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SUMMARY 3
The theory of the transient controlled-source electromagnetic (EM) response of a loop source
over a rough geological medium is developed in this paper. The governing fractional diffusion
equation in the Laplace domain is solved semi-analytically, and the Gaver—Stehfest algorithm
is then used to to numerically invert the associated Laplace transform. The geological medium
is characterized by a spatially uniform roughness parameter 8, which provides a more realistic
description of subsurface geoelectrical structure than does a traditional piecewise smooth
representation. Practitioners of the transient EM method can detect the presence of rough

geology via observing a departure from the classical y = —5.2 value of the late-time response (55
slope along with a power-law behaviour of the zero-crossing time 7 (L) as a function of =5

transmitter—receiver separation. Field studies have indicated that rough geology can explain

certain controlled-source EM responses with an economy of model parameters.

Key words: Fractals and multifractals; Electromagnetic theory; Hydrogeophysics.

INTRODUCTION

The central goal of electromagnetic (EM) induction geophysical
studies of the non-magnetic and non-polarizable Earth is to infer the
subsurface electrical conductivity distribution based on terrestrial,
marine, airborne, downhole or satellite measurements of electro-
magetic fields that develop in response to transient excitation of the
subsurface by an internal or external, natural or artificial, source
or array of sources. Electrical conductivity o (r) appears along with
the magnetic permeability of free space w¢ as the product pyo(r)
in the governing pre-Maxwell diffusion equation. Traditionally, the
geological medium is characterized by a piecewise smooth spatial
distribution of electrical conductivity. However, such a description
cannot always be justified if it is accepted that most physical proper-
ties, including electrical conductivity, of geological media are often
spatially rough across many decades of length scale (e.g. Pilkington
& Todoeschuck 1993; Painter 1996; Tennekoon et al. 2005; Molz
& Hyden 2006). It has recently been shown (Weiss & Everett 2007)
that a fractional diffusion equation can provide the basis for a sim-
ple and straightforward extension of classical EM induction, which
naturally takes into account the inherent roughness of geological
media. We define a rough physical property as one which exhibits
persistent spatial correlations over a wide range of length scales
so that it possesses a power-law wavenumber spectrum (Everett &
Weiss 2002).

In this paper, the transient EM response is computed for a
horizontal loop source, excited by a step-off current, that is lo-
cated on a rough half-space in which the electrical conductivity is
characterized by a spatially uniform roughness parameter 8, with
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0 < B < 1. The solution to the rough geology problem explored in
this paper generalizes classical solutions (corresponding to the limit
B — 0) for the EM response of a loop over a uniform conducting
half-space. The classical problem has been analysed by many work-
ers including Wait (1951), Morrison et al. (1969) and Ryu et al.
(1970). Additional details are found in Ward & Hohmann (1987).
In the rough case, we formulate and then readily solve a governing
fractional differential equation in the Laplace s-domain. The con-
version of the Laplace-domain solutions into the time domain is
performed using the Gaver—Stehfest (GS) algorithm (Gaver 1966;
Stehfest 1970), which has previously been used in EM geophysics
by Knight & Raiche (1982) and Everett & Edwards (1993), amongst
others.

FREQUENCY DOMAIN ANALYSIS

The analysis of the fields caused by a transient loop lying on a
homogeneous rough medium starts from the conventional Ampere’s
law V x B = poJ but with the added feature that it incorporates
a generalized time-convolutional form of Ohm’ law J = o4 *
E, so that

\Y% XB:/,L()O'ﬁ*E-f—,LL()Js(t). (1)

Ineq. (1), o 4 is a generalized electrical conductivity. The time con-
volution operator and generalized conductivity in eq. (1) are defined
below. The displacement current density Jp = €, 0E/9¢ that nor-
mally appears in eq. (1) is safely neglected in EM induction studies.
Equivalently, the characteristic angular frequency w is sufficiently
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low so that o > wey. In eq. (1), Js(¢) describes the horizontal loop
source current density,

Io(t) = %“a(p )89 @

The axisymmetric loop, of radius a, is centred about the origin
of a cylindrical coordinate system (p, ¢, z) in which the vertical
coordinate z is positive downward, so that Earth occupies the lower
half-space z > 0. Thus, the centre of the loop is located at p = 0.
The delta function §(¢) indicates an impulse of strength / in the loop
current that occurs at time ¢ = 0. Later, we will consider step-on and
step-off current excitations. The other relevant Maxwell equation is
Faraday’s law

V x E = —0B/dt. (3)

The magnetic field B can be eliminated from eqs (1) and (3),
leading to a convolutional vector diffusion equation for the electric
field E, namely

d
VXV xE =~ =05 % E + Js]. “)

As shown previously (Weiss & Everett 2007), the convolutional
diffusion equation for the electric field E can be cast as a fractional
diffusion equation. This is achieved here via the introduction of a
generalized Ohm’s law according to the convolution

" dt osE(t
GE—>oﬁ*E5/ ) 5)

o (t—1)F"

The generalized conductivity o has dimensions of [o]s™#,
where the usual dimensions of conductivity ¢ in SI units are
[c1=AV'm™ = A’s*kg ' m~3. Accordingly, we can write
o5~ o t~P, where T is a parameter with dimensions of time, [t] =
s. Note that this form for the generalized electrical conductivity o g
is appropriate for the anomalous diffusion coefficient of a spatially
rough medium (Metzler & Klafter 2000). In fact, the quantity o g
is referred to as the ‘anomalous electrical conductivity’ in Weiss &
Everett (2007). The consequence of using the generalized Ohm’s
law (5) is that EM induction becomes an anomalous diffusion pro-
cess in a geologically rough medium.

A generalized Ohm’s law J = o * E has been used in geophysics
to model EM induction in a polarizable medium (e.g. Smith et al.
1988). Typically, modelling EM induction in such a medium is per-
formed in the frequency domain, in which case Ohm’s law becomes
the product J(w) = o(w) E(w), and the governing Maxwell equa-
tions are solved for a given frequency assuming a time-harmonic
source excitation. Here we employ a time-domain convolutional
Ohm’s law for the entirely different purpose of describing transient
EM induction in a non-polarizable, but spatially rough medium.

The time derivative of eq. (5), which is required to solve the
governing eq. (4), is

0 o 0O /’ E({)dr
—op xE = = -
ot r@pyot o, (—t)-*

= oy oD} "E(1), (6)

where we have introduced the fractional derivative or Riemann—
Louiville operator (Metzler & Klafter 2000, their eq. 35)

lppn_ L O 1 E@)dr
DR = s /0 L ™)

and I" is the Gamma function which serves simply as a normal-
izing constant. See Oldham & Spanier (1974) for a discussion on
the origin and role of the Gamma function in the development of

fractional derivatives. Inserting eq. (7) into the convolutional vector
diffusion eq. (4) yields

_ 0
VXV x E = —puo05 oD "E(1) — po s, ®)

which is the sought-after vector fractional differential equation for
the electric field E(r, #) governing EM induction in a spatially
rough medium. Note that, in the special case of a smooth medium
in which the roughness parameter 8 — 0, the fractional diffusion
eq. (8) reduces to the classical diffusion equation V x V x E =
—w00/9t [0E + Jg], as it should.

The fractional diffusion eq. (8) is conveniently solved in the
Laplace s—domain since the Laplace transform L{} of a fractional
derivative of a function f(¢) is analytic (Metzler & Klafter 2000),
namely

L{idi 1)) = 5" FGs). ©

Note that the Laplace transform in eq. (9) reduces to the famil-
iar formula L{d f/dt} = sF(s) in the case B — 0. It is assumed
throughout that f(#) — 0 as ¢t — 0, that is, the function f(¢) van-
ishes as time ¢ approaches zero backwards through positive values.
This assumption is valid since we are Laplace transforming the im-
pulse response. Taking a Laplace transform of the fractional vector
diffusion eq. (8) yields

V X V x e(s) = — 10005 Pe(s) — posjs(s). (10)

where e (s) is the Laplace-transformed electric field E(¢) and js(s)
is the Laplace-transformed source current density Jg(#). It is clear
that the rough-geology problem is identical to the classical problem
(Morrison et al. 1969; Ryu et al. 1970) except that, in the first term
on the right-hand side of eq. (10), we have s'~# instead of s.

The solution to eq. (10) can now proceed along standard lines.
Since the loop source is axisymmetric and horizontal and lies atop
a half-space defined by a plane of constant z, symmetry dictates
that the electric field is azimuthally directed with no functional
dependence on azimuth ¢:

e(s) = es(p. 2, 5)p. (11)

Inserting eq. (11) into eq. (10), taking a Hankel transform and
enforcing the fundamental EM boundary conditions at the interface
z = 0 leads, after some algebra, to the solution in the overlying air
half-space as

eots) = =51 [ (exploaG 4 1) + RexplrG: — )

x J1(Aa)J;(Ap)dA, z >0, 12)
where
V2 = 22 15" P oy (13)

and the reflection coefficient R is
A—vy
oty
The function J, appearing in eq. (12) is a first-order Bessel function,
whereas / is the loop height above the ground surface z = 0. As
mentioned earlier, we are interested in the transient step-off response
since that quantity is recorded by many commercial time-domain
EM systems. It is convenient to first compute the step-on response,
which in the Laplace domain, is found using the formula

L{f(Ou()} = F(s)/s, (15)

where u(?) is the Heaviside step-on function defined by

(14)
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0, t<0_
1, t>0."

u(t) = { (16)

The step-on response in the Laplace domain is therefore ey (s)/s,
or

ezTEP_ON(s) = - M()Zla /000 {exp[—A(z + h)] + Rexp[A(z — h)]}
xJi(Aa)Jy(Ap)dA, z>0. 17

The azimuthal electric field component eg4(s), at least in the under-
lying half-space, is interesting from a theoretical perspective since
it is proportional to the eddy current density. However, ey4(s) is
not directly related to a practical field measurement. The vertical
magnetic field /,(s), on the other hand, is proportional to the actual
voltage that develops in the loop, as measured by most commer-
cial sensors. In the Laplace domain, /4.(s) is readily found from
Faraday’s law (eq. 3) as

1 9
ha(s) = ——— —[pey(s)]. (18)
Hosp 0p
Using eq. (18) along with the Bessel function identity
0
a[PJl(Ap)] = ApJo(1p), (19)

the step-on vertical magnetic field becomes

o) = 32 [ fexpl-ae + 1] + RexplaGz = )
s Jo

xJ1(ha)Jo(Ap) AdA, z > 0. (20)

Table 1. Gaver—Stehfest coefficients for n = 8 through 18.
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The function J, appearing in eq. (20) is a zeroth-order Bessel func-
tion. For convenience and without sacrificing physical insight into
the behaviour of the transient EM response, we assume that both the
transmitter and the receiver are located on the surface of the rough
half-space. Setting # = 0 and z = 0 in eq. (20) results in

STEP—ON la /oo 2
h: (s)=— T Ji(ka)Jo(hp) dr. @
s Jo A4y

The commercial time domain EM systems generally measure the
response to a rapid linear ramp-off in transmitter current. To a good
approximation, unless otherwise noted, the ramp-off time is suf-
ficiently short so that the ramp-off response is equivalent to the
step-off response. Accordingly, we use the Heaviside step-off func-
tion is 1 — u(¢) and compute the step-off response as the difference
between the late-time, or DC, response and the step-on response:

hZSTEPfoFF(S) — h?C _ hZSTEPfoN(S). (22)

TIME DOMAIN ANALYSIS

Although a multitude of approaches for inverting the Laplace trans-
form (Davies & Martin 1979; Hiipper & Pollak 1999) are available,
the popular GS method (Gaver 1966; Stehfest 1970) has long proven
reliable for computing transient controlled-source EM responses in
geophysics (Knight & Raiche 1982; Edwards & Cheesman 1987;
Everett & Edwards 1993; Das 1995).

n=2_, n=10 n=12
1 —0.3333333333333333 8.3333333333333329E-002 —1.6666666666666666E-002
2 48.33333333333334 —32.08333333333334 16.01666666666667
3 —906.0000000000000 1279.000000000000 —1247.000000000000
4 5464.666666666666 —15623.66666666667 27554.33333333333
5 —14376.66666666667 84244.16666666666 —263280.8333333333
6 18730.00000000000 —236957.5000000000 1324138.700000000
7 —11946.66666666667 375911.6666666667 —3891705.533333333
8 2986.666666666667 —340071.6666666667 7053286.333333333
9 164062.5000000000 —8005336.500000000
10 —32812.50000000000 5552830.500000000
11 —2155507.200000000
12 359251.2000000000

n=14 n=16 n=18
1 2.7777777777777779E-003 —3.9682539682539683E-4 4.9603174603174603E-005
2 —6.402777777777779 2.133730158730159 —0.6095734126984128
3 924.0500000000000 —551.0166666666667 274.5940476190476
4 —34597.92777777778 33500.16111111111 —26306.95674603175
5 540321.1111111111 —812665.1111111111 957257.2013888889
6 —4398346.366666667 10076183.76666667 —17358694.84583333
7 21087591.77777778 —73241382.97777778 182421222.6472222
8 —63944913.04444444 339059632.0730159 —1218533288.309127
9 127597579.5500000 —1052539536.278571 5491680025.283035
10 —170137188.0833333 2259013328.583334 —17362131115.20684
11 150327467.0333333 —3399701984.433333 39455096903.52738
12 —84592161.50000000 3582450461.700000 —65266516985.17500
13 27478884.76666667 —2591494081.366667 78730068328.22083
14 —3925554.966666667 1227049828.766667 —68556444196.12083
15 —342734555.4285714 41984343475.05357
16 42841819.42857143 —17160934711.83929
17 4204550039.102679
18 —467172226.5669643
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Suppose a function g(s) is available in the Laplace domain, and
the corresponding function G(7) is required in the time domain. The
GS approximation G(¢) to G(¢) is defined by

— 2 o
G =22 Y ymei1n2/1), @3)

Jj=1
where the GS coefficients {c;(n)} for j = 1, 2, ..., n, with n even,
are

nin[j, 2]
cj(m) = (=13 Y~

j+1
k=l

K2(2k)!
(2 — Ok — DI — B2k — )
: (24)

A detailed derivation of the GS algorithm is given in Everett (1990).
We find that the linear combination of terms appearing in eq. (23)
provides accurate results for » in the range 12-18, when pro-
grammed in standard 64-bit arithmetic. The optimal number of
GS coefficients, for a given set of model parameters, has to be de-
termined by numerical experiment. Larger values of n (>18) lead to
excessive rounding errors as successive terms in the series alternate
in sign and can grow large in magnitude. The use of smaller values
of n(<12) provides less accuracy. In general, the GS algorithm is
stable for transient functions G(#) such as EM responses, which ex-
hibit no discontinuities, sharp peaks or rapid oscillations. Note that,
according to eq. (23), the Laplace domain function g(s) needs to be
known only at the » real values of s given by s ; = j In2/t where
7=1,2,... ,n. Thus, the GS algorithm does not require complex vari-
ables which simplifies the computer programming. For reference,
the GS coefficients for » = 8— 18 are given in Table 1.

RESULTS

The essential goals of this paper are threefold: (1) to develop the
mathematical formulae for the transient loop response of a rough
geological half-space; (2) to present some EM response curves as a
starting point for developing a better understanding of the physics
that is introduced by associating a roughness parameter 8 to the
geological medium; (3) to expose the practitioner to the range of
transient EM response waveforms that might be found in actual field
measurements. The papers by Everett & Weiss (2002) and Weiss &
Everett (2007) provide field evidence that certain EM loop responses
appear to be consistent with an underlying, spatially homogeneous
rough medium. Additional field studies are, of course, necessary
and encouraged, but beyond the scope of this paper.

In view of the foregoing remarks, in Fig. 1 are shown step-off
transient EM responses for a canonical set of typical but otherwise
arbitrary model parameters: a loop of radius ¢ = 1.0 m and current
I = 1.0 A situated at height # = 0.1 m above a ground of uniform
conductivity, o = 0.1 Sm~'. The nominal distance from the trans-
mitter (TX) to the receiver (RX) is L = 100 m. The responses shown
in the figure are generated by using the GS algorithm to invert the
step-off Laplace-domain EM response given in eq. (22), which is
proportional to the measured RX signal. The roughness parameter
B is varied between B = 0.0 (the classical case) and 8 = 0.5, as
shown in each of the panels. The solid line in the top left-hand
panel making a 68.2° dip angle to the horizontal axis of the log—
log plot of transient RX voltage marks the slope of the late-time
asymptotic response. The slope has the familiar y = —5/2 value
(Ward & Hohmann 1987) that is associated with the /2 late-time
power-law decay of classical EM signals diffusing into a uniform
half-space. The y = —5/2 value is well known to be independent
of the loop radius, current and height as well as the conductivity

of the ground and the TX-RX separation distance. The other pan-
els in the figure show equivalent step-off responses computed for
increasingly larger values of the roughness parameter 8, with the
classical response (light grey lines) shown for comparison. A sys-
tematic decrease in the slope y magnitude of the late-time response
is apparent, from y = —5/2 for the classical case to y = —3/2
for the 8 = 1/2 case. The differences in the responses are certainly
large enough to be detected in field data. The value of the late-time
slope is thus readily measurable and could be used by practitioners
as diagnostic of an apparent roughness of the ground. A simple
analytic relationship between y and § has not been found although,
as shown in Fig. 2, the formula y ~ 8 — 2 roughly holds for § >
1/4.

The accuracy of the GS algorithm is not sufficient to compute
the response to ‘very late’ times well beyond ¢ = 0.1 s. Dr Tilman
Hanstein (private communication, 2008) has used a fast Hankel
transform method to extend the response calculations out to three
decades later in time. He has found that the relation y = 8 — 2
may actually extend to lower values of B than is indicated by the
GS results shown in Fig. 2, with possibly an irregularity at § =
0. Confirmation of the low-8, ‘very-late’ time behaviour is beyond
the reach of the GS algorithm and the scope of this paper. For this
reason, a ‘question mark’ has been added to Fig. 2. Nevertheless,
the behaviour of the ‘very late” slope when the roughness parameter
B approaches zero has no practical relevance because the effects
found by Dr Hanstein are only visible in a time range, which is far
beyond the times for transient electromagnetics (TEM) land systems
with the separate loop configurations. For all practical purposes in
which conventional TEM land systems are used, the results in Fig. 2
shall provide a reliable indication of the late-time slope that would
be observed in the field at low 8 values.

While the £ ~5/2 classical power-law decay does not depend on the
ground electrical conductivity o or TX—RX separation distance L,
it is of interest to inquire whether EM late-time transients from a
rough geological medium are similarly robust with respect to these
model parameters. Shown in Fig. 3 is the step-off response with
roughness parameter §=1/3 for the canonical model, except that
electrical conductivity o is varied from 0.1 to 0.3 to 1.0 Sm~'. The
TX-RX separation distance L is similarly varied from 50 to 100 to
200 m in Fig. 4, all other model parameters retaining their nominal
values. It is readily seen that the late-time asymptotic slope of the

step-off response, in this case y = —5/3, remains invariant with
respect to adjustments in the parameters ¢ and L. These results
suggest that the power-law slope y = —5/3 is a characteristic late-

time feature of EM signals diffusing into a geological half-space
described by roughness parameter 8 = 1/3.

An important feature of step-oft EM transient responses is the
zero-crossing time 7, which measures the time after step-off that
it takes for the induced voltage in the RX loop to change sign.
The sign reversal may be viewed conceptually as the passage of the
subsurface eddy current ‘smoke ring’ vortex beneath the RX loop
(Nabighian 1979). A field measurement of the zero-crossing time
is diagnostic of the subsurface electrical conductivity and, in fact,
is sometimes used to define an apparent ground conductivity. The
zero-crossing is easily recognized; it occurs at the time at which the
cusp appears in the log—log plots of the transient step-off responses.
Weiss & Everett (2007) present a theoretical argument, based on
the treatment of EM induction in a rough geological medium as
a continuous time random walk (Metzler & Klafter 2000), which
suggests that the zero-crossing time 75 should scale with the TX—
RX separation distance L according to 7 ~ L¥U~# (Note that
the o parameter used in Weiss & Everett 2007, is related to the B
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Figure 1. Step-off transient RX voltage as a function of roughness parameter 8. The classical response (top left-hand panel) is shown in grey in the other
panels for comparison with the situations when 8 > 0. The dotted curve in each panel represents a negative transient.

parameter used in this paper by « — 1 — ). We can check their
scaling relation by computing step-off EM transients and plotting
the zero-crossing time as a function of TX-RX separation, for a
number of different roughness values. This has been done and the
result appears in Fig. 5. The computed zero-crossing curves (L)
have been plotted on a log—log scale for roughness parameters vary-
ing from 8 = 0to 1/2. A power-law relationship between 7, and L
is confirmed by the straight line nature of the plots. In the general
case, to a remarkable precision, we note that the slope m is related

© 2009 The Author, GJI, 177, 421-429
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to the roughness parameter 8 by the formula m = 2/(1 — ). This
result confirms the power-law relation 7 ~ L*(~# that was sug-
gested by Weiss & Everett (2007) and lends strong support to the
concept that EM induction in a rough geological medium is equiv-
alent to a continuous time random walk undertaken by the current
elements of the eddy current vortex. Shown in the inset to Fig. 5 are
the ty(L) data from the Brazos (TX) floodplain, which have been
earlier analysed by Weiss & Everett (2007). The data are fit remark-
ably well using a roughness parameter 8 = 0.12 with conductivity
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Figure 3. Step-off transient RX voltage as a function of electrical conduc-
tivity o, for roughness parameter § = 1/3.

o = 0.6Sm™!. Fitting the remarkably linear (L) curve using a
traditional layered or smooth conductivity model o(z) requires a
large number of model parameters.

The results obtained so far in this paper have indicated that the
slope of the late-time step-off transient EM response over a uniform
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Figure 4. Step-off transient RX voltage as a function of TX—RX separation
distance L, for roughness parameter 8 = 1/3.

conducting half-space is indicative of the roughness parameter .
Departures from the classical y = —5/2 value vary systematically
with roughness parameter 8. However, in practical EM systems,
especially as the loop size gets larger, it is difficult to transmit a per-
fect step off. Unwanted transient oscillations similar to a Gibbs phe-
nomenon occur in a TX loop current /(¢) that is abruptly switched
off. For this reason, manufacturers will design a linear ramp-off
function that takes the TX current from its steady value /, down
to zero over a short period of time, typically measured in ps and
known as the ramp-off time 7. Since practical instruments will
record the ramp-off response, it is of interest to this study to exam-
ine the effect of a typical ramp-off time tr on the late-time slope
y of the classical EM transient response. In this way, we can deter-
mine whether there is any ambiguity between geological roughness
B and ramp-off time t in so far as possible departures from the
classical value y = —5/2 of the late-time slope may be concerned.
The classical ramp-off response is readily computed by convolving
the linear ramp function with the classical impulse response, a stan-
dard calculation (Fitterman & Anderson 1987). The result is shown
in Fig. 6 for ramp-off times varying from 0 to 100 to 500 us. It
is readily observed from the figure that the ramp-off time 7 has
only a very small effect on the slope of the late-time response. The
angle of the late-time response slope with the log—log horizontal
axis changes from 68.2° for the classical case to 69.0° for the 7z
= 500 pus case. The associated change in y is much smaller than
the changes in y that were seen in Fig. 1 as the roughness param-
eter 8 was varied. Furthermore, the slope y magnitude increases
as the ramp-off time increases from zero, whereas |y| in Fig. 1
decreases as the geological roughness increases from zero. Thus, it
seems clear that practitioners would not mistake any subtle shift in
the late-time slope associated with a finite ramp-off time with the

© 2009 The Author, GJI, 177, 421-429
Journal compilation © 2009 RAS

810z Jequaeideg |z uo Jasn Aysianiun NRY sexal Aq 6560202/121/2/L L1 AdeAsqe-sie/i[B/woo dnoojwspeoe//:sdiy woly papeojumo(q



EM loop transient response of a rough medium 427

1072 | 6=0.1 S/m
general case: m=2/(1-B)

WO*B |

WOfA’ |

. 10 |
2, 5
T W076 - 3
(od o)
o g8
S -7 L - 6=0.6 S/m =
8 10 N i 3
- 10+ | 3
1078 B | Z
e [ B=0.12 2
1079 - i g
- r BRAZOS DATA &
p=1/2 - 3
10710 | i &
fome = HW‘O1 — HW‘OZ 8
logsq L [m] I

-11 L
WO | | | A I I | | I 5
10 102 103 s
logo L [m] 5

Figure 5. Log—log plot of RX voltage zero-crossing time vz (L) as a function of roughness parameter 8. The Brazos County data, which fit the anomalous
diffusion concept, are shown in the insert.

107 £ much larger, and opposite-polarity, shift in y that is caused by
- 68.20 geological roughness.

= 69 OO As a final illustration of the practical interpretation of EM tran-
TS sient responses acquired over a geologically rough terrain, it is of
interest to inquire whether an observed departure from the classi-
cal y = —5/2 value of the late time slope may also be caused by
\ layering of the electrical conductivity structure. Indeed, in Fig. 7
1 OO HS we show computed step-off classical responses for two-layer earth
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models, alongside the response of the canonical half-space model.
The responses of a resistor-over-conductor (r/c) and a conductor-
over-resistor (c/r) are shown. Note that, indeed, the late-time slopes
of the two-layer model responses depart significantly from the y =
—5/2 value exhibited by the response of the canonical half-space
model. It therefore appears that a field measurement of the late-time
slope of'the transient response cannot be used to distinguish between
layering and apparent roughness. However, as shown in Fig. 8, the
zero-crossing curve Ty (L) provides vital information, which can
resolve ambiguities. The (L) curves for the two-layer models are
non-linear, in contrast to the linear moveout of the classical half-
space model. Indeed, a linear t4(L) moveout curve is generated
for any value of roughness §, as we earlier have shown in Fig. 5.
Specifically, the r/c model zero-crossing curve contains a kink at
L ~ 40 m, whose origin is due to the presence of the subsurface con-
ductivity contrast at # ~ L /2 = 20 m. The c¢/r model zero-crossing
curve flattens out with increasing L due to the underlying resistive
layer, which, as is well-known, tends to shorten the zero-crossing
time at large TX-RX separations. To summarize, both layering
and geological roughness generate departures from the classical
late-time slope value of y = —5/2. However, an apparent rough-
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Figure 8. Log—log plot of RX voltage zero-crossing time 7y (L) for two-
layer conductivity models.

practitioner from a classical layered model by examining in field
responses both the late-time slope and the shape of the zero-crossing
moveout curve. Although it is conceivable that a multilayered model
could generate a power-law 74(L) moveout curve, such a model
would require several or more model parameters to describe. A
spatially uniform rough geological model would require only the
specification of a single parameter S to explain the same power-law
moveout behaviour.

CONCLUSIONS

Itis being increasingly recognized by Earth scientists that geological
media are inherently rough with persistent, long-range spatial corre-
lations in physical properties, including electrical conductivity, that
span many decades in length scale. Traditional EM modelling al-
gorithms utilize unrealistic piecewise smooth representations of the
geoelectric structure. Motivated by previous controlled-source EM
field studies (Everett & Weiss 2002; Weiss & Everett 2007) along
with recent advances in fractional diffusion equations in the context
of continuous-time random walks (Metzler & Klafter 2000), we
have developed equations for computing the transient EM response
of'aloop switched off in the presence of a spatially rough geological
half-space. Certain interesting properties of the late-time slope y
and the zero-crossing curve ty(L) have been explored. Knowledge
of these properties enables practitioners to recognize the signature
of rough geology in their field observations. It has been shown that
geological layering can be distinguished from geological rough-
ness, and that the effect of a finite TX-current ramp-off time is
not a significant impediment to a putative roughness parameter
determination.

The commonly used in-loop configuration is not considered here
since the fractal nature of the geology is identified in our work
through the anomalous moveout, from the transmitter, of the sub-
surface eddy current vortex. This is described in detail in Weiss &
Everett (2007). The zero-crossing curve, constructed using a vari-
able TX-RX offset configuration, lends itself to a ready examination
of the possible effects of fractal geology. The technique described
in this paper is practical in the sense that once TEM47 sounding
curves are acquired, they can be readily checked for anomalous
fractal effects on the late-time slope y and the zero crossing curve
7y (L). The resolution of individual fractal layers is an important
question; a layered-earth solution to the fractal diffusion equation is
currently under development. Finally, it is recommended that ad-
ditional controlled-source EM field studies should be carried out
in different geological settings to provide support for the theory set
forth in this paper and to develop relationships between the apparent
roughness parameter 8 and important geological variables such as
lithology, porosity, fracture density, and clay and water content.
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