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1. Introduction

An important question in superstring theory is whether there are compactifications

to a lower-dimensional Minkowski spacetime that preserve some fraction of the super-

symmetry of the 10-dimensional Minkowski vacuum. At string tree-level, this question
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can be addressed within the α′ expansion of the effective supergravity theory; we shall

consider only type II string theories for which the leading α′ correction occurs at order

α′3 and has an R4 structure. If fermions are omitted, then the corrected action for the

metric and dilaton takes the form

L =
√−g e−2φ

(
R + 4(∂φ)2 − c α′3 Y

)
(1.1)

for a known constant c, proportional to ζ(3), and a known scalar Y that is quartic in

the Riemann tensor of the 10-dimensional spacetime.

We shall primarily be concerned with solutions to the equations of motion of this

action for which the dilaton is constant to lowest order and the 10-dimensional space-

time is the product of 2-dimensional Minkowski spacetime with some initially Ricci-flat

Riemannian 8-dimensional manifold M8, with curvature tensor Rijkℓ. In this case,

Y = 1
64
(ti1···i8 tj1···j8 − 1

4
ǫi1···i8 ǫj1···j8)Ri1i2j1j2 Ri3i4j3j4 Ri5i6j5j6 Ri7i8j7j8 . (1.2)

≡ Y0 − Y2 , (1.3)

where the SO(8)-invariant t-tensor is defined by

ti1···i8 Mi1i2 . . .Mi7i8 = 24Mi
j Mj

kMk
ℓMℓ

i − 6(Mi
j Mj

i)2 (1.4)

for an arbitrary antisymmetric tensorMi1i2 . Note that in the decomposition Y = Y0−Y2
in (1.3), the subscripts on Y0 and Y2 indicate that these are the terms built with 0 and

2 epsilon tensors respectively.

If M8 is assumed to be compact, then consistency with the initially nondilatonic

structure requires [1, 2] ∫

M8

Y = O (α′) . (1.5)

The simplest way to satisfy this criterion is to demand that Y = 0 to leading order

in the α′ expansion, and this is satisfied if M8 = K8 for some manifold K8 of special

holonomy (which is necessarily Ricci-flat). This is also what one needs for the lowest-

order solution to preserve supersymmetry. The number of supersymmetries preserved

equals the number of linearly-independent Killing spinors; i.e., real SO(8) spinors ψ0

satisfying

RijkℓΓ̃
kℓψ0 = 0. (1.6)

where Γ̃i are the 16 × 16 real SO(8) Dirac matrices (the notation is chosen to agree

with that of [2]).

To see why one has Y = 0 when M8 = K8 of special holonomy, we note that Y can

be expressed as a Berezin integral [1]

Y ∝
∫
d16ψ exp

[(
ψ̄−Γ̃

ij ψ−

)(
ψ̄+Γ̃

kℓ ψ+

)
Rijkℓ

]
, (1.7)
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where ψ̄ = ψT and the integration is over the 16 components of a real anticommuting

constant SO(8) spinor or, equivalently, over all 16 linearly-independent SO(8) spinors

ψ. We can write ψ = ψ+ +ψ−, where ψ± are the chiral and antichiral projections of ψ.

If there are any Killing spinors amongst them, as there will be if M8 = K8 of special

holonomy, then the rules of Berezin integration imply that Y = 0.

If we use α and α̇ to denote 8-component right-handed and left-handed spinor

indices respectively, then up to an inessential constant factor, (1.7) can be rewritten as

Y = ǫα1···α8 ǫβ̇1···β̇8 Γi1i2
α1α2

· · ·Γi7i8
α7α8

Γj1j2

β̇1β̇2
· · ·Γj7j8

β̇7β̇8
×

Ri1i2j1j2 Ri3i4j3j4 Ri5i6j5j6 Ri7i8j7j8 . (1.8)

It is straightforward to show that

1
256
ǫα1···α8 Γi1i2

α1α2
Γi3i3
α3α3

Γi6i6
α5α6

Γi7i8
α7α8

≡ ti1···i8+ = ti1···i8 + 1
2
ǫi1···i8 , (1.9)

1
256
ǫβ̇1···β̇8 Γj1j2

β̇1β̇2
Γj3j4

β̇3β̇4
Γj5j6

β̇5β̇6
Γj7j8

β̇7β̇8
≡ ti1···i8− = tj1···j8 − 1

2
ǫj1···j8 , (1.10)

(with one overall convention choice determining which right-hand side has the plus

sign, and which the minus). Thus we see that (1.7) is of the form t− t+R
4, and hence

gives rise to (1.2).

It might appear from this result that configurations with constant dilaton and a

spacetime of the form E
(1,1) × K8 will automatically continue to be solutions of the

α′3-corrected field equations, in which case one would expect the special holonomy

of K8 to guarantee that supersymmetry is preserved. This is true if K8 = T 4 × K4

for a 4-manifold of SU(2) holonomy (i.e., a hyper-Kähler manifold) but it is false in

general because, although Y vanishes for a manifold of special holonomy, its variation

with respect to the metric yields a tensor Xij as a source in the corrected Einstein

equations, and this tensor may be non-zero even though Y = 0. Specifically, under the

circumstances described, the corrected Einstein and dilaton equations are to O(α′3)

Rij + 2∇i∇j φ = c α′3Xij ,

R + 4∇2φ = 0 . (1.11)

When K8 = T 2 ×K6 for a 6-dimensional manifold of SU(3) holonomy; i.e., when

K6 is a Calabi-Yau (CY) manifold, the correction due to the tensor Xij deforms the

leading-order CY metric to one of U(3) holonomy [3]. However, as shown in [4], this

deformation does not break the supersymmetry of the undeformed solution because

there is a compensating α′3 correction to the gravitino supersymmetry transformation

law or, equivalently, to the covariant derivative acting on spinors. More precisely, it

was shown that there is a possible corrected covariant derivative that has this prop-

erty; it is expected that this will be needed for a construction of the supersymmetric
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extension of the Lagrangian (1.1), but this complete construction has yet to be carried

out in sufficient detail. Nevertheless, this perspective makes it clear that any proposed

corrections to the supersymmetry transformations must be expressible in purely Rie-

mannian terms, without the use of any special structures arising from special holonomy.

The proposal of [4] passes this test, which is quite non-trivial in view of the fact that

the methods used (details of which can be found in the review [5]) relie heavily on the

Kähler properties of CY manifolds. It turns out that the purely Riemannian form of

the corrected covariant derivative has an obvious extension to 8-manifolds, which is all

that will be needed here, and the result can then be summarised by saying that the

standard covariant derivative ∇i acting on SO(8) spinors must be replaced by

∇̂i = ∇i −
3c

4
α′3 [

(∇j Rikm1m2)Rjℓm3m4 R
kℓ

m5m6

]
Γ̃m1···m6 +O

(
α′4) (1.12)

It is important to appreciate that it was not claimed in [4] that this is the only correc-

tion of relevance to this order in the α′ expansion, but rather that this term is sufficient

for lowest-order backgrounds of the form E
(1,3)×K6 and its related toroidal compactifi-

cations such as E(1,1)×T 2×K6. In particular, there could be additional terms that are

non-zero for a spacetime of the form E
(1,1)×M8 but which vanish when M8 = T 2×K6.

It is also important to appreciate that the question of whether or not the special-

holonomy backgrounds continue to be supersymmetric in the face of α′3 corrections

is one that cannot be addressed unless one has knowledge of the order α′3 correction

to the gravitino transformation rule1. At perturbation orders higher than α′3, there

will also certainly be further corrections. In the present paper, however, we limit the

discussion to at most this order.

Similar issues arise when K8 = S1 × K7 for a 7-manifold K7 of G2 holonomy,

as one would expect since the special case K7 = S1 × K6 yields K8 = T 2 × K6. In

particular, the α′3R4 corrections to supergravity arising from the exchange of massive

string states must deform any lowest-order compactification on a manifold of initial

G2 holonomy to a compactification on a manifold of generic SO(7) holonomy, and

it is far from obvious that such a solution will continue to preserve supersymmetry.

Moreover, as G2-manifolds are not Kähler, the methods used to address this issue in

the CY case are no longer available. However, using the existence of the associative

3-form on a G2 manifold, we were able to show in a previous paper [2] that there is

a simple correction to the covariant derivative on spinors that implies supersymmetry

1After the completion of the first version of this paper, but before its submission to the archives,

there appeared a paper [6] having some overlap with our Spin(7) results, but without any discussion

of the order α′3 corrections to the supersymmetry transformation rules that are needed to address the

question that is central here; i.e., whether supersymmetry is maintained in the corrected background.
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preservation of the modified solution, and we used this result to determine the explicit

form of the correction for most of the known classes of cohomogeneity-one 7-metrics

with G2 structures (as was done for an analogous class of CY metrics in [7]). Despite

the fact that our simple form of the corrected covariant derivative made explicit use of

the associative 3-form available only for G2 manifolds, it was again found possible (by

making crucial use of properties of G2 manifolds) to rewrite this corrected covariant

derivative in purely Riemannian terms. There is again an obvious extension to 8-

manifolds, and the resulting covariant derivative acting on SO(8) spinors was once

again found to be (1.12).

Corrections to the effective supergravity action of the form R4 arise not only at

tree level in string theory but also at the one-loop level. This correction is related by

dualities to an analogous R4 M-theory correction to 11-dimensional supergravity. The

latter has a structure that differs from the R4 tree-level string-theory correction, and it

also includes an A ∧X8 Chern-Simons (CS) term that is absent at tree level in string

theory. However, for G2 compactifications, these differences are unimportant, so we

were able to lift our string-theory results directly to M-theory. There was a subtlety,

however, arising from the fact that an α′3 correction to the dilaton was needed at

tree-level in string theory whereas there is no dilaton in 11 dimensions. However, the

effect of the dilaton in string theory can be achieved in M-theory by a modification of

the R4 invariant via a field redefinition. We were thus able to show (i) that M-theory

implies a modification of G2 compactifications of 11-dimensional supergravity in which

the 7-metric of G2 holonomy is deformed to one of generic, SO(7), holonomy, and (ii)

that (N = 1) supersymmetry of the effective four-dimensional theory is maintained,

despite this deformation, at least to order α′3.

One purpose of this paper is to extend our results on G2 compactifications, as sum-

marised above, to Spin(7) compactifications. In this respect this should be considered

as a companion paper to [2]. At tree-level in string theory our Spin(7) results are sim-

ilar to those obtained in [2], although there are some additional technical difficulties

and subtleties. We also determine explicit supersymmetry-preserving α′3 corrections

for some of the known classes of cohomogeneity-one 8-metrics with Spin(7) structures.

At one-loop in string theory, or in M-theory, however, there are more substantial differ-

ences arising from the necessity to take into account the Chern-Simons terms associated

with the R4 corrections, and for compact K8 there is also a topological constraint that

must be taken into account. We find that there is nevertheless a supersymmetric de-

formation of Spin(7) compactifications of M-theory, and hence of 1-loop corrected IIA

superstring theory, whether or not the Spin(7) manifold is actually compact.

Another purpose of this paper is to consider the effects of the R4 corrections of

M-theory on compactifications of eleven-dimensional supergravity on ten-manifolds of
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SU(5) holonomy. This is of considerable interest because it probes aspects of M-

theory lying beyond those that are accessible from perturbative string theory. We find

corrections to the leading-order backgrounds, and we also consider their supersymmetry.

As for the Spin(7) compactifications, there is a topological constraint to take into

account. This constraint arises for any SU(5)-holonomy 10-manifold K10 with non-

trivial homology group H8. As H8 is isomorphic to H2 for any compact 10-manifold

(by Poincaré duality) and since H2 is obviously non-trivial (because K10 is Kähler),

there is a topological constraint on SU(5)-holonomy compactifications of M-theory,

and this constraint even applies to non-compact backgrounds if H8 is non-trivial. The

implications for supersymmetry of of this topological constraint are not at present fully

clear to us, so we shall restrict ourselves here to the class of non-compact 10-manifolds

K10 of SU(5) holonomy for which H8 is trivial and for which the topological constraint

is therefore trivially satisfied. Even so, our results for this case are worthy of note;

we find that the same correction to the gravitino transformation rule that ensured the

continued supersymmetry of the Spin(7) holonomy backgrounds also implies that the

corrected SU(5) holonomy backgrounds maintain supersymmetry. Interestingly, the

corrected SU(5) background is no longer even Kähler, but it is still a complex manifold

of vanishing first Chern class.

2. Spin(7) Preliminaries

As pointed out in [2], the structure of the R4 invariant Y implies that the tensor Xij ,

which arises from the variation of Y and which appears in the corrected Einstein field

equation, takes the form

Xij = X̃ij +∇k∇ℓXijkℓ (2.1)

for a tensor X̃ij , quartic in the curvatures and a tensor Xijkℓ that is cubic in curvatures.

We will show in this section that if the variational expression Xij is then evaluated in

a background that has Spin(7) holonomy, then

X̃ij = 0 (2.2)

and in fact Xij is given by

Xij =
1
2
cmnk

(i c
pqℓ

j)∇k ∇ℓ Zmnpq +∇k ∇ℓ Zmnk(i c
mnℓ

j) , (2.3)

where cijkℓ is the calibrating 4-form on the Spin(7) holonomy background, and

Zmnpq = 1
64
ǫmni1···i6 ǫpqj1···j6 Ri1i2j1j2 Ri3i4j3j4 Ri5i6j5j6 . (2.4)
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2.1 Properties of Spin(7) manifolds

We begin with some basic results about Spin(7) manifolds. There is a single real

(commuting) Killing spinor, η, that is either chiral or anti-chiral. We choose conventions

in which η is anti-chiral, corresponding to the Spin(7) decomposition

8+ −→ 8 , 8− −→ 7 + 1 . (2.5)

of the chiral/anti-chiral spinor irreps of SO(8). Note that the vector representation of

SO(8) remains irreducible:

8v −→ 8 . (2.6)

We shall normalise the commuting Killing spinor η so that η̄ η = 1 (where η̄ = ηT ).

Given this normalisation, and introducing Γ9 as the (real) SO(8) chirality matrix, we

have the identities

Γi η η̄ Γ
i = 1l+ , η η̄ − 1

8
Γij η η̄ Γ

ij = 1l− (2.7)

where

1l± ≡ 1
2
(1l± Γ9), (2.8)

which is the identity operator projected into the chiral or anti-chiral spin bundle.

The calibrating 4-form has components that are expressible as

cijkℓ = η̄ Γijkℓ η . (2.9)

It is straightforward to establish the following identities:

cijkℓ Γ
kℓ η = −6Γij η , (2.10)

cijkp c
ℓmnp = 6δℓmn

ijk − 36δ[i
[ℓ cjk]

mn] . (2.11)

Recalling the Killing spinor integrability condition RijkℓΓ̃
kℓη = 0, one can also show

that

Rijkℓ c
kℓ

mn = 2Rijmn ; (2.12)

this is the condition for Spin(7) holonomy.

2.2 Correction to the Einstein equations

In order to derive the α′3 corrections to the Einstein equations at string tree level, we

need to evaluate the variation of the quartic-curvature term Y . This was relatively

straightforward in the case of corrections to six-dimensional Calabi-Yau backgrounds

K6, [3], and for corrections to seven-dimensional G2-holonomy backgrounds K7 [2]. The
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reason for this is that in each case, one has SO(8) Killing spinors of both chiralities in

the K8 = R
2 × K6, or K8 = R ×K7 eight-dimensional transverse space. This means

that when one varies the metrics or vielbeins in the Berezin integral (1.7), the only

terms that can survive are those where the metrics in one of the Riemann tensors itself

are varied. This is because they are the only terms where one does not inevitably end

up with Killing spinors linked to an unvaried Riemann tensor and thus vanishing by

virtue of (1.6).

Additionally, because of the non-chiral nature of the Killing spinors in K8 in the

previous cases, it was straightforward to express the variation of Y , originally written

in terms of spinors in the Berezin integral (1.7), in terms of tensorial quantities built

from Riemann tensors and the Kähler form of K6 or the associative 3-form of K7.

This stemmed from the fact that for both chiral and antichiral SO(8) spinors, one had

decompositions under SU(3) or G2 that provided a one-to-one mapping between the

vector and the spinor representation in K6 or K7.

In the case of Spin(7) holonomy manifolds K8 things are more subtle for two rea-

sons. Firstly, we have a Killing spinor of only one eight-dimensional chirality, which

we are taking, by convention choice, to be antichiral. This means that we could, a

priori, encounter non-vanishing terms in the variation of Y , defined in (1.7), in which

vielbeins used in contracting the Riemann tensors onto the Dirac matrices are varied,

leaving all four Riemann tensors unvaried.

Secondly, we can see from (2.5) and (2.6) that, while the 8+ spinor representation of

SO(8) is indeed isomorphic to the 8v vector representation in a Spin(7) background, the

8− spinor representation is not. This could lead to obstacles in rewriting the variation

of Y , given by (1.7), in a purely tensorial form.

To address these problems, it is helpful to introduce two further quartic-curvature

invariants, which we shall call Y− and Y+. These are defined in terms of Berezin

integrals analogous to (1.7), except that now we have

Y+ ∝
∫
d8ψ+ d

8χ+ exp
[(
ψ̄+Γ̃

ij ψ+

)(
χ̄+Γ̃

kℓ χ+

)
Rijkℓ

]
. (2.13)

Y− ∝
∫
d8ψ− d

8χ− exp
[(
ψ̄−Γ̃

ij ψ−

)(
χ̄−Γ̃

kℓ χ−

)
Rijkℓ

]
, (2.14)

The integration in (2.13) is over two independent sets of chiral SO(8) spinors, while in

(2.14) it is over independent two sets of antichiral spinors. From (1.9) and (1.10), we

see that Y+ and Y− are given by

Y± = 1
64
ti1···i8± tj1···j8± Ri1i2j1j2 · · ·Ri7i8j7j8 ,

= 1
64
(ti1···i8 tj1···j8 ± ti1···i8 ǫj1···j8 + 1

4
ǫi1···i8 ǫj1···j8)Ri1i2j1j2 · · ·Ri7i8j7j8 , (2.15)

≡ Y0 ± Y1 + Y2 , (2.16)
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where Y0 and Y2 are the same as in (1.3), and Y1 is the term in (2.15) that is linear in

the epsilon tensor.

A crucial property of the invariants Y± is that they differ from the actual effective

action contribution Y by terms that are purely topological in D = 8:

Y± − Y = ±Y1 + 2Y2 = (±ti1···i8 + 1
2
ǫi1···i8)ǫj1···j8 Ri1i2j1j2 · · ·Ri7i8j7j8 . (2.17)

As an 8-form, written in terms of the curvature 2-forms Θij, the difference is given by

∗(Y± − Y ) = 16(±ti1···i8 + 1
2
ǫi1···i8) Θi1i2 ∧ · · · ∧Θi7i8 , (2.18)

which makes the topological nature manifest. Because of this, the integrals of Y , Y+ and

Y− all have the same variation,2 evaluated on an eight-dimensional curved background,

and so we can use either Y+ or Y− in place of Y for the purpose of computing the

variation Xij (even though Y+ does not vanish in the special-holonomy background).3

Each of the Y± has its own advantages and disadvantages, when used in place of

Y to calculate the variation Xij . If we vary Y−, then it is manifest that no terms from

the variation of the bare vielbeins contracting Riemann tensors Rµ
νρσ onto Dirac ma-

trices Γij will survive in the Berezin integration. This is because we will always have a

contribution either of the form Rijkℓ Γ
kℓ η or Γijη Rijkℓ in every term where the explicit

vielbeins are varied, and these then vanish by virtue of the integrability condition for

the (antichiral) Killing spinor. Thus only terms arising from the variation of metrics

contained within the connections from which Rµ
νρσ is composed will survive. This

means that, after integration by parts, the variation of Y− will necessarily involve only

terms constructed from two covariant derivatives acting on (Riemann)3 structures, and

that there will be no terms quartic in Riemann tensors without derivatives. The draw-

back to using Y−, however, is that there is no isomorphism between the decompositions

of the 8− and 8v representations of SO(8) under restriction to Spin(7), and therefore

2To be precise, when we say that Y , Y+ and Y− all have the same variation, we mean that their

variations differ by total derivatives. At string tree level, where these quantities are multiplied by

e−2φ, the total derivatives will integrate by parts to give contributions involving derivatives of the

dilaton when comparing the corrected Einstein equations. However, since the Y term is accompanied

by an explicit α′3 factor, and since the dilaton is constant in the leading-order background these extra

derivative terms contribute at best at order α′6 in the corrected Einstein equations, and thus they

may be neglected at the α′3 order to which we are working. At string one-loop, or in M-theory, there

is no dilaton prefactor, and so the integration by parts simply gives zero.
3We should note, because a failure to do so has caused some confusion in the earlier literature,

that the computed result for the Berezin integral for Y that is given in Ref. [1] is actually the result

obtained by computing the Berezin integral for Y+, but since Y+ = Y for the CY compactifications

considered there, and since the variations are also the same, the distinction was unimportant there.

In our case, however, the distinction is important.
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we do not have a simple direct way of re-expressing δY− in purely bosonic tensorial

terms.

On the other hand, if we vary Y+ then the isomorphism between the irreducible 8+
and 8v representations of SO(8) under restriction to Spin(7) does in this case provide

us with a simple way to recast δY+ in purely bosonic tensorial terms. The drawback to

using Y+, however, is that there are no spinor zero modes at all in the Berezin integral

(2.13), and so it is not immediately manifest that the terms coming from the variation

of the bare vielbeins that contract Riemann tensors Rµ
νρσ onto Dirac matrices Γij will

not contribute. Indeed, Y+ itself does not even vanish in the Spin(7) background.

We can however make use of the complementary properties that are manifested in

the different expressions Y , Y+ and Y−, and thereby “have our cake and eat it too.” In

particular, we note that the difference Y+ − Y− is also topological,

Y+ − Y− = 2ti1···i8 ǫj1···j8 Ri1i2j1j2 · · ·Ri7i8j7j8 , (2.19)

which means that after the varied expression is specialised to a Spin(7) background,

we must have it that δY− and δY+ give the same contribution to the corrected Einstein

equations, at order α′3. In particular, we can see that (2.19) may be written in terms

of Riemann tensors Rµ
νρσ without the use of any bare metrics or vielbeins. We can

now invoke the above observation that the variation of Y− does not contain any terms

coming from the variation of bare vielbeins to see that there will be no such terms

in the variation of Y+ either. Then, we are in a position to exploit the isomorphism

between the decompositions of the 8+ and 8v representations of SO(8) under restriction

to Spin(7) to obtain a simple tensorial expression for δY+, and hence δY .

It follows from (1.9) and (2.15) that we shall have

Y+ ∝ ǫα1···α8 ǫβ1···β8 Γi1i2
α1α2

· · ·Γi7i8
α7α8

Γj1j2
β1β2

· · ·Γj7j8
β7β8

×
Ri1i2j1j2 Ri3i4j3j4 Ri5i6j5j6 Ri7i8j7j8 . (2.20)

Because the 8+ and 8v representation become the same irreducible representation of

Spin(7), the expression (2.20) can be rewritten such that only vector indices are needed.

Specifically, the mapping between 8+ and 8v is implemented by

νiα = Γi

αβ̇
ηβ̇ . (2.21)

This matrix has unit determinant, and so we can write

ǫα1···α8 = να1
i1

· · ·να8
i8
ǫi1···i8 . (2.22)

Since we have argued that there will be no contributions coming from varying the

bare vielbeins in (2.20), after specialising the varied expression to a Spin(7) background,
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we need only vary the metrics in the connections from which the Riemann tensors

themselves are constructed. Up to a constant factor, which is as yet inessential to our

discussion, we therefore have

δY+ = 4ǫα1···α8 ǫβ1···β8 (Γi1i2)α1α2 · · · (Γi7i8)α7α8 (Γ
j1j2)β1β2 · · · (Γj7j8)β7β8 ×

Ri1i2j1j2 · · ·Ri5i6j5j6 δRi7i8j7j8 ,

= 8ǫα1···α8 ǫβ1···β8 (Γi1i2)α1α2 · · · (Γi7i8)α7α8 (Γ
j1j2)β1β2 · · · (Γj7j8)β7β8 ×

Ri1i2j1j2 · · ·Ri5i6j5j6 ∇i7∇j7 δgi8j8 . (2.23)

where δRi7i8j7j8 denotes the variation of the Riemann tensor with respect to the metric.

From the properties (2.10) and (2.11), one easily shows that

η̄ Γi Γ
kℓ Γj η = cij

kℓ + 2δkℓij , (2.24)

and hence, using (2.12) repeatedly, we see that up to a further inessential overall factor

(and specialised to the Spin(7) background) we have

δY+ = Zmnpq (cmn
ij + 2δijmn) (cpq

kℓ + 2δkℓpq) δRijkℓ (2.25)

where

Zmnpq = 1
64
ǫmni1···i6 ǫpqj1···j6 Ri1i2j1j2 Ri3i4j3j4 Ri5i6j5j6 . (2.26)

The following useful properties of Zmnpq can easily be established:

Zmnpq = Zpqmn = −Znmpq = −Zmnqp ,

∇m Z
mnpq = 0 , cmnpr Z

mnpq = 0 . (2.27)

We therefore conclude that the variation of Y gives

Xij =
1
2
cmnk

(i c
pqℓ

j)∇k ∇ℓ Zmnpq +∇k ∇ℓ Zmnk(i c
mnℓ

j) . (2.28)

Note that a simple calculation using (2.10), (2.11), (2.12) and (2.27) shows that

gijXij = Z , (2.29)

and hence from (1.11) we learn that

Rij = c α′3 (Xij +∇i∇j Z) , (2.30)

φ = −1
2
c α′3 Z . (2.31)
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3. Correction to the Supersymmetry Transformation Rule

Since the effect of the α′3 corrections is to deform the original Spin(7) metric to one

that is no longer Ricci flat, it follows that it will no longer have Spin(7) holonomy and

so it will no longer admit a covariantly constant spinor. However, one knows that at

the same time as the α′3 corrections to the string effective action set in, there also

will be corresponding corrections to the supersymmetry transformation rules at the α′3

order. These were discussed in the context of six-dimensional Calabi-Yau backgrounds

in Refs [4, 5], where it was indeed shown that the deformed metrics, which acquire

an extra U(1) factor to their original undeformed SU(3) holonomy, have the feature of

still admitting spinors that are constant with respect to a modified covariant derivative.

This O(α′3) modification can be understood as the necessary correction to the gravitino

transformation rule at this order. This issue was discussed further for Calabi-Yau

backgrounds in [7], and for seven-dimensional backgrounds with G2 holonomy in [2].4

Here, we shall begin by introducing the following modified covariant derivative,5

Di ≡ ∇i +Qi = ∇i +
1
4
c α′3 cijkℓ∇j Zkℓmn Γmn . (3.1)

where the Z-tensor is the one defined in (2.26). After some algebra, which involves mak-

ing extensive use of properties given in subsection 2.1, one finds that the integrability

condition [Di, Dj] η = 0 for the existence of a spinor satisfying Di η = 0 precisely im-

plies that (2.30) holds. This, therefore, is our candidate expression for the modification

to the gravitino transformation rule in an originally Spin(7) background; δψi = Di ǫ.

As it stands, (3.1) is written using the special tensor cijkℓ specific to a Spin(7)

background. One knows, of course, that the modified supersymmetry transformation

rules (and also the modified equations of motion) should all be expressible in fully

covariant Riemannian terms, making no use of additional invariant tensors that exist

only in special backgrounds. This question has been addressed for Calabi-Yau and

G2 backgrounds in the previous literature [4, 2], and indeed the candidate expressions

for the modified supersymmetry transformation rules that were written down in [4, 5]

were fully Riemannian expressions that were shown to be compatible with special forms

written in Kähler language. In [2], it was shown that the Riemannian expressions in

4It should be emphasised that if these order α′3 corrections to the supersymmetry transformation

rule are not included, then one will not be able to demonstrate the preservation of supersymmetry in

the α′3-corrected backgrounds.
5Note that for our present purposes, where we are simply concerned with establishing the circum-

stances under which a Killing spinor exists, we may view two formulations of a gravitino transformation

rule as equivalent if they agree when acting on the putative Killing spinor. Here, as in much of the

previous literature, we shall commonly adopt this viewpoint.
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[4, 5] were also compatible with a special form written using the calibrating 3-form in

a G2 background.

Here, we shall show that the modified derivative Di defined in (3.1) can be re-

expressed without the use of the special tensor cijkℓ of a Spin(7) background, and

that in fact (3.1) is nothing but the Spin(7) specialisation of the Riemannian results

conjectured in Refs [4, 5].

To do this, it is useful first to note that we have

cijkℓ ǫ
kℓi1···i6 = η̄ Γijk Γℓ η ǫ

kℓi1···i6 = η̄ Γijk Γ
kii···i6η ,

= −4δ
[i1i2
ij ci3i4i5i6] , (3.2)

and hence

Qi =
1
64
c α′3 δ

[i1i2
ij ci3i4i5i6] ǫmnj1···j6 ∇j (Ri1i2j1j2 Ri3i4j3j4 Ri5i6j5j6) Γmn (3.3)

Since all the permutations of the indices {i1 · · · i6} involve at least one of the Riemann

tensors having a double contraction with cijkℓ, it follows that we can make use (2.12) and

thereby absorb all occurrences of this special tensor. After performing the necessary

combinatoric manipulations, and some further simplifications using the Bianchi identity

for the Riemann tensor, we arrive at the result

Qi = −3
4
c α′3 (∇j Rikm1m2)Rjℓm3m4 R

kℓ
m5m6 Γ

m1···m6 . (3.4)

In this form, Qi can be recognised as precisely the same modification to the Killing

spinor condition that was proposed in [4]. In that case, the proposal was based on

a consideration of deformations from SU(3) holonomy for six-dimensional Calabi-Yau

backgrounds. It was also shown in [2] that the more stringent conditions arising for

G2 backgrounds lead to exactly the same modification to the Killing spinor condition.

Here, we have shown that the yet more stringent conditions of a Spin(7) background

again yield the same result, confirming the validity of the Riemannian expression (3.4)

that was conjectured in [4].

Of course since a six-dimensional space of SU(3) holonomy (times a line or circle)

is just a special case of a G2 manifold, and a seven-dimensional space of G2 holonomy

(times a line or circle) is a special case of a Spin(7) manifold, it follows that our

derivation here encompasses the previous SU(3) and G2 results in [4] and [2].

4. α′3 Corrections for Eight-Dimensional Kähler Metrics

An eight-dimensional Ricci-flat Kähler metric is a Spin(7) metric, since its SU(4) holon-

omy is contained within Spin(7). Specifically, the embedding can be seen by examining
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the decomposition of the three eight-dimensional representations of the SO(8) tangent-

space group first to Spin(7) and then to SU(4):

SO(8) Spin(7) SU(4)

8+ −→ 8 −→ 4 + 4

8− −→ 7 + 1 −→ 6 + 1 + 1

8v −→ 8 −→ 4 + 4

The two singlets in the decomposition of the 8− under SU(4) indicate that there

are two covariantly-constant left-handed Majorana-Weyl spinors, say η1 and η2, in the

SU(4)-holonomy metric, which we may normalise to η̄A ηB = δAB. From these, we may

define complex left-handed spinors η± and η̄± as

η± ≡ 1√
2
(η1 ± i η2) , η̄± ≡ 1√

2
(η̄1 ± i η̄2) . (4.1)

We shall then have

Jij = i η̄+ Γij η− = η̄1 Γij η2 , 3J[ij Jkℓ] = η̄+ Γijkℓ η− ,

Ωijkℓ = η̄+ Γijkℓ η+ , Ωijkℓ = η̄− Γijkℓ η− , (4.2)

where Jij is the Kähler form, and Ωijkℓ is the holomorphic 4-form, with its complex

conjugate Ωijkℓ.

We may take the calibrating 4-form cijkℓ of the SU(4) metric, viewed as a Spin(7)

metric, to be given by cijkℓ = η̄1 Γijkℓ η1. It then follows from (4.2) that we shall have

cijkℓ =
1
2
(Ωijkℓ + Ωijkℓ) + 3J[ij Jkℓ] . (4.3)

In a Kähler metric, the only non-vanishing components of the Riemann tensor are

“mixed” on both the first index-pair and the second index-pair. In other words if the i

index on Rijkℓ is holomorphic then j must be antiholomorphic, and vice versa, with a

similar property for k and ℓ. From the definition (2.26) of Zmnpq, it then follows that

this tensor must similarly be mixed on its mn indices and in its pq indices. From this,

it follows that

Ωijmn Z
mnpq = 0 , (4.4)

together with similar relations following from symmetries and from conjugation. A

Kähler metric also has the property that

Jk
m Jℓ

nRijmn = Rijkℓ , (4.5)
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together with the analogous property on the first index-pair. These expressions can be

written more elegantly using the “hat” notation introduce in [8], where, for any vector

Vi, one defines

Vî ≡ Ji
j Vj . (4.6)

Thus (4.5) becomes Rîĵkℓ = Rijkℓ. From (2.26), it therefore follows that

Z îĵpq = Z ijpq , Zmnîĵ = Zmnij . (4.7)

Using the above results, it is now straightforward to show that the expression for

Xij that we obtained for a Spin(7) background in (2.28) reduces to

Xij =
1
2
∇î∇ĵ (Jmn Jpq Z

mnpq) (4.8)

in an eight-dimensional Ricci-flat Kähler background. After a little further manipula-

tion, we find that the result (2.30) for the α′3 correction to the Ricci-flatness condition

in a Spin(7) background reduces for an eight-dimensional Ricci-flat Kähler background

to the corrected condition

Rij = c α′3 (∇î ∇ĵ +∇i ∇j)Z , (4.9)

where, as before, we have defined Z ≡ Zmn
mn. This is in agreement with the standard

result that one obtains from the calculation of the supersymmetric sigma-model beta-

function at four loops.

In a similar manner, we can specialise the Spin(7) correction term Qi in the spinor

covariant derivative Di = ∇i +Qi to the case of an eight-dimensional Ricci-flat Kähler

metric. Using the properties discussed above, we find that Qi defined in (3.1) reduces

to

Qi =
1
4
c α′3∇î (JkℓZ

kℓmn) Γmn . (4.10)

It was shown in [7] that when acting on a covariantly-constant spinor in a Kähler

background one has

(Γij + Γîĵ) η = 2i Jij η , (4.11)

and hence it follows that when acting on η, the modified covariant derivative in the

deformed background reduces to

Di η = ∇i η +
i
4
c α′3∇î (Jkℓ Jmn Z

kℓmn) η ,

= ∇i η +
i
2
c α′3 (∇î Z) η . (4.12)

This last expression agrees with the one given in Refs [4, 7].
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5. Explicit Examples

5.1 S7 principal orbits

Following [9], we introduce left-invariant 1-forms LAB for the group manifold SO(5).

These satisfy LAB = −LBA, and

dLAB = LAC ∧ LCB . (5.1)

The 7-sphere is then given by the coset SO(5)/SU(2)L, where we take the obvious

SO(4) subgroup of SO(5), and write it (locally) as SU(2)L × SU(2)R.

If we take the indices A and B in LAB to range over the values 0 ≤ A ≤ 4, and

split them as A = (a, 4), with 0 ≤ a ≤ 3, then the SO(4) subgroup is given by Lab.

This is decomposed as SU(2)L × SU(2)R, with the two sets of SU(2) 1-forms given by

the self-dual and anti-self-dual combinations:

Ri =
1
2
(L0i +

1
2
ǫijk Ljk) , Li =

1
2
(L0i − 1

2
ǫijk Ljk) , (5.2)

where 1 ≤ i ≤ 3. Thus the seven 1-forms in the S7 coset will be

Pa ≡ La4 , R1 , R2 , R3 . (5.3)

The most general cohomogeneity-one metric ansatz for these S7 principal orbits is

ds28 = dt2 + a2i R
2
i + b2 P 2

a . (5.4)

Several complete nonsingular Spin(7) metrics are contained within this class, including

the original asymptotically conical (AC) example found in Refs [10, 11], which is uni-

axial, a1 = a2 = a3, and the family of asymptotically locally conical (ALC) examples

found in [12], which are biaxial, with (say) a1 = a2.

In the natural orthonormal basis for (5.4), namely

e0 = dt ei = aiRi , ea = b Pa , (5.5)

the calibrating 4-form has components cijkℓ given by

1 = −c0123 = c0145 = c0167 = c0246 = −c0257 = c0347 = c0356 ,

= c1247 = c1256 = −c1346 = c1357 = c2345 = c2367 = −c4567 , (5.6)

where we have assigned explicit index values i = 1, 2, 3 and a = 4, 5, 6, 7. It is now

a straightforward mechanical exercise, most easily implemented by computer, to solve
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first for the covariantly-constant spinor η in the unmodified Spin(7) background, yield-

ing first-order equations for the metric functions ai and b, and then to find the α′3-

corrected first-order equations that follow from imposing Di η = 0, where Di is given

in (3.1).6 The first-order equations in the general triaxial case are rather complicated,

and are not easily presentable in this paper. Here, we shall just give our results in the

uniaxial special case, where the three metric functions ai are set equal, ai = a. We

then find that a and b must satisfy

ȧ

a
=

1

a
− a

2b2
− c α′3 Ṡ1 ,

ḃ

b
=

3a

4b2
− c α′3 Ṡ2 , (5.7)

where c is the usual constant that we introduced in (1.1), and

S1 =
64239a6 − 227052a4b2 + 269712a2b4 − 101440b6

1064b12
,

S2 =
3(−4389a6 + 16821a4b2 − 20997a2b4 + 8756b6)

133b12
. (5.8)

We can integrate the equations (5.7) to give

b(r)2 = 3
2
e−2c α′3 S̄2(r)

∫ r

e2c α
′3 S̄2(r′) dr′ ,

a(r)2 = 2b(r)−
4
3 e−c α′3 (2S̄1(r)+

4
3
S̄2(r))

∫ r

b(r′)
4
3 ec α

′3 (2S̄1(r′)+
4
3
S̄2(r′))dr′ , (5.9)

where the variable r is defined by dr = a dt and the bars on S1 and S2 denote that

these quantities are evaluated in the leading-order background.

5.2 SU(3)/U(1) principal orbits

The cosets SU(3)/U(1), known as Aloff-Wallach spaces N(k, ℓ), are characterised by

two integers k and ℓ, which define the embedding of the U(1) subgroup h of SU(3)

matrices according to

h = diag(ei k θ, ei ℓ θ, e−i (k+ℓ) θ) . (5.10)

If one defines m = −k − ℓ, it is evident that there is an S3 symmetry given by the

permutations of (k, ℓ,−k − ℓ).

6Note that when we do this, we assume that η retains the identical form that it had in the uncor-

rected Ricci-flat background. The test of the validity of this assumption is that the corrected first-order

equations we obtain under this assumption do indeed imply that the corrected second-order Einstein

equations (1.11) are satisfied.
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We define left-invariant 1-forms LA
B for SU(3), where A = 1, 2, 3, LA

A = 0,

(LA
B)† = LB

A and dLA
B = iLA

C ∧ LC
B, and introduce the combinations

σ ≡ L1
3 , Σ ≡ L2

3 , ν ≡ L1
2 ,

λ ≡
√
2 cos δ̃ L1

1 +
√
2 sin δ̃ L2

2 , (5.11)

Q ≡ −
√
2 sin δ̃ L1

1 +
√
2 cos δ̃ L2

2 ,

where Q is taken to be the U(1) generator lying outside the SU(3)/U(1) coset, and

k

ℓ
= − tan δ̃ . (5.12)

Thus δ̃ is restricted to an infinite discrete set of values.

We shall follow [12] and use real left-invariant 1-forms defined by σ = σ1 + i σ2,

Σ = Σ1 + iΣ2 and ν = ν1 + i ν2. The cohomogeneity one metrics can then be written

as

ds28 = dt2 + a2 σ2
i + b2Σ2

i + c2 ν2i + f 2 λ2 , (5.13)

where a, b, c and f are functions of the radial coordinate t. Using the Killing spinor

equations that we have derived in this paper, we obtain the first-order equations for

this system up to α′3 order, given by

ȧ

a
=
b2 + c2 − a2

abc
−

√
2 f cos δ̃

a2
− α′3K1 ,

ḃ

b
=
a2 + c2 − b2

abc
+

√
2 f cos δ̃

b2
− α′3K2 ,

ċ

c
=
a2 + b2 − c2

abc
+

√
2 f (cos δ̃ − sin δ̃)

c2
− α′3K3 ,

ḟ

f
= −

√
2 f (cos δ̃ − sin δ̃)

c2
+

√
2 f cos δ̃

a2
−

√
2 f sin δ̃

b2
− α3K4 , (5.14)

where theKi’s are polynomial functions in a, b, c and f . (We have temporarily absorbed

the constant c into α′3 in the discussion of this example, to avoid confusion with the

metric function c.) We have explicitly verified that these first-order equations satisfy

the generalised higher-order second-order Einstein equations. Owing to the complexity

of the expressions for the Ki’s, we shall not present their general form, but give only a

certain specific example.

Local solutions of the first-order equations for Spin(7) holonomy exist for all values

of k and ℓ [12]. In general these have conical singularities, but in the special case

N(1, 0), or its permutation-related cousins N(0, 1) or N(1,−1), then the solution, first
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found in [13], is complete and non-singular. The solution is given by

ā =
√
(r − 1)(r + 5) , b̄ = (r + 1) , c̄ =

√
r2 − 9 , f̄ = −

√
9(r − 3)(r + 5)

2(r + 3)(r − 1)
,

(5.15)

where the coordinate r is related to t by dt = h dr ≡ − 3√
2
f−1 dr. Note that we use

barred notation to denote the background variables. For this specific metric, we find

that

K1 =
162(4r8−13r7−83r6−409r5+81r4−1351r3−3993r2−39955r−97641

h (r−1)8(r+3)7
,

K2 =
648(r+1)(r6+6r5−18r4−112r3−91r2+58r−5604)

h (r−1)7(r+3)7
,

K3 =
162(4r8+77r7+547r6+2297r5+7311r4+19527r3+34761r2+69491r−11135)

h (r−1)7(r+3)8
,

K4 =
2592(r+1)(r2+2r−43)(3r4+12r3−170r2−364r−1049)

h (r−1)8(r+3)8
. (5.16)

6. Deformation of Spin(7) Compactifications of M-theory

In this section, we now consider analogous corrections to an initial (Minkowski)3×K8

background in M-theory, which is related by dimensional reduction to type IIA string

theory at the one string-loop level. To begin, we give a general discussion of the known

correction terms in the M-theory effective action.

6.1 Corrections to (Minkowski)3×K8 backgrounds

The corrections to the D = 11 bosonic Lagrangian, which correspond to the lift of

1-loop corrections in the type IIA string, take the form

L1 = − β

1152
(Ŷ +2Ŷ2+· · ·) ∗̂1l+β (2π)4 Â(3)∧X̂(8) , (6.1)

where X̂(8) is given by

X̂(8) =
1

192 (2π)4
[tr Θ̂4− 1

4
(tr Θ̂2)2] , (6.2)

and Ŷ and Ŷ2 are eleven-dimensional analogues of the ten-dimensional quantities Y and

Y2 described in section 2, but now with the summation index ranges extended to 11
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rather than 10 values. In particular, Ŷ2 is proportional to the covariant generalisation

of the eight-dimensional Euler integrand,

Ŷ2 =
315
2
R̂[M1M2

M1M2 · · · R̂M7M8]
M7M8 . (6.3)

The constant β now takes on the rôle played by α′3 in string theory, and we shall work

to order β in the subsequent discussion.

The ellipses in (6.1) represent terms that vanish by use of the leading-order field

equations, and which therefore can be adjusted by choice of field variables. These

changes of variable do not, of course, affect the physics, but they can be used to

advantage in order to make the discussion more elegant. By adding a specific term of

this type, we shall be able to ensure that the corrected equations of motion describing

the modification to the Spin(7) holonomy internal space are the same as those that we

found at tree-level in string theory. To achieve this, we shall take the bracketed volume

term in (6.1) to be

Ŵ = Ŷ +2Ŷ2−R̂ Ẑ , (6.4)

and so

L1 = − β

1152
Ŵ ∗̂1l+(2π)4 β Â(3)∧X̂(8) , (6.5)

The additional R̂ Ẑ term is introduced for convenience by a field rededinition of the

metric, as in [2], to compensate for the absence of a dilaton in M-theory. It does not

change the physics, but it renders the equations more elegant.

The variation δ
∫ √−ĝ Ŷ d11x ≡

∫ √−ĝ ŶMN δĝ
MN d11x yields

Ŷµν = 0 , Ŷij = Xij , (6.6)

in the 3-dimensional spacetime and the internal 8-dimensional manifold respectively,

after imposing the leading-order (Minkowski)3×M8 background conditions, where M8

is a Spin(7) manifold. The tensor Xij is given by (2.28). Varying Ŷ ′ ≡ (Ŷ −R̂ Ẑ)
instead of Ŷ , we find

Ŷ ′
µν = −gµν Z , Ŷ ′

ij = Xij+∇i∇jZ−gij Z , (6.7)

after imposing the (Minkowski)3×M8 background equations. The variation of the

additional D = 8 Euler integrand term 2Ŷ2
√−ĝ yields a contribution −ĝµν Ŷ2 in the 3

spacetime directions, and zero in the internal directions (since Ŷ2 is topological in eight

dimensions).

The variation of the full Ŵ term in the M-theory effective action therefore leads

to the corrected Einstein equations

R̂µν− 1
2
R̂ ĝµν = − β

1152
( Z+Y2) gµν , (6.8)
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R̂ij− 1
2
R̂ ĝij =

β

1152
(Xij+∇i∇j Z−gij Z) , (6.9)

after imposing the (Minkowski)3×M8 structure in the β correction terms. We do not

need to include the energy-momentum tensor of the 4-form here, since F̂(4) is taken to

vanish at leading order, and thus it itself will be of order β in the corrected solutions

and so it would contribute only at order β2 in the Einstein equations. For the same

reason, we do not need to include the contribution to the Einstein equation that would

come from varying the metrics in the Â3∧X̂8 term in (6.5), since it already carries a

factor of β, and since the resulting F̂4 will also be small, of order β.

The corrected field equation for F̂(4) is

d∗̂F̂(4) =
1
2
F̂(4)∧F̂(4)+(2π)4 β X̂(8) . (6.10)

The 4-form and the eleven-dimensional metric will be required to have the 3-dimensional

Poincaré invariance of the leading-order solution, which implies that we can write

dŝ211 = e2A ηµν dx
µ dxν+e−A ds28 , (6.11)

F̂4 = d3x∧df+G(4) , (6.12)

where A and f are functions only of the coordinates onM8, and G(4) is a 4-form residing

purely in the internal space.

6.2 Spin(7) non-compact solutions

The discussion that follows will be similar to one given in Ref. [15]. Since we are working

only to order β in this discussion, we can consider separately the contributions of the

two terms in the field-strength ansatz (6.12). The former is obligatory, in the sense

that the local equation of motion (6.10) forces f to become non-zero (and of order β).

In contrast, the inclusion of the second term G(4) in (6.12) is optional if the “internal”

space K8 is non-compact; in particular it can be chosen to be zero. To proceed, we

consider this case first, subsequently returning to consider the modifications needed for

compact K8.

The Ricci tensor of the metric (6.11) has non-vanishing coordinate-frame compo-

nents given by

R̂µν = −e3A Aηµν , (6.13)

R̂ij = Rij+
1
2

Agij− 9
2
∇iA∇jA , (6.14)

where Rij is the Ricci tensor of ds28 = gij dy
i dyj. Note that since we shall be working

to order β, and since the leading-order background is dŝ211 = ηµν dx
µ dxν+ds28 where
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ds28 is Ricci-flat, we may neglect the terms quadratic in ∇A in the expression for R̂ij ,

since we shall have

A = 0+O(β) . (6.15)

Similarly, exponential factors of eA that multiply quantities that are already of order

β may be replaced by 1. We shall drop all such higher-order terms in what follows. In

particular, we may write (6.14) simply as

R̂µν = − Aηµν , (6.16)

R̂ij = Rij+
1
2

Agij . (6.17)

From (6.16) and (6.17) we find R̂ = R+ A, and hence by substituting (6.17) into

(6.9) we find

Rij− 1
2
Rgij =

β

1152
(Xij+∇i∇j Z−gij Z) . (6.18)

Taking the trace gives R = (β/576) Z, and hence (6.18) yields

Rij =
β

1152
(Xij+∇i∇j Z) . (6.19)

From (6.8) we then find

A =
β

1728
Y2 . (6.20)

Equations (6.19) and (6.20) comprise the final expressions that follow from the

corrected Einstein equations (6.8) and (6.9). It is important to note that all terms

involving Z have cancelled.7 This depends, in particular, on the fact that Xij g
ij =

Z, which was shown for a Spin(7) background in (2.29). Note that the correction to

the Ricci-flatness of the leading-order Spin(7) manifold, described by (6.19), is identical

to the corrected equation (1.11) that we obtained at tree level in string theory.

Again working to order β, substitution of the ansatz (6.12) into the corrected 4-form

equation (6.10) yields d∗df = β (2π)4X8, or, after dualization

f = β (2π)4 ∗X8 . (6.21)

If the internal space M8 admits a nowhere-vanishing spinor, as is always the case

on a space of special holonomy, there is a topological relation between the Euler class

7The analogous cancellation did not occur in the discussion presented in [15] for deformations of

eight-dimensional Ricci-flat Kähler backgrounds, but this is simply because a different choice of field

variables was used there. Earlier papers, including [14, 16, 18], did not include the contributions from

the volume terms Ŷ and Ŷ2 in (6.5) at all, and so the “M2-brane like” metric ansatz (6.11) that

was made in those papers would have been in conflict with the Einstein equations in the spacetime

directions at order β (see (6.13), (6.14), (6.16) and (6.17)).
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E8 and the combination of P2 and P
2
1 Pontryagin classes that arises in X8 [19, 20]. This

translates into the statement that

Y2 = 576(2π)4 ∗X8 . (6.22)

Comparing (6.20) and (6.21), this implies (for non-singular solutions without δ-function

sources) that we must have

f = 3A . (6.23)

As we shall now show, this is in fact precisely the condition that is needed in order to

ensure that the deformed solution will still be supersymmetric.

6.3 Supersymmetry of the deformed (Minkowski)3×K8 background

The classical gravitino transformation rule in eleven-dimensional supergravity takes the

form

δψ̂M = ∇̂M ǫ̂− 1
288
F̂N1···N4

Γ̂M

N1···N4 ǫ̂+ 1
36
F̂MN1···N3

Γ̂N1···N3 ǫ̂ . (6.24)

We shall use the following 11 = 3+8 decomposition of the eleven-dimensional Dirac

matrices Γ̂M :

Γ̂µ = γµ⊗Γ9 , Γ̂i = 1l⊗Γi , (6.25)

where Γ9 is the chirality operator in the eight-dimensional internal space. To the order

β that we are working, it suffices to retain the contributions from the field strength F̂(4)

and the metric warp factor A only up to linear order. From (6.11), we therefore find

that in the natural choice of spinor frame, the covariant derivative ∇̂M in the spacetime

and internal directions is given by

∇̂µ = ∂µ⊗1l+ 1
2
∂iAγµ⊗Γ9Γ

i , ∇̂i = 1l⊗∇i− 1
4
∂jA 1l⊗Γi

j . (6.26)

Including the contribution of the 4-form, which is given by (6.12), we therefore have

the supersymmetry transformation δψ̂M = D̂M ǫ̂, where

D̂µ = ∂µ− 1
2
∂iAγµ⊗Γi Γ9− 1

6
∂if γµ⊗Γi ,

D̂i = 1l⊗∇i− 1
4
∂jA 1l×Γi

j− 1
12
∂jf 1l⊗Γi

j Γ9+
1
6
∂if 1l⊗Γ9+1l⊗Qi , (6.27)

and Qi is the correction to the supersymmetry transformation discussed in section 3.

It is straightforward to verify that the Killing spinor condition D̂M ǫ̂ = 0 is satisfied if

we write

ǫ̂ = e
1
2
A ǫ⊗η , (6.28)
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where ǫ is a constant spinor in the 3-dimensional Minkowski spacetime, and η is a

chiral spinor in the internal 8-dimensional space, Γ9 η = −η, which satisfies the usual

modified covariant-constancy condition

∇i η+Qi η = 0 (6.29)

that we discussed previously in the context of tree-level string corrections.

Note that the additional ingredients in the current M-theory discussion, in com-

parison to our previous tree-level string discussion, are associated with the warp factor

appearing in the metric (6.11), and the field strength (6.12) that is forced to be non-zero

because of the Â3∧X̂8 term in the effective action. These two contributions in the su-

percovariant derivatives (6.27) cancel against each other, by virtue of (6.23), in exactly

the same way as one finds in a standard M2-brane solution [21] of eleven-dimensional

supergravity.

6.4 Compact K8

When the internal manifold K8 is non-compact then the inclusion of the term G(4) in

the field-strength ansatz (6.12) is optional. However, when K8 is a compact manifold

of non-zero Euler number there is an additional topological condition that follows by

integrating (6.10), namely [16]

∫

K8

G(4)∧G(4) =
(2π)4 β

12
χ , (6.30)

where χ is the Euler number of K8. Under these circumstances, the inclusion of the

term G(4) in (6.12) becomes obligatory; clearly we must take

G(4) =
√
β ω(4) (6.31)

where ω(4) is a closed 4-form on K8 that we take to be β-independent. It must also be

co-closed in order to avoid an order
√
β correction in (6.10). There is also a potential

order
√
β correction to the supercovariant derivatives (6.27), namely

D̂µ −→ D̂µ−
√
β 1

288
ωj1···j4 γµ⊗Γj1···j4 ,

D̂i −→ D̂i−
√
β 1

288
1l⊗(ωj1···j4 Γi

j1···j4−8ωij1···j3 Γ
j1···j3) . (6.32)

The
√
β corrections cancel if

ωij1···j3 Γ
j1···j3 η = 0 (6.33)

is satisfied. This can be viewed as a supersymmetry-preservation condition on the

internal 4-form ω(4). It implies that ω(4) must be self-dual [14, 16, 17] (which is the
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same sense of duality as for the calibrating 4-form c(4) given by (2.9)), and hence that

it must be closed as well as co-closed. In other words, ω4 must be a self-dual harmonic

4-form. Note, however, that c(4) is not a suitable candidate for ω(4) because if we left-

multiply (6.33) by η̄Γi we get ωijkℓ c
ijkℓ = 0, and this is not satisfied by ω4 = c4. What

this shows is that ω4 must be a self-dual harmonic 4-form that is orthogonal to c(4).

It is useful at this point to look at the decomposition of the SO(8) tangent-space

representations of 4-forms under the Spin(7) holonomy group. We have

35+ −→ 1+7+27 , 35− −→ 35 , (6.34)

for self-dual and anti-self-dual 4-forms respectively. Since this decomposition is made

with respect to the invariant calibrating 4-form, which defines the Spin(7) embedding

in SO(8), it follows that the decomposition commutes with covariant differentiation.

This allows a refinement of the cohomology for self-dual 4-forms, in which we may write

[24]

H4
+(K8,R) = H4

1 (K8,R)+H
4
7(K8,R)+H

4
27(K8,R) . (6.35)

Correspondingly, we have for the Betti numbers b4 = b+4 +b
−
4 , with b

+
4 = b

(1)
4 +b

(7)
4 +b

(27)
4 .

It is shown in [24] that for any compact Spin(7) manifold, b
(7)
4 = 0, and b

(1)
4 = 1.

This last identity corresponds to the fact that the calibrating 4-form is the unique

Spin(7)-invariant self-dual harmonic form. Thus we have that

b+4 = 1+b
(27)
4 , (6.36)

and so any self-dual harmonic 4-form other than the calibrating 4-form can provide a

solution that satisfies the supersymmetry condition (6.33).8

The fact that ω(4) is closed takes care of any order
√
β terms in (6.10), but we must

now take into account the order β contribution from the F̂4∧F̂4 term. This has the

effect of modifying (6.21) to

f = β [(2π)4 ∗X8+
1
48
|ω(4)|2] , (6.37)

where we have used the self-duality of ω(4) to write the dual of ω(4)∧ω(4) as
1
24
|ω(4)|2.

There is a similar order β correction to the stress-tensor for F̂4 (which we were previ-

ously able to set to zero). This modifies the source for the Einstein equations on K8,

but the only effect of this is a modification of the source term of the Poisson equation

(6.20), which becomes

A = β [ 1
1728

Y2+
1

144
|ω(4)|2] . (6.38)

8In fact, a more detailed investigation of (6.33) reveals that it already selects precisely self-dual

4-forms in the 27 representation of Spin(7), quite independently of the above discussion of the refined

cohomology.
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Fortunately, the consistency of (6.37) and (6.38) is again assured because of (6.22), and

again we find that f = 3A, just as we found for a non-compactK8 with vanishing G4. As

we saw in the non-compact case, the equality f = 3A is crucial for the supersymmetry

of the deformed background. Note that this is also the relation found in Ref [25] from

direct consideration of supersymmetry in the R4 – Chern Simons system.

To summarise, we have shown that if G(4) is taken to be proportional to any self-

dual harmonic 4-form other than the calibrating 4-form (i.e. any self-dual harmonic

4-form in the 27 of Spin(7)), the local equations of motion and the supersymmetry

conditions are still satisfied by the deformed Spin(7) holonomy background, up to

order β. Furthermore, one can always satisfy the global topological constraint (6.30),

by normalising the harmonic self-dual 4-form appropriately, namely so that
∫

K8

|G(4)|2 = 2(2π)4 β χ , (6.39)

In [24], many examples of compact manifolds with Spin(7) holonomy are constructed,

typically with large values of the Betti number b+4 of self-dual harmonic 4-forms. In

fact from (6.36), we see that whenever b+4 is greater than 1, there will exist suitable

self-dual harmonic 4-forms that allow the global condition (6.30) to be satisfied.

It is also worth noting that if K8 is non-compact, in which case the inclusion of a

non-vanishing G(4) is optional rather than obligatory, explicit constructions of self-dual

harmonic forms that satisfy the supersymmetry condition (6.33) are known [11, 26, 27].

7. Deformation of SU(5) Holonomy Solutions of M-theory

We now turn to compactifications of M-theory on ten-dimensional manifoldsK10 which,

at leading order, are Ricci-flat and Kähler. It should be emphasised that such back-

grounds probe aspects of M-theory that go beyond anything that can be directly de-

duced from light-cone string-theory computations, which, in practice, have provided

most of the concrete information about the structure of M-theory. In fact, SU(5)

holonomy backgrounds cannot be discussed at all in perturbative string theory, since

there are only nine Euclidean-signature dimensions. Thus not only do SU(5) holonomy

backgrounds go beyond what can be learned from light-cone string-theory calculations,

they go beyond perturbative string theory itself, and are intrinsic to M-theory. Never-

theless, it has been argued that the information learned from light-cone string calcula-

tions, and elsewhere, can be extrapolated to genuinely eleven-dimensional results about

the structure of M-theory. It is therefore of interest to see what happens if one tries

to “push the envelope” and apply these eleven-dimensional results to SU(5) holonomy

backgrounds.
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7.1 Leading-order preliminaries

To set up our discussion of corrections to SU(5)-holonomy compactifications of M-

theory, we will begin with a brief discussion of the leading-order SU(5)-holonomy com-

pactifications of 11-dimensional supergravity. The (undeformed) solutions of interest

have vanishing fermions, vanishing 4-form field strength F , and a metric of the form

ds2 ≡ gMNdx
MdxN = −dt2+gijdxidxj (7.1)

where the 10-metric gij on K10 has SU(5) holonomy. The 11D Dirac matrices can be

taken to be

Γ̂0 = iγ11, Γ̂i = γi (7.2)

where γi are the SO(10) Dirac matrices, and γ11 is the chirality operator on SO(10)

spinors,

γ11 = iγ1γ2 · · ·γ10. (7.3)

We will assume (in accordance with the usual custom) that the 11D Dirac matrices Γ̂M

are hermitian, in which case the SO(10) Dirac matrices γi are hermitian.

The supersymmetry-preservation condition for solutions of 11D supergravity is the

vanishing of the supersymmetry variation of the gravitino. For purely gravitational

backgrounds this reduces to

D̂M ǫ̂ = 0 (7.4)

where DM is the covariant derivative on spinors and ǫ̂ is a Majorana spinor; i.e., it

satisfies

ǫ̂† = ǫ̂T ĈΓ̂0 (7.5)

where Ĉ is the antisymmetric SO(1, 10) charge conjugation matrix. For compactifica-

tions on K10, the condition (7.4) reduces to the equation

Diǫ̂ = 0, (7.6)

where ǫ̂ is now a time-independent SO(10) spinor on K10 and Di is the covariant

derivative on such spinors. The 11D Majorana condition (7.5) becomes

ǫ̂∗ = Cǫ̂ , C = ĈΓ̂0 (7.7)

where C is the real symmetric SO(10) charge conjugation matrix, with the property

that

CγiC
−1 = γTi . (7.8)

Equivalently, since the matrices γi are hermitian,

CγiC
−1 = γ∗i . (7.9)
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One also has C2 = 1, so one may choose a basis such that C = 1, in which case

the matrices γi are real, as are Majorana spinors. However, in this basis γ11 is pure

imaginary, so the Majorana condition is not compatible with a chirality condition. This

result is, of course, basis independent, so a ‘minimal’ SO(10) spinor is either Majorana

or complex chiral.

For some purposes it is simpler to work with complex chiral SO(10) spinors. In

particular, a 10-manifold of SU(5) holonomy admits one covariantly constant complex

chiral spinor, as follows from the decomposition

16 = 10⊕5⊕1 (7.10)

of the spinor irrep of Spin(10) into irreps of SU(5). Let η be this one chiral spinor; we

choose conventions such that the chirality condition is

γ11η = −η . (7.11)

Note that the charge conjugate spinor

ηc := C−1η∗ (7.12)

satisfies the anti-chirality condition γ11η
c = ηc as a consequence of the identity (for

hermitian Dirac matrices)

Cγ11C
−1 = −γ∗11. (7.13)

Moreover, as a consequence of the identity

CγijC
−1 = γ∗ij, (7.14)

the spinor ηc is covariantly constant if η is covariantly constant. An alternative way

to see this is to note that the covariant derivative is real in a real basis for the Dirac

matrices, so that in such a basis the real and imaginary parts of a covariantly constant

complex spinor are covariantly constant Majorana spinors. In particular, the exis-

tence of one covariantly constant chiral spinor η implies the existence of two linearly

independent covariantly constant Majorana spinors, defined by

ǫ1 =
1

2
(η+ηc) , ǫ2 = − i

2
(η−ηc) . (7.15)

Using C2 = 1, it is easily verified that these spinors are Majorana. They are covariantly

constant because Diη = 0 implies Diη
c = 0. Note that

η = ǫ1+iǫ2 (7.16)
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which is the decomposition of a complex spinor into two Majorana spinors; in a real

basis, for which C = 1, the Majorana spinors ǫ1 and ǫ2 are just the real and imaginary

parts of the complex spinor η. If η is a chiral spinor, satisfying (7.11) then

ǫ2 = iγ11ǫ1 . (7.17)

However, the Majorana spinors ǫ1 and ǫ2 are still linearly independent over the reals

because the linear combination (a+ibγ11)ǫ1 vanishes for real numbers a, b, and non-zero

ǫ1, if and only if a = b = 0.

We have thus shown that, when K10 is a manifold of SU(5) holonomy, there are

two linearly-independent Majorana spinor solutions of (7.6), and hence of the super-

symmetry preservation condition (7.4), and that this statement is equivalent to the

statement that K10 admits a single complex chiral Killing spinor.

For future use we also note that

γĵ η = i γj η , (γij+γîĵ) η = 2i Jij η , (7.18)

where Jij is the Kähler form, and we are using the “hat” notation of [8], defined in

(4.6). Other useful properties following from these are

η̄ γij η = i Jij , η̄ γijkℓ η = −Jij Jkℓ−Jik Jℓj−Jiℓ Jjk . (7.19)

7.2 Corrections to (Minkowski)1×K10 backgrounds

The relevant O(β) corrections to the equations of motion again follow from (6.5).

The contributions from the eight-dimensional Euler integrand term Ŷ2
√−ĝ can be

determined by varying the explicit metrics needed to write
√−ĝ times the right-hand

side of (6.3) in terms of canonical Riemann tensors R̂M
NPQ with one index up and

three down. (One does not need to vary the metrics from which R̂M
NPQ is constructed,

since these variation terms will be of the form of a total derivative, and hence will not

contribute in the equations of motion.9) Thus defining δ
∫
Ŷ2

√−ĝ =
∫ √−ĝ ÊMN δĝ

MN ,

one finds (see, for example, [22])

ÊM

N = − 9!

29
δNN1···N8
MM1···M8

R̂M1M2
N1N2

· · · R̂M7M8
N7N8

, (7.20)

where the Kronecker deltas are of unit strength (δN1···Nn

M1···Mn
ωN1···Nn

= ωM1···Mn
for any

antisymmetric tensor ωM1···Mn
).

9In the same way, the terms from the metrics in RMN = RP
MPN do not contribute when one

varies the two-dimensional Euler integrand gMN RMN

√−g (the Einstein-Hilbert action) to obtain

the Einstein tensor.
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The eleven-dimensional Einstein equations, with their O(β) corrections, are given

by

R̂00− 1
2
R̂ ĝ00 = − β

1152
Z g00+

β

576
Ê00 , (7.21)

R̂ij− 1
2
R̂ ĝij =

β

1152
(Xij+∇i∇j Z−gij Z)+

β

576
Êij , (7.22)

where

Z = RijkℓR
kℓmnRmn

ij−2RikjℓR
kmℓnRm

i
n
j , (7.23)

after imposing the (Minkowski)1×K10 Ricci-flat Kähler background conditions in the

correction terms on the right-hand sides. Note that we shall have

Ê00 = 1
2
Y2 ,

Êi
j = Ei

j ≡ − 9!

29
δjj1···j8ii1···i8 R

i1i2
j1j2 · · ·Ri7i8

j7j8 , (7.24)

in the (Minkowski)1×K10 background. The new feature that we encounter here, in

comparison to the (Minkowski)3×K8 backgrounds described by (6.8) and (6.9), is that

in (7.22) we have the non-zero contribution Êij coming from the variation of the eight-

dimensional Euler integrand. It is manifest from its form, given in (7.24), that this

would vanish in an 8-dimensional curved background, owing to the antisymmetrisation

over 9 indices.

As in the case of (Minkowski)3×K8 backgrounds, we expect that the effect of

the order β corrections to the (Minkowski)1×K10 background will be to introduce a

warp factor in the eleven-dimensional metric, as well as causing the originally-vanishing

4-form to become non-zero. For the metric, we therefore write

dŝ211 = −e2A dt2+e−
1
4
A ds210 , (7.25)

where the function A in the warp factor depends only on the coordinates of K10. The

relative powers of the warp factor in the two terms in (7.25) are motivated by the

expectation of a “0-brane” structure in the deformed solution. At the linearised level,

which suffices for our purposes since we are perturbing around the original background

with A = 0 and K10 Ricci-flat and Kähler, we find that the non-vanishing Riemann

tensor components for the metric (7.25) are given by

R̂0i0j = ∇i∇jA , (7.26)

R̂ijkℓ = Rijkℓ− 1
8
(giℓ∇j∇kA−gik ∇j∇ℓA+gjk ∇i∇ℓA−gjℓ∇i∇kA) , (7.27)

and the non-vanishing components of the Ricci tensor are given by

R̂00 = A , R̂ij = Rij+
1
8
gij A . (7.28)
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Taking the eleven-dimensional trace gives R̂ = R+ 1
4
A, and substituting this into

(7.22) and tracing leads to

R =
β

576
Z− β

2304
Ei

i . (7.29)

Equation (7.22) then gives

Rij =
β

1152

(
Xij+∇i∇j Z+2Eij− 1

4
Ek

k gij

)
. (7.30)

Note that Xij, coming from the variation of the “string tree-level” term Ŷ , is given by

Xij = ∇î∇ĵ Z ≡ Ji
k Jj

ℓ∇k∇ℓ Z, as usual in a Kähler background. Note also that from

(7.20) we shall have

Ek
k = −Y2 . (7.31)

The remaining content of the Einstein equations is contained in (7.21). From (7.29)

and (7.31), we find that this implies

A =
β

1728
Y2 . (7.32)

After using (7.31), equation (7.30) can be written as

Rij =
β

1152

(
∇î∇ĵ Z+∇i∇j Z+2Eij+

1
4
Y2 gij

)
. (7.33)

Equations (7.32) and (7.33) determine the warp factor and the Ricci tensor of

the corrected ten-dimensional Kähler metric, respectively. The field equation (6.10)

will govern the structure of the non-vanishing 4-form that is required at order β. In

order to maintain the 1-dimensional “Poincaré symmetry” of the original uncorrected

background, it must be that

F̂(4) = G(3)∧dt+G(4) , (7.34)

where G(3) and G(4) are 3-form and 4-form fields on K10. We may, to begin with, assume

that G(4) = 0. The 4-form equation of motion (6.10) then implies, up to order β, that

we shall have

d∗G(3) = (2π)4 β X8 , (7.35)

where the unhatted ∗ denotes Hodge dualization in K10.

Since the integrability condition obtained by taking the exterior derivative of this

equation is trivially satisfied, we are guaranteed to be able to find a local solution of

(7.35). However, integration over any 8-cycle C8 of K10 leads to
∫

C8

X8 = 0 , (7.36)
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which must be satisfied for all 8-cycles C8. This is a topological constraint on K10 that

will not in general be satisfied unless H8(K10) is trivial. As Poincaré duality implies

that H8
∼= H2 for any compact 10-manifold, and as H2 is necessarily non-trivial for

any Kähler manifold, the topological constraint is not satisfied by any compact Kähler

10-manifold; in other words, it is not satisfied by any compact manifold K10 of SU(5)-

holonomy. What this means is that it is inconsistent to set G(4) to zero (as we have been

doing) when K10 is compact. In principle, we could attempt to take this into account

as we did in the Spin(7) case by allowing for a non-zero G(4) of order
√
β. However,

the implications for supersymmetry are much less straightforward than they were for

Spin(7) compactifications, so we shall not attempt an analysis along these lines here.

Instead, we shall simply restrict discussion to the class of SU(5)-holonomy manifolds

K10 for which H8 is trivial. This implies that K10 is non-compact, so we are restricted

to a special class of SU(5)-holonomy ‘non-compactifications’.

With this restriction understood, the results above show that we can obtain an

M-theory corrected solution, at order β, to the original (Minkowski)1×K10 vacuum

of D = 11 supergravity. The corrected metric is of the form of a warped product

(7.25), with the warp factor given by (7.32), and the Ricci tensor of K10 given by

(7.33). In the next subsection, we shall analyse the question of whether this M-theory

corrected solution preserves the supersymmetry of the original Ricci-flat Kähler solution

of D = 11 supergravity.

7.3 Supersymmetry of the deformed (Minkowski)1×K10 backgrounds

We have seen in the previous subsection that the Ricci tensor of the originally Ricci-flat

ten-dimensional Kähler space K10 suffers a more substantial deformation than has been

seen hitherto for spaces Kn of special holonomy with n ≤ 8, on account of the Eij and

Y2 gij terms in (7.33) that come from the variation of the Euler integrand Ŷ2.

It is of interest now to study the supersymmetry of the corrected (Minkowski)1×K10

backgrounds. Here, we are on somewhat less solid ground. Although there has been a

lot of work on the detailed structure of the higher-order corrections to supergravities in

ten and eleven dimensions (see, for example, [23]), there are not, as far as we are aware,

complete and explicit results for the corrections to the supersymmetry transformation

rules at order α′3 (or order β). The only explicit results are those introduced in [4]

in the context of corrections to six-dimensional Calabi-Yau compactifications, their

extension in [2] to G2-holonomy compactifications, and their extension in the present

paper to Spin(7)-holonomy compactifications. These corrections were deduced on the

basis of requiring that the unbroken supersymmetry of the leading-order background

should persist in the face of the α′3 corrections.10 Remarkably, the same Riemannian
10This might seem somewhat circular as an argument for demonstrating that supersymmetry is
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expression (3.4) that was first proposed in [4] in the six-dimensional Calabi-Yau context

has turned out to be sufficient to achieve a preservation of supersymmetry for the G2

holonomy and Spin(7) holonomy backgrounds.

For an SU(5)-holonomy supergravity solution of 11D supergravity, we would again

expect the M-theory correction to the gravitino transformation rule to lead to a modified

covariant derivative (∇i+Qi), where Qi is of order β. If we assume that Qi takes the

same purely Riemannian form11 as in (3.4) then, using properties of SU(5) holonomy

manifolds, one can show that

Qi =
i β

2304
∇îZ , (7.37)

where Z is given by (7.23). There is no a priori reason why this assumption should be

correct; there could be further terms whose presence would not be probed if one looked

only at (Minkowski)3×K8 backgrounds, but which would be relevant to (Minkowski)1×
K10 backgrounds. However, we shall show that this assumption nonetheless leads to

the conclusion that supersymmetry of the corrected SU(5) holonomy backgounds is

maintained, despite the loss of SU(5) holonomy. This is a posteriori evidence that the

assumption is correct since one would hardly expect this conclusion to follow from an

incorrect assumption, irrespective of whether supersymmetry is in fact preserved.

We begin by considering the integrability condition for the existence of a Killing

spinor that satisfies D̂M ǫ̂ = 0, obtained from the commutator of supercovariant deriva-

tives. Since we are working only to linear order in β, and since the field strength F̂(4)

vanishes at zeroth order, becoming non-vanishing only at order β, we can omit terms

quadratic in F̂(4) in our discussion. We shall also suppress for now the O(β) Qi correc-

tion to the supercovariant derivative; in other words, for now we shall just consider the

“classical” terms in the integrability condition of D = 11 supergravity, with the added

simplification of omitting the terms quadratic in F̂(4). The contribution from Qi will

be included later, when we present our results. We therefore have for now that

[D̂M , D̂N ]0 =
1
4
R̂MNPQ Γ̂PQ+ 1

144
Γ̂[M

P1···P4 ∇̂N] F̂P1···P4
+ 1

18
∇̂[M F̂N]P1P2P3

Γ̂P1P2P3 , (7.38)

where the subscript “0” on the commutator indicates the omission of the Qi correction

term.
preserved in the corrected special-holonomy backgrounds. However, the fact that one is able at all to

find a candidate fully-Riemannian correction to the gravitino transformation rule that is consistent

with the preservation of supersymmetry of the corrected backgrounds is already quite remarkable.

And since no other explicit results for the gravitino transformation rules have been obtained by direct

calculation in the intervening 18 years since [4] appeared, we are forced, faute de mieux, to make do

with this at present.
11Note that with the correction (3.4) the modified Killing spinor operator (∇i+Qi) retains the same

reality properties as at the classical level, so the equivalence between a pair of Majorana spinors and

a complex chiral spinor as explained in subsection 7.1 persists in the presence of the corrections.
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It is helpful to analyse the integrability conditions in stages. First, we may note that

upon left-multiplication and contraction with Γ̂N , one obtains from Γ̂N [D̂M , D̂N ] ǫ̂ = 0

a system of field equations that can be compared with those already derived from the

variation of the action. Thus if a Killing spinor ǫ̂ exists, one should find consistency

between the already-established bosonic equations of motion, and those that follow

from Γ̂N [D̂M , D̂N ] ǫ̂ = 0. Establishing this consistency does not of itself prove that a

Killing spinor ǫ̂ exists (and thus that the deformed solution is supersymmetric), since

the left-multiplication of the integrability condition by Γ̂N projects into a subset of the

full content of [D̂M , D̂N ] ǫ̂ = 0, but it already provides a non-trivial check.

It is easy to see from (7.38) that we shall have

Γ̂N [D̂M , D̂N ]0 = −1
2
R̂MN Γ̂N− 1

72
Γ̂M

N1···N4 ∇̂N1 F̂N1···N4
+ 1

12
∇̂N F̂NMPQ Γ̂PQ . (7.39)

The field equation (6.10) implies that

∇̂M F̂
MN1N2N3 = α ǫ̂N1N2N3P1···P8 X̂P1···P8

, (7.40)

where we have, for convenience, defined

α =
(2π)4 β

8!
, (7.41)

and where X̂M1···M8
denotes the components of the 8-form X̂(8), i.e.

X̂M1···M8 =
105

8(2π)4

(
RN1

N2[M1M2
RN2 |N3|M3M4

RN3 |N4|M5M6
RN4 |N1|M7M8]

−1
4
RN1

N2[M1M2
RN2 |N1|M3M4

RN3 |N4|M5M6
RN4 |N3|M7M8]

)
. (7.42)

It is convenient also to define

ĤN1N2N3 ≡ α ǫ̂N1N2N3P1···P8 X̂P1···P8
, (7.43)

so that the field equation (7.40) reads

∇̂M F̂
MN1N2N3 = ĤN1N2N3 . (7.44)

Since we are working only to linear order in β (and hence α), we are allowed to use the

zeroth-order background conditions when evaluating ĤN1N2N3 . We therefore have that

the only non-vanishing components of ĤN1N2N3
are given by

Ĥ0ij = α ǫijk1···k8 X
k1···k8 . (7.45)
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together with those related by antisymmetry, where ǫi1···i10 is the ten-dimensional Levi-

Civita tensor.

For a Kähler metric on K10, the Riemann tensor Rijkℓ satisfies

Rijkℓ = Rîĵkℓ = Rijk̂ℓ̂ . (7.46)

Taking into account the Riemann tensor symmetries, this implies that H0ij given in

(7.45) will satisfy

H0̂iĵ = H0ij . (7.47)

Taking the index value M = 0 in (7.39) gives

R̂00 Γ̂
0 ǫ̂− 1

6
H0ij Γ̂

ij ǫ̂ = 0 . (7.48)

Following the discussion in section 7.1 we may replace the real spinor ǫ̂ by the chiral

complex spinor η. Contracting on the left with η̄, where η is taken to be a Killing spinor,

and using its properties as summarised in section 7.1, we deduce that R̂00 =
1
6
H0ij J

ij

and hence that

R̂00 =
1
6
αJ ij ǫijk1···k8 X

k1···k8 . (7.49)

Taking M = i instead in (7.39), we find after some algebra that

R̂ij =
1
12
α gij J

mn ǫmnk1···k8 X
k1···k8− 1

2
αJi

m ǫjmk1···k8 X
k1···k8 . (7.50)

Equations (7.49) and (7.50) represent the gravitational field equations that follow

from the integrability conditions for the existence of a Killing spinor. Using (7.28),

and now restoring the contribution from the Qi term in the modified supercovariant

derivative, we therefore find that

A = 1
6
αJ ij ǫijk1···k8 X

k1···k8 , (7.51)

Rij =
1
16
α gij J

mn ǫmnk1···k8 X
k1···k8− 1

2
α Ji

m ǫjmk1···k8 X
k1···k8

+
β

1152
(∇î∇ĵ Z+∇i∇j Z) . (7.52)

From the relations between Y2 and X8 in a Ricci-flat Kähler manifold, we can show

that these equations are identical to (7.32) and (7.33). This establishes consistency,

at least, between the bosonic field equations and the conditions that follow from the

assumption of supersymmetry persistence in the deformed background.

We now turn to consideration of the full supersymmetry integrability conditions

without taking the Γ̂N contraction; these can be read off upon substituting F̂4 = G(3)∧dt
into (7.38), and including also the contribution from the Qi modification. There are two
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cases to consider: taking the free indices M and N in (7.38) to be either (MN) = (0i)

or (MN) = (ij). From (MN) = (0i), we find

∇i∇jAΓj η = − i
18
∇iGkℓm Γkℓm η . (7.53)

From this, we find that G(3) is expressible as

G(3) =
3
4
J∧dA+G̃(3) , (7.54)

where G̃(3) is an arbitrary 3-form that is orthogonal to the Kähler form J , in the sense

that

J jk G̃ijk = 0 . (7.55)

From the (MN) = (ij) components of the integrability condition we find, after

substituting (7.54), that

Rijkℓ Γ
kℓ η+ 3i

4
(∇i∇ĵA−∇j∇îA) η+i∇[iG̃j]kℓ Γ

kℓ η+
i β

576
(∇i∇ĵZ−∇j∇îZ) = 0 . (7.56)

Multiplying by η̄, we learn that the Ricci form ̺ij is given by

̺ij ≡ 1
2
Rijkℓ J

kℓ = −3
8
(∇i∇ĵA−∇j∇îA)−

β

1152
(∇i∇ĵZ−∇j∇îZ) . (7.57)

Multiplying (7.56) instead by η̄ Γmn, we obtain two equations, from the real and

imaginary parts. The imaginary part yields

Rijk̂ℓ = −Rijkℓ̂+∇[iG̃j]kℓ−∇[iG̃j]k̂ℓ̂ , (7.58)

while the real part, after making use of (7.58), again yields (7.57).12 By making use of

the cyclic identity for the Riemann tensor, we can show from (7.58) that

Riĵ = −1
2
Rijkℓ J

kℓ− 1
2
∇kG̃iĵk̂+

1
2
∇kG̃ijk . (7.59)

Note that the Bianchi identity dF̂4 = 0 implies, from (7.54), that dG̃(3) = 0, and hence

from (7.55) we find that ∇kG̃ijk̂ = 0, implying that (7.59) reduces to

Riĵ = −1
2
Rijkℓ J

kℓ+ 1
2
∇kG̃ijk . (7.60)

12Equation (7.58) shows that the deformed metric is no longer Kähler (at least with respect to the

original Kähler form Jij = −i η̄Γijη), since if it were, the integrability condition for the covariant

constancy of Jij , namely [∇i,∇j ] Jkℓ = 0, would imply that R
ijk̂ℓ

= −R
ijkℓ̂

. It is perhaps useful

to emphasise here that when looking at the Riemann tensor that arises from the commutation of

covariant derivatives, the perturbative scheme in which we are working to order β requires that we

must keep terms of order β that represent the deformation away from the leading-order special-

holonomy background. By contrast, Riemann tensors appearing in the O(β) correction terms need

only be evaluated in the original undeformed special-holonomy background.
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Substituting (7.57) into (7.60), and hatting the j index, we obtain the equation

Rij =
3
8
(∇i∇jA+∇î∇ĵA)+

β

1152
(∇i∇jZ+∇î∇ĵZ)− 1

2
∇kG̃iĵk . (7.61)

In order to verify that our assumption of supersymmetry preservation in the deformed

system is consistent, we must show that (7.61) is indeed consistent with the previous

expression for the deformed Ricci tensor as given in (7.30), or, equivalently, in (7.52).

This can be done by considering the equation of motion for the 4-form field F̂(4) =

G(3)∧dt, namely ∇kGijk = α ǫijℓ1···ℓ8 X
ℓ1···ℓ8. Using (7.54), this implies

3
4
gij A− 3

4
(∇i∇jA+∇î∇ĵA)+∇kG̃iĵk = α ǫiĵℓ1···ℓ8 X

ℓ1···ℓ8 . (7.62)

Substituting this into (7.61), we obtain precisely the previous expression (7.52) for the

deformed Ricci tensor.

Having verified consistency with the integrability conditions for supersymmetry, it

is instructive to examine the supercovariant derivative itself, in the deformed SU(5)

holonomy background. In the natural orthonormal frame ê0 = eA dt, êi = e−
1
8
A ei

for the metric (7.25), we find that to linear order in the O(β) warp function A, the

torsion-free spin connection is given by

ω̂0i = −∇iA ê
0 , ω̂ij = ωij+

1
8
(∇iA ê

j−∇jA ê
i) , (7.63)

and hence from (6.24), with the correction term (3.4) which specialises to (7.37) in the

leading-order SU(5) holonomy background, the supercovariant derivative D̂A in the

deformed background is given by

D̂0 = ∂0− i
2
∇iAγ

i γ11− 1
36
Gijk γ

ijk ,

D̂i = ∇i− 1
16
∇jAγ

ij+ i
72
Gjkℓ γiγ

jkℓ γ11− i
8
Gijk γ

jk γ11+
i β

2304
∇îZ , (7.64)

when expressed in terms of the ten-dimensional SO(10) Dirac matrices γi, and the

ten-dimensional chirality operator γ11.

Using these results, we find that the complex spinor η̂ = e
1
2
A η satisfies the D = 11

Killing spinor equation D̂A η̂ = 0 provided that η obeys the ten-dimensional equation

Diη ≡ ∇iη+i (∇îh) η+
i
8
G̃ijk γ

jkη = 0 , (7.65)

where

h = 3
16
A+

β

2304
Z (7.66)
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together with

γ11 η = −η , G̃ijk γ
ijk η = 0 . (7.67)

As discussed in section 7.1, this result implies the existence of two linearly-independent

Majorana Killing spinors of the M-theory background; obtained, in a real representation

of the Dirac matrices, by taking the real and imaginary parts of η̂.

We will now show that this supersymmetry preservation by the M-theory correc-

tions occurs despite a deformation away from SU(5) holonomy. A straightforward

calculation from (7.67) shows that G̃ijk is the sum of a (1, 2) and (2, 1) form, with

no purely holomorphic or anti-holomorphic (3, 0) or (0, 3) form components. In other

words,

(δℓi+i Ji
ℓ)(δmj +i Jj

m)(δnk+i Jk
n)G̃ℓmn = 0 , (7.68)

which translates, in the hatted-index notation, into the statement that

G̃ijk = G̃iĵk̂+G̃îjk̂+G̃îĵk . (7.69)

Using (7.65), it is straightforward to evaluate ∇jJi
k to linear order in the deformation

of the metric, where Jij = −i η̄Γijη, yielding

∇jJi
k = 1

2
G̃ij

k− 1
2
G̃îj

k̂ . (7.70)

This shows that the loss of Kählerity of the leading-order SU(5) holonomy background

is associated with the non-vanishing of the 3-form G̃ijk. Calculating the Nijenhuis

tensor

Nij
k = ∂[jJi]

k−Jiℓ Jjk ∂[mJℓ]k , (7.71)

we then find from (7.70) that it is given by

Nij
k = 1

2
(G̃ij

k−G̃iĵ
k̂−G̃îj

k̂−G̃îĵ
k) , (7.72)

and so from (7.69) we see that the Nijenhuis tensor vanishes. This implies that although

the deformed space is no longer Kähler, it is still a complex manifold.

It is worth remarking that although the correction to the SU(5) holonomy back-

ground deforms K10 into a space that is not only non-Ricci-flat but also non-Kähler, it

does have the feature of preserving the vanishing of the first Chern class. This can be

seen from the fact that the Ricci form, given by (7.57), is exact.

8. Conclusions

In this paper, we have extended the investigation of string and M-theory corrections

to special holonomy backgrounds that was begun in Refs [3, 4, 7] for six-dimensional
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Calabi-Yau compactifications, and subsequently developed for seven-dimensional G2

holonomy compactifications in [2]. In the present paper, we have considered the cor-

rections at order α′3 in string theory for backgrounds of the form (Minkowski)2×K8,

where K8 is a manifold of Spin(7) holonomy. The calculations are considerably more

subtle than in the previous cases, because now there are potential contributions to

the corrected Einstein equations of a type that would vanish identically by over-

antisymmetrisation in the case of curved backgrounds of fewer than eight dimensions.

After handling these subtleties, we find that the corrected Einstein equations take a

rather simple form, described by (2.28) and (2.30).

We have also considered the structure of the order α′3 corrections to the supersym-

metry transformation rules for an originally Spin(7) holonomy background. Consider-

ation of these corrections is essential if one wants to test whether or not the corrected

background remains supersymmetric. We found the simple expression (3.1) for the cor-

rected covariant derivative in the gravitino transformation rule. This expression, which

is constructed using the calibrating 4-form of the Spin(7) background, can be recast in

a purely Riemannian form, where no special tensors existing only in special holonomy

backgrounds are needed. Remarkably, the Riemannian expression, given in (3.4), turns

out to be identical to the one first proposed in [4], whose form was deduced from the

(considerably weaker) requirement of supersymmetry preservation for corrected Calabi-

Yau six-manifold compactifications. Using the corrected gravitino transformation rule,

we illustrated with examples the way in which one can derive corrected first-order

equations for metrics that have Spin(7) holonomy at leading order.

We also extended our results to Spin(7) compactifications of M-theory, This was

considerably more complicated than the analysis at tree-level in string theory, partly

because of the Chern-Simons terms that had to be taken into account and partly

because of the topological constraint that forces form fields to become non-vanishing

when the Spin(7) manifold is compact (as implied by the term ‘compactification’).

We gave a complete discussion of the corrections to (Minkowski)3×K8 backgrounds,

including for the first time a complete demonstration of supersymmetry preservation

in the deformed solutions. Our M-theory result implies a similar result for one-loop

corrected Spin(7) compactifications of IIA superstring theory. It would be of interest to

extend this to the one-loop corrected IIB superstring theory, but we would not expect

this to introduce any essentially new features.

We also considered the case of (Minkowski)1×K10 backgrounds in M-theory, where

at leading order the manifold K10 has a Ricci-flat Kähler metric with SU(5) holonomy.

This case is of particular interest because it probes features of M-theory that go beyond

those that can be directly accessed from perturbative string theory. In order to avoid

the complications arising from a topological constraint, we assumed that H8(K10) is
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trivial, which implies that K10 is non-compact. Under this assumption, we were able to

obtain equations for the corrections to the leading-order background. Remarkably, we

found that the corrected SU(5) holonomy backgrounds maintain their supersymmetry,

assuming only that the previously-known correction term in the gravitino transfor-

mation rule plays a rôle. The corrected metric on K10 is no longer Kähler, but it is

still complex, with vanishing first Chern class. Of course, it would be of considerable

interest to extend these results to compact K10.

Finally, we wish to emphasise again the remarkable fact that the form of the correc-

tion to the supersymmetry transformation rule first proposed in [4] for string theory in

the context of six-dimensional Calabi-Yau compactifications continues to be sufficient to

guarantee supersymmetry preservation for compactifications on Spin(7) manifolds. It is

also sufficient for Spin(7) compactifications, and certain SU(5) ‘non-compactifications’

of M-theory. This suggests that it should be taken seriously as a candidate for the

complete gravitational part of the string or M-theory correction to the gravitino super-

symmetry transformation rule.
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