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SUMMARY

The differential equations that must be satisfied for most fields (physical variables) in
geophysics are determined primarily by conservation equations which relate the divergence
of the flux of the field, the field’s time rate of change, and its sources and sinks. These
conservation (or equilibrium) equations do not provide sufficient constraints to deter-
mine the fluxes and fields even when boundary conditions (both in space and time) are
specified. To constrain the fields completely, it is necessary to introduce the properties
of the media; that is, the constitutive equations. Because the conservation equations
can be determined without considering the properties of the media, these equations are
valid for the most general media; that is, heterogeneous, anisotropic, time-varying, non-
linear, etc. media in which many field variables can interact or be coupled. When the
fields can be described by ‘self-adjoint’ differential equations in space—time, these media
exhibit reciprocity; that is, upon interchange of ‘sources’ and ‘detectors’, the same result
is obtained. We show that viscoelastic, elastodynamic problems relating to generalized
Kelvin—Voigt and generalized Maxwell media satisfy the conditions for reciprocity. In
addition, we show that the introduction of tensor ‘densities’ (which relate the inertial-
force density to the particle-acceleration, particle-velocity and particle-displacement
vectors in the inertial force’s constitutive equation) do not invalidate the reciprocity
conditions. The two constitutive equations (the stress/strain and the inertial-force ones)
lead to dispersion and attenuation in the propagation of the fields even though none of
the material constants in the constitutive or conservation equations is complex (i.e. with
real and imaginary parts). Complex material properties cannot exist in nature for actual
materials or media; nor can the material constants or properties be functions of
frequency. However, ‘apparent’ or ‘equivalent’ properties may be complex and functions
of frequency if time-harmonic fields are assumed to exist.

Key words: constitutive equations, Green’s functions, moduli, reciprocity, tensor
densities, viscoelasticity.

INTRODUCTION

The reciprocity principle is a very useful one in dealing with
boundary-value problems. It demonstrates the equality of two
solutions (as quantified by reciprocity) in a medium when the
source and the field detector are interchanged (Betti 1872; Lord
Rayleigh 1873, 1945; Graffi 1939, 1946; Morse & Feshbach
1953; Knopoff & Gangi 1959). In making the interchange, the
tensor characteristics of the source and field must be taken into
account; that is, whether the fields that are to be detected and
the sources that generate the fields are scalar, vector or higher-
order (or rank) tensors. Another advantage of the reciprocity
principle is that the representation theorem (or Green’s theorem)
can be readily derived from it (Gangi 1970).
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In this paper we review generalized reciprocity and relate
it to elastodynamic problems by introducing generalized con-
stitutive equations. Specific constitutive equations for the
inertial force (generalized) are shown to satisfy the self-adjoint
property necessary for reciprocity to hold in a single medium.
Then the stress/strain (viscoelastic) constitutive equations for
generalized Kelvin—Voigt and Maxwell media are also shown
to satisfy the self-adjoint property necessary for reciprocity to
hold in a single medium.

GENERALIZED RECIPROCITY

The reciprocity principle can be demonstrated for a tensor field
of any order. The condition required for reciprocity to hold is
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that the operator, which relates the field and source, be self-
adjoint. To illustrate this fact, we first review—in outline—the
generalized reciprocity principle (see, for example, Morse &
Feshbach 1953, Section 7.5).

For example, we consider a tensor differential operator (be it
a scalar, vector or higher-order tensor one), é{u(r, 0, r, t; C},
which operates on some tensor field, u(r, ¢), in the space-time
domain (r, #) and which results from some tensor source term,
f(r, 7); that is:

O{u(r, n;r, t; CH=A1(r, 1), (1)

and where C is some (tensor) parameter (or collection of
parameters) which describes the properties of the medium
contained in a region of volume ¥ that, in turn, has a bounding
surface, S(r, ). We also assume there are some homogeneous
boundary conditions on S(r, ¢) and initial (or final) conditions
in time:

{u(r, 1), Vu(r, 1)} =0 on S(r, ¢) for all 7 and

(2
{u(r, 7), a(r, 1)} =0 for 1<, for all V',

where {u(r, 1),Vu(r, £)} means some combination of the field
and its gradient, and {u(r, ¢), u(r, £)} means some combination
of the field and its time derivative. Then the adjoint problem is
described in terms of the adjoint operator, O{U(r, 0, r, t; C},
operating on the field U(r, ¢) due to a force, F(r, 1), acting in the
same medium:

O{uU(, 1) r, 1; Cy=F(r, 1) 1)

and a set of homogeneous boundary and time conditions
(similar to those in eq. 2). The adjoint operator is defined by
the following condition, which permits a (4-D) volume integral
to be converted into a (4-D) surface integral:

U®0 —u®0=VeP, r)Jrﬁ"(r 4

—U®f—u®F, 3)

where P(r, 1) and q(r, f) are some tensors which include
the boundary and time (boundary) conditions, respectively, and
® is some tensor-compatible multiplication, such as the dot
product, cross product, double-dot product, tensor product,
etc. [Note: P(r, )=P(u, U, r, 7) and q(r, /)=q(u, U, r, 7)]. Then,
we have

J“ j [U®O —u®O] dVd:
—o0 JV

= J:C JV [V@P(r 0+

_ J: JV [U®f—u@F|dVi: . 4)

( )dVd

Now, using Gauss’ divergence theorem and integrating over
time, the second integral becomes

J:r JV {V®P(r )+ f}q(r 7)

= J: L n®P(r, 1) dSdt + J qr, ;2. dv. (%)

} dvdt

Therefore, if the boundary conditions (in space and time) are
such that n®P(r, 1) =0 on S(r, ¢) for all time, ¢, and q(r, £)=0 for
t= + oo throughout the region V, then this integral is zero and we
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have the condition of generalized reciprocity:

J; "'V [U®f —u@F]dVdi=0. (6)

If the operator é{u(r, 1); r, t; C} is self-adjoint; that is,
O{u(r, 1);r, t; C} =O{u(r, 1); r, 1; C}, (7

then the governing differential equation is self-adjoint and
reciprocity holds for the problem itself. However, note that the
proper multiplication of the sources and fields must be used in
the reciprocity relationship, and the reciprocity relationship is
in terms of an integral over space-time.

ELASTODYNAMIC PROBLEMS

The governing differential equation for elastodynamic problems
is Cauchy’s force-equilibrium (or momentum-conservation)
equation (c¢f., for example, Malvern 1969; de Hoop 1995):

V-o(r, t)+fu(r, 1)=1(r, )
(®)

with u(r, 1)=0; a(r,1)=0 fort<tyin V,

where o(r, ?) is the second-order, symmetric stress tensor (that is,
o=0"), fu(r, 1) is the vector body-force density (which usually
contains the source term), fi(r, 7) is the vector inertial-force
density, u(r, ¢) is the vector displacement field, and u(r, ¢) is the
particle-velocity field in some region of volume V which has a
bounding surface, S(r, 7).

The proposed reciprocal (adjoint) problem satisfies

V- X(r, 1)+ Fu(r, 1) =Fi(, 7)
(®)

with U(r, 1)=0; U(r,7)=0 fort<t in V,

where X(r, 7) is the second-order, symmetric stress tensor,
Fy(r, 7) is the vector body-force density, Fi(r, 7) is the vector
inertial-force density, U(r, 1) is the vector displacement field
and U(r, 1) is the particle-velocity field in the region V for the
reciprocal problem.

Then we can form the product

U(r, 0+ [V-o(r, ) —fi(r, D] —u(r, 1)+ [V-(r, )~ Fi(r, 7)]
=V-[o(r, )- U(r, 1) —E(r. 7) - u(r, 1)
~[o(r, 0:VU(r, 1) —E(r, 0):Vu(r, 1)]
~[U(r, D) fi(r, ) —u(r, 1)+ Fi(r, )]
= (U, 0 - (e, ) —u(r, 1) Fyo(r, ). ©)

(Deﬁmtlon of the double-dot product: C:A =i ]C,,k,A =B, where
C—1]le,,k, isa fourth-order tensor, A= klAk, is a second-order
tensor and the result, B=i ]B,j, is a second-order tensor. Note that
the summation convention for repeated indices is being used and
that A:B= 4B is a scalar.)

Thus, reciprocity holds if these equations equal zero upon
integration over space-time. The problem will be self-adjoint if
the ‘virtual-strain-energy’ term, o(r, 7):VU(r, 7) —X(r, 7):Vu(r, ?),
and the ‘virtual-work’ term, U(r, 7)-fi(r, £) —u(r, ¢)-Fi(r, 1), can
be expressed as the time derivative of some function [which, in
turn, gives a zero contribution upon integration over time over
the whole region by means of initial and final time (boundary)
conditions].
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CONSTITUTIVE EQUATIONS

The momentum-conservation equations (eqs 8 and 8’) are valid
for any medium, whether it is heterogeneous, non-linear or
even time-varying. However, it is a vector equation valid in the
3-D space of the position vector r, and, as such, represents only
three independent scalar equations.

If we assume that the body forces are known (they usually
represent the sources of the field), and if we assume that the
inertial force is given in terms of the particle acceleration (and
other time derivatives of the displacement vector—see later),
then there are nine unknowns in the above vector equation.
These are the six scalar components of the symmetric, second-
order stress tensor, ¢, defined in the 3-D space (of r), and
the three scalar components of the displacement vector, u.
The particle velocity and acceleration are also independent
variables, but they have defining equations which relate them
to the displacement vector, so they are not, in that sense,
independent unknowns.

Therefore, to solve for these nine (scalar) unknowns we
need nine independent (scalar) equations. The conservation
equation gives three, so six additional equations are needed.
These six equations represent the constitutive equations for the
medium—or its equations of state. In a 3-D medium, these six
scalar equations can be represented by a symmetric, second-order
tensor (see, for example, Gangi 1981):

H'=H(s, 6,6, ...,u,u, 1, ...Ve, VVe, ... Vu,

VVu,...Va, Ve, ..., y)=0. (10)

Note that this function has no explicit time or space
dependence; that is, the material of the medium has the same
response to the state variables no matter where it is located in
physical space and no matter what the time is, provided that the
state variables do not change. It can change with position and
time only through the variation of the state variables in space
and time; that is, implicitly only. It does depend, however, on
the composition of the medium through the tensor variable y.

In the argument of this tensor we have introduced new state
variables, namely the time and space derivatives of the primary
unknowns, ¢ and u, and y, which contains the variables relating
to the composition of the medium. These new state variables,
except for y, do not introduce new unknown variables into the
problem because each comes with its own defining equation.
Furthermore, we will assume that the composition of the
medium is constant in space and time, so we need not consider
here variations in y. In the following we will treat the con-
stitutive equation for the inertial force separately from that for
the stress and displacement (or strain). Then, the ‘stress/strain’
constitutive equation becomes

H"=H(o, 6, Vo, 6, VVo, V6, ..., e, & Ve, 6,VVe, Vé, ..., 7)

=0, (11)

where e=e’ =[Vu+(Vu)']/2 is the symmetric, second-order,
infinitesimal strain tensor.

Most materials are well described by only a few of the
above state variables; for example, an isothermal elastic solid
has only a stress and strain dependence, while isothermal visco-
elastic solids depend only on the stress and strain and their
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time derivatives. In the following we will ignore the gradients
(spatial derivatives) of the stress and strain even though there
are materials that do depend on them.

The resulting constitutive equation

H'=H(c,6,6,....€, &8, ..., 7)=ijH;=0, (12)

while a second-order-tensor equation in physical space, has
scalar components that represent hypersurfaces in the high-
dimensional state space where, for example, the six scalar com-
ponents of each of the stress and strain represent dimensions.
That is, an isothermal (non-linear or linear) elastic solid has
a constitutive equation in a 12-dimensional state space. The
material with the above constitutive equation behaves such that
it is always constrained to this hypersurface no matter what the
values of the state variables are.

Therefore, assuming that the composition, i.e. y, does not
change, and using the chain rule of differentiation (and the
double-dot product), we have

dH"=0=dH(s, 6,6, ...,e,&&, ...,7)
=do:0cH+d6:06H+ - - - +de:dH+dé:0:H+ - - -,

(13)

and this differential equation also represents the constitutive
equation. Note that it is a non-linear differential equation if the
fourth-order coefficients [e.g. d;H(s, 6, 6, ..., e, & &, ..., 7)]
of the differentials of the state variables are functions of
the state variables also. These coefficients (e.g. 0sH) of the
state-variable differentials are fourth-order tensors because
the ‘gradient operators’ (e.g. J5) are themselves second-order
tensors; therefore, the ‘gradients’ of the second-order tensor H
are fourth-order tensors. That is, dcH is a fourth-order tensor
of the form

% aHk/ )

oeH=ij Ki; ij,k =123, (14)

i

where i and i are unit vectors corresponding to the stress
components, while k and 1 are unit vectors corresponding to
the constitutive tensor, H, and they all are unit vectors in the
physical space containing the position vector r and where H is
defined. The summation convention is used when indices are
repeated.

For linear materials or media (with no compositional change),
the fourth-order tensors are not functions of the state variables,
and we can integrate the differential equation from some initial
state (where, say, all the state variables are zero) to some
general state to obtain

6:S;+6:S,+ - +e:Ci +e:Cro+ --- =0. (15)

The fourth-order tensors, S; =0:;H, C; =0.H, etc., are constant
tensors with respect to the state variables of stress and strain
and their derivatives. Note that these fourth-order tensors can
be functions of position if the composition, y, changes from
place to place but all the compositions are assumed to have no
dependence on the other state variables; that is, all the com-
positions are assumed to be linear in the stress and strain and
their time derivatives.

For the isothermal, linear-elastic case (a Hookean solid)
where

GZeZCECTMIZZe:@UCUk]lA(i: Ck/i/'e,'/'i(i s (16)

Knopoff Festschrift
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we have
C=0.H:(0;H)~ . 17)

Note that if a scalar strain-energy-density function, ¢, exists
so that

qz5=G:e=e:6=e.C:e=e:CT3412:e=aije,-j=e,-ja,-j s (18)

then either C—CT**?=0 or C—C™**!2 must be ‘orthogonal’
to e under the double-dot product. We choose the first alter-
native because e is arbitrary. We have C=CT?!13=CT!24
because of the symmetry of the strain and stress. [CT>*'? means
interchange the first two base vectors with the second two; that
is, (fif(iCijk,)TMlz=ﬁi§ngk1. See also eq. (27) for a complete
definition of the generalized transpose operation.]

In the above constitutive tensor, H, we could have intro-
duced other state variables such as temperature (or entropy),
electric and/or magnetic fields, electrochemical potentials, etc.
to describe the medium. With the addition of temperature as
a state variable, we would have to consider the conservation
equation for heat flow and we would need to determine the
temperature variation in time and space. If there is no heat
flow, the moduli would be the adiabatic moduli. If we consider
that there are some interactions between the temperature and
the stress or strain, we would have a medium that is subjected
to thermal expansion or thermal stress—alternatively, one that
heats up or cools down with the application of stress or strain.
If the electric and/or magnetic fields are state variables also,
the material would be piezoelectric and/or magneto-elastic as
well. In that case, the electromagnetic conservation equations—
Maxwell’s equations—would have to be included and satisfied
also.

INERTIAL-FORCE CONSTITUTIVE
EQUATION

First let us consider the inertial-force terms; for example,
fi(r, )= dp/dt , where p(r, t) is the momentum density of the
medium. Usually, the inertial-force density is considered to be
proportional to the acceleration, with the material density, p,
as the constant of proportionality: fi(r, #) = pii. However, the
inertial force need not be collinear with the acceleration—
consider a single-component, spring/mass seismometer or a
fluid-saturated porous medium (Biot 1956). Then the force and
acceleration vectors are linearly related by, say, a second-order
tensor as

fi(r, ) =R, - u(r, 1), (19)

where R, is the second-order tensor. This is a ‘constitutive
equation’ for the inertial force in a medium composed of such
seismometers (or in a fluid-saturated porous medium). The
reason the relationship between the force and the acceleration
is tensorial is because the mass of a single-component seismo-
meter is constrained to move in one direction only. If the
acceleration is not in the allowed direction of motion of the
mass—or at right angles to it—the force will not be collinear
with the acceleration. Alternatively, the principal axes of the
tensor R, are (1) in the direction of the mass movement, and
(2) transverse to this direction, and the principal values or
eigenvalues in those directions are different.

We can generalize this constitutive equation and still have a
linear relationship by having the inertial force depend on the
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particle velocity and displacement:

fi(r, )=R, -u(r, )+ R, -u(r, )+ Ry - u(r, 7)

2
d +RV%+RU -u(r, 7). (20)

=Reae Ry

This constitutive equation could describe the inertial force
at the centre of mass, in response to motions there, for a three-
component seismometer, with, in general, different charac-
teristics for each component (see also de Hoop 1995, p. 317ff
for an inertial-relaxation-function approach).

The advantage of the above formulation is that this linear
system will have a frequency-dependent response which depends
on the values of the second-order tensors which are assumed,
here, symmetric: Ry=(R,)T, s=a, v, u (see Appendix A for a
more general approach). The tensors Ry themselves may be
explicit functions of position and time, but we will assume
that they are time-stationary and independent of the particle
motions. That is, none of the scalar components of Ry depends
on time (or frequency), and the inertial force is a linear function
of the particle motions. Nevertheless, such an inertial-force law
will lead to dispersive wave propagation.

In egs (8') and (9), we have used a different symbol for the
time variable in the proposed reciprocal problem. The reason
for this is that we wish to end up with a convolution integral in
time for our reciprocity relationship so that we can compare
solutions with different time variations of the source functions.
Therefore, the time variable 7 is set equal to #'—¢, where ¢’ is
some arbitrary but fixed time. Then we have for the inertial
force Fi(r, 1),

Fi(ra ‘E):Fi(l‘, Zlit)
=R, U, 7 —0)+R,- U, { —1)+R, - U(r, £ — 1)

d’ d , ,

= Raﬁ*RvE+Ru ‘U, ' —1), (20"

using t=¢—t and d/dt = —d/dt, where U(r, t' — 1) =d U(r, 7)ldr =

—dU(r, ' —1)/dt. Here we assume that the R for the adjoint

force, F, are the same as those in the original problem (see

Appendix A for a more general approach). Therefore, the scalar
‘virtual-work’ term, w(r, ), is

w(r, )=U(r, 1)-£i(r, ) —u(r, 1) - Fy(r, 7)

L d
=U- [R R +Ru} ‘u

2 e d

d? d
—u- [Ra R E—FRH] ‘U

=R,:[Uii —uU]+ Ry:[Ua —uU] + Ry:[Uu—uU], @
Because R, =(R,)T, the last term is identically zero. Because all

the R, (s=a, v, u) are symmetric and independent of time, the
second term becomes

R,:[Ui—uU]=R,:[aU—uU]= % {R,:[uU]}, (22)

and the third term becomes

R.:[Uii—uU]=R:[iU—uU] = % {Ry:[aU—uU]}. (23)
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Therefore, the integral over time of the ‘virtual-work’ term
(eq. 21) is zero because of the initial conditions, u=0 and u=0
for 1<t,, and the final conditions, U=0 and U=0 for ¢>1,
(that is, for ' —t=t1<1,=1t'—1)).

STRESS/STRAIN CONSTITUTIVE
EQUATIONS

Now let us consider the scalar stress/strain term or ‘virtual-
strain-energy’ term, Y (r, ?):

Y(r, 1)=o(r, ):VU(r, 1) —X(r, 1):Vu(r, 1)

=o(r, 1):E(r, 1) —X(r, 1):e(r, 1), 24
where E and e are the second-order, symmetric strain tensors,
E(r, 1)={VU(r, 1)+[VU(, ©)]'}/2; and

e(r, £)={Vu(r, )+ [Vu(r, £)]T}/2. (25)

Kelvin-Voigt medium

The constitutive equation for a generalized, anisotropic, hetero-
geneous, linear, Kelvin—Voigt material (Malvern 1969, p. 313ff;
see also de Hoop 1995, p. 317ff) is

d"e
dm’

N

o(r, =" C,(r): (26)
n=0

where the C,(r) are fourth-order tensors with the following

transpose-symmetry properties:

CT2134 _ 0T _ (TH2_
jikl Gy = ijlk Gy = Klij Cypy = ijk1Cjy = C . (27

Note that the transpose operator Tijkl shows how the base
vectors are to be permuted. In the above case, where all the
base vectors are from same coordinate system, the transpose
operation can be applied to the indices (i.e. it shows how the
indices are to be permuted). This last fact is not true, however,
when the base vectors come from different coordinate systems;
that is, when C is expressed as a ‘mixed tensor.’
For the (tentatively) reciprocal problem, we have

/ > n . dﬂE r
(r, ¢ —r)=;) (=1 Culr): = . (26)
Then the ‘virtual strain energy’ (eq. 24) becomes
Y(r, t)=o(r, 1):E(r, ) — X(r, 1):e(r, 1)
d de dE d’e¢ d’°E
_E|:g(ea Ey Ea Ea W’ ﬁa etc'):l B (28)

where g(e, E, . ..)is some scalar function of the strain, the strain
rate, etc. (see Appendix B).
For the case N=2 we have

Y(r, t)=o(r, 1):E(r, ) — X(r, 1):e(r, 1)
d . .. .
= 7 (Ci:[eE]+Coi [eE—eEK]} (29)
where the symbol represents the quadruple-dot product:
C:D= CyiD ;- Therefore, the time integral of eq. (28) will be

zero because, over the region V, e and its time derivatives are
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zero for t<ty, and E and its time derivatives are zero for ¢ >1,
[that is, for 7<7, where t; is the onset time for the source
Fy(r, 1) with t=¢'—¢ and 7, =1'"—11].

Maxwell medium

The same result can be obtained for a generalized, anisotropic,
heterogeneous, linear, Maxwell material (see, for example,
Malvern 1969, p. 313ff or de Hoop 1995, p. 317ff). Its
constitutive equation is

d'a

. (30)

N
e(r, )= S,(r):

n=0
where the S,(r) are fourth-order tensors with the same transpose-
symmetry and physical-symmetry properties as the C,(r). Then
the ‘virtual strain energy’ (eq. 24) becomes

Y(r, 1)=o(r, 1):E(r, 1) —X(r, 7):e(r, 1)

d de d¥ d’c d°Z ,
:E{G(G’E’E’ T AR dR etc.)}, (28"

where G(o, X,...) is some scalar function of the strain, the
strain rate, etc. (see Appendix B).
For the case N=2 we have

Y(r, t)=o(r, 1):E(r, ) — X(r, 1):e(r, 1)

=— % {Sii[6X]+S:i [6Z —oX]} . (29

Therefore, the time integral of eq. (28") will be zero because,
over the region V, ¢ and its time derivatives are zero for ¢ <1,
and X and its time derivatives are zero for ¢>¢,. Consequently,
both the Kelvin—Voigt and the Maxwell materials have self-
adjoint differential equations when their constitutive equations are
substituted into the force-equilibrium equation and reciprocity
holds.

CONCLUSIONS

The final result for reciprocity for the generalized, anisotropic,
heterogeneous, but linear Kelvin—Voigt and Maxwell solids
(which include the Hookean linear elastic solid as a special
case) is

JOC J n-[o(r, £) - U, { —)—X(r, /' —1)-u(r, )] dSdt
-0 JS

= ro J [fo(r, O)- U, { —t)—Fp(r, £ — 1) -u(r, )] dVdt
—wo JV
=0

(€2))

[where n=n(r, ¢) is the unit normal to the surface S(r, ¢) at
location r and time f] because the first integral is zero for
homogeneous boundary conditions (e.g. u=0 and U=0 or
n-6=0and n-X=0 on S(r, ?) for all 7). The last integral is the
general statement of reciprocity for all viscoelastic media of
the Kelvin—Voigt and Maxwell type with tensorial ‘density’ terms
in the inertial force and it can be written as

r J [fo(r, /— £)- U(r, £) — Fy(r, £ — ) -u(r, )] dVdt =0.| (32)
—w0JV
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This reciprocity statement is exactly the same as that for linear-
elastic media (Gangi 1970, 1980; Aki & Richards 1980, pp. 25-27;
de Hoop 1995, pp. 437-441): now, however, the displacements
U(r, 1) and u(r, ¢) are the displacements in viscoelastic media
(see also Gurtin & Sternberg 1962; de Hoop 1966).

The representation theorems, or Green’s theorems, for visco-
elastic Kelvin—Voigt and Maxwell media can readily be derived
using the above reciprocity relationship (Gangi 1970; Aki &
Richards 1980, pp. 28-29), provided the medium is linear.
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APPENDIX A: CONSTITUTIVE
EQUATIONS FOR THE INERTIAL FORCE

The inertial-force density is usually set equal to the product of
the mass density and the acceleration of the mass of a particle
or of the mass in a unit volume. In most cases it is assumed—
or has been shown experimentally—that the inertial force is
in the same direction as the acceleration. However, this is not

Knopoff Festschrift

a necessary condition and other possibilities can be allowed.
In the most general case, the inertial force can be postulated
to be a non-linear function of the particle displacement
(or position), its velocity (or time derivative of its displace-
ment or position), its acceleration and even higher-order time
derivatives of its position or displacement. While these con-
ditions can be postulated, whether or not they hold must be deter-
mined either empirically or on the basis of the microstructure of
the medium.

The inertial-force density is a vector and it need not be
collinear with any of the other vector quantities (the displace-
ment and its time derivatives). In the following we will assume
that the inertial force depends only on displacement and its first
two time derivatives; namely, the velocity and acceleration. We
further assume that the inertial force is a linear function of
these quantities. Therefore, it can be written as

fr, )=|R d—z—O—R i—I—R -u(r, ¢) (Al)
D= Ra s 1 TR )

[using f(r, #) and F(r, ¢) for fi(r, 7) and Fi(r, 7)] for the original
problem, and as

2
F(r, 7)= |:R2 4 +R; 4 +RO} -U(r, 1) (A2)
dt? dt

for the adjoint problem. In the above, the second-order tensors
R, and R, (n=0, 1, 2) may be functions of position, r, but
they are stationary in time; that is, they are independent of
time. Because of the second-order tensors, the inertial force will
not necessarily be collinear with the displacement or its time
derivatives.

With the above definitions, the ‘work term’ w(r, 7) becomes

w(r, 1)=U(r, 1) - f(r, 1) —u(r, 1) - F(r, 7)

- 2
d"u - d"U
- ; {U'R” Cam TR W} - ; wa(r, ) (A3)
(recall, T=1t'—1, where ' is a constant).
The n=0 term gives
wo(r, 1)=U-Ro-u—u-Ro- U= (R} —Ro):(uU), (A4)

and this term is zero if R§ =Ry, where R¢ is the transpose of the
tensor Ry.
The n=1 term gives

du - dU du ~ dU
W](l‘, [)IU'RI . 7 —l.l‘R] . E :R1:U E —Rl:ll E

7 (A5)

However, if
RT=R,, (A6)
then we have (with dR,/dt = 0 and d/dt = —dl/dr)
d[Uu] _ d[R;:Uu]

wi(r, )=Ry: 7 7 (A7)

Therefore

J av J wy di= J dVR[Un][=*, =0, (A8)
V — 14

because u=0 for —oc0 <r<t; and U=0 for oo >¢>¢; through-
out V, where 1, is the onset time for the source f and #; is the
‘end time’ of the source F(r, 7); that is, F=0 for t<7,=¢'—1,
(or t=1)).
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The n=2 term gives

wa(r, )=U-Ry - % —u-Ry- C(I;le =R,:U % —Ryu CCI;TITJ >
(A9)

and, if

RIZR,, (A10)

we have (with dR,/dt=0)

wy(r, t)=R2:i {U @ —d—U u} = i {R2:<U % — iz’_[tj u)]

dt dt dt dt
(A11)
and
*© du dU ==
JV dv 4[70(‘ M/zd[— JV dV|:R2.<U E — E u>:| t:_oo—o,
(A12)

because u=0 and du/dt=0 for —c0 <t<t;,, and U=0 and
dU/dt=0 for oo >¢>t, throughout V.

In order to have a self-adjoint problem, we require that
R, =R,, but we already have the conditions that R} =R, must
hold if general reciprocity is to hold; that is, if there is to be zero
contribution from the w(r, f) term. Therefore, for self-adjoint
problems, it is necessary that

R,=R]=R,, (A13)

or that the second-order tensors, R,, are symmetric if reciprocity
is to hold.

Example of a non-self-adjoint case

It is known that in the case of a rotating body (say, the Earth)
the inertial-force densities are given by (see, for example,
Dahlen & Tromp 1998, p. 44)

£(r, 1) = p(O)[¥(r) + Qr) x v(r) + Q@ x (R x1)], (Al4)

where p(r) is the density, ¥(r) is the acceleration, v(r) is the
velocity, r is the position vector and Q(r) is the angular-rotation
vector. The first term is the usual acceleration term, the second
is the Coriolis force, and the third is the centripetal force. Using
the third-order alternating tensor of Levi-Civita, g, it can be
shown that the third term is equal to

Ro-r/p(r):Qx(er):(QQf|Q|ZI)-r, (A15)

where I is the second-order identity tensor (it is an identity
operator under the scalar or dot product), QQ:iiQ,Qj is
the second-order tensor generated by the tensor product of the
rotation vector with itself, and |QP=Q-Q is the square
magnitude of the angular-rotation vector.

The third-order tensor, & is the alternating tensor of
Levi-Civita, which satisfies the transposition (or symmetry) rules

T213 _ TI32 _

. . e = _g— —ijkey. (A16)

where ej>3=1, the e; =0 or £1 and, for example,

£ —jik e =213+ 321 +132-123-231-312=—¢. (Al7)
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As usual, the summation rule is used for repeated indices. Note
that the transposition rule works on the base vectors of the
third-order tensor, €, and not necessarily on the indices of the
scalar components. If the base vectors are all from the same
coordinate system (and they need not be, but then the values of
e;r are not necessarily 0 and +1), the transposition rule also
works on the indices (see, for example, Gangi 1970).

The second-order tensor, Ry, is symmetric so that the centri-
petal force satisfies the conditions necessary for reciprocity to
hold.

However, the Coriolis force term

R -vip(r)=Qxv=eQv=—(g-Q)-v (A18)
has the property
R;=—p(r)e-Q=—R=—R;. (A19)

Therefore, if we wish reciprocity to hold for the adjoint
problem of a rotating body, the adjoint problem must represent
the same body rotating in the opposite direction (see Dahlen &
Tromp 1998; p. 135). Because R, depends on the square of the
angular-rotation vector, it is invariant when the rotation is
reversed. The third tensor, R», is equal to p(r)L, the scalar mass
density times the identity tensor, which is independent of the
rotation altogether.

In the following we will assume that the problems being
investigated are self-adjoint and that the second-order tensors,
R, (n=0, 1, 2) are symmetric.

An example of a medium that has inertial terms depending
on velocity and displacements as well as acceleration, and for
which the second-order tensors are symmetric (and distinct
from identity tensors) would be one made up of three com-
ponent seismometers with different masses, spring constants
and damping for each of the components. It is possible to
conceive of crystal structures which also have these properties,
but, to the best of my knowledge, no one has measured such
materials yet.

APPENDIX B: CONSTITUTIVE
EQUATIONS FOR STRESS AND STRAIN

The stress/strain constitutive equations for the generalized,
anisotropic, heterogeneous, linear, Kelvin—Voigt and Maxwell
materials are obtained when the constitutive tensor is a function
only of the stress and strain and their time derivatives. While
these conditions can be postulated, whether or not they hold
must be determined either empirically or on the basis of the
microstructure of the medium.

These constitutive equations affect the ‘virtual-strain-energy’
term (see eq. 24):

Y(r, )=o(r, 1):VU(r, 1) — X(r, 7):Vu(r, ?)
=o(r, 1):E(r, 1) —X(r, 1):e(r, 1) . (B1)

The gradients of the displacements, which are second-order
tensors composed of skew-symmetric as well as symmetric
tensors, can be replaced by the symmetric strain tensors because
the stress tensors are symmetric—at least for all continua that
have zero net moment. We assume that this is the case in the
following.
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Kelvin-Voigt medium

The constitutive equations for the generalized Kelvin—Voigt
medium are (see eq. 26)

d n

o(r, )= Z Cu(r):— e

(B2)

I(r, 1)= Z Lk d =

where we distinguish between the fourth-order moduli tensors,

C, and C,, for the original and adjoint problems, respectively.
Then the ‘virtual-strain-energy’ term becomes

N
v, = Z{ RO e =2 v @)
n=0

and, using the fact that d"E/d¢"=(—1)"d"E/dt", we obtain

-~ . d"E
Y(r, 1)= Z {C i — E (—1)'Cu(m) v } . (B4)
n=0
For n=0, we have, with Co=Cg3*'2,
Yolr, =[Co—Cy 1ieE=0. (BS)
For n=1, we have
Y, 0= {cl(r) g &mi9E ] (B6)

or, with C;=CT*? and dC,/di=0,

h(r, 0= 1€ e, (87)
For n=2, we have

e, 0= [Cz(r) S } , (BS)

or, with C,=C7**"? and dC,/dt=0,

TR {czm (de E-e %N (89)

For general n=m+1, we have, with Cm+1=(~3,2;3f}2 and

dCpy 1 /dt =0,

d .(d"e
T |:Cm+1 : (d? E+

@ dm—lE N 4d"E
i den=1 " e )|

d"'e dE

V(1 )= WE+

(B10)

Because the ‘virtual strain energy’ is the time derivative of
some scalar function, it can be included with the time derivative
of the q(r, ?) term in eq. (3 or 4). Therefore, the Kelvin—Voigt
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medium gives a self-adjoint problem provided that the moduli
tensors have the appropriate transpose symmetries. If, through-
out the region V, the strain, e, and all its time derivatives are
zero for t<t,, and E and its time derivatives are all zero for
t>1,, then the virtual strain energy term goes to zero in eq. (9)
and the Kelvin—Voigt medium manifests reciprocity.

Maxwell medium

The constitutive equations for the generalized Maxwell medium
are (see eq. 30)

N
d"c
er. =2 S .
n=0
(B11)
N
~ d"z
E(r. 9= S,m0: 55 .
n=0

where we distinguish between the fourth-order compliance
tensors, S, and S,, for the original and adjoint problems,
respectively. Then the ‘virtual-strain-energy’ term becomes

N

Wi, Z [s ()

0' Sn(r) dl‘” :| Z ¥, (r, 1),

(B12)

and, using the fact that d"X/dt"=(—1)"d"X/dt", we obtain

N

Y n=—>" [s (QF

n=0

—C8milE } (B13)

Except for the minus sign, this is the same as eq. (B3) with e, E
C, and C, replaced by 6, X, S,, and S,

Consequently, for general n=m+1, we have, with S, , | =
S,I,’?f%z and dS,, 1/dt=0,

d . (d"c d" e dT
mils | = Bt ——— ——
lpm-%—l(r t) dl |: +1: ( drm + drm—1 dr +

de d"~'E e "L
dt drm-1 dom

(B14)

Because the ‘virtual strain energy’ is the time derivative of
some scalar function, it can be included with the time derivative
of the q(r, #) term in eq. (3 or 4). Therefore, the Maxwell
medium gives a self-adjoint problem provided that the moduli
tensors have the appropriate transpose symmetries. If, through-
out the region V, the stress, o, and all its time derivatives are
zero for 1<t,, and X and its time derivatives are all zero for
t>t1, then the Maxwell medium manifests reciprocity.
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