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Abstract. It is shown for a large class of reaction-diffusion systems with Neumann boundary con-

ditions that in the presence of a separable Lyapunov structure, the existence of an a priori Lr-estimate,
uniform in time, for some r > 0, implies the L∞ uniform stability of steady states. The results are applied

to a general class of Lotka-Volterra systems and are seen to provide a partial answer to the global existence

question for a large class of balanced systems with nonlinearities that are not bounded by any polynomial.
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1. Introduction.
One of the persistent problems in the theory of systems of reaction diffusion equations

concerns the description of the qualitative effects of adding diffusion to systems of ordinary
differential equations. To be more precise, if f = (fi)mi=1: lRm → lRm, then solutions to
the system of ordinary differential equations

(1.1)
u̇(t) = f(u(t)), t > 0,

u(0) = u0

determine constant solutions to the reaction-diffusion system

(1.2)
∂u/∂t = D∆u + f(u) on Ω× (0,∞),
∂u/∂n = 0 on ∂Ω× (0,∞),
u( · , 0) = u0( · ) on Ω,

where u = (u1, . . . , um)T , D is a diagonal matrix with distinct entries di > 0 along the
diagonal and ∆ denotes the vector Laplacian. One principal question associated with these
systems is whether or not global existence of solutions to (1.1) for all choices of initial data
guarantees global existence of solutions to (1.2) for all choices of sufficiently smooth initial
data. This question had remained unresolved until recent work of Pierre and Schmidt [19].
In that work, the authors give an example of a two component system for which solutions
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to (1.1) exist globally, while those to the partial differential equation blow up in finite time.
Their work is related to a long standing question pointed out by R.H. Martin in the early
1980s regarding the global existence of nonnegative solutions to two component systems
of the form

(1.3)
∂u/∂t = d1∆u + f1(u, v)
∂v/∂t = d2∆v + f2(u, v)

on Ω× (0,∞)

where f1(0, v), f2(u, 0) ≥ 0 for all u, v ≥ 0 and f1(u, v)+f2(u, v) ≤ 0 for all u, v ≥ 0. These
two conditions on the vector field (f1, f2) are referred to respectively as quasipositivity and
balancing.

This has given rise to similar questions about more general, balanced, quasipositive
reaction-diffusion systems of the form

(1.4) ∂ui/∂t = di∆ui + fi(u) on Ω× (0,∞), i = 1, . . . ,m

where u = (u1, . . . , um)T , fi(u) ≥ 0 whenever u ∈ lRm+ with ui = 0, and
∑m
i=1 fi(u) ≤ 0

for all u ∈ lRm+ . It should be noted that these balancing and quasipositivity assumptions
easily imply that f(0) = 0 and that all solutions of the ordinary differential equation in
(1.1) having nonnegative initial data exist and are bounded for all t ≥ 0. In particular, for
any M > 0 the region {

u
∣∣∣ n∑
i=1

ui ≤M, ui ≥ 0
}

is invariant for these systems; therefore the zero solution is stable with respect to lRm+ .
This structure is merely a simple case of a more general, separable Lyapunov structure

for (1.1). Such a structure has the form H(u) =
∑m

i=1 hi(ui) where H: lRm+ → [0,∞) is
a convex function that has a unique zero in lRm+ and whose level hypersurfaces bound
invariant regions for solutions of (1.1). The existence of such an H easily guarantees the
stability of the steady state z. Recent work in this vein includes [1], [5], [6], [10], [14], and
[16].

The work at hand concerns the persistence of stability of steady-state solutions to
(1.1), in the presence of a separable Lyapunov structure, when diffusion is added to the
system; that is, in the setting of (1.2) with nonnegative, continuous initial data. Questions
of stability for nonlinear systems are frequently resolved via linearized stability or Lyapunov
type methods. Typically when one attempts to lift Lyapunov functions from the setting
of (1.1) to (1.2), one obtains estimates in L1(Ω) or Lp(Ω) and not the optimal uniform
L∞(Ω) estimates needed to obtain stability. Therefore, the central theme of our work will
be the introduction of an intermediate notion of stability from C(Ω) to Lp(Ω), and the
bootstrapping of Lp(Ω) estimates to L∞(Ω).

We should point out the phenomena of diffusion driven instabilities. It is well-known
that the addition of diffusion can destabilize constant steady-states; see, e.g., [18]. There-
fore, we shall be lead to the conclusion that the systems of ordinary differential equations
which admit diffusion driven instability do not have a Lyapunov structure of the type to
be described.
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Our subsequent development consists of five sections. In addition to detailing our
hypotheses and outlining relevant theory, the second section introduces the central notion of
stability from C(Ω) to Lp(Ω) and bootstraps this stability from Lp(Ω) to L∞(Ω). As such,
the second section forms the theoretical basis of the paper. The third section introduces
the notion of D-diffusively convex Lyapunov functionals and demonstrates the connection
to the work in Section 2. The fourth section is concerned with application of the theory.
It begins by considering balanced two-component systems and then applies the theory to
dissipative chemical systems and Lotka-Volterra systems. We conclude with some general
comments and remarks.

We conclude this section with two remarks. First, our result gives a partial answer
to R.H. Martin’s original question. We determine that balanced, quasipositive reaction-
diffusion systems subject to homogeneous Neumann boundary conditions have global solu-
tions for all choices of continuous, sufficiently small, nonnegative initial data. Second, we
have limited our discussion to the case of homogeneous Neumann boundary conditions for
the following reason. If all components of our system satisfy strictly dissipative boundary
conditions, such as homogeneous Dirichlet or homogeneous Robin, then the presence of a
separable Lyapunov structure along with these boundary conditions allows one to employ
linearized stability arguments to obtain asymptotic stability. In the case of a mixture
of homogeneous Neumann boundary conditions and dissipative conditions (as mentioned
above) the arguments follow our development.

2. Preliminaries and ∞-r stability.
In what follows, Ω shall be a bounded domain in lRn that lies locally on one side of its

C2+α boundary ∂Ω. We shall always assume that the initial data u0 = (u01 , . . . , u0m)T ∈
C(Ω)m and that the vector field f = (fi)mi=1 has the property that

(2.1) f ∈ C1(lRm; lRm).

However, we make no assumptions concerning the growth rates of the individual compo-
nents fi of f . The symbol D will denote an m ×m diagonal matrix with distinct entries
di > 0, i = 1 to m, along the diagonal. We point out that all results contained herein
would trivialize, were we to assume that the dis were identical. We hope that we shall not
introduce undue confusion by using the symbol “∆” to denote both the vector and the
scalar Laplacian. Equations without subscripts will typically denote vector equations and
nonsubscripted scalar equations shall be specifically referred to as such.

In our general discussion we use the notation z0 = (z01 , . . . , z0m)T ∈ lRm to denote an
equilibrium point (or steady state) of (1.1). Namely, we have

(2.2) f(z0) = 0.

A closed subset of M ⊆ lRm will be called a forward invariant set for (1.2) if u0(x) =
(u01(x), . . . , u0m(x))T ∈M for all x ∈ Ω implies that

(2.3) u(x, t) = (u1(x, t), . . . , um(x, t)) ∈M

for all (x, t) ∈ Ω× [0, Tmax). Here, [0, Tmax) denotes the maximal interval of existence for
solutions to the initial boundary value problem (1.2). We shall require that there exists a
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forward invariant set M (not necessarily bounded) for solutions to (1.2). Hence, because
the di are assumed to be distinct, we assume that there exists a forward invariant m-cube

(2.4) M = M1 × · · · ×Mm

for (1.2), where each Mi, i = 1 to m, is a closed interval. We point out that we have said
nothing concerning the boundedness of M and consequently we make no presuppositions
concerning the global existence of solutions to (1.2). For example, M may well be lRm+ (the
positive orthant) or all of lRm.

In what follows, the mild abuse of notation v ∈M will be used frequently to indicate
that a function v : Ω→ lRm has the property that v(x) ∈M for all x ∈ Ω.

Our analysis will involve the standard Lebesgue spaces Lp(Ω), p ≥ 1:

Lp(Ω) =
{
u
∣∣∣ ∫

Ω

|u|pdx <∞
}
;(2.5)

‖u‖p,Ω =
(∫

Ω

|u|pdx
)1/p

.(2.6)

We shall also want to consider the analogous spaces obtained with 0 < p < 1. Although
(2.6) does not define a norm on Lp(Ω) if 0 < p < 1, we will use the same notation for the
functional defined on Lp(Ω) by the right side of (2.6). If p ≥ 1 and k > 0 then W

(k)
p (Ω)

denotes the usual kth order Sobolev space in Lp(Ω) and W
(2k,k)
p (Ω × (τ, T )) denotes its

analogue in Lp(Ω×(τ, T )). For definitions of these spaces for both integral and nonintegral
k, we refer the reader to [12].

We will need the following fractional Sobolev space embedding theorem of Amann [2].
Theorem 2.7. Let k ∈ lN and suppose that ∂Ω is uniformly regular of class Ck. If

0 ≤ s′ ≤ s ≤ k and 1 < p, q < ∞ then W s
p (Ω) embeds continuously in W s′

q (Ω) whenever
1/p ≥ 1/q and s− (n/p) ≥ s′ − (n/q).

We now introduce the notion of ∞-r stability. It will be a notion of stability with
respect to M , which will allow us to consider steady states belonging to ∂M .

Definition 2.8. Let z0 ∈ M be an equilibrium point of the vector field f = (fi)mi=1

and let 0 < r ≤∞. Then z0 is said to be uniformly∞-r stable with respect to M if for all
ε > 0 there exists a δ > 0 such that u0 ∈M and ‖u0i − z0i‖∞,Ω < δ for i = 1 to m imply

(i) a classical solution to (1.2) exists on Ω× [0,∞);
(ii) ‖u0i(· , t)− z0i‖r,Ω < ε for i = 1 to m and t > 0.

An∞-r stable equilibrium point z0 ∈M is said to be uniformly∞-r asymptotically stable
if there exists a δ > 0 such that u0 ∈M and ‖ui − z0i‖∞,Ω < δ for i = 1 to m imply

(iii) lim
t→∞

‖ui(· , t)− z0i‖r,Ω = 0 for i = 1 to m.

The usual notions of stability with respect to M now correspond to ∞-∞ stability
with respect to M as stated formally in the following definition.

Definition 2.9. An equilibrium point z0 ∈ M is said to be uniformly stable with
respect to M if it is uniformly∞-∞ stable with respect to M . A stable equilibrium point
z0 ∈ M is said to be uniformly asymptotically stable with respect to M if it is uniformly
∞-∞ asymptotically stable with respect to M .
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We shall see in the sequel that the notion of ∞-r stability is intermediate and may
be subsumed by the notion of stability. For a given point v0 ∈ lRm, let the symbol Cη(v0)
denote the m-dimensional cube centered at v0 with diameter 2

√
mη and Bδ(v0) the m-

dimensional ball of radius δ about v0. We remark that Cε(v0) ⊆ B√mε(v0). The analysis
that follows will require “cutoff” functions ϕη,v0 ∈ C∞(lRm; [0, 1]), defined for η > 0 by

(2.10)
ϕη,v0(u) = 1 for u ∈ Cη(v0)
ϕη,v0(u) = 0 for u ∈ lRm \ C2η(v0).

If z0 ∈ M is an equilibrium point we truncate the vector field f by componentwise multi-
plication by ϕη,z0 for η > 0; i.e., we define f [η, z0] = (fi[η, z0])mi=1 by

(2.11) fi[η, z0](u) = ϕη,z0(u)fi(u).

Then solutions to the truncated system

∂v/∂t = D∆v + f [η, z0](v) on Ω× (0,∞),(2.12a)
∂v/∂n = 0 on ∂Ω× (0,∞),(2.12b)
v(· , 0) = v0 on Ω,(2.12c)

where v0i = ϕη,z0(u0)u0i , exist on Ω × [0,∞) and are globally bounded. Moreover, it is
trivial to observe that if z0 ∈M is an equilibrium point of f , then z0 is also an equilibrium
point of f [η, z0].

We now formally state a few simple observations concerning solutions to (2.12).
Lemma 2.13. If η > 0, v0 ∈ C(Ω;C2η(z0)) and f [η, z0] is the vector field defined via

(2.11), then (2.12) has a unique classical solution on Ω× [0,∞). Moreover,
(i) v(· , t) ∈ C2η(z0) ∩M for t ≥ 0;
(ii) if v(· , t) ∈ Cη(z0) ∩M for 0 ≤ t < T then v(x, t) = u(x, t) for (x, t) ∈ Ω × [0, T )

where u is the solution to (1.2).
Proof. We observe that M ∩C2η(z0) is a bounded invariant region for (2.12) because

the vector field f [η, z0] is identically zero exterior to C2η(z0) and does not point out of M .
Therefore solutions to (2.12) exist globally and remain confined to M ∩C2η(z0) for all time
[21]. Classical uniqueness theory for parabolic equations together with the observation
that f [η, z0]

∣∣
Cη(z0)

= f
∣∣
Cη(z0)

immediately confirms the second assertion.

Lemma 2.14. If z0 is uniformly ∞-r stable for (2.12) with respect to M for some
r ∈ (0,∞), then z0 is uniformly ∞-p stable for (2.12) with respect to M for all p ∈ (0,∞).
Analogous results hold for uniform ∞-r asymptotic stability.

Proof. If 0 < p < r, the results follow easily by the Jensen inequality and the convexity
of g(z) = |z|r/p. If r < p, then because g(z) = |z−z0i |p−r is bounded above by (2

√
mη)p−r

on C2η(z0), and v(x, t) ∈ C2η(z0) for all (x, t) ∈ Ω× (0,∞), we have

(2.15) |vi − z0i |p ≤ (2
√

mη)p−r|vi − z0i |r on Ω× (0,∞),

from which the desired results follow.
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The next theorem provides the foundation of our development. It states that ∞-r
stability of the truncated system (2.12) guarantees ∞-∞ stability of the original system
(1.2).

Theorem 2.16. Let z0 ∈ M be an equilibrium point of the vector field f . If r > 0
and z0 is a uniformly ∞-r stable equilibrium point for (2.12), then z0 is a uniformly stable
solution for (1.2). Analogous results hold for uniformly ∞-r asymptotic stability.

Proof. We begin by fixing η > 0. If we are able to choose δ > 0 so that solutions
to (2.12) have the property that v0 ∈ Cδ(z0) implies that v(x, t) ∈ Cε(z0), where ε < η,
then solutions to (2.12) and (1.2) coincide. Therefore it will suffice to demonstrate that
uniformly∞-r stable solutions of (2.12) are uniformly stable solutions of (2.12).

By virtue of Lemma 2.14 with p = 2, we know that there exists a continuous function
ρ̃1 with ρ̃1(0) = 0 and ρ̃1(s) > 0 for s > 0 such that for i = 1 to m and t ∈ [0,∞)

(2.17) ‖vi(· , t)− z0i‖2,Ω ≤ ρ̃1(‖v0 − z0‖∞,Ω).

We shall demonstrate via an iteration scheme that there exists a continuous function
ρ with ρ(0) = 0 and ρ(s) > 0 such that for i = 1 to m and t ∈ [0,∞) we have

(2.18) ‖vi(· , t)− z0i‖∞,Ω ≤ ρ(‖v0 − z0‖∞,Ω),

and we shall thereby obtain our desired conclusion. Toward this end we set

(2.19) w(x, t) = v(x, t)− z0

and multiply the ith component of (2.12a) by wi to obtain

(2.20) wi∂wi/∂t− widi∆wi = wifi[η, z0](v).

Because f [η, z0] is Lipschitz there exists an N such that integration of (2.20) on the space-
time cylinder Ω× (τ, T ) yields

1
2
‖wi(· , T )‖22,Ω+ di

∫ T

τ

∫
Ω

|∇wi|2dxdt

≤ 1
2
‖wi(· , τ )‖22,Ω + N

m∑
k=1

∫ T

τ

∫
Ω

|wi| |wk| dxdt.

This implies that if τ ≥ 0 and τ + 1 < T < τ + 3, then

1
2
‖wi(· , T )‖22,Ω+ di

∫ T

τ+1

∫
Ω

|∇wi|2dxdt(2.21)

≤ 1
2
‖wi(· , τ )‖22,Ω + N

m∑
k=1

max
[τ, τ+3]

∫
Ω

|wi| |wk| dx.
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After applying Young’s inequality and (2.17) to the right side of (2.21) and the mean
value theorem for integrals to the t-integral on the left side, we construct an increasing
sequence {T1,j}∞j=1 with

(2.22) T1,1 ≤ 3 and 1 < T1,j+1 − T1,j < 3 ∀ j ∈ lN,

and a continuous function ρ1 with ρ1(0) = 0 and ρ1(s) > 0 for s > 0 such that

(2.23) ‖wi(· , T1,j)‖(1)
2,Ω ≤ ρ1(‖v0 − z0‖∞,Ω) ∀ j ∈ lN.

Now we begin to make use of a well known classical estimate for parabolic initial boundary
value problems from Ladyženskaja, Solonnikov, and Uralćeva [12, p. 341]. More specifi-
cally, recall that if 1 < q < ∞, 0 < τ < T ≤ τ + 3, θ ∈ Lq(Ω × (τ, T )), φ0 ∈ W

2−2/q
q (Ω),

and φ solves

(2.24)
∂φ/∂t = di∆φ + θ on Ω× (τ, T )
∂φ/∂n = 0 on ∂Ω× (τ, T )
φ( · , τ ) = φ0 on Ω

then there exists c > 0 such that

(2.25) ‖φ‖(2,1)
q,Ω×(τ,T ) ≤ c

[
‖θ‖q,Ω×(τ,T ) + ‖φ0‖(2−2/q)

q,Ω

]
where c depends only on di and Ω. Applying this parabolic regularity estimate with q = 2,
we obtain a constant c1 > 0 such that

(2.26) ‖wi‖(2,1)
2,Ω×(T1,j,T1,j+1) ≤ c1

(
‖fi[η, z0](v)‖2,Ω×(T1,j ,T1,j+1) + ‖wi(· , T1,j)‖(1)

2,Ω

)
.

We now claim that for every k ∈ lN, there exist
(i) a sequence {Tk,j}∞j=1 such that Tk,1 ≤ k + 2 and 1 < Tk,j+1 − Tk,j < 3 ∀ j ∈ lN,
(ii) a constant ck > 0, and
(iii) a function ρk ∈ C([0,∞), [0,∞)) such that ρk(0) = 0

such that for all j ∈ lN, the estimate

(2.27) ‖wi‖(2,1)
qk,Ω×(Tk,j ,Tk,j+1) ≤ ck

(
‖fi[η, z0](v)‖qk,Ω×(Tk,j ,Tk,j+1) + ρk(‖v0 − z0‖∞,Ω)

)
is valid with qk = 2

(
(n + 2)/n

)k−1.
To establish this claim, we begin by noting that (2.22), (2.23), and (2.26) combine

to give the claim for k = 1. We now proceed by induction on k. Suppose that the claim
holds for k = ` ≥ 1 and consider the case k = ` + 1. Since fi[η, z0] is Lipschitz, we can
use our hypothesis and Lemma 2.14 with p = q` to conclude from (2.27) that there exists
a continuous function ρ̃` such that ρ̃`(0) = 0 and

(2.28) ‖wi‖(2,1)
q`,Ω×(T`,j , T`,j+4) ≤ ρ̃`(‖v0 − z0‖∞) ∀ j ∈ lN.
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Note that T`,j+4 − T`,j > 4. Therefore (2.28) implies the inequalities:

(2.29)
∫ T

`,j
+1

T
`,j

(
‖wi‖(2)

q`,Ω

)q`
dt,

∫ T
`,j

+3

T
`,j

+2

(
‖wi‖(2)

q`,Ω

)q`
dt ≤

[
ρ̃`(‖v0 − z0‖∞,Ω)

]q`
.

Consequently, we can construct a sequence {T`+1,j}∞j=1 with

(2.30) T`,k < T`+1,2k−1 < T`,k + 1 and T`,k + 2 < T`+1,2k < T`,k + 3

such that

(2.31) ‖wi(· , T`+1,j)‖(2)
q`,Ω
≤ ρ̃`(‖v0 − z0‖∞) ∀ j ∈ lN.

We now apply Theorem 2.7 to conclude that W
(2)
q` (Ω) imbeds continuously into

W
(2−2/q`+1)
q`+1 (Ω). Therefore there exists ρ`+1 ∈ C([0,∞), [0,∞)) such that ρ`+1(0) = 0

and

(2.32) ‖wi(· , T`+1,j)‖(2−2/q`+1)
q`+1,Ω

≤ ρ`+1(‖v0 − z0‖∞) ∀ j ∈ lN.

Now by combining (2.32) with the parabolic regularity estimate in (2.25), we see that our
claim is true for k = ` + 1, thus establishing the claim for all k ∈ lN.

Now, with k taken such that qk > n+2
2 we have from [12] that there exists C > 0 such

that
‖w‖∞,Ω×(Tk,j,Tk,j+1) ≤ C‖w‖(1,2)

qk,Ω×(Tk,j ,Tk,j+1) ∀ j ∈ lN.

Therefore, if we combine this with our claim above, we find that there exists a continuous
function ρ̃k such that ρ̃k(0) = 0 and

‖w‖∞,Ω×(Tk,j , Tk,j+1) ≤ ρ̃k(‖v0 − z0‖∞) ∀ j ∈ lN.

But Tk,1 ≤ k + 2, so

(2.33) ‖w‖∞,Ω×[k+2,∞) ≤ ρ̃k(‖v0 − z0‖∞).

We now recall that the operator −di∆ with homogeneous Neumann boundary conditions
generates a nonexpansive analytic semigroup Ti(t) on C(Ω); see Stewart [22]. So we have

wi(t) = Ti(t)(v0i − z0i) +
∫ t

0

Ti(t− s)fi[η, z0](v(· , s))ds

= Ti(t)(v0i − z0i) +
∫ t

0

Ti(t− s)
(
fi[η, z0](v(· , s)) − fi[η, z0](z0)

)
ds,

which implies that

‖wi(t)‖∞,Ω ≤ ‖v0 − z0‖∞,Ω +
∫ t

0

Kη‖w(· , s)‖∞,Ωds.
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Therefore, since ‖w(· , t)‖∞,Ω = max
1≤i≤m

‖wi(· , t)‖∞,Ω,we have

‖w(· , t)‖∞ ≤ eKηt‖v0 − z0‖∞.

Consequently, because of (2.33) we have

(2.34) ‖w‖∞,Ω×lR+
≤ max

{
eKη(k+2)‖v0 − z0‖∞, ρ̃k(‖v0 − z0‖∞)

}
.

Finally, since η > 0 is fixed, for any ε ∈ (0, η) there exists δ > 0 such that

‖v0 − z0‖∞ < δ implies ‖v − z0‖∞,Ω×lR+
= ‖w‖∞,Ω×lR+

< ε.

We point out that if z0 is not a constant we can modify the preceding arguments as
follows. Suppose that z0 = w is a smooth function satisfying

−D∆w = f(w) on Ω(2.35a)
∂w/∂n = 0 on ∂Ω(2.35b)

In a manner similar to what was done above, the vector field may be truncated in a
rectangular neighborhood containing {w(x) | x ∈ Ω}. For η > 0, let b1(η,w) be an m-
dimensional cube such that w ∈ int b1(η,w) with η = infx∈Ω dist(w(x), ∂b1(η,w)), and let
b2(η,w) denote the m-cube concentric to b1(η,w) with twice the diameter. We mollify the
characteristic function of b1(η,w) to produce a nonnegative function ϕη,w such that:

(i) ϕη,w ∈ C∞(lRm; [0, 1]),
(ii) ϕη,w(u) = 1 if u ∈ b1(η,w),
(iii) ϕη,w(u) = 0 if u ∈ lRm \ b2(η,w),

and thus produce a corresponding truncated system (cf. (2.11),(2.12)):

∂v/∂t = D∆v + f [η,w](v) on Ω× (0,∞)
∂v/∂n = 0 on ∂Ω× (0,∞)(2.36)
v(· , 0) = ϕη,w(u0)u0 on Ω.

If µ = v − w and η is chosen such that η > ‖w‖∞, we have

∂µi/∂t = di∆µi + fi[η,w](v)− fi[η,w](w) on Ω× (0,∞)
∂µi/∂n = 0 on ∂Ω× (0,∞)
µi(x, 0) = v0i − wi on Ω.

Then, it is not difficult to establish an analog of Lemma 2.13 and deduce that global
solutions to (2.36) exist and that, if they are sufficiently close to w, they satisfy (2.36).
The following result concludes this section. Its proof is essentially a verbatim repetition of
the one given for Theorem 2.16.
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Theorem 2.37. Let w ∈ M be a classical, spatially nonhomogeneous solution to the
elliptic system (2.35). If r > 0 and w is a uniformly∞-r stable steady-state of (2.36), then
w is a uniformly stable steady-state solution of (1.2). Analogous results hold for uniformly
∞-r asymptotically stable solutions.

We remark that an interesting reference pertaining to (2.35) is H. Matano [15].

3. D-Diffusively convex Lyapunov functionals.
The most common tool for analyzing he local stability of equilibrium points for systems

of ordinary differential equations of the form (1.1) is the principle of linearized stability.
If all the eigenvalues of the derivative of f at z0 have negative real part then z0 is locally
asymptotically stable. On the other hand, if any of the eigenvalues have positive real
part, then the equilibrium point z0 is unstable. These ideas carry over to the context
of semilinear parabolic equations; see, e.g., [9]. In the case of nonhyperbolic equilibrium
points, however, linearization methods do not apply.

Questions of nonlinear stability are frequently resolved by Lyapunov’s direct method.
Roughly speaking, a Lyapunov function V is a nonnegative functional which is defined
and continuously differentiable in a neighborhood of a equilibrium point z0 and is uniquely
minimized in that neighborhood by z0. If

(3.1) V̇ (u) = ∂V (u)f(u) ≤ 0

in this neighborhood, then it follows that z0 is a stable equilibrium point. Asymptotic
stability can be deduced from conditions such as

(3.2) V̇ (u) < −αV (u)

for some α > 0. In certain cases, a Lyapunov functional satisfying (3.1) in a neighborhood
of an equilibrium point of a system of ordinary differential equations is useful in the context
of the associated reaction-diffusion system. For this purpose, we introduce the notion of
D-diffusively convex Lyapunov functionals for reaction-diffusion systems.

Definition 3.3. Let D be the matrix of diffusion coefficients for (1.2) and suppose
that M is a forward invariant rectangle (possibly unbounded) for (1.2). If z0 ∈ M is an
equilibrium point of f we say that a nonnegative functional V is a D-diffusively convex
Lyapunov functional around z0 provided that these conditions hold:

(i) There exists a ξ > 0 such that V ∈ C2(M ∩ Bξ(z0); lR+).
(ii) There exist constants r > 0 and K > 0 such that

V (u) ≥ K
m∑
i=1
|ui − z0i |r for u ∈ Bξ(z0) ∩M .

(iii) V (z0) = 0.
(iv) The matrix D∂2V (u) is positive semidefinite for u ∈ Bξ(z0) ∩M . (Here ∂2V (u)

is the Hessian matrix of V .)
(v) ∂V (u)f(u) ≤ 0 for u ∈ Bξ(z0) ∩M .

We remark that conditions (i)-(iii) and (v) are essentially those which define a Lyapunov
functional for (1.1) around z0 and that condition (iv) represents an additional strengthening
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of the concept. If the functional V is separable; i.e.,

(3.3) V (u) =
n∑
i=1

Vi(ui),

then we may ensure (iv) by assuming that V ′′i (ui) ≥ 0. In general, however, convexity of V
does not suffice for condition (iv). It is relatively straightforward to see that D-diffusively
convex Lyapunov functionals guarantee the persistence of stability of equilibrium points.
We have the following theorem.

Theorem 3.4. Let z0 ∈ M be an equilibrium point for the vector field f where M
is a forward invariant set for the semilinear parabolic system (1.2). If there exists a D-
diffusively convex Lyapunov functional V for f around z0, then z0 is a stable steady-state
for (1.2) with respect to M . Moreover, if V also satisfies (3.2), then z0 is asymptotically
stable with respect to M .

Proof. We choose η > 0 so that the cube C2η(z0) is contained in Bξ(z0), and we
construct the truncated vector field f [η, z0] as in (2.11), (2.12). If v0(x) ∈ C2η(z0)∩M for
x ∈ Ω it is immediately verified that

(3.5) ∂V (v(x, t))f(v(x, t)) = ∂V (v(x, t))f [η, z0 ](v(x, t)) ≤ 0.

If we multiply the ith component of (2.12a) by ∂V (v)/∂vi we obtain

(3.6) (∂V (v)/∂vi)∂vi/∂t = di(∂V (v)/∂vi)∆vi + (∂V (v)/∂vi)fi[η, z0](v).

If we integrate this expression on the space-time cylinder and sum the components, we
observe that ∫

Ω

V (v(x, t))dx = −
∫ T

0

∫
Ω

(∇v)TD∂2V (v)∇vdxdt

+
∫ t

0

∫
Ω

∂V (v)f [η, z0 ](v)dx +
∫

Ω

V (v0(x))dx.

Hence by virtue of conditions (iv) and (v) in Definition 3.3 we have

(3.7)
∫

Ω

V (v(x, t))dx ≤
∫

Ω

V (v0(x))dx.

Using (3.7) and the coercivity of V we get

K

[
m∑
i=1

‖vi(· , t)− z0,i‖r,Ω

]
≤
[∫

Ω

V (v(x, t))dx

]1/r

(3.8)

≤
[∫

Ω

V (v0(x))dx

]1/r

≤ ρ

(
m∑
i=1

‖v0i − z0i‖∞,Ω

)
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for some continuous ρ with ρ(0) = 0 and ρ(s) > 0 for s > 0. This will ensure∞-r stability,
and from Theorem 2.16 we may conclude that z0 is stable. Finally, in case (3.2) holds,
we take v0 sufficiently close to z0 to guarantee our solution stays close to z0 for all t > 0.
Then, one can obtain the estimate

(3.9)
∫

Ω

V (v(x, t))dx ≤ e−αt
∫

Ω

V (v0(x))dx,

and from this follows the asymptotic stability assertion.

In view of Theorem 2.37 one can be naturally lead to the attempt of using D-diffusively
convex Lyapunov functions to analyze the stability of spatially non-homogeneous steady-
state solutions. The following simple proposition squashes this endeavor for large classes
of dynamical systems.

Proposition 3.10. Let M be a forward invariant set for (1.2) and let V (v) =∑m
i=1 Vi(vi) be a nonnegative separable function which satisfies the defining hypotheses of

Definition 3.3, except possibly (ii) and (iii), for all points of M . If w = (w1, . . . , wm)T ∈M
is a solution to (2.35) then the following are true:
(i) If there exists α > 0 such that V ′′i (vi) > α for all v = (v1, . . . , vm)T ∈ M , then

f(w) = 0.
(ii) If V (v) =

∑m
i=1 civi, ∂V (v)f(v) ≤ 0 and M ⊆ lRm+ , then there exists a k > 0 such

that y(x) =
∑m
i=1 cidiwi(x) = k for all x ∈ Ω; i.e., w(x) belongs to a closed bounded subset

of the hyperplane {v | Σcidivi = k} ∩ lRm+ .

Proof. In the first case we multiply the ith component of (2.35a) by V ′i (wi) to obtain

(3.11) −diV ′i (wi)∆wi = V ′i (wi)fi(w).

If we sum these terms and integrate on Ω we have

(3.12)
m∑
i=1

di

∫
Ω

V ′′i (wi)|∇wi|2dx =
n∑
i=1

∫
Ω

V ′i (wi)fi(w)dx ≤ 0.

Consequently,

(3.13)
m∑
i=1

αdi

∫
Ω

|∇wi|2dx = 0,

and we may conclude that each wi is a constant. Therefore, because w = (w1 . . . wn)T is
a solution to (2.35), we must have fi(w) = 0. If we follow the same train of reasoning for
the second case then we observe that −∆(Σcidiwi) ≤ 0. The fact that M is required to
lie in lRm+ implies that Σdiwi ≥ 0, and hence we conclude from maximum principles that
∇(Σcidiwi) vanishes and Σcidiwi(x) = k for some constant k ≥ 0. Thus w(x) lies in the
hyperplane {v | Σcidivi = k}. The continuity of y implies that its range is closed and
bounded.
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As a closing remark for this section, we point out that additional treatment of Lya-
punov theory in the context of reaction-diffusion systems can be found in [20].

4. Applications.
We begin with the consideration of the two component system

(4.1)

∂u/∂t− d1∆u = −f(u, v) on Ω× (0,∞),
∂v/∂t − d2∆v = f(u, v) on Ω× (0,∞),
∂u/∂n = ∂v/∂n = 0 on ∂Ω× (0,∞),
u( · , 0) = u0( · ), v( · , 0) = v0( · ) on Ω,

where f ∈ C2(lR2
+; lR+) and f(0, v) = 0 for all v ∈ lR+. Here we assume that the initial

data u0, v0 are continuous and nonnegative on Ω. It may be surprising that questions
concerning the global existence of solutions to this system remain open. If the nonlinearity
f is polynomially bounded, then it is known [10] that solutions to (4.1) exist in the large
and remain uniformly bounded in the L∞(Ω) norm. Analogous results, [8], have also have
been obtained in case the nonlinearity is of the form

(4.2) f(u, v) = uϕ(v)

where ϕ need not be polynomially bounded but is required to grow less than exponentially;
e.g., ϕ(v) = e

√
v.

We are able to establish a simple result concerning the stability of the steady state
(0, ṽ) for (4.1).

Proposition 4.3. If ṽ ≥ 0 then the constant solution (u, v) = (0, ṽ) is a stable
equilibrium point for (4.1) with respect to lR2

+.
Proof. By assumption f(0, ṽ) = 0, and hence (0, ṽ) is a steady-state solution of the

system. In the case in which ṽ = 0 the result follows by noting that lR2
+ is an invariant

m-cube for the system, that ∞-1 stability follows from integrating each equation on the
space-time cylinder and adding them to obtain the conservation law

(4.4a)
∫

Ω

(u(x, t) + v(x, t))dx =
∫

Ω

(u0(x) + v0(x))dx,

and that V = u + v defines a D-diffusively convex Lyapunov functional around (0, 0)
with respect to lR2

+. Now suppose that ṽ > 0 and let 0 < ε < ṽ. Maximum principles
demonstrate that solutions which initially lie in Mε = {(u, v) | u ≥ 0, v ≥ ṽ − ε} remain
so. The conservation law

(4.4b)
∫

Ω

(u(x, t) + v(x, t)− (ṽ − ε))dx =
∫

Ω

(u0(x) + v0(x) − (ṽ − ε))dx

follows as before. Thus, if the initial data are close to (0, ṽ − ε) in the L∞ norm, then the
solution remains close in the L1 norm. Also, V = u + v − (ṽ − ε) defines a D-diffusively
convex Lyapunov functional around (0, ṽ − ε) with respect to Mε. Consequently, ∞-1
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stability implies uniform stability with respect to Mε. Therefore, it follows that solutions
in lRm+ can be made to remain uniformly close to (0, ṽ).

We hope that we do not belabor the issue by pointing out that the system

(4.5)
∂u/∂t = d1∆u− uekv

γ

∂v/∂t = d2∆v + uekv
γ
,

for example, with ∂u/∂n = ∂v/∂n = 0 on ∂Ω and any γ ≥ 1 satisfies the hypotheses and
hence admits (0, ṽ) as a stable solution, with respect to M as above, whenever ṽ ≥ 0.

We now focus on a general class of diffusive Lotka-Volterra systems. Typically Lotka-
Volterra systems feature quadratic nonlinearities. They are intended to describe the species
interaction among m-species ecological systems. Here, we follow the development of Leung
[13] and consider systems of the form

(4.6)
∂u/∂t = D∆u + U(e + Pu) on Ω× (0,∞),
∂u/∂n = 0 on ∂Ω× (0,∞),
u( · , 0) = u0( · ), on Ω,

where U = diag{u1, . . . , um}, e = (e1, . . . , em)T is a constant vector, and P = (pij) is an
m×m matrix with constant entries. We assume that the following conditions are satisfied.
(L-V)1 There is a vector q = (q1, . . . , qm)T , with each qi > 0, that solves the linear system

(4.7) e + Pq = 0.

(L-V)2 For each q satisfying (4.7) there is a diagonal matrix A = diag{a1, . . . , am}, with
each ai > 0, such that for all w ∈ lRm,

(4.8) (Aw)TPw =
m∑

i,j=1

aiwipijwj ≤ 0.

Condition (L-V)1 guarantees the existence of a steady state with positive components.
However, we have made no assumptions concerning the nonsingularity of the matrix P .
Indeed, many Lotka-Volterra systems feature a multiplicity of positive steady states. The
nonnegativity of the quadratic form (4.8) translates as weighted conservation of the inter-
action between the species of the system. Leung refers to this condition as admissibility.

The next lemma asserts that a well-known Lyapunov function for (4.6) provides a
D-diffusively convex Lyapunov structure.

Lemma 4.9. There exists ξ > 0 such that the function V on lRm+ ∩Bξ(q) defined by

(4.10) V (v) =
m∑
i=1

Vi(vi) =
m∑
i=1

(
ai(ui − qi)− aiqi log(ui/qi)

)
.

is D-diffusively convex on lRm+ ∩ Bξ(q).
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Proof. If Bξ(q) does not intersect the coordinate hyperplanes of lRm+ , then it is clear
that V is continuously differentiable and nonnegative on Bξ(q). Moreover, it is clear that
V (q) = 0, and a careful analysis will reveal that K > 0, ξ > 0 and r > 0 may be chosen so
that hypothesis (ii) of Definition 3.3 holds. We observe that if u ∈ lRm+ , then

(4.11) ∂V (u)f(u) = (A(u − q))TP (u− q) =
m∑

i,j=1

ai(ui − qi)Pij(uj − qj) ≤ 0.

The separability of V and the observation that V ′′i (vi) = aiqi/vi complete the proof.
We immediately have the following result.
Proposition 4.12. If (L-V)1 and (L-V)2 are satisfied, then the steady-state solution

q = (q1, . . . , qm)T is stable. Moreover the semilinear elliptic system

(4.13)
−D∆w = W (e + Pw) on Ω
∂w/∂n = 0 on ∂Ω,

where W = diag{w1, . . . , wm}, has no spatially nonhomogeneous positive solutions.
Proof. Because lRm+ is an invariant m-cube for solutions to (4.6), Lemma 4.9 and

Theorem 3.4 establish the first assertion. To establish the second assertion, we let M1 be
an m-cube which contains both w ∈ lRm+ and q ∈ lRm+ and does not intersect the coordinate
hyperplanes of lRM+ , and we let M2 be a second m-cube which contains M1 and also does
not intersect the coordinate hyperplanes. Now let ϕ ∈ C∞(lRm; lR+) be such that ϕ(u) = 1
if u ∈ M1 and ϕ(u) = 0 for u ∈ lRm \M2. From application of Proposition 3.10, part (i),
to the truncated system

(4.14)
−D∆w = ϕ(w)W (e + Pw) on Ω
∂w/∂n = 0 on ∂Ω,

the remaining assertion follows directly.
We mention that for n ≥ 3 the question of global existence for (4.6) is in general

unresolved. For spatial dimension one, global existence and uniform boundedness for
solutions may be established by applying results in [16], and for n = 2 we are at least
assured the existence of longtime solutions; see [17]. We mention this to underscore the
point that global well-posedness theory for reaction-diffusion systems remains incomplete.

Differential equations which describe the dispersion and reaction of m chemical species
are generally of the form

(4.15) ∂u/∂t = D∆u + f(u)

where the ith component of the dependent variable u = (u1, . . . , um)T represents the
concentration density of the ith chemical species. The vector field f = (fi)mi=1 is assumed
to be in each component a polynomial function of the components of u and is intended to
model the chemical reaction kinetics. Gröger, in his study of dissipative chemical reactions,
[7], introduced the following hypothesis.
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(G) There exists a vector e = (e1, . . . , em)T with each ei > 0 such that f(e) = 0 and

m∑
i=1

fi(u) log(ui/ei) ≤ 0.

Furthermore, the quantity
∑m
i=1 fi(u) log(ui/ei) is known to have the physical interpreta-

tion of being a suitably scaled rate of chemical dissipation, and work on the mathematical
theory of reaction networks, [11], confirms that many nontrivial systems satisfy this hy-
pothesis. If the chemical species are required to remain confined to a reaction vessel for
all time the appropriate boundary conditions are given by

(4.16) ∂u/∂n = 0 on ∂Ω× (0,∞).

Finally, a condition of the form

(4.18) fi(u) ≥ 0 for all u ∈ lRm+ with ui = 0

together with the maximum principle ensures that lRm+ is a forward invariant set for (4.15).
We have the following proposition.

Proposition 4.19. We consider (4.15) together with the boundary conditions (4.16).
If all the conditions describing a dissipative chemical reaction outlined above hold, then the
steady state u = e is uniformly stable. Moreover, the elliptic system

(4.20)
−D∆w = f(w) on Ω
∂w/∂n = 0 on ∂Ω

has no spatially inhomogeneous positive solutions.
Proof. We define

(4.21) V (u) =
m∑
i=1

Vi(u) =
m∑
i=1

(ui log(u/ei)− ui + ei)

and verify that all conditions of Definition 3.3 hold locally about e. Consequently, Theo-
rem 3.4 implies that e is uniformly stable. An argument analogous to the one of Proposi-
tion 4.12 ensures the nonexistence of positive spatially inhomogeneous steady-states.

The comments concerning the global well-posedness and boundedness of solutions to
Lotka-Volterra systems also apply to this class of dissipative chemical systems.

In addition to satisfying f(0) = 0 and a condition of the form (4.18), many reaction-
diffusion systems satisfy a linear balancing condition of the form:
(B) There exist positive constants ci for i = to m so that for all n ∈ lRm+ ,

m∑
i=1

cifi(u) = 0.
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In this case, an obvious generalization of Proposition 4.3 dictates the stability of the zero
solution.

5. Further generalizations and concluding remarks.
Our results tend to support the general hypothesis that the addition of diffusion

to systems of ordinary differential equations which have D-diffusively convex Lyapunov
functions does not create exotic spatial or temporal phenomena which did not originally
exist. If indeed this is the case, then the presence of diffusion in these systems is irrelevant
to their long-term dynamics, and any spatial phenomena produced by diffusion must be
of a transient nature.

We need not have limited our consideration to diffusion mechanisms of the form D∆u.
We could have allowed operators of the form

n∑
j,k=1

∂

∂xk

(
dijk(x, t)

∂ui
∂xj

)

in each component. In this case it is necessary to assume uniformly strong ellipticity
along with smoothness conditions on coefficients and some conditions on the derivatives
of the coefficients. In general, the arguments could become quite technical, but should
be tractable. We leave the details to the interested reader. Numerical experiments, [4],
with two component systems which model exothermic chemical reactions indicate that
quasilinear diffusivities do have an effect on the intermediate dynamics of the systems.

The necessity that our forward invariant set M be an m-cube described by (2.4)
is purely a consequence of assuming distinct diffusion coefficients and in no way actu-
ally enters into the preceding analysis. Other types of geometries can arise in situations
where some of the diffusion coefficients are equal. As a simple example, consider a three-
component model of the form:

(5.1)

∂u/∂t−∆u = −α1f(u, v, w) on Ω × (0,∞),
∂v/∂t −∆v = −α2f(u, v, w) on Ω× (0,∞),
∂w/∂t − d∆w = f(u, v, w) on Ω× (0,∞),
∂u/∂n = ∂v/∂n = ∂w/∂n = 0 on ∂Ω× (0,∞),
u( · , 0) = u0, v( · , 0) = v0, w( · , 0) = w0 on Ω,

where f ∈ C2(lR3
+; lR+); f(0, v, w) = f(u, 0, w) = 0 for all u, v, w ∈ lR+; α1, α2, d > 0; and

the initial data u0, v0, w0 are continuous and nonnegative on Ω. By the maximum principle,
it follows that min

Ω
{α1v0 − α2u0} ≤ α1v − α2u ≤ max

Ω
{α1v0 − α2u0} and w ≥ min

Ω
w0.

Consequently, if z1, z3 ≥ 0, then the set

M1 = {(u, v, w) | α1v − α2u ≤ −α2z1, v ≥ 0, w ≥ z3}

is a forward invariant set for (5.1), and if z2, z3 ≥ 0, then the set

M2 = {(u, v, w) | u ≥ 0, α1v − α2u ≥ α1z2, w ≥ z3}
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is a forward invariant set for (5.1). Now, in a manner similar to the proof of Proposition
4.3, one can show that any point (z1, 0, z3) with z1, z3 ≥ 0 is stable with respect to M1, and
any point (0, z2, z3) with z2, z3 ≥ 0 is stable with respect to M2. One can then continue
to argue as in the proof of Proposition 4.3 that such equilibrium points are stable with
respect to lR3

+.
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