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Abstract. Previous studies on the non-Darcian flow into a
pumping well assumed that critical radius (RCD) was a con-
stant or infinity, whereRCD represents the location of the
interface between the non-Darcian flow region and Darcian
flow region. In this study, a two-region model considering
time-dependentRCD was established, where the non-Darcian
flow was described by the Forchheimer equation. A new iter-
ation method was proposed to estimateRCD based on the
finite-difference method. The results showed thatRCD in-
creased with time until reaching the quasi steady-state flow,
and the asymptotic value ofRCD only depended on the
critical specific discharge beyond which flow became non-
Darcian. A larger inertial force would reduce the change rate
of RCD with time, and resulted in a smallerRCD at a spe-
cific time during the transient flow. The difference between
the new solution and previous solutions were obvious in the
early pumping stage. The new solution agreed very well with
the solution of the previous two-region model with a constant
RCD under quasi steady flow. It agreed with the solution of
the fully Darcian flow model in the Darcian flow region.

1 Introduction

Darcy’s law indicates a linear relationship between the fluid
velocity and the hydraulic gradient (Bear, 1972), which is a
basic assumption used to handle a great deal of problems re-
lated to flow in porous and fractured media. However, many
evidences from the laboratory and field experiments show
that this linear law may be invalid in some situations, es-
pecially when the groundwater flow velocity is sufficiently
high or sufficiently low, where non-Darcian flow prevails

(Basak, 1977; Bordier and Zimmer, 2000; Engelund, 1953;
Forchheimer, 1901; Izbash, 1931; Liu et al., 2012; Soni et
al., 1978).

Darcy’s law considers kinematic forces but excludes in-
ertial forces of flow. However, the inertia forces become
significant with respect to the kinematic forces when the
velocity is great, leading to non-Darcian flow (Engelund,
1953; Forchheimer, 1901; Irmay, 1959; Izbash, 1931). Forch-
heimer (1901) proposed a heuristic Forchheimer law de-
scribing the non-Darcian flow, which was an extension of
Darcy’s law by adding a second-order velocity term, rep-
resenting the inertial effect. To verify the applicability of
the Forchheimer law, many approaches were introduced,
such as the dimensional analysis (Ward, 1964), the capillary
model (Dullien and Azzam, 1973), the hybrid mixture theory
(Hassanizadeh and Gray, 1987), and the volume averaging
method (Whitaker, 1996). Recently, Giorgi (1997) and Chen
et al. (2001) analytically derived the Forchheimer law from
the Navier–Stokes equation. Another widely used model
describing the non-Darcian flow was the Izbash equation
(Izbash, 1931). This equation was a fully empirical power-
law function obtained through analyzing experimental data.
The Izbash equation was preferred for modeling purposes,
since the power index in the Izbash equation can be parame-
terized depending on flow conditions (Basak, 1977). George
and Hansen (1992) demonstrated that the Forchheimer and
Izbash equations were identical for some cases.

Due to the high velocities, non-Darcian flow is likely to
occur near pumping/injecting wells (Yeh and Chang, 2013;
Wen et al., 2008b). Several studies showed that the non-
Darcian effect had significant influence on hydraulic param-
eter estimations. For instance, Theis solution cannot be used
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to explain the pumping test data in the Chaj-Doab area near
Gujrat water distributary in Pakistan (Ahmad, 1998), while
Birpinar and Sen (2004) and Wen et al. (2011) found that
the Forchheimer law worked very well. Quinn et al. (2013)
demonstrated that non-Darcian flow effect increased as the
initial applied head differential increased in a series of slug
tests. Specifically, Quinn et al. (2013) showed that the hy-
draulic conductivity was underestimated by Darcy’s law
when the initial applied head differentials were greater than
0.2 m. They pointed out that Darcian flow conditions can be
maintained in the sandstone when the initial applied head dif-
ferentials were less than 0.2 m (Quinn et al., 2013). Math-
ias and Todman (2010) showed that the Jacob method, based
on Darcy’s law, cannot fit the step-drawdown tests of van
Tonder et al. (2001) when the pumping rate was greater than
10 m3 h−1. However, the Forchheimer law could fit the step-
drawdown tests data very well (Mathias and Todman, 2010).
In this study, we will focus on the non-Darcian flow into a
pumping well by the Forchheimer law.

Although many efforts have been devoted to study the
non-Darcian flow around the well, the exact solutions have
not been obtained due to the non-linearity of the problem
(Mathias et al., 2008; Yeh and Chang, 2013). For exam-
ple, Sen (1990, 2000) employed the Boltzmann transform
method to analytically solve the problems related to the non-
Darcian flow. This method was showed to be problematic,
since both initial and boundary conditions cannot be simul-
taneously transformed into a form only containing the Boltz-
mann variable (Camacho and Vasquez, 1992; Wen et al.,
2008a). Wen el al. (2008a, b) derived the semi-analytical so-
lutions of the non-Darcian flow model by combining the lin-
earization procedure and the Laplace transform method (LL
method), assuming that the flow in the non-Darcian flow re-
gion was in quasi steady-state flow. Wen et al. (2008a, b)
pointed out that solutions by the Boltzmann transform and
the LL method coincided at late time. To test the accuracy of
the semi-analytical solutions (Wen et al., 2008a; Sen, 2000),
Mathias et al. (2008) and Wen et al. (2009) employed the
finite-difference method to study the non-Darcian flow prob-
lems, and their results showed that the semi-analytical solu-
tion only agreed very well with the numerical solution at late
pumping stage.

All above-mentioned investigations assume that the non-
Darcian flow occurs over the entire domain, which is called
a fully non-Darcian flow (F-ND) model hereinafter. In fact,
the regime of the flow to the pumping well can be divided
into two regions: non-Darcian flow occurs within a narrow
region around well, due to the relatively high velocity of
flow there, and Darcian flow prevails over the rest domain.
One may think that such two-region flow could be described
by the Forchheimer law, which would automatically reduce
to the Darcy’s law at the location far from the well (be-
cause the second-order velocity term in the Forchheimer
law will be negligible if velocity approaches zero). How-
ever, Forchheimer law (or F-ND model) may not work very

well for moderate velocity under which that Darcian flow
prevails. Mackie (1983) demonstrated that the two-region
model could fit the experimental data in the laboratory bet-
ter than the F-ND model. Huyakorn and Dudgeon (1976)
employed a two-region model to study flow near a pump-
ing well. Basak (1978) presented analytical solutions of the
two-region model for steady-state flow to a fully penetrating
well. Sen (1988) and Wen et al. (2008b) derived the analyti-
cal solutions of the two-region model for transient flow to a
pumping well, and both solutions were valid for the ground-
water flow in the quasi steady state.

All researches mentioned above implied that the critical
radius is a constant, where the critical radius represents the
location separating the non-Darcian and Darcian flows (Sen,
1988; Wen et al., 2008b). For example, the critical radius is
infinity for the F-ND model and is zero for the fully Dar-
cian flow model, while it is a finite constant for the two-
region model in which the critical radius is determined un-
der the quasi steady-state flow condition (Sen, 1988; Wen et
al., 2008b). Actually, the critical radius changes continuously
with time for the transient flow, and cannot be determined
straightforwardly. For example, the initial critical radius is
zero for an initially hydrostatic aquifer, and it gradually in-
creases with time until the system becomes quasi steady state
near a constant-rate pumping well. The movement of critical
radius may be more complex for the variable-rate pumping
tests (Bear, 1972; Mishra et al., 2012), the slug tests (Quinn
et al., 2013) or the step-drawdown tests (Louwyck et al.,
2010; Mathias and Todman, 2010). Therefore, the two-region
model with time-dependent critical radius is more reasonable
for transient flow near a pumping well, and it is particularly
true when the pumping rate changes greatly.

In this study, we will investigate non-Darcian flow into a
fully penetrating pumping well considering a time-dependent
critical radius using the finite-difference method. A new it-
eration procedure will be proposed to estimate the moving
critical radius. This new model reduces to the F-ND model
when the critical radius is infinite and it becomes the fully
Darcian flow model when the critical radius is 0.

1.1 Problem statement and mathematic model

1.1.1 Location of the critical radius of the two-region
model

Previous researches showed that the porous media flow may
be divided into four regimes, such as (A) non-Darcy pre-
linear laminar flow, (B) Darcy flow, (C) non-Darcy post-
linear laminar flow, and (D) non-Darcy post-linear turbulent
flow (Basak, 1977; Bear, 1972). For radial flow to a pumping
well, the velocity in the aquifer decreases with the distance
from the well. Therefore, the radial flow might experience all
four-flow regimes. To simplify the problem, we use a two-
region model that considers a non-Darcian flow region near
the well and a Darcian flow region away from the well. A

Hydrol. Earth Syst. Sci., 18, 2437–2448, 2014 www.hydrol-earth-syst-sci.net/18/2437/2014/



Q. Wang et al.: Forchheimer flow to a well-considering time-dependent critical radius 2439

Figure 1. The schematic diagram of the non-Darcian flow into a
fully penetrating pumping well considering the time-dependent crit-
ical radius.

unique feature of the two-region model used in this study is
that the critical radius is allowed to vary with time, whereas it
was assumed to be constant in previous studies (Dudgeon et
al., 1972b, a; Huyakorn and Dudgeon, 1976; Mackie, 1983;
Sen, 1988; Wen et al., 2008b).

Generally, the start of the non-Darcian flow can be de-
termined by the critical Reynolds number (ReC), where the
Reynolds number is defined as

Re(r, t) = Dpq (r, t)/ν, (1)

whereν is the kinematic viscosity of the fluid (L2T−1); Dp

is the characteristic grain diameter (L);q (r, t) is specific
discharge (LT−1) at distancer (L) and time t (T); Re is
Reynolds number which depends on time and space (dimen-
sionless). The critical Reynolds number (ReC) refers toRe

at the start of non-Darcian flow. Up to present, there is still
considerable debate onReC for the initiation of non-Darcian
flow in porous media. Scheidegger (1974) gaveReC to be
0.1 to 75; Zeng and Grigg (2006) suggested the range of
ReC from 1 to 100.ReC will be set to 100 to make sure
non-Darcian flow happen in this study. According to Eq. (1),
one can see that the specific discharge is in linear relation
to Re. Therefore, the critical specific discharge (qC) can also
be used to determine the start of the non-Darcian flow, since
one can calculateqC for a givenReC. When the specific dis-
charge is less than or equal toqC (or Re ≤ ReC), the flow is
considered as Darcian. When the specific discharge is greater
than qC (or Re > ReC), the flow is taken as non-Darcian.
DenotingRC (t) as the critical radius at whichq = qC (or
Re = ReC), then it is non-Darcian flow whenr ≤ RC (t) and
Darcian flow whenr > RC (t), as shown in Fig. 1.

For the quasi steady-state flow around a fully penetrat-
ing well in a homogeneous and isotropic formation, one has
(Sen, 1988; Wen et al., 2008b)

RC = Q/(2πBqC) , (2)

whereB is the thickness of the aquifer (L); andQ is the
well discharge (L3T−1). In the case of a constant pumping
rate,RC is also a constant for a specificReC. This constant
RC was used in previous two-region models of transient non-
Darcian flow (Sen, 1988; Wen et al., 2008b). Actually,RC is
not a constant for transient flow, and it cannot be determined
directly since the velocity distribution changes with time. In
this study, a new iteration method will be proposed to deter-
mineRC as described below.

1.1.2 Mathematic model

Figure 1 shows the physical model investigated in this study,
where a pumping well fully penetrates a confined aquifer.
The origin of the cylindrical coordinate system is at the cen-
ter of the well. Ther axis is horizontal and outward from the
well, and thez axis is upward vertical. Three assumptions
are made in this study. First, the non-Darcian and Darcian
flow may coexist and the critical radius is time-dependent,
and the non-Darcian flow is governed by the Forchheimer
law. Second, the system is hydrostatic before the pumping
starts, soRC (t = 0) =0. Third, the aquifer is homogeneous,
isotropic, infinitely extensive and with a constant thickness.
These assumptions, although quite idealized, are standard in
well hydraulic study (Papadopulos and Cooper, 1967; Sen,
1988; Wen et al., 2008b). Based on these assumptions, the
governing equations of the two-region flow model can be de-
scribed as follows

∂qN(r, t)

∂r
+

qN(r, t)

r
=

S

B

∂sN(r, t)

∂t
, if r ≤ RC (t) , (3)

∂qY(r, t)

∂r
+

qY(r, t)

r
=

S

B

∂sY(r, t)

∂t
, if r > RC (t) , (4)

wheresY(r, t) andsN(r, t) are drawdowns (L) at distancer
and timet in Darcian flow and non-Darcian flow regions,
respectively;S is the aquifer storage coefficient (dimension-
less).

Initial condition is

sY(r,0) = sN(r,0) = 0. (5)

The outer boundary condition is

sY(∞, t) = 0. (6)

Assuming that the pumping rate is large enough to induce
non-Darcian flow near the well, the boundary condition at
the wellbore, considering the wellbore storage with a finite
diameter well, can be written as

2πrBqN(r, t)
∣∣
r→rw − πr2

w
dsw(t)

dt
= −Q, (7)

whereQ is positive for the pumping rate;rw is the radius of
the well (L); sw is the drawdown inside the well (L). Notice
that well loss is not considered so the drawdown is continu-
ous across the well screen

sw(t) = sN(rw, t). (8)
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Table 1.Dimensionless variables used in this study.

rD =
r
B

rwD =
rw
B

RCD =
RC
B

tD =
Kβ t

SB

βd = Qβ

2πB2 λ =
K
Kβ

swD =
2πKβB

Q
sw sYD =

2πKβB

Q
sY(r, t)

sND =
2πKβB

Q
sN(r, t) qND = −

2πB2

Q
qN(r, t)

qYD = −
2πB2

Q
qY(r, t) qCD = −

2πB2

Q
qC

The drawdown and the discharge from the Darcian flow re-
gion into the non-Darcian flow region are continuous at the
critical radius

sN [RC (t) , t ] = sY [RC (t) , t ] , (9)

qN [RC (t) , t ] = qY [RC (t) , t ] . (10)

In the non-Darcian flow region, we use the Forchheimer law
to describe the flow (Forchheimer, 1901)

qN + βqN |qN| = Kβ

∂sN

∂r
, (11)

in which β (TL−1) andKβ (LT−1) are empirical constants
depending on the properties of the medium (Sidiropoulou
et al., 2007).Kβ is called the apparent hydraulic conductiv-
ity and it reduces to the hydraulic conductivity whenβ = 0
(Chen et al., 2001; Sidiropoulou et al., 2007).β is called the
inertial force coefficient. Many studies demonstrated that the
value ofβ was related to the porous media and the fluid prop-
erties (Scheidegger, 1958; Moutsopoulos et al., 2009). For
example, Ergun equation (Ergun, 1952) was widely used to
estimateβ

β =
1.75Dp

150ν (1− ϕ)
, (12)

whereϕ is porosity. When the kinematic viscosity of water
(ν) at 20◦C is 10−6 m2 s−1, Dp = 0.001 m,ϕ = 0.3, one has
β = 2.0× 10−4 m2 day−1.

In the Darcian flow region, one has

qY(r, t) = K
∂sY(r, t)

∂r
, r > Rc. (13)

Equations (3)–(13) can be used to describe the groundwa-
ter flow in the aquifer with a time-dependent critical radius
RC (t). This new model is an extension of the previous model
by Sen (1988). WhenRC (t) → ∞, this model becomes the
F-ND model. WhenRC (t) = 0, it reduces to the fully Dar-
cian flow model.

1.1.3 Dimensionless transformation

Defining the dimensionless variables in Table 1, Eqs. (3)–
(13) can be rewritten as

∂qND

∂rD
+

qND

rD
= −

∂sND

∂tD
, rD ≤ RCD, (14)

∂qYD

∂rD
+

qYD

rD
= −

∂sYD

∂tD
, rD > RCD, (15)

sND (rD,0) = sYD (rD,0) = 0, (16)

sYD(∞, tD) = 0, (17)

sND [RCD (tD) , tD] = sYD [RCD (tD) , tD] , (18)

qND [RCD (tD) , tD] = qYD [RCD (tD) , tD] . (19)

Notice that a negative sign has been used for definingqD
in Table 1. The subscript “D” stands for the dimensionless
variables. The boundary condition with the wellbore storage
(Eq.7) in the dimensionless form is

(rDqND)
∣∣
rD→rwD +

r2
wD

2S

dswD(tD)

dtD
= 1. (20)

The dimensionless Forchheimer law becomes

qND + βDqND |qND| = −
∂sND

∂rD
, rD ≤ RCD, (21)

where βD is the dimensionless inertial force coefficient.
When the pumping rate is 0.628 m3 s−1, aquifer thickness is
10 m, andβ = 2.0× 10−4 m2 day−1, one hasβD = 0.02 ac-
cording to the definition ofβD, as shown in Table 1.

When rD > RCD, groundwater flow follows the Darcy’s
law in the dimensionless format as

qYD(r, t) = −λ
∂sYD

∂rD
, rD > RCD, (22)

whereλ is the ratio of the hydraulic conductivity and appar-
ent (Sidiropoulou et al., 2007).

1.2 Numerical solution

Because of the non-linearity of the problem, it is not
easy to obtain the analytical solution of drawdown even if
RCD (tD) is constant. In this study, we will employ the finite-
difference method to investigate the problem considering a
time-dependentRCD (tD). Due to the axisymmetric nature
of the problem, the numerical simulation will be conducted
with a non-uniform grid system, where the spatial steps
are smaller near the well and become progressively greater
away from the well. Similar to previous studies (Mathias et
al., 2008; Wen et al., 2009), we discretize the dimension-
less spacerD logarithmically. The dimensionless space do-
main [rwD, reD] is discretized intoN nodes excluding the
two boundary nodesrwD and reD, wherereD is a relatively
large dimensionless distance used to approximate the infinite
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boundary (Mathias et al., 2008; Wen et al., 2009). For any
node ofri , rwD < ri < reD, i = 1, 2. . .N , one has

ri = (ri−1/2 + ri+1/2)/2, i = 1,2. . .N, (23)

whereri+1/2 is calculated as follows

log10(ri+1/2) = log10(rwD) + i

[
log10(reD) − log10(rwD)

N

]
,

i = 0,1. . .N. (24)

After spatial discretization, Eqs. (14)–(15) become

dsYD,i

dtD
≈

ri−1/2qYD,i−1/2 − ri+1/2qYD,i+1/2

ri
(
ri+1/2 − ri−1/2

) ,

i = 2,3. . .Ns− 1, rD ≤ RCD, (25)

dsND,i

dtD
≈

ri−1/2qND,i−1/2 − ri+1/2qND,i+1/2

ri
(
ri+1/2 − ri−1/2

) ,

i = Ns,Ns+ 1. . .N − 1, rD > RCD, (26)

whereqYD,i and sYD,i are the dimensionless specific dis-
chargeqYD and dimensionless drawdownsYD at nodei for
the Darcian flow, respectively;qND,i andsND,i are the dimen-
sionless specific dischargeqND and dimensionless drawdown
sND at nodei for the non-Darcian flow, respectively. In terms
of the Forchheimer equation of Eq. (21), one can obtain

qND,i−1/2 ≈
1

2βD

{
−1+

[
1+ 4βD

(
sND,i−1 − sND,i

ri − ri−1

)] 1
2
}

,

i = 2,3. . .Ns− 1, (27)

and

qND,i+1/2 ≈
1

2βD

{
−1+

[
1+ 4βD

(
sND,i − sND,i+1

ri+1 − ri

)] 1
2
}

,

i = 2,3. . .Ns− 1, (28)

where nodeNs means the location ofRCD (tD). At the well-
aquifer boundary, one has

qND,1−1/2 ≈
1

2βD

{
−1+

[
1+ 4βD

(
swD − sND,1

r1 − rwD

)] 1
2
}

, (29)

whereswD is the dimensionless drawdown inside the well.
Considering Eq. (20), swD can be approximated as follows

dswD

dtD
≈

2S

r2
wD

(
1− rwDqND,1−1/2

)
. (30)

WhenrD > RCD, the finite-difference scheme of the specific
discharge can be obtained from Eq. (22)

qYD,i−1/2 ≈ λ
sYD,i−1 − sYD,i

ri − ri−1
, i = Ns,Ns+1. . .N−1, (31)

qYD,i+1/2 ≈ λ
sYD,i − sYD,i+1

ri+1 − ri
, i = Ns,Ns+1. . .N−1. (32)

As for the boundary at the infinity, the finite-difference
scheme is

qYD,N+1/2 ≈ λ
sYD,N

reD− rN
. (33)

Now one obtains a set of ordinary differential equations. It
is notable thatRCD or Ns which is related to the indexi in
Eqs. (27)–(28) and Eqs. (31)–(32) is time-dependent. In the
following section, a new iteration method will be proposed
to determine the values ofRCD or Ns.

1.3 Iteration method to determineRCD or Ns

Before introducing the new iteration method, the relationship
betweenRCD and the velocity distribution will be investi-
gated first, based on the two-region model with a constant
RCD. The values of the constantRCD are set to 0, 0.02, 0.04,
0.08 and 0.50. The other parameters arerwD = 1× 10−4,
βD = 20,λ = 1. The mathematic model with a constantRCD
will be solved by the finite-difference method.

Figure 2a shows the specific discharge distributions with
different RCD of 0, 0.02, 0.04, 0.08 and 0.50. The curve
of RCD = 0 represents the fully Darcian flow model. One
can find that the specific discharge decreases with increasing
RCD at a givenrD, starting from its maximum atRCD = 0
(Darcian flow). This observation is understandable. The in-
creasingRCD implies a stronger contribution of the inertial
effect, which also means a larger resistance to flow, thus it
leads to a smaller specific discharge. After trying many dif-
ferent sets of aquifer parameters, such asβD = 0.002, 0.02,
0.2, andRCD = 0.01, 0.03, 0.1, numerical simulation indi-
cates that this observation is universally valid. This observa-
tion will serve as the basis for the new iteration method to
seek the location ofRCD (tD).

Similar to the use ofReC to determine the start of the non-
Darcian flow, one can useqCD for the initiation of the non-
Darcian flow, whereqCD is the dimensionless critical specific
discharge defined in Table 1. We denoterjCD as the newly
computed critical radius at thej th step of the new iteration
method, wherej = 1,2,3. . .. Since the aquifer system is ini-
tially hydrostatic, the initial critical radiusr0CD is set to 0.
For a given dimensionless timet1D, the detailed procedures
of the iteration method for searchingRCD (t1D) will be in-
troduced as follows. First, the specific discharge distribution
in the aquifer can be calculated using Eqs. (25)–(33) with
RCD (t1D) = r0CD, as shown in Fig. 2b. Based on the com-
puted specific discharge distribution, one can find the new
critical radiusr1CD according to a given constantqCD. Sec-
ond, the new specific discharge distribution can be similarly
calculated using Eqs. (25)–(33) with RCD (t1D) = r1CD, and
the new critical radiusr2CD can be obtained according to
qCD. It is notable thatr1CD andr2CD serve as the upper and
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(a)

(b)

Figure 2. (a)Specific discharge distributions with different critical
radiusRCD. (b) The schematic diagram showing the iterative pro-
cess of seekingRCD.

lower limits for searchingRCD (t1D), as illustrated in Fig. 2b.
Similarly, one can estimate the new critical radiusr3CD using
r2CD, wherer3CD is located somewhere betweenr1CD and
r2CD. Following the same procedures, a new critical radius
r4CD can be calculated based onr3CD, andr4CD is between
r2CD andr3CD. One can repeat above computations until the
new critical radius finally converges. For the actual problems,
we define a convergence criterion

∣∣Rold
CD − Rnew

CD

∣∣ ≤ ξ , where
Rold

CD andRnew
CD are the critical radius for the previous step and

present step, respectively;ξ is a small positive value such
as 0.001. If this criterion is satisfied, the new critical radius
rjCD is thought as the estimation ofRCD (t1D). We develop a
MATLAB program named as two-region model with moving
critical radius (MTRM) to facilitate the computation. By the
way, this iteration method is convergent. Figure 3 represents
the flow chart of the MTRM algorithm, wheretk is the time
at time stepk; kmax is the total number of the time steps; dtD
is the dimensionless time step;sD,i andqD,i are the dimen-
sionless specific drawdown and dimensionless discharge at
nodei in the aquifer, respectively.

Figure 3. Flow chart of the MTRM algorithm.

2 Results and discussions

2.1 Comparison with the previous solutions

To test the new solution, the fully Darcian flow solution
of Papadopoulos and Cooper (1967), the fully non-Darcian
flow solution of Mathias et al. (2008) and the two-region
model of Sen (1988) will be introduced. Figure 4a and b
shows the distance-drawdown curves of the four mentioned-
above models in the early and late pumping stages, respec-
tively. In these two figures, Papadopoulos and Cooper (1967)
represents the analytical solution of the fully Darcian flow
model, Sen (1988) is the analytical solution of the two-region
model by the Boltzmann transform method, and Mathias et
al. (2008) represents the numerical solution of the fully non-
Darcian flow model. The deflection point of the curve is the
location of the critical radius.

In the early stage, the differences among three previous
solutions and the new solution of this study are obvious, as
shown in Fig. 4a. First, the solution of Papadopoulos and
Cooper (1967) is smaller than the others near the well. This is
because the inertial forces of the non-Darcian flow increase
the resistance for flow, thus resulting in drawdown greater
than those for the Darcian flow near the well. The second
is that the F-ND solution agrees with the new solution near
the well. The third is that the solution of Sen (1988) does
not agree with the new solution near the well at the early
time. This is probably because of the Boltzmann transform
method used by Sen (1988) to deal with the non-Darcian flow
at the early time, which has been discussed in several previ-
ous studies (Camacho and Vasquez, 1992; Wen et al., 2008b).
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(a)

(b)

Figure 4. (a) Comparison of the distance drawdowns by the fully
Darcian flow model (Papadopoulos and Cooper, 1967), the fully
non-Darcian flow model (Mathias et al., 2008), the two-region flow
model (Sen, 1988), and the new model in early pumping stage.(b)
Comparison of the distance drawdowns by the fully Darcian flow
model (Papadopoulos and Cooper, 1967), the fully non-Darcian
flow model (Mathias et al., 2008), the two-region flow model (Sen,
1988), and the new model in late pumping stage.

The fourth is that there is a deflection point on the new so-
lution, leading to discontinuity of the drawdown slope. This
observation may be reasonable, as also reported by Mout-
sopoulos et al. (2009), who named it non-uniform hydraulic
behavior.

In the late pumping stage, the transient flow approaches
the quasi steady state, and the specific discharge distribution
is invariant with time according to Eqs. (3)–(4) or Eqs. (14)–
(15), regardless of the Darcian flow or non-Darcian flow. Un-
der the quasi steady-state flow condition, the critical radius
obtained by this new solution becomes a constant which is
the same as the one used by previous two-region models such
as Sen (1988) and Wen et al. (2009). Therefore, the new so-
lution agrees very well with that of Sen (1988) at late time

Figure 5. Time-dependent critical radius (RCD) for different values
of the inertial force coefficientβD.

(see Fig. 4b). Another fact that can be seen in Fig. 4b is that
the new solution agrees with the solution of Papadopoulos
and Cooper (1967) in the Darcian flow region.

2.2 Effect of the inertial force coefficient to the critical
radius

The inertial force coefficient (βD) is of primary concern for
the non-Darcian flow described by the Forchheimer equa-
tion, and the values ofβD are chosen as 0.001, 0.01, and 0.1.
Figure 5 shows the critical radius (RCD) changes with time
for different dimensionless inertial force coefficients. Several
observations can be seen. First,RCD increases with time un-
til the flow approaching the quasi steady-state condition. In
the early pumping stage, the specific discharge is very large
near the well and decreases quickly with the distance from
the well, soRCD is very small. With time, the cone of de-
pression will expand along the radial direction and the slope
of the cone of depression becomes flatter, soRCD becomes
greater. Second, a largerβD would reduce the rate of change
RCD versus time, thus result in longer time to approach its
asymptotic value, and consequently leads to a smallerRCD
at a specific time in the transient state (see Fig. 5). This is
because a largerβD implies a stronger inertial force, which
increases the resistance of flow. The third interesting obser-
vation is that the asymptotic value ofRCD is the same for
differentβD. This can be explained using Eq. (2). Based on
the definition of the dimensionless parameters defined in Ta-
ble 1, Eq. (2) becomes

qCD = 1/RCD. (34)

Therefore, the value ofRCD does not depend onβD under
the quasi state state flow condition, while it only reciprocally
depends on the critical specific discharge.
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Figure 6. Time-dependent critical radius (RCD) for different values
of the critical specific discharge.

2.3 Effect of the critical specific discharge to the critical
radius

The criterion to judge the initiation of the non-Darcian flow
is an important factor of concern. Up to now, there is still
considerable debate on what value ofReC to use for the start
of non-Darcian low. The recommended values ofReC range
from 0.1 to 100 for porous media flow (Bear, 1972; Schei-
degger, 1974; Zeng and Grigg, 2006). To check the influence
of ReC on RCD during the transient flow, the values ofqCD
are chosen as 100, 50 and 10 considering the direct relation-
ship of qCD andRCD in Eq. (2). The other parameters are
βD =0.01, andrwD = 1× 10−4.

Figure 6 shows the effect ofqCD onRCD. It is obvious that
the asymptotic value ofRCD is equal to 1/qCD, as reflected
in Eq. (34). Another interesting observation is thatRCD de-
creases with increasingqCD, and it takes shorter time forRCD
to approach its asymptotic value.

2.4 Type curves in the non-Darcian flow region and
Darcian flow region

Type curves are a series of curves that reveal the functional
relationship between the well functions (or drawdown) and
the dimensionless time factors (Sen, 1988; Wen et al., 2011).
Type curve is one of the common approaches to identify the
aquifer parameters or to predict the drawdown (Sen, 1988;
Wen et al., 2011). Sen (1988) presented different type curves
in the Darcian flow region and non-Darcian flow region based
on a two-region model. In that model (Sen, 1988),RCD was
a fixed value which only depends on the rate of pumping but
independent of time. In this study,RCD changes with time,
and the type curves might be different from the ones gener-
ated by Sen (1988). To investigate the behaviors of the type
curves of the new solution, the two observation locations will

Figure 7. Time-drawdown atrD = 0.005 for different inertial force
coefficients in a log–log scale.

be chosen,rD = 0.005 and 0.02. According to Eq. (34), the
maximum ofRCD is 0.001 at the quasi steady state, so the
flow at rD = 0.005 will experience both Darcian flow (at the
early time) and non-Darcian flow (at late time), while the
flow at rD = 0.02 is always Darcian.

Figure 7 shows the time drawdown atrD = 0.005 for dif-
ferent dimensionless inertial force coefficients in the log–log
scale. Two interesting observations can be seen from this fig-
ure. The first observation is that there is a deflection point in
the curve ofβD = 0.1 or 1, that becomes larger in time with
increasingβD. This is because a largerβD implies a stronger
inertial effect, which leads to a larger drawdown and longer
time to approach the quasi steady-state condition. This obser-
vation is not found in the F-ND model (Wen et al., 2011) and
in the two-region model (Sen, 1988). The second observation
is that the drawdown in the quasi steady state increases with
increasingβD, and the reason for this has been explained in
previous studies (Wen et al., 2011).

Figure 8 represents the time drawdown atrD = 0.02 in the
log–log scale. One notable point is that flow atrD = 0.02 is
always Darcian, so there is no deflection point in the type
curves. The differences among the curves with differentβD
are obvious at the beginning, and then they approach the
same value at the quasi steady state.

3 Summary and conclusions

In this study, a new two-region flow model considering the
time-dependent critical radius (RCD) is established to in-
vestigate the groundwater flow into a pumping well, and a
new iteration method is proposed to estimateRCD, based
on the finite-difference method. Results show that this iter-
ation method is convergence although it has not been ana-
lytical verified using rigorous mathematic model. In the non-
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Figure 8. Time-drawdown atrD = 0.02 for different inertial force
coefficients in a log–log scale.

Darcian flow region, the flow is governed by the Forchheimer
equation, and the start of the non-Darcian flow is determined
by the critical specific discharge, which is calculated by the
critical Reynolds number. The new solution is compared with
previous solutions, such as the fully Darcian flow model,
the two-region model with a constant critical radius, and the
fully non-Darcian flow model. The impacts of the dimension-
less inertial force coefficient (βD) and dimensionless critical
specific discharge (qCD) on the critical radius and flow field
have been analyzed. Several findings can be drawn from this
study:

1. In the early stage, the new solution agrees with the
fully non-Darcian flow solution near the well; differs
with the fully Darcian flow model of Papadopoulos and
Cooper (1967) and the two-region model of Sen (1988).

2. In the quasi steady flow stage, the new solution agrees
with the solution of Sen (1988) very well. It agrees very
well with the solution of the fully Darcian flow model
(Papadopulos and Cooper, 1967) in the Darcian flow re-
gion.

3. RCD increases with time until reaching the quasi steady-
state flow, and the asymptotic value ofRCD only de-
pends onqCD. A larger βD would reduce the rate of
change ofRCD with time, and result in a smallerRCD
at a specific time during the transient flow state.

4. There is a deflection point in the type curve when the
observation well location is within the non-Darcian flow
region in the quasi steady state whenβD ≥ 0.1, and
the time associated with this deflection point becomes
larger with a largerβD.
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Appendix A

Table A1. Nomenclature.

B aquifer thickness (L)
Dp characteristic grain diameter (L)
K hydraulic conductivity of the aquifer (LT−1)

Kβ apparent hydraulic conductivity, an empirical constant in the Forchheimer law (LT−1)

q specific discharge in the aquifer (LT−1)

qC critical specific discharge (LT−1)

qY , qN specific discharges for Darcian flow and non-Darcian flow (LT−1), respectively
Q well discharge (L3T−1)

s drawdown (L) for aquifer
sY , sN drawdowns (L) for Darcian flow and non-Darcian flow, respectively
sw drawdown (L) inside well
S storage coefficient of the aquifer (dimensionless)
r distance from the center of the well (L)
rw radius of the well screen (L)
RC critical radius for non-Darcian flow (L)
Re Reynolds number (dimensionless)
ReC critical Reynolds number (dimensionless)
t pumping time (T)
β an empirical constant in the Forchheimer law (TL−1), named as inertial force coefficient in this study
ν kinematic viscosity of the fluid (L2T−1)

qND,qYD dimensionless specific discharges defined in Table 1 in the non-Darcian flow and Darcian flow regions, respectively
qCD dimensionless critical specific discharge defined in Table 1
rD dimensionless distance defined in Table 1
rwD dimensionless radius of the well screen defined in Table 1
RCD dimensionless critical radius defined in Table 1
sND, sYD dimensionless drawdowns defined in Table 1 in the non-Darcian flow and Darcian flow regions, respectively
swD dimensionless drawdown inside the well defined in Table 1
tD dimensionless time defined in Table 1
βD dimensionless inertial force coefficient defined in Table 1
λ ratio of the hydraulic conductivity and apparent hydraulic conductivity defined in Table 1

The subscript “D” refers to terms in dimensionless form. The subscripts “N” and “Y” refer to terms related to non-Darcian flow and Darcian flow regions, respectively.
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