SAINT (Version 6.34). Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2003). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Evans, D. G. & Boeyens, J. C. A. (1989). Acta Cryst. B45, 581-590.
- Hoang, N. N., Valach, F., Dunaj-Jurco, M. & Melnik, M. (1992). Acta Cryst. C48, 443–445.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
- Yilmaz, V. T., Guney, S., Andac, O. & Harrison, W. T. A. (2002). *Polyhedron*, **21**, 2393–2402.