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Abstract. Previous studies on the non-Darcian flow into a (Basak, 1977; Bordier and Zimmer, 2000; Engelund, 1953;
pumping well assumed that critical radiugdp) was a con-  Forchheimer, 1901; Izbash, 1931; Liu et al., 2012; Soni et
stant or infinity, whereRcp represents the location of the al., 1978).
interface between the non-Darcian flow region and Darcian Darcy’s law considers kinematic forces but excludes in-
flow region. In this study, a two-region model considering ertial forces of flow. However, the inertia forces become
time-dependenkcp was established, where the non-Darcian significant with respect to the kinematic forces when the
flow was described by the Forchheimer equation. A new iter-velocity is great, leading to non-Darcian flow (Engelund,
ation method was proposed to estimd@gp based on the 1953; Forchheimer, 1901; Irmay, 1959; Izbash, 1931). Forch-
finite-difference method. The results showed tiRap in- heimer (1901) proposed a heuristic Forchheimer law de-
creased with time until reaching the quasi steady-state flowscribing the non-Darcian flow, which was an extension of
and the asymptotic value aRcp only depended on the Darcy’s law by adding a second-order velocity term, rep-
critical specific discharge beyond which flow became non-resenting the inertial effect. To verify the applicability of
Darcian. A larger inertial force would reduce the change ratethe Forchheimer law, many approaches were introduced,
of Rcp with time, and resulted in a smalldcp at a spe-  such as the dimensional analysis (Ward, 1964), the capillary
cific time during the transient flow. The difference between model (Dullien and Azzam, 1973), the hybrid mixture theory
the new solution and previous solutions were obvious in the(Hassanizadeh and Gray, 1987), and the volume averaging
early pumping stage. The new solution agreed very well withmethod (Whitaker, 1996). Recently, Giorgi (1997) and Chen
the solution of the previous two-region model with a constantet al. (2001) analytically derived the Forchheimer law from
Rcp under quasi steady flow. It agreed with the solution of the Navier—Stokes equation. Another widely used model
the fully Darcian flow model in the Darcian flow region. describing the non-Darcian flow was the lzbash equation
(Izbash, 1931). This equation was a fully empirical power-
law function obtained through analyzing experimental data.
The Izbash equation was preferred for modeling purposes,
1 Introduction since the power index in the Izbash equation can be parame-
terized depending on flow conditions (Basak, 1977). George
Darcy’s law indicates a linear relationship between the fluidand Hansen (1992) demonstrated that the Forchheimer and
velocity and the hydraulic gradient (Bear, 1972), which is alzbash equations were identical for some cases.
basic assumption used to handle a great deal of problems re- Due to the high velocities, non-Darcian flow is likely to
lated to flow in porous and fractured media. However, manyoccur near pumping/injecting wells (Yeh and Chang, 2013;
evidences from the laboratory and field experiments showwen et al., 2008b). Several studies showed that the non-
that this linear law may be invalid in some situations, es-Darcian effect had significant influence on hydraulic param-

pecially when the groundwater flow velocity is sufficiently eter estimations. For instance, Theis solution cannot be used
high or sufficiently low, where non-Darcian flow prevails
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to explain the pumping test data in the Chaj-Doab area neawell for moderate velocity under which that Darcian flow
Guijrat water distributary in Pakistan (Ahmad, 1998), while prevails. Mackie (1983) demonstrated that the two-region
Birpinar and Sen (2004) and Wen et al. (2011) found thatmodel could fit the experimental data in the laboratory bet-
the Forchheimer law worked very well. Quinn et al. (2013) ter than the F-ND model. Huyakorn and Dudgeon (1976)
demonstrated that non-Darcian flow effect increased as themployed a two-region model to study flow near a pump-
initial applied head differential increased in a series of sluging well. Basak (1978) presented analytical solutions of the
tests. Specifically, Quinn et al. (2013) showed that the hy-two-region model for steady-state flow to a fully penetrating
draulic conductivity was underestimated by Darcy’s law well. Sen (1988) and Wen et al. (2008b) derived the analyti-
when the initial applied head differentials were greater thancal solutions of the two-region model for transient flow to a
0.2m. They pointed out that Darcian flow conditions can bepumping well, and both solutions were valid for the ground-
maintained in the sandstone when the initial applied head difwater flow in the quasi steady state.
ferentials were less than 0.2m (Quinn et al., 2013). Math- All researches mentioned above implied that the critical
ias and Todman (2010) showed that the Jacob method, baseddius is a constant, where the critical radius represents the
on Darcy’s law, cannot fit the step-drawdown tests of vanlocation separating the non-Darcian and Darcian flows (Sen,
Tonder et al. (2001) when the pumping rate was greater thai988; Wen et al., 2008b). For example, the critical radius is
10 ? h—1. However, the Forchheimer law could fit the step- infinity for the F-ND model and is zero for the fully Dar-
drawdown tests data very well (Mathias and Todman, 2010)cian flow model, while it is a finite constant for the two-
In this study, we will focus on the non-Darcian flow into a region model in which the critical radius is determined un-
pumping well by the Forchheimer law. der the quasi steady-state flow condition (Sen, 1988; Wen et

Although many efforts have been devoted to study theal., 2008b). Actually, the critical radius changes continuously
non-Darcian flow around the well, the exact solutions havewith time for the transient flow, and cannot be determined
not been obtained due to the non-linearity of the problemstraightforwardly. For example, the initial critical radius is
(Mathias et al., 2008; Yeh and Chang, 2013). For exam-zero for an initially hydrostatic aquifer, and it gradually in-
ple, Sen (1990, 2000) employed the Boltzmann transformcreases with time until the system becomes quasi steady state
method to analytically solve the problems related to the non-near a constant-rate pumping well. The movement of critical
Darcian flow. This method was showed to be problematic,radius may be more complex for the variable-rate pumping
since both initial and boundary conditions cannot be simul-tests (Bear, 1972; Mishra et al., 2012), the slug tests (Quinn
taneously transformed into a form only containing the Boltz- et al., 2013) or the step-drawdown tests (Louwyck et al.,
mann variable (Camacho and Vasquez, 1992; Wen et al.2010; Mathias and Todman, 2010). Therefore, the two-region
2008a). Wen el al. (2008a, b) derived the semi-analytical somodel with time-dependent critical radius is more reasonable
lutions of the non-Darcian flow model by combining the lin- for transient flow near a pumping well, and it is particularly
earization procedure and the Laplace transform method (LLirue when the pumping rate changes greatly.
method), assuming that the flow in the non-Darcian flow re- In this study, we will investigate non-Darcian flow into a
gion was in quasi steady-state flow. Wen et al. (2008a, b¥ully penetrating pumping well considering a time-dependent
pointed out that solutions by the Boltzmann transform andcritical radius using the finite-difference method. A new it-
the LL method coincided at late time. To test the accuracy oferation procedure will be proposed to estimate the moving
the semi-analytical solutions (Wen et al., 2008a; Sen, 2000)¢ritical radius. This new model reduces to the F-ND model
Mathias et al. (2008) and Wen et al. (2009) employed thewhen the critical radius is infinite and it becomes the fully
finite-difference method to study the non-Darcian flow prob- Darcian flow model when the critical radius is 0.
lems, and their results showed that the semi-analytical solu-
tion only agreed very well with the numerical solution at late 1.1 Problem statement and mathematic model
pumping stage.

All above-mentioned investigations assume that the non-1.1.1 Location of the critical radius of the two-region
Darcian flow occurs over the entire domain, which is called model
a fully non-Darcian flow (F-ND) model hereinafter. In fact,
the regime of the flow to the pumping well can be divided Previous researches showed that the porous media flow may
into two regions: non-Darcian flow occurs within a narrow be divided into four regimes, such as (A) non-Darcy pre-
region around well, due to the relatively high velocity of linear laminar flow, (B) Darcy flow, (C) non-Darcy post-
flow there, and Darcian flow prevails over the rest domain.linear laminar flow, and (D) non-Darcy post-linear turbulent
One may think that such two-region flow could be describedflow (Basak, 1977; Bear, 1972). For radial flow to a pumping
by the Forchheimer law, which would automatically reduce well, the velocity in the aquifer decreases with the distance
to the Darcy’s law at the location far from the well (be- from the well. Therefore, the radial flow might experience all
cause the second-order velocity term in the Forchheimefour-flow regimes. To simplify the problem, we use a two-
law will be negligible if velocity approaches zero). How- region model that considers a non-Darcian flow region near
ever, Forchheimer law (or F-ND model) may not work very the well and a Darcian flow region away from the well. A
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where B is the thickness of the aquifer (L); and is the
well discharge (BT~1). In the case of a constant pumping
rate, Rc is also a constant for a specifRec. This constant

Rc was used in previous two-region models of transient non-
Darcian flow (Sen, 1988; Wen et al., 2008b). Actualy, is

not a constant for transient flow, and it cannot be determined

Ground surface é Ground surface

. e R directly since the velocity distribution changes with time. In
i 25y . this study, a new iteration method will be proposed to deter-
— | Confined i Ro(t) | €— mine R¢ as described below.
B q ) i onfined | ————» q
I
]

D 1.1.2 Mathematic model

aquifer ZT

: >« o - ;!4 : Figure 1 shows the physical model investigated in this study,
Darcian flow R e B a s where a pumping well fully penetrates a confined aquifer.
Figure 1. The schematic diagram of the non-Darcian flow into a 1he origin of the cylindrical coordinate system is at the cen-
fully penetrating pumping well considering the time-dependent crit- ter of the well. The- axis is horizontal and outward from the
ical radius. well, and thez axis is upward vertical. Three assumptions
are made in this study. First, the non-Darcian and Darcian
flow may coexist and the critical radius is time-dependent,
unique feature of the two-region model used in this study iSgnqg the non-Darcian flow is governed by the Forchheimer
that the critical radius is allowed to vary with time, whereas it |5\, Second, the system is hydrostatic before the pumping
was assumed to be constant in previous studies (D_udgeon 8tarts, sakc (t = 0) =0. Third, the aquifer is homogeneous,
al., 1972b, a; Huyakorn and Dudgeon, 1976; Mackie, 1983;sotropic, infinitely extensive and with a constant thickness.
Sen, 1988; Wen et al., 2008D). These assumptions, although quite idealized, are standard in
Generally, the start of the non-Darcian flow can be de-g hydraulic study (Papadopulos and Cooper, 1967; Sen,
termined by the critical Reynolds numbeidc), where the  1988: \Wen et al., 2008b). Based on these assumptions, the
Reynolds number is defined as governing equations of the two-region flow model can be de-
scribed as follows

y

Re(r,t) = D,q (r,1t) /v, (1)
! (1) NG 1) S dsn(rt)
wherev is the kinematic viscosity of the fluid &T—1); D, or r B ot
is the characteristic grain diameter (L), 1) is specific ~ 9gv(r,?) n gy (r,t) _ S dsy(r1) it r> Re(r) @)
discharge (LT1) at distancer (L) and timer (T); Re is or r B a et

R_eynolds number .which depends on time and space (dimenyheresy (r, 1) andsy(r, 7) are drawdowns (L) at distanee
sionless). The critical Reynolds numbetec) refers toRe  and timer in Darcian flow and non-Darcian flow regions,

at the start of non-Darcian flow. Up to present, there is still respectively;s is the aquifer storage coefficient (dimension-
considerable debate dtec for the initiation of non-Darcian  |egs),

flow in porous media. Scheidegger (1974) gae: to be Initial condition is
0.1 to 75; Zeng and Grigg (2006) suggested the range of
Rec from 1 to 100.Rec will be set to 100 to make sure sy (r;0) =sn(r,0) =0. (%)

non-Darcian flow happen in this study. According to ELQ, ( The outer boundary condition is
one can see that the specific discharge is in linear relation
to Re. Therefore, the critical specific discharge)(can also sy (oco,t) =0. (6)

be used to determine the start of the non-Darcian flow, Smc%\ssumin that the bumping rate is large enouah to induce
one can calculatgc for a givenRec. When the specific dis- 9 pumping 9 9

charge is less than or equalde (or Re < Rec), the flow is non-Darcian flow near the well, the boundary condition at

considered as Darcian. When the specific discharge is great%ﬁzn\:veig?c\xgl’l c(?:r?lg:cvrlﬁtt;eavsvellbore storage with a finite
thangc (or Re > Rec), the flow is taken as non-Darcian. ’

Denoting Rc (1) as the critical radius at which = gc (or o Osw(®)
Re = Rec), then it is non-Darcian flow when< Rc (¢) and 27 BGN(r.) |y =701y dr

Darcian flow when- > Rc (1), as shown in Fig. 1. whereQ is positive for the pumping ratey, is the radius of
For the quasi steady-state flow around a fully penetrat-ne \el| (L); s, is the drawdown inside the well (L). Notice

ing well in "f‘ homogeneous and isotropic formation, one hashat well loss is not considered so the drawdown is continu-
(Sen, 1988; Wen et al., 2008b) ous across the well screen

Rc = Q/(2mBqc), (2)  sw(®) =sn(rw, D). (8
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Table 1. Dimensionless variables used in this study. 1.1.3 Dimensionless transformation
=% rwp = % Defining the dimensionless variables in Table 1, Egs. (3)-
(13) can be rewritten as
_ Rc _ Kpr
Rcp= % D=7
dgND | gND JSND
= 08 A= K —_— = <R 14
'Bd 2n B2 Kg 8VD + D 8ID , 'D = KCD, ( )
swp = ZREB g syp = ZRB sy (r,1) dgYD | 4YD dsyD
2n1€ B 2?132 oo o o P Rep. (15)
8
SND = sN(r,f)  gND = —=5—gN(r, 1)
. o sND (D, 0) = syp (D, 0) =0, (16)
— — T
qYD === -qy (1) qcp=—"p-4qcC syp (00, 1p) =0, (17)
sno[Rep (tp) , o] = syp [Rep (1p) , o], (18)
gno [Rep (o) , 1p] = gvp [Rep (o) , o] - (19)

The drawdown and the discharge from the Darcian flow re-
gion into the non-Darcian flow region are continuous at theNotice that a negative sign has been used for defigifg

critical radius in Table 1. The subscript “D” stands for the dimensionless
variables. The boundary condition with the wellbore storage

sN[Rc(t),tf] =sy[Rc(¥),t], 9 (Eqg.7) in the dimensionless form is

gN[Rc (), 1] =qv[Rc(t),1]. (10)

2
ron dswp(fp)
. . . (rognp) |rD%er LDWd— =1 (20)
In the non-Darcian flow region, we use the Forchheimer law 28 D

to describe the fiow (Forchheimer, 1901) The dimensionless Forchheimer law becomes

8SN 8SND
gN + Ban Ign| = Kﬂa_r’ (11)  gnp +Bognp lgnpl = a0 P < Rcp, (21)

in which 8 (TL~%) and Kp (LT~1) are empirical constants where Bp is the dimensionless inertial force coefficient.
depending on the properties of the medium (Sidiropoulou¥Vhen the pumping rate is 0.628s1 !, aquifer thickness is
etal., 2007)K is called the apparent hydraulic conductiv- 10m, andg = 2.0 x 10-*m?day™*, one hasfp = 0.02 ac-
ity and it reduces to the hydraulic conductivity whgr=0  cording to the definition oBp, as shown in Table 1.
(Chen et al., 2001; Sidiropoulou et al., 2008)is called the Whenrp > Rcp, groundwater flow follows the Darcy’s
inertial force coefficient. Many studies demonstrated that theaw in the dimensionless format as
value of 8 was related to the porous media and the fluid prop- 3sYD
erties (Scheidegger, 1958; Moutsopoulos et al., 2009). Fogyp (r,1) = —X o7
example, Ergun equation (Ergun, 1952) was widely used to D
estimate wherex is the ratio of the hydraulic conductivity and appar-
ent (Sidiropoulou et al., 2007).

,» b > Rcp, (22)

1.75D,

T 1500 (1—g) 42

B

1.2 Numerical solution

whereg is porosity. When the kinematic viscosity of water Because of the non-linearity of the problem, it is not
(v) at 20°C is 10 8 m?s71, D,=0.001m,p =0.3,0one has easy to obtain the analytical solution of drawdown even if

B=20x10"*m?day 1. Rcp (tp) is constant. In this study, we will employ the finite-
In the Darcian flow region, one has difference method to investigate the problem considering a
time-dependenRcp (1p). Due to the axisymmetric nature
asy(r, 1) of the problem, the numerical simulation will be conducted
qy(rt) =K—0=—, r>Re. (13) " with a non-uniform grid system, where the spatial steps

are smaller near the well and become progressively greater
Equations (3)43) can be used to describe the groundwa- away from the well. Similar to previous studies (Mathias et
ter flow in the aquifer with a time-dependent critical radius al., 2008; Wen et al., 2009), we discretize the dimension-
Rc (1). This new model is an extension of the previous modelless spacep logarithmically. The dimensionless space do-
by Sen (1988). WheR¢ (1) — oo, this model becomes the main [ryp, rep] is discretized intoN nodes excluding the
F-ND model. WhenR¢ (¢) = 0, it reduces to the fully Dar- two boundary nodes,p andrep, Whererep is a relatively
cian flow model. large dimensionless distance used to approximate the infinite
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boundary (Mathias et al., 2008; Wen et al., 2009). For any

node ofr;, ryp <r; <rep,i =1, 2...N, one has
ri=(ri—12+riy12)/2,i=12...N, (23)

wherer; 1/ is calculated as follows

. [ 10910(rep) — 1091 9(rwD)

109 0(7i+1/2) = 109;0(rwp) + i [ 108 N W01
i=0,1..N. (24)
After spatial discretization, Eqsl4)—(15) become
dsyp,i _ ri—1/29YD,i—1/2 — Ii+1/29YD,i+1/2

dip ri (riv12—ri-1/2) ’
i=2,3...Ns—1,rp < Rcp, (25)
dsND.i __ 7i—1/2GND,i—1/2 — Fi+1/24ND.i+1/2

dio T (ri+1/2 - rifl/Z) ’
i=N5,N5+1...N—l,rD>RCD, (26)

wheregvyp; andsyp,; are the dimensionless specific dis-
chargegyp and dimensionless drawdowrp at nodei for
the Darcian flow, respectivelyip ; andsnp,; are the dimen-
sionless specific discharggp and dimensionless drawdown
snp at node for the non-Darcian flow, respectively. In terms
of the Forchheimer equation of EQ1), one can obtain

1
SND,i—1 — SND,i \ |2
o~ —— {14 | 1448 (DL NDL ,
gND,i—1/2 2,30{ +[ + ,3D< p—— )} }
i=23...Ns—1, (27)
and

Figl =T

1
1 SND,i — SND,i+1 \ | 2
gND,i+1/2~ 57— —1+[1+4ﬂo<——i___;ﬂ;)} ,
26p

i=23...Ne—1, (28)

where nodeVs means the location akcp (7p). At the well-
aquifer boundary, one has

[ [ream (2o o

wheresyp is the dimensionless drawdown inside the well.
Considering Eg.40), swp can be approximated as follows

1
gND,1-1/2 ~ =——
27 260

dswpD 28
dW ~ —— (1—rwognp.1-1/2) - (30)
D Twp

Whenrp > Rcp, the finite-difference scheme of the specific
discharge can be obtained from EB2Y

SYD,i—1 — SYD,i
ri —Ti-1

qyYp,i-1/2 ~ A ,i=Ns Ns+1...N—1, (31)

www.hydrol-earth-syst-sci.net/18/2437/2014/

SYD,i —SYD,i+1

qyYD,i+1/2 = A , i =Ns, Ns+1...N—1. (32)

Figl—Ti
As for the boundary at the infinity, the finite-difference
scheme is
SYD,N
reD— TN’

gYD.N+1/2 X A (33)
Now one obtains a set of ordinary differential equations. It
is notable thatRcp or Ng which is related to the indekin

Egs. (27)—(28) and Egs. (31)—(32) is time-dependent. In the
following section, a new iteration method will be proposed
to determine the values &cp or Ns.

1.3 Iteration method to determine Rcp or Ns

Before introducing the new iteration method, the relationship
betweenRcp and the velocity distribution will be investi-
gated first, based on the two-region model with a constant
Rcp. The values of the constaRp are set to 0, 0.02, 0.04,
0.08 and 0.50. The other parameters afp = 1 x 1074,

Bp = 20, = 1. The mathematic model with a const&yp

will be solved by the finite-difference method.

Figure 2a shows the specific discharge distributions with
different Rcp of 0, 0.02, 0.04, 0.08 and 0.50. The curve
of Rcp =0 represents the fully Darcian flow model. One
can find that the specific discharge decreases with increasing
Rcp at a givenrp, starting from its maximum aRcp =0
(Darcian flow). This observation is understandable. The in-
creasingRcp implies a stronger contribution of the inertial
effect, which also means a larger resistance to flow, thus it
leads to a smaller specific discharge. After trying many dif-
ferent sets of aquifer parameters, suctgs= 0.002, 0.02,
0.2, andRcp = 0.01, 0.03, 0.1, numerical simulation indi-
cates that this observation is universally valid. This observa-
tion will serve as the basis for the new iteration method to
seek the location oRcp (7p).

Similar to the use oRec to determine the start of the non-
Darcian flow, one can usg:p for the initiation of the non-
Darcian flow, wheregcp is the dimensionless critical specific
discharge defined in Table 1. We denefep as the newly
computed critical radius at thgh step of the new iteration
method, wherg = 1, 2, 3.... Since the aquifer system is ini-
tially hydrostatic, the initial critical radiuggcp is set to 0.
For a given dimensionless timep, the detailed procedures
of the iteration method for searchimcp (t1p) will be in-
troduced as follows. First, the specific discharge distribution
in the aquifer can be calculated using Eqgs. (283)-(with
Rcp (t1p) = rocp, as shown in Fig. 2b. Based on the com-
puted specific discharge distribution, one can find the new
critical radiusricp according to a given constagtp. Sec-
ond, the new specific discharge distribution can be similarly
calculated using Egs. (2588 with Rcp (11p) = ricp, and
the new critical radius>cp can be obtained according to
gcp- It is notable that1cp androcp serve as the upper and
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Figure 3. Flow chart of the MTRM algorithm.

2 Results and discussions

2.1 Comparison with the previous solutions

To test the new solution, the fully Darcian flow solution
of Papadopoulos and Cooper (1967), the fully non-Darcian
Figure 2. (a) Specific discharge distributions with different critical flow solution of Mathias et al. (2008) and the two-region
radiusRcp. (b) The schematic diagram showing the iterative pro- model of Sen (1988) will be introduced. Figure 4a and b
cess of seekin@cp. shows the distance-drawdown curves of the four mentioned-
above models in the early and late pumping stages, respec-
tively. In these two figures, Papadopoulos and Cooper (1967)
lower limits for searchingcp (710), as illustrated in Fig. 2b.  represents the analytical solution of the fully Darcian flow
Similarly, one can estimate the new critical radiggp using  model, Sen (1988) is the analytical solution of the two-region
r2cp, Whererscp is located somewhere betweejtp and  model by the Boltzmann transform method, and Mathias et
racp- Following the same procedures, a new critical radiusal. (2008) represents the numerical solution of the fully non-
racp can be calculated based egtp, andracp is between  Darcian flow model. The deflection point of the curve is the
rocp andracp. One can repeat above computations until thejocation of the critical radius.
new critical radius finally converges. For the actual problems, |n the early stage, the differences among three previous
we define a convergence criteribR2S — RISY < &, where  solutions and the new solution of this study are obvious, as
Rg'g andR(y" are the critical radius for the previous step and shown in Fig. 4a. First, the solution of Papadopoulos and
present step, respectivel§;is a small positive value such Cooper (1967) is smaller than the others near the well. This is
as 0.001. If this criterion is satisfied, the new critical radius because the inertial forces of the non-Darcian flow increase
r;jcp is thought as the estimation &cp (11p). We developa  the resistance for flow, thus resulting in drawdown greater
MATLAB program named as two-region model with moving than those for the Darcian flow near the well. The second
critical radius (MTRM) to facilitate the computation. By the is that the F-ND solution agrees with the new solution near
way, this iteration method is convergent. Figure 3 representshe well. The third is that the solution of Sen (1988) does
the flow chart of the MTRM algorithm, wheng is the time  not agree with the new solution near the well at the early
at time stepx; kmax is the total number of the time stepspd  time. This is probably because of the Boltzmann transform
is the dimensionless time steg;; andgp; are the dimen-  method used by Sen (1988) to deal with the non-Darcian flow
sionless specific drawdown and dimensionless discharge att the early time, which has been discussed in several previ-
nodei in the aquifer, respectively. ous studies (Camacho and Vasquez, 1992; Wen et al., 2008b).

0
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(@) 4o 75y, No-Darcian : Darcian flow region 3
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o rw=1x104
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25k Nendsreiem SRS SRR ISR Figure 5. Time-dependent critical radiuggp) for different values
\ : of the inertial force coefficientp.
‘\ i Papadopulos and Cooper (1967)
201 \\ i New solution
s | | == Wathies stal. 2008) (see Fig. 4b). Another fact that can be seen in Fig. 4b is that
o Bf \ : fen (D) the new solution agrees with the solution of Papadopoulos
® o | £y=002 and Cooper (1967) in the Darcian flow region.
\ i a=1
10 % : r w=1x1n“ 2.2 Effect of the inertial force coefficient to the critical
M f=1x10° radius
8 o
i e The inertial force coefficientdp) is of primary concern for
: . the non-Darcian flow described by the Forchheimer equa-
10° 10° 10" 10° tion, and the values fp are chosen as 0.001, 0.01, and 0.1.

" Figure 5 shows the critical radiu®¢p) changes with time
for different dimensionless inertial force coefficients. Several
Figure 4. (a) Comparison of the distance drawdowns by the fully observations can be seen. FiBgp increases with time un-
Darcian flow model (Papadopoulos and Cooper, 1967), the fullytj] the flow approaching the quasi steady-state condition. In
non-Darcian flow model (Mathias et al., 2008), the two-region flow {ha early pumping stage, the specific discharge is very large

QOdel (Sen, 1?8:)‘§nd the ndew rr&odel inbearrl]y Flfulflnpgg S,(a”g?l' near the well and decreases quickly with the distance from
omparison of the distance drawdowns by the fully Darcian flow y, o\ o1 ' soRcp is very small. With time, the cone of de-

model (Papadopoulos and Cooper, 1967), the fully non-Darcian . - - . -
flow model (Mathias et al., 2008), the two-region flow model (Sen, pression will expand along the radial direction and the slope

1988), and the new model in late pumping stage. of the cone of depression becomes flatterRep becomes
greater. Second, a larggp would reduce the rate of change
Rcp versus time, thus result in longer time to approach its

The fourth is that there is a deflection point on the new so-8Symptotic value, and consequently leads to a smaligy
lution, leading to discontinuity of the drawdown slope. This @t & specific time in the transient state (see Fig. 5). This is
observation may be reasonable, as also reported by MoufR€cause a largefp implies a stronger inertial force, which
sopoulos et al. (2009), who named it non-uniform hydraulic increases the resistance of flow. The third interesting obser-
behavior. vation is that the asymptotic value &cp is the same for

In the late pumping stage, the transient flow approachedlifferentSp. This can be explained using E@)(Based on
the quasi steady state, and the specific discharge distributiof€ definition of the dimensionless parameters defined in Ta-
is invariant with time according to Egs. (3)-(4) or Eqsd)=  ble 1, Eq. @) becomes
(15), regardless of the Darcian flow or non-Darcian flow. Un-
der the quasi steady-state flow condition, the critical radius?CP = 1/Rcp.
obtained by this new solution becomes a constant which i h
the same as the one used by previous two-region models su;h
as Sen (1988) and Wen et al. (2009). Therefore, the new SO3
lution agrees very well with that of Sen (1988) at late time

(34)

erefore, the value oRcp does not depend ofp under
e quasi state state flow condition, while it only reciprocally
epends on the critical specific discharge.
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Figure 6. Time-dependent critical radiu®¢p) for different values

of the critical specific discharge. Figure 7. Time-drawdown atp = 0.005 for different inertial force

coefficients in a log—log scale.

2.3 Effect of the critical specific discharge to the critical ~ po chosen;p = 0.005 and 0.02. According to E34), the
radius maximum of Rcp is 0.001 at the quasi steady state, so the

flow atrp = 0.005 will experience both Darcian flow (at the

The criterion to judge the initiation of the non-Darcian flow early time) and non-Darcian flow (at late time), while the
is an important factor of concern. Up to now, there is still flow atrp = 0.02 is always Darcian '

considerable debate on what valueRat- to use for the start Figure 7 shows the time drawdownsat = 0.005 for dif-

?f non-Darcian l?W' The recomg?er;lded valuestet rza'mgeh . ferent dimensionless inertial force coefficients in the log—log

drom O'lltgc;i_og or po:jotj;s_me ZISOGOWT(Behar, kl 9h7 ! ﬁc € scale. Two interesting observations can be seen from this fig-
egger, » £€ng and Lrgg, )- To check the in UENCYre. The first observation is that there is a deflection pointin

of Rec on Rep during the transient flow, the values@fp  yhe cyrve ofp = 0.1 or 1, that becomes larger in time with
are chosen as 100, 50 and 10 considering the direct rEIat'or]hcreasingBD. This is because a larggp implies a stronger

ship of gcp and Rep in EQ. }2)' The other parameters are i, q iq| effect, which leads to a larger drawdown and longer
pp =0.01, andwp =1x 10°. , _ time to approach the quasi steady-state condition. This obser-

Figure 6 shows the effect gtp on Rep. Itis obvious that 444 i not found in the F-ND model (Wen et al., 2011) and
the asymptotic value okcp is equal to Jqcp, as reflected i yo-region model (Sen, 1988). The second observation
in Eq. (34).' A_nother |_nterest|ng. observation is .th@tD de- is that the drawdown in the quasi steady state increases with
creases W|th.|ncreasm;@|3_, and it takes shorter time fdtcp increasingBp, and the reason for this has been explained in
to approach its asymptotic value. previous studies (Wen et al., 2011).

Figure 8 represents the time drawdowmgit= 0.02 in the
log—log scale. One notable point is that flowrgt= 0.02 is
always Darcian, so there is no deflection point in the type

. . (furves. The differences among the curves with diffegmnt
Type curves are a series of curves that reveal the functiona . -
are obvious at the beginning, and then they approach the

relationship between the well functions (or drawdown) and same value at the quasi steady state
the dimensionless time factors (Sen, 1988; Wen et al., 2011). '
Type curve is one of the common approaches to identify the

aquifer parameters or to predict the drawdown (Sen, 19883 Summary and conclusions

Wen et al., 2011). Sen (1988) presented different type curves

in the Darcian flow region and non-Darcian flow region basedIn this study, a new two-region flow model considering the
on a two-region model. In that model (Sen, 19883p was  time-dependent critical radiuskR¢p) is established to in-

a fixed value which only depends on the rate of pumping butvestigate the groundwater flow into a pumping well, and a
independent of time. In this studRcp changes with time, new iteration method is proposed to estim&gp, based
and the type curves might be different from the ones generon the finite-difference method. Results show that this iter-
ated by Sen (1988). To investigate the behaviors of the typation method is convergence although it has not been ana-
curves of the new solution, the two observation locations will lytical verified using rigorous mathematic model. In the non-

2.4 Type curves in the non-Darcian flow region and
Darcian flow region
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10 ¢

Figure 8. Time-drawdown atp = 0.02 for different inertial force
coefficients in a log—log scale.

Darcian flow region, the flow is governed by the Forchheimer
equation, and the start of the non-Darcian flow is determined
by the critical specific discharge, which is calculated by the
critical Reynolds number. The new solution is compared with
previous solutions, such as the fully Darcian flow model,
the two-region model with a constant critical radius, and the
fully non-Darcian flow model. The impacts of the dimension-
less inertial force coefficient) and dimensionless critical
specific dischargegcp) on the critical radius and flow field
have been analyzed. Several findings can be drawn from this
study:

www.hydrol-earth-syst-sci.net/18/2437/2014/

1. In the early stage, the new solution agrees with the

fully non-Darcian flow solution near the well; differs
with the fully Darcian flow model of Papadopoulos and
Cooper (1967) and the two-region model of Sen (1988).

. In the quasi steady flow stage, the new solution agrees

with the solution of Sen (1988) very well. It agrees very
well with the solution of the fully Darcian flow model
(Papadopulos and Cooper, 1967) in the Darcian flow re-
gion.

. Rcp increases with time until reaching the quasi steady-

state flow, and the asymptotic value BEp only de-
pends ongcp. A larger Sp would reduce the rate of
change ofRcp with time, and result in a smalleRcp
at a specific time during the transient flow state.

. There is a deflection point in the type curve when the

observation well location is within the non-Darcian flow
region in the quasi steady state whgp > 0.1, and
the time associated with this deflection point becomes
larger with a largegp.

Hydrol. Earth Syst. Sci., 18, 242448 2014



2446

Appendix A

Q. Wang et al.: Forchheimer flow to a well-considering time-dependent critical radius

Table A1. Nomenclature.

B

Dp

K

Kp

q

qc
gy, qN
o

S
SY s SN
Sw

S

gND> 9YD
qcD

D

'wD

Rcp
SNDs SYD
SwD

D

Bp

A

aquifer thickness (L)

characteristic grain diameter (L)

hydraulic conductivity of the aquifer (LT}

apparent hydraulic conductivity, an empirical constant in the Forchheimer lawt{LT

specific discharge in the aquifer (CF)

critical specific discharge (LT%)

specific discharges for Darcian flow and non-Darcian flow (1, respectively

well discharge (BT1)

drawdown (L) for aquifer

drawdowns (L) for Darcian flow and non-Darcian flow, respectively

drawdown (L) inside well

storage coefficient of the aquifer (dimensionless)

distance from the center of the well (L)

radius of the well screen (L)

critical radius for non-Darcian flow (L)

Reynolds number (dimensionless)

critical Reynolds number (dimensionless)

pumping time (T)

an empirical constant in the Forchheimer law (), named as inertial force coefficient in this study
kinematic viscosity of the fluid (BT—1)

dimensionless specific discharges defined in Table 1 in the non-Darcian flow and Darcian flow regions, respectively
dimensionless critical specific discharge defined in Table 1

dimensionless distance defined in Table 1

dimensionless radius of the well screen defined in Table 1

dimensionless critical radius defined in Table 1

dimensionless drawdowndefined in Table 1 in the non-Darcian flow and Darcian flow regions, respectively
dimensionless drawdown inside the well defined in Table 1

dimensionless time defined in Table 1

dimensionless inertial force coefficient defined in Table 1

ratio of the hydraulic conductivity and apparent hydraulic conductivity defined in Table 1

The subscript “D” refers to terms in dimensionless form. The subscripts “N” and “Y” refer to terms related to non-Darcian flow and Darcian flow regions, respectively.
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