
AN INSTANTANEOUS FRAMEWORK FOR CONCURRENCY BUG DETECTION

A Thesis

by

BOZHEN LIU

Submitted to the Office of Graduate and Professional Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Chair of Committee, Shaoming Huang
Committee Members, Riccardo Bettati

Peng Li

Head of Department, Dilma Da Silva

December 2018

Major Subject: Computer Engineering

Copyright 2018 Bozhen Liu

ABSTRACT

Concurrency bug detection is important to guarantee the correct behavior of multi-

thread programs. However, existing static techniques are expensive with false positives,

and dynamic analyses cannot expose all potential bugs.

This thesis presents an ultra-efficient concurrency analysis framework, D4, that detects

concurrency bugs (e.g., data races and deadlocks) “instantly” in the programming phase.

As developers add, modify, and remove statements, the changes are sent to D4 to detect

concurrency bugs on-the-fly, which in turn provides immediate feedback to the developer

of the new bugs. D4 includes a novel system design and two novel parallel incremental

algorithms that embrace both change and parallelization for fundamental static analyses of

concurrent programs. Both algorithms react to program changes by memoizing the analy-

sis results and only recomputing the impact of a change in parallel without any redundant

computation. Our evaluation on an extensive collection of large real-world applications

shows that D4 efficiently pinpoints concurrency bugs within 10ms on average after a code

change, several orders of magnitude faster than both the exhaustive analysis and the state-

of-the-art incremental techniques.

ii

ACKNOWLEDGMENTS

There are a number of people without whom this thesis might not have been written,

and to whom I am greatly indebted.

I would like to thank my adviser, Jeff Huang, for giving me the support, comments and

encouragement I’ve desperately needed during in pursuance of my degree. As a beginner

in computer science, it took a long haul, with many detours along the way, but he never

wavered. His advises and guidance have greatly influenced my approach to computer

science research.

Thanks to my other committee members, Riccardo Bettati and Peng Li, for contribut-

ing a great deal to my development as a graduate by giving me the benefit of their times

and advises.

Thanks to Julian Dolby for helping me with my first project and directing me about the

integration procedure.

iii

CONTRIBUTORS AND FUNDING SOURCES

Contributors

This work was supported by a thesis committee consisting of Professor Jeff Huang and

Riccardo Bettati of the Department of Computer Science and Engineering and Professor

Peng Li of the Department of Electrical and Computer Engineering.

All the work conducted for the thesis was completed by the student independently.

Funding Sources

Graduate study was supported by an assistantship from Texas A&M University.

iv

NOMENCLATURE

PTA Points-to Analysis

pts points-to set

PAG Pointer Assignment Graph

PIPTA Parallel Incremental Points-to Analysis

D4 Distributed Data race & Deadlock Detection

SHB Static Happens-before

LD Lock-dependency

v

TABLE OF CONTENTS

Page

ABSTRACT . ii

ACKNOWLEDGMENTS . iii

CONTRIBUTORS AND FUNDING SOURCES . iv

NOMENCLATURE . v

TABLE OF CONTENTS . vi

LIST OF FIGURES . ix

LIST OF TABLES. x

1. INTRODUCTION. 1

1.1 Background . 1
1.1.1 Pointer Analysis . 2
1.1.2 Happens-before Analysis . 3

1.2 Thesis Contribution . 3
1.3 Outline Of Thesis . 4

2. PARALLEL INCREMENTAL POINTS-TO ANALYSIS . 5

2.1 Background . 5
2.2 Introduction To Points-to Analysis . 6
2.3 Performance Bottleneck In Handling Deletion . 9

2.3.1 Reset-recompute Algorithm. 10
2.3.2 Reachability-based Algorithm . 12
2.3.3 Graph Pattern Matching . 12

2.4 Observed Properties . 13
2.5 Basic Incremental Algorithm . 17

2.5.1 Incremental SCC Detection . 19
2.5.2 Incremental Edge Deletion . 20
2.5.3 Incremental Edge Addition . 23

2.6 Parallel Incremental Algorithm. 24
2.6.1 Synchronization-free Implementation . 27

vi

2.7 End-to-end Incremental Points-to Analysis . 29
2.7.1 Adapting To Context-sensitive, Flow-sensitive And Other Problems 32

2.7.1.1 Context-sensitive . 32
2.7.1.2 Flow-sensitive . 33
2.7.1.3 Other Problems . 34

2.7.2 Scheduling Of Changed Statements . 34
2.8 Related Works And Comparison . 35

2.8.1 Incremental Algorithms . 35
2.8.2 Parallel Algorithms . 37
2.8.3 SCC Optimizations . 39

3. PARALLEL INCREMENTAL HAPPENS-BEFORE ANALYSIS 40

3.1 Background . 40
3.2 Related Works . 41
3.3 An Example . 41
3.4 Limitations In Existing Techniques . 42
3.5 A New SHB Graph Construction . 44
3.6 The New SHB Graph Update For Incremental Changes . 45
3.7 How To Compute The Happens-before Relation . 46

4. D4: A FAST CONCURRENCY DEBUGGING FRAMEWORK 48

4.1 Background . 48
4.2 Related Works . 49
4.3 Change Extraction. 49
4.4 Data Race Detection . 51
4.5 Deadlock Detection . 52

4.5.1 Lock-dependency Graph . 52
4.5.2 Deadlock Detection . 52
4.5.3 LD Graph Update For Incremental Changes . 53
4.5.4 Incremental Deadlock Detection. 54

4.6 The Distributed System Design . 54
4.6.1 Parallel Analysis Framework . 55
4.6.2 Graph Storage . 56
4.6.3 Message Format . 56

5. EVALUATION . 57

5.1 Evaluation Methodology. 57
5.2 Benchmarks . 58
5.3 Evaluation Of PIPTA. 58
5.4 Evaluation Of D4. 59

5.4.1 Performance . 59

vii

5.4.2 Precision . 62

6. CONCLUSION. 64

REFERENCES . 66

viii

LIST OF FIGURES

FIGURE Page

2.1 An example of the PAG. 7

2.2 An example of an edge deletion in the PAG. 11

2.3 Illustration of the incoming neighbours property. 14

2.4 Illustration of the outgoing neighbours property. 16

2.5 Three SCC scenarios. 18

2.6 An example of parallel change propagation. 27

3.1 An Example for SHB Analysis. 41

3.2 The SHB graph for the example in Figure 3.1. 43

3.3 The new SHB graph for the example in Figure 3.1. 46

4.1 An example for the LD graph construction. 53

ix

LIST OF TABLES

TABLE Page

2.1 Andersen’s Constraints for Java. 8

2.2 Java statements and their corresponding PAG edges. 30

3.1 Nodes in the SHB Graph. 42

3.2 Edges in the SHB Graph . 42

3.3 Edges in the New SHB Graph . 44

5.1 Benchmarks and PAG metrics. 58

5.2 Performance of Exhaustive and Existing Incremental Pointer Analysis Al-
gorithms. 60

5.3 Performance of Exhaustive and New Incremental Pointer Analysis Algo-
rithms. 60

5.4 Performance of Concurrency Bug Detection. 61

5.5 Results of Detected Concurrency Bugs. 63

x

1. INTRODUCTION

1.1 Background

Writing correct parallel programs is notoriously challenging due to the complexity of

concurrency and the non-deterministic property. Concurrency bugs, such as data races

and deadlocks, are easy to introduce but difficult to detect and fix, especially for real-

world applications with large code bases. Most existing techniques [1, 2, 3, 4, 5, 6, 7, 8,

9, 10, 11] either miss many bugs or cannot scale. A common limitation is that they are

mostly designed for late phases of software development, such as testing or production.

Consequently, it is hard to scale these techniques to large software because the whole code

base has to be analyzed. Moreover, it may be too late to fix a detected bug, or too difficult

to understand a reported warning, because the developer may have forgotten the coding

context to which the warning pertain.

A promising way to detect and fix concurrency bugs is during the programming phase,

so that the bugs can be fixed as soon as possible by providing developers early feedback,

and the expensive analyses can be amortized by analyzing a portion of the whole code

bases. To design such an efficient detection, it requires expensive static analyses, such as

pointer analysis and happens-before analysis, which can take minutes or hours for real-

world programs.

ECHO [12] is such an IDE-based technique that detects data races incrementally in

the programming phase. Upon a change in the source code (addition, deletion or modi-

fication), instead of exhaustively re-analyzing the whole program, it analyzes the change

only and recompute the impact of the change for race detection by memorizing the inter-

mediate analysis results. This not only provides early feedback to developers in order to

reduce the cost of bugs, but also enables efficient bug detection by amortizing the analysis

1

cost. An incremental pointer analysis and a static happens-before analysis contribute to

the fast response of race detection. As reported in [12], for 92+% of the code changes in

small/middle size programs, ECHO takes no more than 0.1s to detect races.

However, the scalability of the techniques behind ECHO is poor for large real-world

programs, because its incremental analysis as well as the static happens-before analysis

can still be too slow to be applied in the programming phase. In addition, ECHO runs

entirely in the same process as the IDE, which severely limits its performance due to the

limited CPU and memory resources. Further, ECHO can only detect races but not any

other concurrency bugs such as deadlocks. The ability to detect deadlocks is particularly

important for ECHO-like race detection tools, because once a data race is detected, pro-

grammers often use locks to fix the race, which may well introduce new deadlock bugs.

1.1.1 Pointer Analysis

Pointer analysis, or points-to analysis, is a fundamental program analysis that reasons

about the value of pointer variables statically, i.e., what memory locations or objects can

a pointer point to or a variable reference at runtime? There are many dimensions of pre-

cision that can be modeled when approximating pointer analysis, such as flow-sensitivity,

context-sensitivity, field-sensitivity, the heap model, representation of pointer information,

branch conditions and array indexing. The area of pointer analysis has been the focus of

intensive research [13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26], because virtually

all interesting static program analyses rely on pointer analysis, e.g., error-finding, model

checking, systems hardening, security analysis, etc. By improving the precision and scal-

ability of pointer analysis, we can directly contribute to the effectiveness of a wide variety

of program analyses that list above.

In this thesis, we focus on the classical Andersen’s analysis [13] of the Java-like object-

oriented language, which is context/flow-insensitive and object/field-sensitive.

2

1.1.2 Happens-before Analysis

Happens-before analysis is also a fundamental program analysis, which computes the

happens-before relation between two events, for example, one event should happen be-

fore or after or concurrently with another event. The happened-before relation is formally

defined as the least strict partial order on events, which is transitive, irreflexive and an-

tisymmetric. This is a maturely studied researched area with extensive reference, such

as the widely used vector clock from Lamport timestamps [27], and the later developed

techniques [3, 12, 28]. The scalability of these techniques still have a large room to im-

prove, which can benefit many program analysis applications, especially the concurrency

bug detection

1.2 Thesis Contribution

This thesis makes the following contributions:

• A novel end-to-end parallel incremental points-to analysis approach, PIPTA, that

dramatically improves the performance and practicality of pointer analysis without

losing precision. In particular, we develop a novel incremental algorithm that ef-

ficiently handles code deletions without any change impact recomputation nor the

expensive graph reachability analysis.

• A new parallel incremental algorithms of static happens-before analysis, for effi-

ciently analyzing concurrent programs by exploiting both the change-centric nature

of programming and the algorithmic parallelization of fundamental static analyses.

• A design and implementation of an ultra-efficient interactive concurrency analysis

framework, D4, that detects data races and deadlocks instantly in the IDE, i.e., in

tens of milliseconds on average as they are introduced into the program.

3

Besides, PIPTA has been integrated into the popular Java program analysis framework,

WALA [29]. The paper of the static framework [30] is accepted by PLDI’18.

1.3 Outline Of Thesis

Chapter 2 describes the new parallel incremental points-to analysis, PIPTA. The chap-

ter gives the background of the basic Andersen’s analysis, the performance bottlenecks in

related works, and then describes our discoveries and algorithms.

Chapter 3 describes the new parallel incremental static happens-before analysis, which

includes the weakness of related works and the new graph representation.

Chapter 4 describes the data race and deadlock detection implemented in D4. This

chapter introduces related works, the lock-dependency graph we adopted for the whole

program and incremental deadlock detection.

Chapter 5 describes the evaluation of PIPTA for improving the scalability of incremen-

tal points-to analysis and our framework for data race and deadlock detection for improv-

ing the efficiency of concurrency bug detection.

Finally, Chapter 6 concludes the thesis by summarize the thesis, recapping our contri-

butions and listing future works.

4

2. PARALLEL INCREMENTAL POINTS-TO ANALYSIS 1

This chapter presents the background information of Andersen’s points-to analysis,

discuss the related works and illustrate our parallel incremental points-to analysis (PIPTA)

which can scale to large programs. Section 2.1 illustrates the importance in studying

points-to analysis and the main challenges. Section 2.2 introduces the basic information in

points-to analysis and incremental points-to analysis. Section 2.3 presents why the existing

techniques of incremental points-to analysis are inefficient. Section 2.4 illustrates the new

properties inferred from our observations on the PAG, which are the foundations of our

new algorithms. Section 2.5, 2.6 and 2.7 explains the detailed algorithms of PIPTA.

Section 2.8 lists the related works and compares them with PIPTA.

2.1 Background

Like many other static analyses, a precise pointer analysis is undecidable [31, 32].

Thus, all pointer analysis techniques approximate the results and aim to improve the pre-

cision and/or efficiency. A key challenge in pointer analysis, however, is how to scale

to large real-world programs without sacrificing the precision too much. The complex-

ity of the state-of-the-art inclusion-based pointer analysis [13] is cubic in the program

size, which is inherently slow for large programs. According to the most recent develop-

ments [14, 21, 33], for real-world programs with hundreds of thousand of lines of source

code, the context-insensitive, field-sensitive pointer analysis requires a couple of minutes

to compute, and the more-precise context-sensitive analysis requires tens of minutes or

even hours. Partly due to this computational challenge, such reasonably-precise pointer

1Reprinted with permission from “D4: Fast Concurrency Debugging with Parallel Differential Analysis"
by Bozhen Liu, Jeff Huang, 2018. Proceedings of the 39th ACM SIGPLAN Conference on Programming
Language Design and Implementation, 359-373, Copyright [2018] by Association for Computing Machin-
ery, Inc. Reprinted by permission.

5

analyses are not widely used in production compilers, missing many potential optimiza-

tion opportunities.

One promising solution to this challenge is incremental pointer analysis, which mem-

oizes the analysis results and only recomputes the impact after a change. Incremental

pointer analysis is particularly useful for applications in which the analysis has to run re-

peatedly with respect to frequent but small program changes, e.g., bug finding in the pro-

gramming phase [12] and incremental compilation [34], because analyzing small changes

is often much faster than rerunning the pointer analysis for the entire program.

Researchers have investigated and developed several incremental algorithms, which

show significant performance improvements over the exhaustive pointer analysis. How-

ever, incremental pointer analysis still faces several major challenges in applying to large

real-world programs. First, existing incremental algorithms (albeit fast in simple cases)

are still too slow in many complex cases, especially for handling code deletions. Second,

most existing algorithms assume a pre-built call graph of the program, which does not

hold for scenarios where the call graph itself can be changed by the code updates. Third,

some algorithms do not preserve precision but compute a less precise points-to result than

the exhaustive analysis.

2.2 Introduction To Points-to Analysis

Points-to analysis is to determine the set of heap locations or objects that a variable x

can point to during execution, which is the points-to set of x, denoted by pts(x). Since our

targets are Java programs, we will focus on Java-like object-oriented language from now.

Points-to analysis is often cast as a graph transitive closure problem, such as pointer

assignment graph[35] and flow graph [36]. Here, we adopt the pointer assignment graph

(PAG) in our analysis, where the nodes in the PAG represent for program variables, abstract

locations and fields of abstract locations, and each edge represents the subset-based points-

6

to constraint between two nodes.

Andersen’s analysis, a.k.a. inclusion-based analysis, is the most precise of the context-

and flow-insensitive points-to analysis. In Andersen’s analysis, the edges represent subset

constraints between points-to sets, i.e., an edge o1 → x means that o1 ∈ pts(x), and an

edge x → y means that pts(x) ⊆ pts(y). Figure 2.1 shows an example of PAG for Java

programs, in which there are three kinds of nodes: variable nodes (i.e., x and y), field node

(i.e., x.f) and object nodes (i.e., o1 and o2). Their points-to sets are pts(x) = o1 and

pts(y) = o1, o2.

Figure 2.1: An example of the PAG.

There are six essential types of statements considered in Andersen’s analysis, which

are listed from ¬ to ± in Table 2.1 with their corresponding points-to constraints and

points-to edges. For each type of statements, the points-to sets of the related variables are

updated as follows:

¬ x = new T(): add a new object oi to pts(x).

 x = y: add pts(y) to pts(x).

® x = y.f : for each object oi ∈ pts(y), add pts(oi.f) to pts(x).

¯ x.f = y: for each object oi ∈ pts(x), add pts(y) to pts(oi.f).

7

° x = y[i] : for each object o ∈ pts(y), add pts(o.∗) to pts(x).

± x[i] = y: for each object o ∈ pts(x), add pts(y) to pts(o.∗).

*f is an object field.

Array accesses (° and ±) are considered as field accesses to a constant field by ig-

noring the array index. Different array indices are not distinguished but represented by a

special constant “∗”. We can have a more precise result by create variable nodes for the

elements represented by different array indexes, which is expensive.

For points-to analysis in Java programs, adopting field-sensitive is important to im-

prove the precision, which treats each instance field of each abstract location separately.

Statements Points-to Constraints PAG Edges
¬ x = new T () oT ∈ pts(x) oT → x
 x = y pts(y) ⊆ pts(x) y → x
® x = y.f ∀o ∈ pts(y): pts(o.f) ⊆ pts(x) ∀o ∈ pts(y): o.f → x
¯ x.f = y ∀o ∈ pts(x): pts(y) ⊆ pts(o.f) ∀o ∈ pts(x): y → o.f
° x = y[i] ∀o ∈ pts(y): pts(o) ⊆ pts(x) ∀o ∈ pts(y): o→ x
± x[i] = y ∀o ∈ pts(x): pts(y) ⊆ pts(o.i) ∀o ∈ pts(x): y → o.i
² x = z.m(y)* pts(r) ⊆ pts(x), r → x,

pts(y) ⊆ pts(p) y → p

Table 2.1: Andersen’s Constraints for Java.

Even though the basic Andersen’s algorithm is precise enough for most applications, it

requires a pre-built call graph, which does not work for the incremental scenario: we must

handle dynamic changes to the call graph due to the method-invoke statement.

On-the-fly Andersen’s algorithm [15, 20, 36] can process dynamic call graph changes

as well as PAG changes. Algorithm 1 outlines the flow of the on-the-fly algorithm, which

implements a worklist algorithm. The algorithm starts with only the initial reachable

8

methods (e.g., the main method), from which an initial set of points-to constraints are

constructed. In each iteration, an input set of constraints are consumed and potentially

a new set of constraints are produced, which are again consumed by the next iteration.

Specifically, each iteration consists of two steps:

(1) Evaluates the input constraints by following the Andersen’s algorithm in Table 2.1

to compute the points-to set of each variable and generates new constraints if neces-

sary;

(2) Resolves new method call targets based on the current points-to information (i.e.,

the points-to set of the receiver variable in the method call statements), and extracts

new constraints for the newly discovered method calls.

The union of the new constraints from these two steps is then provided to the next

iteration as the input constraints. This procedure continues until a fixed point is reached.

Algorithm 1: On-the-fly pointer analysis
// ∆: the new constraints in each iteration

1 ∆← initial points-to constraints;
// repeat until ∆ is empty

2 while ∆ 6= ∅ do
// consume ∆ and return new constraints

3 ∆1 = runAndersonsAnalysis(∆)
4 ∆2 = extractNewMethodCallConstraints(∆1)
5 ∆ = ∆1 ∪∆2

6 end

2.3 Performance Bottleneck In Handling Deletion

Incremental pointer analysis must handle two basic types of changes: adding a state-

ment and deleting a statement, because any code change can be composed from one or

9

more additions and/or deletions.

Handling addition is mostly straightforward based on the on-the-fly Andersen’s points-

to analysis described in the previous section. Specifically, new points-to constraints can

be first extracted from the inserted statement and then provided as the input to run the

on-the-fly algorithm in Algorithm 1.

However, handling deletion is much more complicated than addition. Intuitively, it is

the reverse of addition and, if we can track the state changes of the PAG by each addition

statement, we may undo the changes after deleting the same statement. This intuition is

incorrect because changes are often dependent on each other. For example, consider three

consecutive code changes: adding a statement b = a, adding another statement c = b,

and then deleting the first statement b = a. When b = a is added, the points-to set of

b is updated to include those in pts(a), i.e., pts(b)= pts(b) ∪ pts(a). When c = b is

added, similarly, pts(c) is updated to pts(c)∪ pts(b). However, when b = a is deleted, not

only the change in pts(b) should be reversed, but also that the change in pts(c) should be

recomputed, because pts(c) was previously updated based on pts(b).

There are essentially three categories of approaches proposed in the existing literature

for handling deletion: reset-recompute [12, 37, 38, 39, 40], reachability-based [12, 41,

42] and graph pattern matching [43]. However, all approaches suffer from performance

limitations, are difficult to scale to large programs and to parallel the algorithms.

2.3.1 Reset-recompute Algorithm

A simple algorithm is to first reset the points-to sets of all variables that are “relevant”

to the deleted statement and then recompute them following the same rationale as the on-

the-fly algorithm. Here, “relevant” means “reachable” from the root variable of the change

in the PAG.

Specifically, upon a deletion, one can first remove from the PAG all edges related to

10

the deleted statement and reset (set to empty) the points-to sets of their destination nodes

as well as all nodes that they can reach (because the points-to sets of all those nodes may

be affected). Then, for all the reset nodes, extract their associated points-to constraints and

rerun the fixed-point computation following Algorithm 1.

Figure 2.2: An example of an edge deletion in the PAG.

Consider an example in Figure 2.2, in which an edge p → q is deleted from the PAG

(e.g., due to the deletion of a statement q = p in the program). The root variable of

the change is q, since its points-to set may be changed immediately because of the edge

deletion. The reset-recompute algorithm first resets pts(q) as well as pts(w) and pts(r) to

empty (because r and w are reachable from q). Then it extracts the points-to constraints

pts(q) = pts(q) ∪ o2, pts(r)= pts(r) ∪ pts(q), pts(w)= pts(w) ∪ pts(q), and pts(w)=

pts(w) ∪ pts(p), from the four edges connected to the three reset nodes, i.e., o2 → q,

q → r, q → w and p→ w, and recomputes pts(q), pts(z) and pts(w) until reaching a fixed

point. The final values of the points-to sets are: pts(p)={o1}, pts(q)={o2}, pts(r)={o2}

and pts(w)={o1, o2}.

The reset-recompute algorithm is inefficient because most computations on the points-

to sets of the reset nodes could be redundant. For example, both before and after the

deletion, pts(w) remains the same and o2 is included the points-to sets of q, r and w.

11

2.3.2 Reachability-based Algorithm

The basic idea of the reachability-based algorithm [12] is to check the path reacha-

bility before removing an object from the points-to set of a variable. In other words, the

points-to sets of those nodes which are potentially affected by the deletion are not reset,

but are updated lazily only if they are not reachable from the nodes denoting the corre-

sponding objects in the PAG. This algorithm does not incur any redundant computation on

the points-to set, however, it requires repetitive whole-graph reachability analysis, which

is expensive for large PAGs.

Consider again the example in Figure 2.2. Upon the deletion of the edge p → q, the

algorithm first checks if p is still reachable to q (i.e., via another path without p → q).

If yes, then the algorithm stops with no changes to any points-to set. Otherwise, it goes

on to check if any object in pts(p) should be removed from pts(q), by checking if the

corresponding object node can reach q in the PAG. In this case, pts(p) contains only o1

which cannot reach q, hence o1 is removed from pts(q). Because pts(q) is changed, the

algorithm then continues to propagate the change by checking the nodes connected to q

(i.e., r and w). Finally, because o1 cannot reach r but can reach w (via the path o1 → p→

w), o1 is removed from pts(r) but pts(w) remains unchanged.

The main scalability bottleneck of the reachability-based algorithm is that the worst

case time complexity for checking the path reachability is linear in the PAG size, which

can be very large for real-world programs.

2.3.3 Graph Pattern Matching

A domain-specific language (DSL) is designed by IncA [43] to incrementally update

program analysis result, which is independent of the analyzed program languages. IncA

uses pattern functions to define the relations between program entities in a program analy-

sis (e.g., the execution order of statements in control-flow analysis, the points-to relations

12

of variables in points-to analysis). Taking an AST of a program as input, pattern functions

either reject the input or compute its corresponding graph patterns to express the relations

between AST nodes (i.e., program statements).

The points-to analysis in IncA is built on Andersen’s algorithm, which uses a relation

PointsTo(x, y) to represent that variable x can point to variable y. There is no abstrac-

tion of memory allocation in IncA, so this analysis is actually an alias analysis that tells

whether two variables can refer to the same storage location. Besides, this analysis is

flow-sensitive, which is built on the incremental control-flow analysis from IncA.

For incremental statement changes, IncA performs an incremental graph pattern match-

ing adopted from EMF-IncQuery [44] to propagate changes to all dependent points-to rela-

tions and reanalyze the changed program entities. EMF-IncQuery is an incremental graph

query engine to capture and execute live queries over models, which is highly scalable

over large programs.

According to the paper, the incremental analysis can complete the update within tens

of milliseconds, which is efficient when comparing with its whole program analysis (ter-

minates in seconds). But the evaluated benchmarks only contains <50 KLOC. Hence,

the millisecond performance cannot be guaranteed on large benchmarks (50 KLOC ∼ 1

MLOC).

2.4 Observed Properties

Our new algorithms are based on a fundamental transitivity property of Andersen’s

analysis. This enables us to prove two key properties of the PAG (with no cycles), which

allow us to develop an efficient algorithm together with the incremental SCC optimiza-

tion, without redundant computation or graph reachability analysis. We further prove a

consistency property of change propagation in pointer analysis, which allows to parallel

the incremental algorithm.

13

According to Andersen’s analysis rules in Table 2.1, we have the following correctness

property:

Transitivity of PAG For an object node o and a pointer node p in the PAG, o ∈ pts(p)

iff o can reach p. For two pointer nodes p and q, if p can reach q in the PAG, then pts(p) ⊆

pts(q).

We first assume the PAG is acyclic, i.e., all SCCs are collapsed into a single node and

consider only one edge deletion. We will present our incremental SCC detection algorithm

and describe our adaption of the on-the-fly Andersen’s algorithm to handle edge additions/

deletions in Section 2.5. Based on the transitivity property, we can prove the following

lemma:

Lemma 1: Incoming neighbours property. Consider an acyclic PAG and a pointer

node q of which an object o ∈ pts(q). If q has an incoming neighbour r (i.e., there exists

an edge r → q) and o ∈ pts(r), then there must exist a path from o to r without going

through q.

Proof. See an illustration in Figure 2.3. First, because o ∈ pts(r), due to transitivity, o can

reach r. Second, because the PAG is acyclic, there cannot exist a path o → . . . → q →

. . .→ r → q (which contains a cycle).

o

y

x

o

q

r

w

o

q

r

w

Figure 2.3: Illustration of the incoming neighbours property.

Based on Lemma 1, we can prove the following theorem:

14

Theorem 1: Suppose an edge p→ q is deleted from an acyclic PAG and all the other

edges remain unchanged. For any object o ∈ pts(q), if there exists an incoming neighbour

r of q such that o ∈ pts(r), then o remains in pts(q). Otherwise if q does not have any

incoming neighbour of which the points-to set contains o, then o should be removed from

pts(q).

Proof. Due to Lemma 1, o can reach r without going through q. Hence, o can reach r

without the edge p → q. Because r → q, o can hence reach q without the edge p → q.

Therefore, o remains in pts(q) after deleting p → q. Otherwise, if no neighbour has

a points-to set containing o, then o cannot reach q and hence should be removed from

pts(q).

With Theorem 1, to determine if a deleted edge introduces changes to the points-to

information, we only need to check the incoming neighbours of the deleted edge’s desti-

nation, which is much faster than traversing the whole PAG for checking the path reacha-

bility. Consider again the example in Figure 2.2. Upon deleting the edge x → y, we only

need to check o2, which is the only incoming neighbour of y. Because the points-to set of

o2 does not contain o1, o1 should be removed from pts(y).

Once the points-to set of a node is changed, the change must be propagated to all its

outgoing neighbours. Again, based on transitivity, we can prove the following lemma:

Lemma 2: Outgoing neighbours property. Consider an acyclic PAG and a pointer

node q of which an object o ∈ pts(q). If q has an outgoing neighbour w (i.e., there exists an

edge q → w) and w has an incoming neighbour r (different from q) such that o ∈ pts(r).

If r cannot reach q, then at least one of the following two conditions (or both of them)

must hold in the PAG:

(1) There exists a path from o to w without going through q;

(2) There exists a path from q to r.

15

In other words, if every path from o to w must go through q, then there must exist a path

from q to r; if there is no path from q to r, then there must exist a path from o to w without

going through q.

Proof. See an illustration in Figure 2.4. There must exist such a path o → . . . → r → w

from o to w, because o ∈ pts(r) and r → w. The path may or may not contain q. However,

if it contains q, then it must be o → . . . → q → . . . → r → w, which means that q can

reach r. It cannot be o→ . . .→ r → . . .→ q → w, because r cannot reach q.

o

y

x

o

y

x

w

o

y

x

w

Figure 2.4: Illustration of the outgoing neighbours property.

Based on Lemma 2, we can prove the following theorem:

Theorem 2: Suppose an edge p→ q was deleted from an acyclic PAG and it resulted

in the removal of an object o from pts(q). To propagate this change, it is sufficient to check

all the outgoing neighbours of q. For each outgoing neighbour w, if the points-to set of

any of its incoming neighbours contains o, then the change propagation from this path to

w can be skipped (the change may propagate to w again in the future from another path).

Otherwise if none of the points-to sets of w’s incoming neighbours contains o, o should be

removed from pts(w) and the change should propagate further from w to all its outgoing

neighbours.

Proof. After the edge deletion, o was removed from pts(q). Due to transitivity, o can no

longer reach q in the remaining PAG. Consider an outgoing neighbour of q, w. If w has

16

no incoming neighbour of which the points-to set contains o, then it means o cannot reach

w and o should be removed from pts(w). If w has an incoming neighbour r such that

o ∈ pts(r), we next prove that the change propagation from q to w can be skipped, while

still ensuring the correctness of pointer analysis (i.e., the transitivity of PAG).

Because o can reach r but cannot reach q, so r cannot reach q. Hence the condition of

Lemma 2 is satisfied. Due to Lemma 2, there exists either (1) a path from o to w without

going through q, (2) a path from q to r, or both (1) and (2). For (1), o should remain in

pts(w). This is satisfied vacuously following the change propagation rules in Theorem 2,

because pts(r) cannot be affected by the change propagation. For (2), following the out-

going neighbours of q, the change will propagate to r along a certain path and hence to

w eventually. Therefore, to propagate change from a node, it is sufficient to check all the

node’s outgoing neighbours.

Theorems 1 and 2 together guarantee that upon deleting a statement, it suffices to check

the local neighbours of the change impacted nodes in the PAG to determine the points-to

set changes and to perform change propagation. This avoids redundant computations in

recomputing the points-to sets and traversing the whole PAG.

Consider again the example in Figure 2.2. When o1 is removed from pts(y), we only

need to check z and w, which are the outgoing neighbours of y. For z, because it does not

contain any other incoming neighbour, o1 is hence removed from pts(z). However, for w,

it has another incoming neighbour x (in addition to y) and pts(x) contains o1, so pts(w)

remains unchanged.

2.5 Basic Incremental Algorithm

In Theorems 1 and 2, we have made the assumption that the PAG is acyclic and we

have considered only one edge deletion. The acyclic PAG can be satisfied by the SCC op-

timization, which is known in existing literature for whole program pointer analysis [45].

17

Figure 2.5: Three SCC scenarios.

However, in the incremental setting, the SCCs must be dynamically updated. We first give

a brief overview of our incremental SCC detection algorithm, which shared the same main

idea with [46, 47]. Based on it, we then present our incremental algorithms for handling

edge deletion and addition.

To support multiple edge deletions, we only need to slightly adapt the on-the-fly An-

dersen’s algorithm (recall Algorithm 1). Specifically, we can change the on-the-fly algo-

rithm such that within each iteration only a single edge deletion or addition is applied.

This does not affect the performance of the original algorithm because the same amount

of computation is required to reach the fixed point.

18

2.5.1 Incremental SCC Detection

In incremental analysis, the main difference of the SCC optimization (from that in the

on-the-fly Andersen’s analysis) is that SCCs cannot only be augmented (by insertion), but

also be broken (by deletion). An edge deletion may break a collapsed SCC into multiple

smaller SCCs and/or individual nodes. In our algorithm, we maintain the collapsed SCCs

and create a super node for each collapsed SCC in the PAG. For each deleted edge, we

check the following conditions:

1. The edge does not belong to any SCC: nothing to do with existing SCCs.

2. The edge belongs to a certain SCC, but deleting the edge does not break the SCC.

In this case, we keep the super node corresponding to the collapsed SCC in the

PAG, and only remove the edge from the collapsed SCC. We use Tarjan’s linear-

time algorithm [48] to detect SCCs in the collapsed SCC after the edge deletion. If

it returns the same SCC as the collapsed SCC, then it means the edge deletion does

not break the existing SCC.

3. The edge belongs to an SCC and removing it breaks the SCC. In this case, we

first delete the super node corresponding to the collapsed SCC from the PAG, and

restore all the nodes/edges in the broken SCC. Afterwards, we run Tarjan’s linear-

time algorithm inside the broken SCC and collapse any detected SCCs.

For each edge addition, we check the following conditions for the two nodes connected

by the edge:

1. If they belong to the same SCC, nothing to do with existing SCCs.

2. If they do not belong to the same SCC, we use Tarjan’s two-way search algo-

rithm [49] for sparse graphs to detect new SCCs in the PAG incrementally. For

19

each new SCC, we then collapse the SCC and create a new super node for it in the

PAG. Any existing SCCs contained in the new SCCs are removed.

Figure 2.5 illustrates the incremental SCC detection with examples. Figure 2.5(a)

shows that adding the edge x → y creates a new SCC and deleting the edge breaks

the SCC. Figure 2.5(b) shows that the edge x → p does not belong to any SCC, so

adding/deleting the edge does not create new SCCs or affect existing SCCs. Figure 2.5(c)

shows that the edge x→ z belongs to an SCC, but adding/deleting it does not augment or

break the SCC.

2.5.2 Incremental Edge Deletion

Algorithm 2 shows our incremental algorithm for handling edge deletion. We maintain

a PAG and a worklist, which is initialized to the input deleted edge. In each iteration, one

edge from the worklist is processed, which involves two steps. First, we remove the edge

from the PAG and handle the SCCs according to the incremental SCC detection algorithm

described in Section 2.5.1. We ensure that after deleting the edge the PAG is acyclic and

all SCCs are collapsed into a single node.

After that, we run the procedure PropagateDeleteChange to propagate the points-to set

changes caused by the edge deletion. This procedure takes two inputs: a set ∆ of potential

points-to set changes, and a node y that these changes are propagating to. For an edge

x→ y, ∆ is initialized to pts(x), because after deleting the edge all objects in pts(x) may

be removed from pts(y). Then, we check the incoming neighbours of y; if any change in

∆ is contained in the points-to set of a neighbour, the change should be skipped, i.e., not

applied to pts(y). Hence, we remove from ∆ all the objects that overlap with the points-to

sets of y’s incoming neighbours. For the remaining objects in ∆, we then remove them

from pts(y) and propagate them further to all of y’s outgoing neighbours.

To handle those dynamic edges that can be deleted during the change propagation, we

20

Algorithm 2: DeleteEdge(e)
Input : e - a deleted edge

pag - the PAG
1 WL← e // initialize worklist to e
2 while WL 6= ∅ do
3 e← RemoveOneEdgeFrom(WL)
4 pag ← pag \ {e}
5 DetectSCC(e)

// let e be x→ y
6 PropagateDeleteChange(pts(x), y)
7 end

8 PropagateDeleteChange(∆, y):
Input : ∆ - a set of points-to set changes

y - a node that ∆ propagates to
9 foreach z → y do //z is an incoming neighbour of y

// Objects in ∆ but not in pts(z)
10 ∆ = ∆ \ (∆ ∩ pts(z))
11 if ∆ = ∅ then
12 return
13 end
14 end
// remove ∆ from pts(y)

15 pts(y)← (pts(y) \∆)
16 foreach y → w do //w is an outgoing neighbour of y
17 PropagateDeleteChange(∆, w)
18 end
19 WL← CheckNewEdges(∆, y)

run the procedure CheckNewEdges (Algorithm 3) once any change is applied to a node,

i.e., any object is removed from or added to its points-to set. This procedure takes a points-

to set change and a target node as input, and returns a list of affected PAG edges to the

worklist (i.e., the edges should be deleted/added). Note that the complex statements (i.e.,

load, store and call) can introduce new edges. Now, we are processing PAG edge deletion.

In CheckNewEdges, for each object o ∈ ∆, and for each node o.f in the PAG that is

generated from y.f , we include all edges from/to o.f to list (because the node o.f should

21

Algorithm 3: CheckNewEdges(∆, y)
Input : ∆ - a set of change

y - the target node PAG
Output: list - a list of PAG edges

1 foreach o ∈ ∆ do
2 foreach Load x = y.f do

// add its corresponding edge to WL
3 list← e // let e be o.f → x

4 end
5 foreach Store y.f = x do

// add its corresponding edge to WL
6 list← e // let e be x→ o.f

7 end
8 foreach Call y.m() from m′() do

// from DeleteEdge: remove call graph edges from
caller m′() to callee m()

9 cg← AnalyzeDeletedMethod(m′, m)
// from AddEdge: add call graph edges from caller

m′() to callee m()
10 cg← AnalyzeNewMethod(m′, m)

// from DeleteEdge and AddEdge: add its
corresponding edges in o.m to list

11 list← {c→ p, r → a}
12 end
13 end
14 return list

be removed). For a deleted method call a = b.m(c) (line 9), we remove the caller-callee

relation from call graph. Then, we include the edges c → p and r → a to list (p is the

formal parameter and r the return variable of m), which are introduced to the PAG when

the method call is added. Note that the nodes/edges of the method body remain unchanged.

This not only addresses multiple calls to a method in the same context, but also improves

performance when the method call is added back later.

22

Algorithm 4: AddEdge(e)
Input : e - an inserted edge

pag - the PAG
1 WL← e // initialize worklist to e
2 while WL 6= ∅ do
3 e← RemoveOneEdgeFrom(WL)
4 pag ← pag ∪ {e}
5 DetectSCC(e)

// let e be x→ y
6 PropagateAddChange(pts(x), y)
7 end

8 PropagateAddChange(∆, y):
Input : ∆ - a set of changes

y - a node that ∆ propagates to
// Objects in ∆ but not in pts(y)

9 ∆ = ∆ \ (∆ ∩ pts(y))
10 if ∆ 6= ∅ then

// add ∆ to pts(y)
11 pts(y)← (pts(y) ∪∆)
12 foreach y → w do //w is an outgoing neighbour of y
13 PropagateAddChange(∆, w)
14 end
15 WL← CheckNewEdges(∆, y)
16 end

2.5.3 Incremental Edge Addition

Algorithm 4 shows our incremental algorithm for handling edge insertion, which fol-

lows the on-the-fly algorithm in Algorithm 1. Compared with our incremental deletion

algorithm, it has three main differences. First, instead of deleting edges from the PAG, it

always adds edges. Second, it does not need to check incoming neighbours. To propagate

a change to a node, it simply checks if the node’s points-to set contains the change or not.

If yes the change is skipped, otherwise the change is applied. Third, once the points-to set

of a node is changed, it checks if the node corresponds to a base variable in any complex

23

statement and adds new edges to the PAG correspondingly. The CheckNewEdges proce-

dure has been called again to collect the PAG edges that should be added. The difference

from processing edge deletion is that when process a call statement y.m() (line 10), it adds

the corresponding method call edges, and also analyze the method body if T.m() is new.

2.6 Parallel Incremental Algorithm

Our parallel incremental algorithms are based on a strong change consistancy property

of our basic incremental algorithms described in Section 2.5.

Lemma 3: Change consistancy property: For an edge addition or deletion, the up-

date to each points-to set is an idempotent operator. In other words, if the change prop-

agates to a node more than once from different paths, the effect of the change (i.e, the

modification applied to the corresponding points-to set) must be the same.

Proof. Suppose two changes ∆1 and ∆2 are propagated to the same node q along two

different paths: p→ . . .→ r1 → q (path1) and p→ . . .→ r2 → q (path2), respectively,

where p is the root change node (the addition or deletion of an edge ending at p) and r1

and r2 are the two incoming neighbours of q. And suppose that there exits an object o such

that o ∈ ∆1 and o /∈ ∆2.

For deletion, we can prove that there must exist a node w on path2 such that o is reach-

able to w without going through p (otherwise, the deletion of o would have propagated to

r2, which contradicts with o /∈ ∆2). Due to transitivity, we have o ∈ pts(r2). Because r2

is an incoming neighbour of p, o will not be removed from pts(p). In other words, any

object o /∈ ∆1 ∩∆2 will be preserved in pts(p). Therefore, the changes applied to pts(q)

are always the same.

For addition, we can prove that o must be contained in pts(q). The reason is that both

∆1 and ∆2 must be originated from the same root change ∆ and o must be in ∆. If o is

not in ∆2, then there must exist a node w on path2 such that o ∈ pts(w), and again due to

24

transitivity, o ∈ pts(q). In other words, any object o /∈ ∆1∩∆2 should be already included

in pts(p). Therefore, the changes applied to pts(q) are always the same.

Based on Lemma 3, in each iteration of our incremental algorithm, we can parallelize

the change propagation along different paths with no conflicts (if atomic updates are used).

More specifically, we can propagate the points-to set change of a node along all its outgo-

ing edges in parallel without worrying about the order of propagation. Moreover, because

concurrent modifications to the same points-to set are always consistent, we do not even

need synchronization among them.

Algorithm 5: ParallelPropagateDeleteChange(∆, y)
Input : ∆ - a set of changes

y - a node that ∆ propagates to
1 foreach z → y do
2 ∆ = ∆ \ (∆ ∩ pts(z))
3 if ∆ = ∅ then
4 return
5 end
6 end
7 pts(y)← (pts(y) \∆)
// all outgoing edges in parallel

8 Parallel foreach y → w do
9 ParallelPropagateDeleteChange(∆, w)

10 end
11 sync {WL}← CheckNewEdges(∆, y)

Algorithms 5 and 6 show our parallel incremental algorithms for deletion and insertion,

respectively. We propagate the points-to set change of a node along all its outgoing edges

in parallel (see line 8 in Algorithm 5 and line 4 in Algorithm 6). Our algorithm guarantees

that a change can only propagate through a node at most once, even though there might be

multiple parallel propagation paths reaching the same node. Figure 2.6 shows an example.

25

Algorithm 6: ParallelPropagateAddChange(∆, y)
Input : ∆ - a set of changes

y - a node that ∆ propagates to
1 ∆ = ∆ \ (∆ ∩ pts(y))
2 if ∆ 6= ∅ then
3 pts(y)← (pts(y) ∪∆)

// all outgoing edges in parallel
4 Parallel foreach y → w do
5 ParallelPropagateAddChange(∆, w)
6 end
7 sync {WL}← CheckNewEdges(∆, y)
8 end

Initially, pts(y) = pts(q) = {o1} and pts(p) = pts(z) = pts(w) = {o1, o2}. After

deleting the edge x→ y, pts(y) is updated to {o2}, and the change {o1} is then propagated

from y to all the other nodes that y can reach (i.e., p, q, z and w). Based on Algorithm 5,

the change propagates along the two paths (i.e., path1 and path2) in parallel, and reaches

a common node z. There are three possibilities to consider in this process:

• The propagation along y → p completes faster than that along y → q. At this time,

o1 has been removed from pts(p), and we are still checking the incoming neighbours

of q, where pts(q) = {o1}). Then, the propagation from path1 reaches z. Since q

is an incoming neighbour of z and o1 ∈ pts(q), pts(z) will not be changed and

hence the propagation from path1 terminates at z. Later, when the propagation from

path2 reaches z, because pts(q) and pts(q) do not contain o1 anymore, o1 is finally

removed from pts(z) and the change propagates further to w from path2.

• The propagation along y → q completes faster than that along y → p. Opposite

to the first case, the change propagation from path2 terminates at z, and the change

propagation from path1 continues through z.

26

Figure 2.6: An example of parallel change propagation.

• The propagation along both paths reaches p and q at the same time. At this time,

pts(p) = {o2} and pts(q) = ∅. Both changes from p and q propagate to z. No

matter which propagation reaches z first, o1 will be removed from pts(z). When

the later propagation comes, no change to pts(z) will be performed, since o1 has

already been removed from pts(z). If both of them reach z at the same time and

both attempt to remove o1 concurrently, to minimize the amount of the points-to set

computation, we can synchronize the updates of pts(z), such that only one of them

can succeed and can continue the change propagation.

In summary, pts(z) needs to be updated once, regardless of the parallel propagation

schedule.

In addition to the points-to set, the worklist (line 11 in Algorithm 5 and line 7 in Algo-

rithm 6) is synchronized, because different parallel tasks may concurrently add different

new edges to the worklist.

2.6.1 Synchronization-free Implementation

In practice, we would like to avoid synchronizations as much as possible, since syn-

chronizations on parallel processors are expensive. We propose a synchronization-free im-

plementation of the points-to set data structure. The limitation is that concurrent updates

27

to the same points-to set may all succeed, which may lead to redundant propagations. Nev-

ertheless, since the chance is very small for a change to propagate from multiple paths to

the same node at the same time, this optimization works well in practice.

Our implementation maintains an entry for each object o and supports three operations:

contains(o), add(o) and remove(o). In both add(o) and remove(o), a flag is

returned to indicate whether the change was successful (if not, another thread has already

done this). This flag can then be used to prevent unnecessary further propagation from

the thread that came second. We next show why no synchronization is required for these

points-to set operations.

Suppose two threads T1 and T2 concurrently execute Algorithm 5 or Algorithm 6,

there are only four possible conflicting scenarios and each scenario always produces a

consistent result regardless of synchronization or any atomicity requirement of the three

operations:

1. In Algorithm 5, T1:contains(o) at line 2 on pts(r) and T2:remove(o) at line

7 on pts(z). Consider the operation contains(o) by T1. With or without syn-

chronization, it always returns either true or false. If false, then o will be removed

from pts(y) at line 7 by T1. If true, o will not be removed from pts(y) by T1; how-

ever, o is removed from pts(z) by T2 and because y is an outgoing neighbour of z

the change will propagate to y. Finally, o will be removed from pts(y) by T2 or by

another thread.

2. In Algorithm 5, both T1:remove(o) and T2:remove(o) at line 7 on pts(y). The

entry for o in pts(y) will be set to 0 (meaning o is not included) by both T1 and T2,

i.e., o will be removed from pts(y).

3. In Algorithm 6, T1:contains(o) at line 1 on pts(y) and T2:add(o) at line 3

on pts(y). The operation contains(o) by T1 may return either true or false. If

28

false, then o will be added to pts(y) at line 7 by T1. If true, o has already been

added to pts(y) by T2.

4. In Algorithm 6, both T1:add(o) and T2:add(o) at line 3 on pts(y). The entry

for o in pts(y) will be set to 1 (meaning o is included) by both T1 and T2, i.e., o will

be added to pts(y).

2.7 End-to-end Incremental Points-to Analysis

In this section, we present an end-to-end incremental pointer analysis for real-world

Java programs based on our new incremental algorithms described in Section 2.5. The

presented pointer analysis is context-, path- and flow-insensitive.

Algorithm 7: Incremental Pointer Analysis for Java
Input : ∆PIR

- a set of IR changes.
Deletions: D: -{d1,d2,...};
insertions: I: +{i1,i2,...}.

// for each deleted IR statement
1 foreach s ∈ D do

// extract edge(s) according to Table 2.2
2 e← ExtractEdge(s)

// call Algorithm 2 for each deleted edge
3 DeleteEdge(e)
4 end
// for each inserted IR statement

5 foreach s ∈ I do
// extract edge(s) according to Table 2.2

6 e← ExtractEdge(s)
// call Algorithm 4 for each added edge

7 AddEdge(e)
8 end

29

Table 2.2: Java statements and their corresponding PAG edges.

Statement PAG Edges
¶ x = new T() o→ x
· x = y y → x
¸ x = y.f y.f → x & ∀o ∈ pts(y): o.f → x
¹ x.f = y y → x.f & ∀o ∈ pts(x): y → o.f
º x = y[i] y.∗ → x & ∀o ∈ pts(y): o.∗ → x
» x[i] = y y → x.∗ & ∀o ∈ pts(x): y → o.∗
¼ a = b.m(c)** c→ p & r → a
**(Suppose a and c are both reference variables and p is the formal

parameter and r the return variable of m).

Consider a programming environment where the developer performs an initial commit

of his project, we compile the project, translate Java bytecode to an SSA-based IR [50]

and use the IR to construct a PAG. Then, the developer has committed a collection of

program changes ∆Psource . We recompile the project with ∆Psource to obtain the updated

IR, compare with the old IR to obtain the IR changes ∆PIR
, which contains multiple new

IR statement insertions and/or old IR statement deletions or modifications2. ∆PIR
can be

divided into two disjoint sets: D - a set of old IR statement deletions and I - a set of new

IR statement insertions.

Algorithm 7 shows our end-to-end algorithm. For each IR statement, we first extract

the corresponding edges in the PAG according to Table 2.2. In Java, there are seven types

of statements that must be analyzed for pointer analysis. Each statement corresponds to

one or more edges in the PAG:

¶ (allocate): an edge from an object node o to a pointer node x. o is identified by

its allocate site and has a type T .

· (simple assignment): an edge from a pointer node y to x.

2A modification of existing IR statements can be treated as deletion of the old IR statements and insertion
of the new IR statements, and a large code chunk can be treated as a collection of small changes.

30

¸ (field load): an edge from a pointer node y.f to x, and for each object o in pts(y),

an edge from o.f to x.

¹ (field store): an edge from a pointer node y to x.f , and for each object o in pts(x),

an edge from y to o.f .

º (array load): an edge from a pointer node y.∗ to x, and for each object o in pts(y),

an edge from o.∗ to x. For array load º and store », since we do not perform array

index analysis, different array elements are not distinguished but represented by a

special constant index “*”.

» (array store): an edge from a pointer node y to x.∗, and for each object o in

pts(x), add an edge from y to o.∗.

¼ (method call): an edge from a pointer node c to the method m’s formal parameter

node p, and an edge from m’s return node r to a.

For statements ¶-», their treatments are the same as that in Andersen’s analysis (Ta-

ble 2.1). For method call ¼, for each o ∈ pts(b), if T.m (where T is the type of o)

corresponds to a new method, all statements in the method body are also analyzed. For

most other types of statements such as loops and branches, we can simply ignore them

because our analysis is path- and flow-insensitive. However, analyzing them may improve

the precision of pointer analysis. There are also several subtle statements related to excep-

tions and reflection, which can be handled by existing techniques [51, 52].

For each identified edge, we then call Algorithm 2 if it is deleted and Algorithm 4 if

added, to compute the new points-to information and update the PAG. To parallelize our

algorithm, in each iteration of Algorithms 2 and 4, we call Algorithms 5 and 6 to propagate

the points-to set changes in parallel. On a multicore machine, we can maintain a thread

pool to perform the parallel tasks.

31

2.7.1 Adapting To Context-sensitive, Flow-sensitive And Other Problems

Heretofore, our incremental and parallel algorithm is field-sensitive and object-sensitive

for collection objects. Next, we show the potential to extend our analysis to other dimen-

sions in pointer analysis or even other research problems.

2.7.1.1 Context-sensitive

We note that our incremental algorithms can also apply to context-sensitive pointer

analysis because the handling of edge insertions and deletions is orthogonal to the rep-

resentation of context. In general, there are two types of techniques in context-sensitive

pointer analysis: k-CFA [36, 53, 54] and CFL-reachability [41, 42, 55, 56]. Recursive calls

is hard to handle for context-sensitive pointer analysis in both types [57]. Collapsing the

calls within a SCC to a single call node in call graph will lead to a precision loss. Instead,

to detect a recursive data structures in a PAG [55] can maintain higher precision and is

also the presumption of our work (i.e., an acyclic PAG).

In a k-CFA pointer analysis, pointer variables uses k call strings from the call graph

to distinguish contexts. The whole analysis is built on PAG, but it maintains a separate

abstract pointer 〈x, [c1, c2, ...ck]〉 for each local variable x to represent the points-to sets at a

call site ck, given the caller context [c1, c2, ...ck−1], and a set of abstract memory allocations

〈o, [c1, c2, ...ck]〉 to determine what context should be used. When there is an incremental

code change, we can follow the Algorithm 2 and 4 to perform the update for each edge

with an additional criterion: we only consider the points-to sets with sub call strings from

[c1, c2, ...ck] when checking the incoming neighbours and propagating changes to outgoing

neighbours.

CFL-reachability pointer analysis also represents a program by a PAG, where includes

load/store edges to indicate field accesses and entry/exit edges to indicate the calling con-

text. We need to discover a feasible path between an object node and a variable node

32

with matching edge labels in the PAG in order to compute its points-to set. Take a trace-

based incremental CFL-reachability pointer analysis [42] as example. Initially, we should

answer all queries from a program and cache the answers and their traces that record

the dependency information while obtain the answers. Then, for each incremental edge

change x → y, rather than considering all the neighbours of y in the PAG, we perform

Algorithm 2 and 4 along the cached traces that contain y.

Besides, CFL-reachability pointer analysis always computes points-to sets in a demand-

driven way. For this case, we only need to update an edge with its labels in the PAG. Then,

discover all reachable paths containing the edge, and propagate the change along these

paths if any answer of variable on the paths has been cached.

2.7.1.2 Flow-sensitive

Flow-sensitive pointer analysis is always expensive and complicated. To determine a

points-to set at a program point, SSA representation and control flow graph are always

combined to infer points-to and def-use relations and to avoid unnecessary propagation,

which are represented by graphs [58, 59, 60]. Sometimes, the analysis can be cast to a

graph reachability problem [61].

When incremental changes has been introduced to a program, we need to consider: (1)

the introduced control flow changes and its corresponding def-use changes, (2) a strong up-

date or weak update on affected points-to sets, and (3) interprocedural data flow changes.

Since the points-to relation and control flow info are coupled in the graphs when consid-

ering flow-sensitivity, a simple checking and propagation on local neighbours in the graph

cannot guarantee a precise result.

A possible solution is to decouple the graph that encodes points-to and control flow

info as IncA, in which points-to graph and control-flow graph are maintained separately.

In this case, a two-step update can be performed: first, update the def-use info according

33

to the control flow changes; second, update the points-to relation based on the new def-use

and program changes. Hence, our incremental algorithm can be modified to perform on a

single graph in each step.

2.7.1.3 Other Problems

A good extension is to apply our incremental and parallel analysis on other research

problems that requires analyzing and updating information on graphs. As long as the

analyzed graph G = (V,E) satisfies the following properties, our analysis can be adapted

to work on that problem:

• G is a directed graph;

• SCC collapsing can be applied on G with a tolerable precision loss;

• Each node in V represents a set of elements;

• Each edge in E represents a constraint which propagates the elements;

• The direction on an edge indicates the propagation direction;

• The propagation of elements on G can terminate.

2.7.2 Scheduling Of Changed Statements

Since multiple statement additions and deletions need to handle at one time and some-

times an addition can invalidate a deletion effect, the order of statement processing may

affect the performance of an end-to-end incremental pointer analysis. Some optimizations

(e.g., scheduling of updates [62]) can be performed to reduce such redundant workload.

Our pointer analysis is built on SSA-based IR, where each variable and its correspond-

ing pointer node in a method are named by a unique value number (e.g., v1, v2, v3, ...)

rather than by its variable name (e.g., a, x, y, ...). After several statement additions and

34

deletions, new value numbers have been assigned to the variables in the updated code.

Hence, it is difficult to identify the correspondence between an added new statement and

a deleted old statement: even though they have the same value numbers, the numbers may

represents for different variables in the method. Rather than performing a complex proce-

dure to identify the correlations between each added and deleted statements, we perform a

simple schedule as described in Algorithm 7

2.8 Related Works And Comparison

The survey [63] has provided a detailed study in pointer analysis. Pointer analysis has

been extensively researched along several dimensions, which affect the trade-off between

cost and precision, e.g., context-sensitivity [55, 64, 65, 66, 67, 68], flow-sensitivity [58,

59, 60, 61], path-sensitivity [69], field-sensitivity [55, 70], demand-driven [23, 56, 71],

algorithmic complexity analysis [72, 73, 74, 75], as well as incremental pointer analy-

sis [37, 38, 39, 41, 43].

2.8.1 Incremental Algorithms

The incremental pointer analysis algorithms for handling dynamic program changes

are inadequate. Most existing algorithms [37, 38, 39, 41] assume a static program call

graph. Demand-driven analyses [23, 56, 71] can handle program changes in an intuitive

way: add/remove edges in the graphs and re-issue a query to compute the updated points-to

set. Existing incremental algorithms [12, 41] based on reset-recompute and graph reacha-

bility are difficult to scale and parallel and/or reduce the analysis precision. In particular,

they cannot handle code deletion efficiently because pointer analysis is non-distributive. In

contrast, our new algorithms do not incur any redundant recomputations nor require expen-

sive graph reachability analysis, and are parallelizable without losing precision compared

to the exhaustive analysis with the same dimensions.

Saha et al. [37, 40] propose an incremental and demand-driven points-to analysis based

35

on DRed algorithm [76] for tabled evaluation, which uses a deletion-rederivation strategy

that is similar to the reset-recompute algorithm: it marks the affected answers, checks the

marked answers, and removes the answers that cannot be rederived. To reduce the redun-

dant checks, supported graph is introduced where nodes are the answers, supports and

facts, and edges indicate the points-to relations among them. A primary support, which is

independent from its answer, is maintained to optimize the marking process. When there is

an incremental change, they only mark an answer if its primary support is marked, and then

mark all the supports that uses the answer. After the marking stage, if a marked answer has

other unmarked supports, they consider the answer is rederived and recursively remove the

marks generated from the answer. Otherwise, a recomputation has to be performed on the

answer. Instead of PAG, this technique adopts a support graph to represent the points-to

relations among variables. However, such a graph requires maintaining primary supports

for each answer. Besides, the "mark-check-remove mark" process redundantly propagates

the marks, since it cannot recognize whether an answer should be removed at the first

glance. Instead, our analysis can discover whether a node need to be updated immediately.

Furthermore, our incremental analysis is designed for massively parallelization. However,

the rederivation from the technique requires computing derivation length to determine the

order in which marked answer should be recomputed first. Such an order prohibited the

leverage of parallelization. Besides, the handling of dynamic method calls is very impre-

cise in this technique: all the methods that have the same number and types of parameters

as the call site are considered as targets. In contrast, our new algorithm maintains the call

graph and PAG on-the-fly, so that we can easily localize the target methods of a changed

method call.

Reviser [38] proposes an incremental data-flow analysis based on the IFDS/IDE frame-

work. IFDS/IDE is a powerful framework for solving a class of problems with distributive

flow functions f(a) u f(b) = f(a u b), but pointer analysis is a particular problem that

36

does not satisfy such a property, because the effect of code deletion cannot be modeled by

merge operations. Hence, IFDS/IDE does not apply to incremental pointer analysis. On

the other hand, for the “local neighbour” properties, we identify and prove that the partic-

ular problem of pointer analysis satisfies these properties (which is not shown by previous

research) and that we can leverage them to improve the analysis efficiency. Nevertheless,

these properties are valid beyond pointer analysis and may also be applied in IFDS/IDE

for computing distributive problems. It would be interesting to investigate if IFDS/IDE

can be adapted to leverage the “local neighbour” properties for pointer analysis.

IncA [43] proposes a DSL to express points-to constraints as graph patterns and uses

incremental graph pattern matching to update pointer analysis result according to code

changes. As introduced in Section 2.3, the scalability to large programs is hard to guaran-

teed.

Incremental computation has been extensively discussed in the domain of datalog eval-

uation. There are several pointer analyses formulated using datalog frameworks [77, 78,

79, 80, 81]. However, despite intensive research [76, 82] for optimizing the incremental

evaluation of datalog, datalog engines are still inefficient to handle incremental deletion of

the pointer analysis facts.

2.8.2 Parallel Algorithms

Putta and Nasre [83] propose a parallel replication-based algorithm for pointer anal-

ysis: all the initial points-to constraints have been partitioned into n sets and arranged to

n threads to propagate points-to sets; each thread has its own copy of conflicting vari-

ables and their associated points-to sets; all the copies are merged after the threads have

completed their works.

Méndez-Lojo et al. [84] formulate the inclusion-based points-to analysis in terms of

graph rewriting rules, which extra constraint edges are added to help the reasoning of

37

points-to relations. By using the Galois system [85], the rules are performed in parallel

on non-interfering nodes in the constraint graph. This graph rewriting algorithm has been

further implemented on GPU [86] with an efficient graph representation for the constraint

graph under the GPU memory model. Nagaraj et al. [87] propose a flow-sensitive pointer

analysis which is paralleled based on the graph rewriting rules from [84].

PSEGPT [88] is also designed for parallel flow-sensitive pointer analysis, which re-

lies on a new representation that combines points-to relations and def-use chain on heap.

PSEGPT involves four analysis operations that propagate points-to information, and they

can be executed in parallel if they obey the data dependence among operations.

Edvinsson et al. [89] discover clusters of points-to constraints that are independent to

each other and assign the clusters to different threads, where the independence refers to

the true/false branches of a selection and the call targets of a method invoke.

However, all these parallel algorithms are designed to speed up the propagation of

initial points-to constraints for whole-program pointer analysis only, which require a static

whole program and a pre-built call graph. Our parallel analysis is based on the change

consistency property upon the incremental pointer analysis, which has not been proposed

in other work. Besides, our parallel algorithm shares no key insight with the existing

parallel techniques.

Su et al. [90] propose an inter-query parallelism strategy on the demand-driven CFL-

reachability pointer analysis. Each thread fetches a group of queries from a shared work

list to perform the computation of points-to sets. In each thread, the order in which queries

are processed are determined by connection distances to achieve early termination. During

the process, shortcut edges are added into the PAG to skip the redundant retraversals of

related paths. Our parallelization is intra-query parallelism, which distributes the work

performed in computing the related points-to sets of a root pointer among threads. Such

parallelism is hard to design.

38

2.8.3 SCC Optimizations

A number of pointer analysis algorithm [45, 62, 68, 91] have adopted some SCC op-

timizations to further boost their performance, e.g., Tarjan’s algorithm [48]. However, all

these optimizations do not update SCCs according to dynamic graph changes as we do in

our incremental algorithm.

La Poutré et al. [46] propose the first algorithm to dynamically maintain the transitive

reduction of a directed graph w.r.t. graph edge additions and deletions, i.e., dynamically

collapse/break SCCs. Bergmann et al. [47] adapt the algorithm [46] for incremental graph

pattern matching to improve the scalability.

Marlowe et al. [92] propose an incremental data flow analysis which decompose/compose

the affected SCCs in the data flow graph whenever there are data flow changes, so that a

precise and correct result can be obtained efficiently.

Since [46] is the most classic and efficient algorithms to perform the SCC update, we

adopt its main idea in our incremental analysis.

39

3. PARALLEL INCREMENTAL HAPPENS-BEFORE ANALYSIS 1

Happens-before analysis is necessary during concurrency bug detection, since it repre-

sents a sequence between two events, such that if one event should happen before or after

another event. Section 3.1 introduces the background of happens-before analysis, Sec-

tion 3.2 provides the classic techniques in happens-before analysis, Section 3.3 introduces

an example to illustrate the limitations in existing techniques (Section 3.4) and our new

static happens-before analysis (Section 3.5 and 3.6). Finally, we explain how to discover

the happens-before relation between two events in our analysis.

3.1 Background

Happens-before analysis computes the happens-before relation between two events,

which is a relation between the result of two events, such as if one event should happen

before or after another event, or the two events do not have any relation. The happened-

before relation is formally defined as the least strict partial order on events such that:

1. If events a and b occur on the same process, a → b if the occurrence of event a

preceded the occurrence of event b;

2. If event a is the sending of a message and event b is the reception of the message

sent in event a, a→ b.

Like all strict partial orders, the happened-before relation is transitive, irreflexive and

antisymmetric. In Java specifically, a happens-before relation is a guarantee that memory

write access by statement a is visible to memory read access by statement b, that is, that

statement a completes its write before statement b starts its read.
1Reprinted with permission from “D4: Fast Concurrency Debugging with Parallel Differential Analysis"

by Bozhen Liu, Jeff Huang, 2018. Proceedings of the 39th ACM SIGPLAN Conference on Programming
Language Design and Implementation, 359-373, Copyright [2018] by Association for Computing Machin-
ery, Inc. Reprinted by permission.

40

3.2 Related Works

The most famous algorithm of computing happens-before relations in distributed sys-

tem should be the vector clock from Lamport timestamps [27], which provide a partial

ordering of events with a high overhead. To improve the efficiency of the vector clock, [3]

records only the epoch of the last read to reduce the number of events we need to record.

[28] presents an efficient algorithm, iFT, that uses only the epochs of the access histories,

which requires O(1) operations to maintain an access history. Except for the techniques

used in dynamic race detection, [12] presents a static happens-before analysis to construct

a partial order among read/write events.

3.3 An Example

We use an example in Figure 3.1 to illustrate the limitation of existing techniques and

our new algorithm. Initially, we do not have the code on line 11 calling method m2. Later,

the programmer wants to add the call on line 11, and then remove the statement on line 20

in method m2.

1	main()	{														t1:															t2:													
2		x	=	0;															9			x	=	1;								12		y	=	x;	
3		y	=	5;															10		m1();									13		m1();	
4		t1	=	new	Thread();			11		m2();//add				14		m2();	
5		t2	=	new	Thread();				
6		t1.start();										15		void	m1(){				18		void	m2(){	
7		t2.start();										16			x	=	3;							19			x	=	2;	
8	}																					17			print(x);}			20			y	=	0;//del}

Figure 3.1: An Example for SHB Analysis.

41

3.4 Limitations In Existing Techniques

ECHO uses a static happens-before (SHB) graph to compute happens-before rela-

tion among abstract threads, memory accesses, and synchronizations. The SHB graph

is constructed incrementally following the rules in Table 3.1. Among them, statements ¹

(method call), º (thread start) and » (thread join) generate additional edges according to

Table 3.2. The SHB graph is represented by sequential traces containing per-thread nodes

in the SHB graph following the program order, connected by inter-thread happens-before

edges. For race detection, ECHO computes the happens-before relation between nodes

from different threads by checking the graph reachability.

Table 3.1: Nodes in the SHB Graph

Statements Nodes
¶ x = y.f* ∀Oc ∈ pts(y) : read(Oc.f)

· x.f = y* ∀Oc ∈ pts(x) : write(Oc.f)

¸ synchronized(x){s...} ∀Oc ∈ pts(x) : lock(Oc), unlock(Oc)

¹ x = o.m(y) ∀Oc ∈ pts(o) : call(Oc.m)

º t.start() ∀Oc ∈ pts(t) : start(Oc)

» t.join() ∀Oc ∈ pts(t) : join(Oc)

* ¶ and · also represents the array read (x = y[i]) and write (x[i] = y).

Table 3.2: Edges in the SHB Graph

Statements Edges
¹ x = o.m(y) ∀Oc ∈ pts(o) : call(Oc.m)→ FirstNode(Oc.m)

LastNode(Oc.m)→ NextNode(call)∗
º t.start() ∀Oc ∈ pts(t) : start(Oc)→ FirstNode(Oc)

» t.join() ∀Oc ∈ pts(t) : LastNode(Oc)→ join(Oc)

* NextNode(call) represents the consecutive node of the method call statement.

Figure 3.2 shows the SHB graph constructed following the rules in ECHO. We can see

42

the traces in t1 and t2 have duplicated nodes representing the same statements in method

m1. Besides, we need to retraverse the statements in method m2 to complete the trace of

t1 after adding the code on line 11, and remove two write nodes for the statement removal

of line 20. From theses, we indicate the inefficiency part in this SHB graph construction

and update:

Large SHB graphs A crucial limitation of ECHO is that for large software it can

produce a prohibitively large SHB graph. During the graph construction, when a method

is invoked, ECHO goes into the method and creates new nodes for statements inside the

method. If a method is invoked multiple times (invoked repeatedly by a thread, occurs

in a loop, or by multiple threads), multiple nodes representing the same statement will be

created and inserted into the SHB graph.

Expensive graph update Updating the SHB graph with respect to code changes can

be very expensive. ECHO uses a map to record each method call and its corresponding

location in the SHB graph. If there is a statement change in a method, ECHO has to track

and update all the matching nodes in the graph. For large software, this incurs significant

repetitive work because a changed method can be invoked many times.

Figure 3.2: The SHB graph for the example in Figure 3.1.

43

3.5 A New SHB Graph Construction

A key to our scalable happens-before analysis is a new representation of the SHB

graph, which enables both compact graph storage and efficient graph updating. Unlike

ECHO which constructs per-thread sequential traces with repetitive nodes corresponding

to the same statement, we construct a unique subgraph for each method/thread and connect

the subgraphs with happens-before edges.

We maintain a map exist from the unique id of each method/thread to its subgraph

subshbid. Each subgraph has two fields: tids which records the threads which have in-

voked/forked the method/thread, and trace which stores the SHB nodes corresponding

to the statements inside the method/thread. Taking the main method (target), an empty

subgraph (subshbtar) and the executing thread id (ctid) as input, the algorithm returns the

SHB graph (shb). Initially, we add the pair of <tar, subshbtar> to the exist map and

include ctid into the field tids of subshbtar. Afterwards, we extract the statements in the

target and create SHB nodes according to Table 3.1 for each statement and insert it into

subshbsig.trace.

Table 3.3: Edges in the New SHB Graph

Statements Edges

¹ x = o.m(y) ∀Oc ∈ pts(o) : call(Oc.m)
tid−→ subshbOc.m

º t.start() ∀Oc ∈ pts(t) : start(Oc)
tid−→ subshbOc

» t.join() ∀Oc ∈ pts(t) : subshbOc

tid−→ join(Oc)

The new happens-before edges are constructed according to Table 3.3. Each edge is

labeled with the thread id. For method call ¹, we create a unique signature sig of each

callee method Oc.m and check the map exist if subshbsig has been created. If sig exists,

it means Oc.m has been visited before and its subgraph has been created, which avoid

44

redundant statement traversal. We thus add the ctid into subshbsig.tids and add a new

happens-before edge from the calling node to the new subgraph with the label ctid. Oth-

erwise, we create a new subgraph subshbsig for the newly discovered method. For thread

start º, we create a new thread id (tid) for each object node in pts(t), and follow the same

procedure to construct subshbtid and add happens-before edges. For thread join », we

add an edge from the last node in subshbtid to the join node in subshbtar, where tid is the

thread id of the joined thread, corresponding to the object node in pts(t). The procedure

for creating different subgraphs can run in parallel, since different threads/methods are

independent from each other.

We use an example in Figure 3.1 to illustrate our algorithm. Suppose the method call

m2() at lines 11 is not in the program initially. We first create subshbmain and traverse

the statements in main method. After inserting write(x) and write(y) into the trace field

for the two writes at lines 2 and 3, we see the two thread start operations. We then create

subshbt1 and subshbt2 for the two threads in parallel and add their corresponding happens-

before edges. Consider the two method calls m1() at lines 10 and 13, they introduce only

one subgraph subshbm1, which is created when m1() is visited the first time. The final

SHB graph is shown in Figure 3.3.

3.6 The New SHB Graph Update For Incremental Changes

Thanks to our new SHB graph representation, incremental changes can be updated

efficiently in parallel: 1) changes to statements in a method that is invoked multiple times

need to be updated only once (instead of multiple times in ECHO); and 2) multiple changes

to different methods/threads can be updated in parallel (because they belong to different

subgraphs).

For each added statement, we simply follow the same SHB graph construction proce-

dure described in the previous subsection. For each deleted statement s, we first delete

45

Figure 3.3: The new SHB graph for the example in Figure 3.1.

the node representing s from its belonging subshbtar. In addition, for method call ¹, we

locate the subgraph of the callee method and remove the corresponding SHB edges. For

thread start º, we remove the corresponding SHB edges for each subshbtid. Note that

we do not remove the subgraph itself, such that the subgraph can be reused later if the

method call or thread start is added back. For thread join », we remove the SHB edge

from subshbtid to subshbtar.

Consider two changes in our example in Figure 3.1: (i) inserting a method call state-

ment m2() at line 11, and (ii) deleting the statement at line 20. For (i), we first create a

method call node call(m2) at the last position in subshbt1 . Since subshbm2 already exists

in the SHB graph, we skip traversing m2() and then add an edge call(m2)
t1−→ subshbm2

to the graph. For (ii), we localize the write(y) node corresponding to this statement and

simply remove it from subshbm1 .

3.7 How To Compute The Happens-before Relation

Our new SHB graph representation also makes computing the HB relation more effi-

cient compared to ECHO. Different from ECHO which checks path reachability between

each individual pair of nodes, for changes in a method invoked multiple times, we can

46

check for multiple node pairs altogether. For example, in Figure 3.3, although the method

m2() is invoked twice by t1 and t2 which generates two write nodes, when computing the

HB relation between the nodes in tmain and those from m2(), we can find that the nodes

in tmain dominate all nodes in m2() in the SHB graph. Therefore, we can determine the

happens-before relation for all these two write nodes by checking the path dominator once.

47

4. D4: A FAST CONCURRENCY DEBUGGING FRAMEWORK 1

Concurrency bug detection always refers to data race detection, deadlock detection,

atomicity violation, which has been extensively developed during the last two decades. In

this thesis, we focus on data race and deadlock detection, but our analysis can be extended

to discover atomicity violation easily. This chapter introduces the background of data race

and deadlock detection (Section 4.1), the related work in this area (Section 4.2), and most

importantly, our fast concurrency analysis framework: D4 [30]. Specifically, we introduce

how to extract minimal changes from the previous updated graphs to guarantee an effi-

cient incremental detection (Section 4.3), the data race and deadlock detection insides our

framework (Section 4.4 and 4.5), and the detail of the distributed framework (Section 4.6).

4.1 Background

Data races and deadlocks are the most notorious concurrency bugs in multi-threaded

programs. Firstly, we introduce the concepts of data race and deadlock based on our thesis.

A data race occurs when it satisfies the following conditions:

1. two or more threads access the same memory location concurrently, and

2. at least one of the accesses performs write access

3. there is no exclusive locks used to order their accesses to that memory

When these three conditions hold, the order of accesses is non-deterministic, and the com-

putation can give different results from run to run depending on the access order.

1Reprinted with permission from “D4: Fast Concurrency Debugging with Parallel Differential Analysis"
by Bozhen Liu, Jeff Huang, 2018. Proceedings of the 39th ACM SIGPLAN Conference on Programming
Language Design and Implementation, 359-373, Copyright [2018] by Association for Computing Machin-
ery, Inc. Reprinted by permission.

48

Deadlocks usually occur when the order of locks is not consistent in the program. For

example, thread1 acquires lock1 and is going to acquire lock2, while thread2 acquires

lock2 and is going to acquire lock1. In this case, deadlock happens because threads are

waiting for each other to release the second lock and the program will hang there.

4.2 Related Works

This research area has been extensively developed, and there are a lot of techniques to

refer to, such as [1, 2, 4, 6, 8, 10, 11, 93, 94, 95] detect concurrency bugs for late phases of

software development, e.g., testing or production, when the whole program is completed.

Hence, it is often hard to scale these techniques, too difficult to understand a detected bug,

or even too late to fix a bug.

4.3 Change Extraction

As listed in Table 3.1, there are six types of statements that can lead to differences in

points-to sets, data race and deadlock detections. We present the following three changes

and the influences caused by the changes:

1. points-to sets: statement ¶ and · can affect the points-to sets of a variable, which

thus may lead to the overlap of the points-to sets of two variables and changes the

guarded lockset of a variable;

2. lock dependency: statements ¸ lead to the addition or deletion of lock pairs and

change the guarded lockset for a variable, which can introduce a potential deadlock;

3. happens-before relation: statement ¹ to » influence the happens before relation

between statements and therefore it may expose/hide the data races/deadlocks;

All the above changes can produce or eliminate data races and deadlocks in a program.

Algorithm 8 illustrate how we extract the changes in the above updated graph to guaran-

tee the efficiency and soundness of concurrency bug detection after an incremental code

49

change. First, it collects a set of nodes N containing all the read and write nodes that

require to be re-evaluated. Second, it considers all the nodes that may happen-in-parallel

with N to identify if a race is introduced. The algorithm takes the statement changes

stmts, the updated SHB graph shb and the output changes as input, where changes con-

tain the variables of which the points-to sets have been changed.

To compute N , for each variable v in changes, the algorithm first adds all the read

and write nodes related to v from the SHB graph toN (line 2 and 3). Afterwards, for each

changed statement s in stmts, the algorithm considers two cases. If s is a lock operation,

the algorithm first locates the influenced lock − unlock pair in the SHB graph and adds

all the read and write nodes between them to N . Otherwise, if s is a method call a thread

start or join operation, the algorithm first locates the subshb for the method or thread and

then adds all the read and write nodes in trace to N (line 5-13).

Algorithm 8: The overview of change extraction
Input : stmts - incremental statement changes

changes - incremental PAG changes
shb - updated SHB graph

Output: N - the read/write nodes need to be re-evaluate

1 N ← ∅
2 foreach v ∈ changes do
3 N ← ExtractNodesOf(v)
4 end
5 foreach s ∈ stmts do
6 if s instanceof 2© or 3© then
7 〈lock, unlock〉 ← LocateNodes(s)
8 N ← ExtractNodesBtw(〈lock, unlock〉)
9 end

10 if s instanceof 4© or 5© then
11 tracei ← LocateTrace(s)
12 N ← ExtractNodesIn(tracei)
13 end
14 end

50

4.4 Data Race Detection

In this section, we briefly introduce the data race detection in our framework. Algo-

rithm 9 presents how our system detects a data race related to the changes to the program.

Taking the output N from Algorithm 8 as input, we distribute each read/write node to

worker thread to let them check if there exist conflict memory accesses with this node. If

yes, the worker thread reports the race warning to the master scheduler. Finally, we report

all the detected races to users.

Performing a static race detection for whole programs can follow the same algorithm,

but the input N should be all the read/write nodes in the initial SHB graph.

Algorithm 9: The overview of data race detection
Input : N - the read/write nodes need to be re-evaluate

shb - updated SHB graph
ld - updated LD graph

Output: races - detected data races

// parallel work distribution in master
1 ParallelDetectionMaster(N):
2 while N 6= ∅ do
3 n← N .removefirst()
4 TellWorker(n)
5 foreach msg = 〈n1, n2〉 do
6 races← msg
7 end
8 end

// data race detection in worker
9 ParallelDetectionWorker(n):

10 mhps← CollectMHPNodesFor(n)
11 foreach v ∈ mhps do
12 if PerformDataRaceDetection(n, v) then
13 TellMaster(〈n, v〉)
14 end
15 end

51

4.5 Deadlock Detection

In this section, we focus on our novel incremental deadlock detection algorithm atop

D4. Although exhaustive algorithms for deadlock detection exist, this is the first incre-

mental deadlock detection algorithm, which is in fact highly non-trivial without D4. One

has to develop new incremental data structures, update them correctly upon code changes,

and integrate them efficiently with incremental race detection. Next, we first introduce the

lock-dependency graph which can be constructed from the SHB graph. Then we present

our incremental algorithm that uses the graph for deadlock detection.

4.5.1 Lock-dependency Graph

The lock-dependency (LD) graph contains nodes corresponding to lock operations,

and edges corresponding to lock dependencies. For example, if a thread t is holding a lock

l1 and continues to acquire another lock lj , an edge lock(l1)
t−→ lock(l2) is added to the LD

graph.

The LD graph can be constructed from the SHB graph by traversing the lock/unlock

nodes for each thread. For a lock statement on variable p, suppose pts(p) = {o1,o2}, it

generates two lock nodes in the LD graph: lock(o1) and lock(o2). Figure 4.1 shows an

example. The LD graph contains three nodes lock(o1), lock(o2) and lock(o3) connected

by edges labeled with corresponding thread ids.

4.5.2 Deadlock Detection

Our basic idea of deadlock detection is also to look for circles in the LD graph with

edge labels from multiple threads, which indicates circular dependencies of locks. We

then check the happens-before relation between the involved nodes to find real deadlocks.

For example, in Figure 4.1(b), lock(o1)
t1−→ lock(o2) and lock(o2)

t2−→ lock(o1) forms a cir-

cular dependency. To realize incremental deadlock detection, we develop an incremental

52

Figure 4.1: An example for the LD graph construction.

algorithm for updating the LD graph and an incremental algorithm for deadlock checking.

4.5.3 LD Graph Update For Incremental Changes

For an added synchronized statement in thread t, we first locate its belonging method

and its corresponding subgraph subshbtar, and create a pair of lock/unlock nodes and

insert them into subshbtar according to the statement location. Starting from the changed

node, we search the first lock/unlock node right before the added lock node (pred), and

the consecutive lock/unlock node right after the added lock node (succ) along edges in

the SHB graph. We call two lock nodes connected by an edge a lock pair. If pred is a

lock node, it means pred and node can form a lock pair with thread ids in subshbtar.tids.

Meanwhile, if succ is also a lock node, a lock pair between node and succ is added to

53

the LD graph. Afterwards, we reversely traverse the LD graph to discover the incoming

lock nodes of pred with edges labeled t (pred′). For each pred′, we add a new lock pair

between pred′ and node. Then, we collect the outgoing lock nodes of succ, and create

lock pairs for node and each of them. For a deleted synchronized statement, we simply

remove its corresponding lock/unlock nodes from subshbtar as well as its lock pairs.

Consider Figure 4.1(a) in which lock(o3)/unlock(o3) are added in both t1 and t2.

We first localize the lock nodes before and after the added statement, and then add four

edges: lock(o1)
t1−→ lock(o3), lock(o1)

t2−→ lock(o3), lock(o3)
t1−→ lock(o2) and lock(o2)

t2−→

lock(o3), as shown in Figure 4.1(c).

4.5.4 Incremental Deadlock Detection

Algorithm 10 illustrates the incremental deadlock detection. The key idea is to check

only the circles containing the changed (added or deleted) lock nodes. We first collect all

the circular dependencies that include the changed lock nodes. Then, we parallel the dead-

lock detection for all circles by checking the happens-before relation between conflicting

lock and unlock nodes from different threads in each circle.

4.6 The Distributed System Design

In this section, we present the design of our distributed analysis framework, D4. There

are three main components in our design of distributing the analysis to a remote server,

which is expected to have much more computation power than the machine running the

IDE. The first component is a change tracker that tracks the code changes in the IDE and

sends them to the server with a compact data format. The second component is a real-

time parallel analysis framework that implements our incremental algorithms for pointer

analysis and happens-before analysis. The third component is an incremental bug detector

that leverages our framework to detect concurrency bugs and send them back to the IDE.

We next focus on describing the second component, which is the core of our system.

54

Algorithm 10: IncrementalDeadlockDetection
Global States: shb - updated SHB graph

ldg - updated LD graph
Input : ∆lock - the changed lock nodes
Output : deadlocks - detected deadlocks

1 circles← DiscoverCircularDependency(ldg, ∆lock)
2 foreach c ∈ circles do
3 ParallelDeadlockDetection(c)
4 end

5 ParallelDeadlockDetection(c):
6 tids← ExtractTidsInCircle(c)
7 foreach (ti, tj) ∈ tids do // for each pair of threads
8 lock(x), lock(y)← FindConflictingLocks(ti, tj , c)

// check happens-before condition
9 if (!CheckHBFor(lock(x)ti , lock(y)tj) && !CheckHBFor(lock(x)tj , lock(y)ti))

then
10 deadlocks← c
11 end
12 end

4.6.1 Parallel Analysis Framework

We implement a communication interface between the client and the server based on

the open-source Akka framework [96], which supports efficient real-time computation on

graphs via message passing and asynchronous communication. Akka is based on the actor

model and distributes computations to actors in a hierarchical way. We hence can run

the server on both a single multicore machine or multiple machines with a master-workers

hierarchy. The master actor manages task generation and distribution, and the worker actor

performs specific graph computations (e.g., adding/removing nodes/edges and updating

the points-to sets). Tasks are assigned by the master and consumed by workers following

a work stealing schedule until there is no more remaining task.

55

4.6.2 Graph Storage

Due to the distributed design, we can leverage distributed memory to store large graphs

when the memory of a single computing node is limited. For the PAG, we partition the

graph by following the edge cut strategy in Titan [97], in which nodes/edges created from

the same method and those involved in the same points-to constraint are more likely to

be stored together. For the SHB graph, we separate it into two parts: graph skeleton and

subgraphs. The graph skeleton uses SHB edges to connect the ids of subgraphs and can

be stored in a single memory region. The subgraphs can be stored in different memory

regions and located efficiently by maintaining a map between each subgraph and its id.

4.6.3 Message Format

Akka provides protocol buffers and custom serializers to encode messages between

client and server. We encode all graph nodes/edges and subgraph ids as integers or strings

to facilitate message serialization. For example, deleting a statement “b=a” is encoded

as “-id” where id is the unique id of the statement in the SSA form, and it is further

encoded into “-(id1,id2)” on the server for graph computation, in which id1 and

id2 represent integer identifiers of nodes a and b respectively, and id1 is the source and

id2 the sink of the PAG edge.

56

5. EVALUATION 1

We implemented D4 based on ECHO and evaluated it on a collection of 13 real-world

large Java applications from DaCapo-9.12 [98], as shown in Table 5.1. We ran the D4

client on a MacBook Pro laptop with Intel i7 CPU and the server on a Mercury AH-

GPU424 HPC server with Dual 12-core Intel c© Xeon c© CPU E5-2695 v2 a©2.40GHz (2

threads per core) processors. In this section, we report the results of our experiments.

5.1 Evaluation Methodology

For each benchmark, we run three sets of experiments. (1) We first run the whole

program exhaustive analysis on the local client machine to detect both data-races and

deadlocks. Then, we initialize D4 with the graph data computed for the whole program in

the first step and continue to conduct two experiments with incremental code changes. (2)

For each statement in each method in the program, we delete the statement and run D4,

which uses the parallel incremental algorithms for detecting concurrency bugs. (3) For the

deleted statement in the previous step, we add it back and re-run D4.

We run D4 with two server configurations: a single thread (D4-1) and 48 threads

(D4-48). We measure the time taken by each component in each step and compare the

performance between the exhaustive analysis and D4. In addition, we repeat the same

experiments for ECHO running on the client machine to compare the performance of D4

with ECHO.
1Reprinted with permission from “D4: Fast Concurrency Debugging with Parallel Differential Analysis"

by Bozhen Liu, Jeff Huang, 2018. Proceedings of the 39th ACM SIGPLAN Conference on Programming
Language Design and Implementation, 359-373, Copyright [2018] by Association for Computing Machin-
ery, Inc. Reprinted by permission.

57

5.2 Benchmarks

The metrics of the benchmarks and their PAGs are reported in Table 5.1. Columns

2-6 report the numbers of classes, methods, pointer nodes, object nodes and edges in the

PAG of each benchmark, respectively. More than half of the benchmarks contain over 1M

pointer nodes and over 200M edges in the PAG. The default pointer analysis is based on

the ZeroOneContainerCFA in WALA, which creates an object node for every allocation

site and has unlimited object-sensitivity for collection objects. For all benchmarks certain

JDK libraries such as java.awt.* and java.nio.* are excluded to ensure that the exhaustive

analysis can finish within 6 hours.

Table 5.1: Benchmarks and PAG metrics.

App #Class #Method #Pointer #Object #Edge
avrora 23K 238K 2M 33K 229M
batik 23K 60K 1.2M 31K 272M
eclipse 21K 36K 365K 7K 44M
fop 19K 68K 2M 42K 295M
h2 20K 69K 2M 32K 301M
jython 26K 79K 2M 53K 325M
luindex 20K 71K 1.8M 29K 299M
lusearch 20K 63K 1M 18K 185M
pmd 22K 42K 983K 25K 101M
sunflow 22K 73K 1.5M 32K 218M
tomcat 16K 36K 886K 23K 94M
tradebeans 14K 39K 674K 19K 99M
tradesoap 14K 38K 653K 20K 97M

5.3 Evaluation Of PIPTA

Table 5.2 and 5.3 compares the performance between exhaustive pointer analysis and

different incremental algorithms.

Overall, D4 achieves dramatic speedup over the other algorithms, especially for han-

58

dling deletion. For most benchmarks, the exhaustive analysis takes several hours to com-

pute (2.4h on average). For a deletion change, on average, the reset-recompute incremen-

tal algorithm in ECHO takes 26s, the reachability-based incremental algorithm in ECHO

takes 39s, whereas D4-1 and D4-48 take only 73ms and 24ms respectively to analyze,

which is three orders of magnitude faster. The speedup is also significant for the worst

case scenarios, where analyzing a certain deletion change takes the longest time among all

changes in each benchmark. In the worst case, reset-recompute takes more than 17mins,

reachability takes more than 22mins, while D4-1 and D4-48 take only 1.1mins and 5.5s

respectively for all benchmarks on average, which achieves 20X-200X speedup.

For insertion changes, the average time for all the four incremental algorithms per

change is within 0.1s, indicating that these algorithms are fast enough for practical use

in the programming phase with respect to incremental code insertions (but not deletion).

Nevertheless, for reset-recompute and reachability the worst case scenarios still take over

7s on average, which could be intrusive in the IDE. However, D4-1 improves the perfor-

mance to 4.1s, and D4-48 further reduces the time to 0.6s, which is reasonably fast for

practical use.

5.4 Evaluation Of D4

We will discuss the evaluation of D4 from the following two perspectives: performance

and precision.

5.4.1 Performance

Table 5.4 reports the performance of concurrency bug detection for all the seven multi-

thread applications in DaCapo, including the time taken by exhaustive analysis, by ECHO

(for race detection only), and by D4-1 and D4-48 (for both data race and deadlock detec-

tion). Note that the time for exhaustive analysis includes constructing both the PAG and

the SHB graph for the whole code base and detecting both data races and deadlocks in the

59

Table 5.2: Performance of Exhaustive and Existing Incremental Pointer Analysis Algo-
rithms.

App
ECHO-Reset-Recompute ECHO-Reachability

Exha- insert delete insert delete
ustive avg. worst avg. worst avg. worst avg. worst

avrora 4.79h 27ms 3s 52s >0.5h 32ms 3s 76s >0.5h
batik 4.03h 6ms 2s 48s 22min 6ms 2.2s 79s >0.5h
eclipse 1h 5ms 1s 14s 12min 7ms 1.1s 20s 15min
fop 3.3h 12ms 7s 31s 16min 11ms 7.2s 38s 21min
h2 3.9h 11ms 21s 37s 25min 12ms 19s 82s >0.5h
jython 3.2h 4.2ms 21s 43s 17min 4.5ms 20s 67s >0.5h
luindex 2.9h 5.2ms 11s 22s 10min 5.3ms 12s 31s 12min
lusearch 2.5h 2.2ms 1.2s 17s 7min 2.4ms 1s 11s 8min
pmd 39min 1.8ms 0.7s 14s >0.5h 1.8ms 0.7s 14s >0.5h
sunflow 3.5h 2.8ms 15s 47s 11min 2.2ms 16s 61s 18min
tomcat 35min 9ms 8.7s 9.8s >0.5h 8ms 9s 12s >0.5h
tradebeans 45min 1ms 0.6s 3.5s 7min 0.9ms 0.6s 3s 9min
tradesoap 49min 1ms 0.7s 4s 10min 1ms 0.6s 5s 11min
Average 2.4h 6.8ms 7.2s 26s >17min 7.2ms 7.5s 39s >22min

Table 5.3: Performance of Exhaustive and New Incremental Pointer Analysis Algorithms.

App
D4-1 D4-48

Exha- insert delete insert delete
ustive avg. worst avg. worst avg. worst avg. worst

avrora 4.79h 0.99ms 1s 89ms 3.8min 0.82ms 0.1s 27ms 10.5s
batik 4.03h 0.86ms 0.8s 95ms 51s 0.41ms 0.1s 42ms 6.1s
eclipse 1h 0.74ms 0.4s 65ms 21s 0.62ms 0.07s 23ms 2.6s
fop 3.3h 1.33ms 5s 110ms 2.9min 0.82ms 0.3s 29ms 5.9s
h2 3.9h 0.18ms 17s 78ms 2min 0.16ms 1.1s 24ms 9.4s
jython 3.2h 0.49ms 12s 96ms 6min 0.35ms 0.9s 18ms 22s
luindex 2.9h 1.1ms 9s 143ms 2.7min 0.88ms 1.7s 31ms 7s
lusearch 2.5h 0.83ms 0.6s 15ms 44s 0.42ms 0.2s 9ms 2.8s
pmd 39min 0.61ms 0.2s 67ms 27s 0.53ms 0.1s 13ms 1.2s
sunflow 3.5h 0.87ms 7s 66ms 1.5min 0.66ms 2.9s 36ms 8s
tomcat 35min 0.32ms 0.3s 64ms 19s 0.19ms 0.05s 28ms 1.8s
tradebeans 45min 0.45ms 0.3s 24ms 14s 0.37ms 0.1s 11ms 0.8s
tradesoap 49min 0.62ms 0.3s 31ms 18s 0.43ms 0.2s 15ms 1s
Average 2.4h 0.72ms 4.1s 73ms 1.1min 0.51ms 0.6s 24ms 5.5s

60

whole program. The time for ECHO and D4 includes that taken by incremental algorithms

for updating the graphs and detecting bugs per change.

Overall, the exhaustive analysis requires a long time (>2h on average) to detect races

and deadlocks in the whole program. The incremental detection algorithms are typically

orders of magnitude faster than the exhaustive analysis, even in the worst case scenarios.

Between D4 and ECHO, the incremental race detection algorithm implemented on top of

D4 is much faster than ECHO, achieving 20X-1000X speedup for all cases on average,

and 5X-50X speedup for the worst cases. ECHO takes 1.2min on average and 36min in

the worst case to detect data races upon a change, while D4-1 and D4-48 take only 3.4s

and 54ms respectively on average, and 4.9min and 39s in the worst case.

The incremental deadlock detection in D4 is also very efficient. It takes less than 0.2s

on average and 36s in the worst case for D4-1, and 9ms and 7.7s for D4-48 per change.

Compared to exhaustive analysis, it is over 1000X faster.

Table 5.4: Performance of Concurrency Bug Detection.

App
Race Detection Deadlock Detection

Exha- ECHO D4-1 D4-48 D4-1 D4-48
ustive avg. worst avg. worst avg. worst avg. worst avg. worst

avrora >6h 3min 1.8h 21s 15min 231ms 2min 16ms 2min 23ms 32s
batik >6h 5.2min 2h 1.3s 13min <1ms 11ms 0.9s 57s <1ms 8ms
eclipse 1.2h 5s 10min 0.3s 5min 110ms 2min 152ms 49s 13ms 4s
h2 4h 1.2s 6min 33ms 39s <1ms 18ms 12ms 15s <1ms 10ms
jython 3.3h 1s 5min 19ms 20s 0.43ms 242ms 17ms 11s <1ms 53ms
luindex 3h 43ms 2min 4ms 7s 32ms 29s 1.9ms 3.8ms 25ms 17s
lusearch 2.6h 19ms 1.7min 7ms 5s <1ms 3ms 2.2ms 4.1ms <1ms 1.3s
Average >2h 1.2min 36min 3.4s 4.9min <54ms 39s 0.16s 36s 9.3ms 7.7s

61

5.4.2 Precision

Although D4 focuses on improving scalability and efficiency through incremental anal-

ysis, it does not sacrifice precision compared to the exhaustive analysis. Being a static

analysis (which is generally undecidable), D4 can report false positives, but it achieves

the same precision as any whole-program static analyzers running the same bug detection

algorithm. On the other hand, the warnings reported by D4 are more manageable, because

they are reported continuously driven by the current code changes, instead of providing

the user with a long list of warnings by analyzing the whole program once.

Table 5.5 shows the results of data races and deadlocks detected by D4 in these bench-

marks. Each race or deadlock has a unique signature (no duplicate locations). In total, D4

reports a large number of data races and deadlocks, though many of them may be false

positives. We manually inspected 50 randomly selected warnings for each benchmark by

checking the source code and the publicly available bug databases. Column “true” reports

the number of true data races or deadlocks we confirmed (together with the number of

known data races or deadlocks which are recorded in the bug databases). Column “false”

reports the number of false positives. Column “?” reports the number of warnings which

are uncertain (because we cannot confirm). Overall, more than half of them are real bugs.

For example, for Eclipse, D4 reports 85 data race warnings and 6312 deadlock warnings.

Among the 25 races we inspected, 18 are real (of which 13 are known in the bug database),

and 7 are false positives. Among the 25 deadlocks we inspected, 13 are real (of which 10

are known in the bug database), 7 are false positives and 5 are uncertain. For the false

positives, we found that a majority of them are related to array accesses, for which we

plan to improve precision in future work.

62

Table 5.5: Results of Detected Concurrency Bugs.

App
#Data Race #Deadlock

total true false ? total true false ?
avrora 26419 7(0) 9 12 22 6(0) 8 8
batik 33044 18(10) 5 2 0 - - -
eclipse 85 18(13) 7 0 6312 13(10) 7 5
luindex 8776 20(7) 5 0 7249 22(10) 3 0
lusearch 8547 29(29) 12 9 0 - - -
h2 0 - - - 0 - - -
jython 0 - - - 0 - - -

63

6. CONCLUSION

Concurrency bud detection (i.e. data race and deadlock detection) is difficult to scale,

especially on real-world, large applications. Because the huge amount of thread interleav-

ing and memory accesses requires a long time to analyze. Most of the detection techniques

are executed at the late phases of the application design, such as production phase. This

makes the expensive fundamental analyses required in the concurrency bug detection to

be performed on the whole code bases, which limits the debugging and programming effi-

ciency.

This thesis presents an instantaneous framework for concurrency bug detection, D4,

which can indicate the root cause of data races and deadlocks within 0.1s on average

according to incremental program changes. This new framework design overcomes the

scalability limitation of our prior work, ECHO, which extends ECHO with a client-server

architecture.

To support such an efficient framework, we present a new incremental algorithm for

pointer analysis that leverages local neighbouring properties for efficient incremental points-

to analysis. Compared to existing techniques, our new algorithms achieve orders of mag-

nitude speedup. Moreover, we develop a parallel algorithm that runs efficiently on mul-

ticore machines, without redundant recomputation or expensive graph reachability check.

The new incremental points-to analysis has 300X-500X speedup comparing with reset-

recompute and reachability-based techniques, while our parallel incremental points-to

analysis has 1000X-1600X speedup.

Besides, we present a novel incremental algorithm for happens-before analysis that

leverages a new representation of the SHB graph for efficient happens-before analysis.

Our new representation significantly reduces redundant computations caused by repeated

64

identical method calls. This boost our concurrency bug detection to have 1.4X-3X speedup

on average (not including the speedup from points-to analysis).

Additionally, we provide a distributed system design to utilize the parallelization in

a multi-core server, in order to further boost the speed of parallel incremental points-to

analysis and happens-before analysis.

In summary, this thesis has presented an instantaneous framework for concurrency

bug detection, D4, and two new parallel incremental algorithms in points-to analysis and

happens before analysis as the keystone of D4.

65

REFERENCES

[1] S. Burckhardt, P. Kothari, M. Musuvathi, and S. Nagarakatte, “A randomized sched-

uler with probabilistic guarantees of finding bugs,” in Proceedings of the Fifteenth

Edition of ASPLOS on Architectural Support for Programming Languages and Op-

erating Systems, ASPLOS XV, (New York, NY, USA), pp. 167–178, ACM, 2010.

[2] D. Engler and K. Ashcraft, “Racerx: Effective, static detection of race conditions and

deadlocks,” in Proceedings of the Nineteenth ACM Symposium on Operating Systems

Principles, SOSP ’03, (New York, NY, USA), pp. 237–252, ACM, 2003.

[3] C. Flanagan and S. N. Freund, “Fasttrack: Efficient and precise dynamic race de-

tection,” in Proceedings of the 30th ACM SIGPLAN Conference on Programming

Language Design and Implementation, PLDI ’09, (New York, NY, USA), pp. 121–

133, ACM, 2009.

[4] G. Jin, W. Zhang, D. Deng, B. Liblit, and S. Lu, “Automated concurrency-bug fix-

ing,” in Proceedings of the 10th USENIX Conference on Operating Systems Design

and Implementation, OSDI’12, (Berkeley, CA, USA), pp. 221–236, USENIX Asso-

ciation, 2012.

[5] M. Musuvathi, S. Qadeer, T. Ball, G. Basler, P. A. Nainar, and I. Neamtiu, “Find-

ing and reproducing heisenbugs in concurrent programs,” in Proceedings of the 8th

USENIX Conference on Operating Systems Design and Implementation, OSDI’08,

(Berkeley, CA, USA), pp. 267–280, USENIX Association, 2008.

[6] M. Naik, A. Aiken, and J. Whaley, “Effective static race detection for java,” in Pro-

ceedings of the 27th ACM SIGPLAN Conference on Programming Language Design

and Implementation, PLDI ’06, (New York, NY, USA), pp. 308–319, ACM, 2006.

66

[7] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T. Anderson, “Eraser: A dy-

namic data race detector for multithreaded programs,” ACM Trans. Comput. Syst.,

vol. 15, pp. 391–411, Nov. 1997.

[8] K. Sen, “Race directed random testing of concurrent programs,” in Proceedings of

the 29th ACM SIGPLAN Conference on Programming Language Design and Imple-

mentation, PLDI ’08, (New York, NY, USA), pp. 11–21, ACM, 2008.

[9] K. Serebryany and T. Iskhodzhanov, “Threadsanitizer: Data race detection in prac-

tice,” in Proceedings of the Workshop on Binary Instrumentation and Applications,

WBIA ’09, (New York, NY, USA), pp. 62–71, ACM, 2009.

[10] J. W. Voung, R. Jhala, and S. Lerner, “Relay: Static race detection on millions of

lines of code,” in Proceedings of the the 6th Joint Meeting of the European Software

Engineering Conference and the ACM SIGSOFT Symposium on The Foundations of

Software Engineering, ESEC-FSE ’07, (New York, NY, USA), pp. 205–214, ACM,

2007.

[11] J. Yu, S. Narayanasamy, C. Pereira, and G. Pokam, “Maple: A coverage-driven

testing tool for multithreaded programs,” in Proceedings of the ACM International

Conference on Object Oriented Programming Systems Languages and Applications,

OOPSLA ’12, (New York, NY, USA), pp. 485–502, ACM, 2012.

[12] S. Zhan and J. Huang, “Echo: Instantaneous in situ race detection in the ide,” in

Proceedings of the ? International Symposium on the Foundations of Software Engi-

neering, FSE âĂŹ16, 2016.

[13] L. O. Andersen, “Program analysis and specialization for the c programming lan-

guage,” tech. rep., 1994.

67

[14] J. Dietrich, N. Hollingum, and B. Scholz, “Giga-scale exhaustive points-to analysis

for java in under a minute,” in Proceedings of the 2015 ACM SIGPLAN International

Conference on Object-Oriented Programming, Systems, Languages, and Applica-

tions, OOPSLA 2015, (New York, NY, USA), pp. 535–551, ACM, 2015.

[15] D. Grove and C. Chambers, “A framework for call graph construction algorithms,”

ACM Trans. Program. Lang. Syst., vol. 23, pp. 685–746, Nov. 2001.

[16] B. Hardekopf and C. Lin, “The ant and the grasshopper: Fast and accurate pointer

analysis for millions of lines of code,” in Proceedings of the 28th ACM SIGPLAN

Conference on Programming Language Design and Implementation, PLDI ’07,

(New York, NY, USA), pp. 290–299, ACM, 2007.

[17] G. Kastrinis and Y. Smaragdakis, “Hybrid context-sensitivity for points-to analysis,”

in Proceedings of the 34th ACM SIGPLAN Conference on Programming Language

Design and Implementation, PLDI ’13, (New York, NY, USA), pp. 423–434, ACM,

2013.

[18] J.-s. Yur, B. G. Ryder, and W. A. Landi, “An incremental flow- and context-sensitive

pointer aliasing analysis,” in Proceedings of the 21st International Conference on

Software Engineering, ICSE ’99, (New York, NY, USA), pp. 442–451, ACM, 1999.

[19] A. Milanova, A. Rountev, and B. G. Ryder, “Parameterized object sensitivity for

points-to analysis for java,” ACM Trans. Softw. Eng. Methodol., vol. 14, pp. 1–41,

Jan. 2005.

[20] B. G. Ryder, “Dimensions of precision in reference analysis of object-oriented

programming languages,” in Proceedings of the 12th International Conference on

Compiler Construction, CC’03, (Berlin, Heidelberg), pp. 126–137, Springer-Verlag,

2003.

68

[21] Y. Smaragdakis and G. Balatsouras, “Pointer analysis,” Found. Trends Program.

Lang., vol. 2, pp. 1–69, Apr. 2015.

[22] Y. Smaragdakis, G. Kastrinis, and G. Balatsouras, “Introspective analysis: Context-

sensitivity, across the board,” in Proceedings of the 35th ACM SIGPLAN Conference

on Programming Language Design and Implementation, PLDI ’14, (New York, NY,

USA), pp. 485–495, ACM, 2014.

[23] J. Späth, L. N. Q. Do, K. Ali, and E. Bodden, “Boomerang: Demand-driven flow- and

context-sensitive pointer analysis for java,” in 30th European Conference on Object-

Oriented Programming (ECOOP 2016) (S. Krishnamurthi and B. S. Lerner, eds.),

vol. 56 of Leibniz International Proceedings in Informatics (LIPIcs), (Dagstuhl, Ger-

many), pp. 22:1–22:26, Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2016.

[24] M. Sridharan and R. Bodík, “Refinement-based context-sensitive points-to analysis

for java,” in Proceedings of the 27th ACM SIGPLAN Conference on Programming

Language Design and Implementation, PLDI ’06, (New York, NY, USA), pp. 387–

400, ACM, 2006.

[25] M. Sridharan and S. J. Fink, “The complexity of andersen’s analysis in practice,”

in Proceedings of the 16th International Symposium on Static Analysis, SAS ’09,

(Berlin, Heidelberg), pp. 205–221, Springer-Verlag, 2009.

[26] J. Whaley and M. S. Lam, “Cloning-based context-sensitive pointer alias analysis

using binary decision diagrams,” in Proceedings of the ACM SIGPLAN 2004 Confer-

ence on Programming Language Design and Implementation, PLDI ’04, (New York,

NY, USA), pp. 131–144, ACM, 2004.

[27] L. Lamport, “Time, clocks, and the ordering of events in a distributed system,”

vol. 21, (New York, NY, USA), pp. 558–565, ACM, July 1978.

69

[28] O.-K. Ha and Y.-K. Jun, “An efficient algorithm for on-the-fly data race detection us-

ing an epoch-based technique,” vol. 2015, (New York, NY, United States), pp. 13:13–

13:13, Hindawi Publishing Corp., Jan. 2015.

[29] “WALA.” http://wala.sourceforge.net/wiki/index.php/Main_

Page.

[30] B. Liu and J. Huang, “D4: fast concurrency debugging with parallel differential anal-

ysis,” in Proceedings of the 39th ACM SIGPLAN Conference on Programming Lan-

guage Design and Implementation, PLDI 2018, Philadelphia, PA, USA, June 18-22,

2018, pp. 359–373, 2018.

[31] J.-s. Yur, B. G. Ryder, and W. A. Landi, “An incremental flow- and context-sensitive

pointer aliasing analysis,” in Proceedings of the 21st International Conference on

Software Engineering, ICSE ’99, (New York, NY, USA), pp. 442–451, ACM, 1999.

[32] G. Ramalingam, “The undecidability of aliasing,” ACM Trans. Program. Lang. Syst.,

vol. 16, pp. 1467–1471, Sept. 1994.

[33] T. Tan, Y. Li, and J. Xue, “Efficient and precise points-to analysis: Modeling the heap

by merging equivalent automata,” in Proceedings of the 38th ACM SIGPLAN Con-

ference on Programming Language Design and Implementation, PLDI 2017, (New

York, NY, USA), pp. 278–291, ACM, 2017.

[34] A. S. Robert Smith and J. Gibson, “Poplog’s two-level virtual machine support for

interactive languages,” in Proceedings of Research Directions in Cognitive Science

Volume 5: Artificial Intelligence, pp. 203–231, 1992.

[35] O. Lhoták and L. Hendren, “Scaling java points-to analysis using spark,” in Proceed-

ings of the 12th International Conference on Compiler Construction, CC’03, (Berlin,

Heidelberg), pp. 153–169, Springer-Verlag, 2003.

70

http://wala.sourceforge.net/wiki/index.php/Main_Page
http://wala.sourceforge.net/wiki/index.php/Main_Page

[36] P. A. in WALA. http://wala.sourceforge.net/wiki/\index.php/

UserGuide:PointerAnalysis, 2017.

[37] D. Saha and C. R. Ramakrishnan, “Incremental and demand-driven points-to anal-

ysis using logic programming,” in Proceedings of the 7th ACM SIGPLAN Interna-

tional Conference on Principles and Practice of Declarative Programming, PPDP

’05, (New York, NY, USA), pp. 117–128, ACM, 2005.

[38] S. Arzt and E. Bodden, “Reviser: Efficiently updating ide-/ifds-based data-flow anal-

yses in response to incremental program changes,” in Proceedings of the 36th Inter-

national Conference on Software Engineering, ICSE 2014, (New York, NY, USA),

pp. 288–298, ACM, 2014.

[39] G. Kastrinis and Y. Smaragdakis, “Efficient and effective handling of exceptions in

java points-to analysis,” in Proceedings of the 22Nd International Conference on

Compiler Construction, CC’13, (Berlin, Heidelberg), pp. 41–60, Springer-Verlag,

2013.

[40] D. Saha and C. R. Ramakrishnan, “Symbolic support graph: A space efficient data

structure for incremental tabled evaluation,” in Logic Programming (M. Gabbrielli

and G. Gupta, eds.), (Berlin, Heidelberg), pp. 235–249, Springer Berlin Heidelberg,

2005.

[41] L. Shang, Y. Lu, and J. Xue, “Fast and precise points-to analysis with incremen-

tal cfl-reachability summarisation: Preliminary experience,” in Proceedings of the

27th IEEE/ACM International Conference on Automated Software Engineering, ASE

2012, (New York, NY, USA), pp. 270–273, ACM, 2012.

[42] Y. Lu, L. Shang, X. Xie, and J. Xue, “An incremental points-to analysis with cfl-

reachability,” in Proceedings of the 22Nd International Conference on Compiler

Construction, CC’13, (Berlin, Heidelberg), pp. 61–81, Springer-Verlag, 2013.

71

http://wala.sourceforge.net/wiki/\index.php/UserGuide:PointerAnalysis
http://wala.sourceforge.net/wiki/\index.php/UserGuide:PointerAnalysis

[43] T. Szabó, S. Erdweg, and M. Voelter, “Inca: A dsl for the definition of incremental

program analyses,” in Proceedings of the 31st IEEE/ACM International Conference

on Automated Software Engineering, ASE 2016, (New York, NY, USA), pp. 320–

331, ACM, 2016.

[44] Z. Ujhelyi, G. Bergmann, Á. Hegedüs, Á. Horváth, B. Izsó, I. Ráth, Z. Szatmári, and

D. Varró, “Emf-incquery: An integrated development environment for live model

queries,” Sci. Comput. Program., vol. 98, pp. 80–99, 2015.

[45] B. Hardekopf and C. Lin, “The ant and the grasshopper: Fast and accurate pointer

analysis for millions of lines of code,” in Proceedings of the 28th ACM SIGPLAN

Conference on Programming Language Design and Implementation, pp. 290–299,

2007.

[46] J. A. La Poutré and J. van Leeuwen, “Maintenance of transitive closures and tran-

sitive reductions of graphs,” in Proceedings of the International Workshop WG ’87

on Graph-theoretic Concepts in Computer Science, (New York, NY, USA), pp. 106–

120, Springer-Verlag New York, Inc., 1988.

[47] G. Bergmann, I. Ráth, T. Szabó, P. Torrini, and D. Varró, “Incremental pattern match-

ing for the efficient computation of transitive closure,” in Graph Transformations

(H. Ehrig, G. Engels, H.-J. Kreowski, and G. Rozenberg, eds.), (Berlin, Heidelberg),

pp. 386–400, Springer Berlin Heidelberg, 2012.

[48] R. Tarjan, “Depth first search and linear graph algorithms,” SIAM JOURNAL ON

COMPUTING, vol. 1, no. 2, 1972.

[49] M. A. Bender, J. T. Fineman, S. Gilbert, and R. E. Tarjan, “A new approach to in-

cremental cycle detection and related problems,” ACM Trans. Algorithms, vol. 12,

pp. 14:1–14:22, Dec. 2015.

72

[50] S. based IR in WALA. https://github.com/wala/WALA/wiki/

Intermediate-Representation-(IR), 2018.

[51] B. Livshits, “Improving software security with precise static and runtime analysis,”

2006. AAI3242585.

[52] Y. Li, T. Tan, and J. Xue, “Understanding and analyzing java reflection,” CoRR,

vol. abs/1706.04567, 2017.

[53] O. Shivers, Control-Flow Analysis of Higher-Order Languages. PhD thesis, Carnegie

Mellon University, May 1991.

[54] O. Lhoták and L. Hendren, “Evaluating the benefits of context-sensitive points-to

analysis using a bdd-based implementation,” ACM Trans. Softw. Eng. Methodol.,

vol. 18, pp. 3:1–3:53, Oct. 2008.

[55] M. Sridharan and R. Bodík, “Refinement-based context-sensitive points-to analysis

for java,” in Proceedings of the 27th ACM SIGPLAN Conference on Programming

Language Design and Implementation, PLDI ’06, (New York, NY, USA), pp. 387–

400, ACM, 2006.

[56] M. Sridharan, D. Gopan, L. Shan, and R. Bodík, “Demand-driven points-to analysis

for java,” in Proceedings of the 20th Annual ACM SIGPLAN Conference on Object-

oriented Programming, Systems, Languages, and Applications, OOPSLA ’05, (New

York, NY, USA), pp. 59–76, ACM, 2005.

[57] T. Reps, “Undecidability of context-sensitive data-dependence analysis,” ACM

Trans. Program. Lang. Syst., vol. 22, pp. 162–186, Jan. 2000.

[58] B. Hardekopf and C. Lin, “Semi-sparse flow-sensitive pointer analysis,” in Proceed-

ings of the 36th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Pro-

gramming Languages, POPL ’09, (New York, NY, USA), pp. 226–238, ACM, 2009.

73

https://github.com/wala/WALA/wiki/Intermediate-Representation-(IR)
https://github.com/wala/WALA/wiki/Intermediate-Representation-(IR)

[59] B. Hardekopf and C. Lin, “Flow-sensitive pointer analysis for millions of lines of

code,” in Proceedings of the 9th Annual IEEE/ACM International Symposium on

Code Generation and Optimization, CGO ’11, (Washington, DC, USA), pp. 289–

298, IEEE Computer Society, 2011.

[60] A. De and D. D’Souza, “Scalable flow-sensitive pointer analysis for java with strong

updates,” in Proceedings of the 26th European Conference on Object-Oriented Pro-

gramming, ECOOP’12, (Berlin, Heidelberg), pp. 665–687, Springer-Verlag, 2012.

[61] L. Li, C. Cifuentes, and N. Keynes, “Boosting the performance of flow-sensitive

points-to analysis using value flow,” in Proceedings of the 19th ACM SIGSOFT Sym-

posium and the 13th European Conference on Foundations of Software Engineering,

ESEC/FSE ’11, (New York, NY, USA), pp. 343–353, ACM, 2011.

[62] D. Saha and C. R. Ramakrishnan, “A local algorithm for incremental evaluation of

tabledÂălogic programs,” in Logic Programming (S. Etalle and M. Truszczyński,

eds.), (Berlin, Heidelberg), pp. 56–71, Springer Berlin Heidelberg, 2006.

[63] M. Hind, “Pointer analysis: Haven’t we solved this problem yet?,” in Proceedings

of the 2001 ACM SIGPLAN-SIGSOFT Workshop on Program Analysis for Software

Tools and Engineering, PASTE ’01, (New York, NY, USA), pp. 54–61, ACM.

[64] M. Emami, R. Ghiya, and L. J. Hendren, “Context-sensitive interprocedural points-to

analysis in the presence of function pointers,” in Proceedings of the ACM SIGPLAN

1994 Conference on Programming Language Design and Implementation, PLDI ’94,

(New York, NY, USA), pp. 242–256, ACM, 1994.

[65] Y. Smaragdakis, G. Kastrinis, and G. Balatsouras, “Introspective analysis: Context-

sensitivity, across the board,” in Proceedings of the 35th ACM SIGPLAN Conference

on Programming Language Design and Implementation, PLDI ’14, (New York, NY,

USA), pp. 485–495, ACM, 2014.

74

[66] G. Kastrinis and Y. Smaragdakis, “Hybrid context-sensitivity for points-to analysis,”

in Proceedings of the 34th ACM SIGPLAN Conference on Programming Language

Design and Implementation, PLDI ’13, (New York, NY, USA), pp. 423–434, ACM,

2013.

[67] A. Milanova, A. Rountev, and B. G. Ryder, “Parameterized object sensitivity for

points-to analysis for java,” ACM Trans. Softw. Eng. Methodol., vol. 14, pp. 1–41,

Jan. 2005.

[68] J. Whaley and M. S. Lam, “Cloning-based context-sensitive pointer alias analysis

using binary decision diagrams,” in Proceedings of the ACM SIGPLAN 2004 Confer-

ence on Programming Language Design and Implementation, PLDI ’04, (New York,

NY, USA), pp. 131–144, ACM, 2004.

[69] Y. Sui, S. Ye, J. Xue, and P.-C. Yew, “Spas: Scalable path-sensitive pointer analysis

on full-sparse ssa,” in Proceedings of the 9th Asian Conference on Programming

Languages and Systems, APLAS’11, (Berlin, Heidelberg), pp. 155–171, Springer-

Verlag, 2011.

[70] D. J. Pearce, P. H. Kelly, and C. Hankin, “Efficient field-sensitive pointer analysis of

c,” ACM Trans. Program. Lang. Syst., vol. 30, Nov. 2007.

[71] N. Heintze and O. Tardieu, “Demand-driven pointer analysis,” in Proceedings of the

ACM SIGPLAN 2001 Conference on Programming Language Design and Implemen-

tation, PLDI ’01, (New York, NY, USA), pp. 24–34, ACM, 2001.

[72] Y. Smaragdakis and G. Balatsouras, “Pointer analysis,” Found. Trends Program.

Lang., vol. 2, pp. 1–69, Apr. 2015.

[73] M. Sridharan and S. J. Fink, “The complexity of andersen’s analysis in practice,”

in Proceedings of the 16th International Symposium on Static Analysis, SAS ’09,

75

(Berlin, Heidelberg), pp. 205–221, Springer-Verlag, 2009.

[74] J. Dietrich, N. Hollingum, and B. Scholz, “A note on the soundness of difference

propagation,” in Proceedings of the 18th Workshop on Formal Techniques for Java-

like Programs, FTfJP’16, (New York, NY, USA), pp. 3:1–3:5, ACM, 2016.

[75] W. Landi and B. G. Ryder, “Pointer-induced aliasing: A problem classification,”

in Proceedings of the 18th ACM SIGPLAN-SIGACT Symposium on Principles of

Programming Languages, POPL ’91, (New York, NY, USA), pp. 93–103, ACM,

1991.

[76] A. Gupta, I. S. Mumick, and V. S. Subrahmanian, “Maintaining views incrementally,”

in Proceedings of the 1993 ACM SIGMOD International Conference on Management

of Data, SIGMOD ’93, (New York, NY, USA), pp. 157–166, ACM, 1993.

[77] M. Bravenboer and Y. Smaragdakis, “Strictly declarative specification of sophisti-

cated points-to analyses,” in Proceedings of the 24th ACM SIGPLAN Conference on

Object Oriented Programming Systems Languages and Applications, OOPSLA ’09,

(New York, NY, USA), pp. 243–262, ACM, 2009.

[78] M. Bravenboer and Y. Smaragdakis, “Exception analysis and points-to analysis: Bet-

ter together,” in Proceedings of the Eighteenth International Symposium on Software

Testing and Analysis, ISSTA ’09, (New York, NY, USA), pp. 1–12, ACM, 2009.

[79] N. Grech and Y. Smaragdakis, “P/taint: Unified points-to and taint analysis,” Proc.

ACM Program. Lang., vol. 1, pp. 102:1–102:28, Oct. 2017.

[80] Y. A. Liu and S. D. Stoller, “From datalog rules to efficient programs with time and

space guarantees,” ACM Trans. Program. Lang. Syst., vol. 31, pp. 21:1–21:38, Aug.

2009.

76

[81] K. T. Tekle and Y. A. Liu, “Precise complexity guarantees for pointer analysis via

datalog with extensions,” TPLP, vol. 16, pp. 916–932, 2016.

[82] B. Motik, Y. Nenov, R. Piro, and I. Horrocks, “Incremental update of datalog ma-

terialisation: The backward/forward algorithm,” in Proceedings of the Twenty-Ninth

AAAI Conference on Artificial Intelligence, AAAI’15, pp. 1560–1568, AAAI Press,

2015.

[83] S. Putta and R. Nasre, “Parallel replication-based points-to analysis,” in Proceed-

ings of the 21st International Conference on Compiler Construction, CC’12, (Berlin,

Heidelberg), pp. 61–80, Springer-Verlag, 2012.

[84] M. Méndez-Lojo, A. Mathew, and K. Pingali, “Parallel inclusion-based points-to

analysis,” in Proceedings of the ACM International Conference on Object Oriented

Programming Systems Languages and Applications, OOPSLA ’10, (New York, NY,

USA), pp. 428–443, ACM, 2010.

[85] G. System. http://iss.ices.utexas.edu/, 2017.

[86] M. Mendez-Lojo, M. Burtscher, and K. Pingali, “A gpu implementation of inclusion-

based points-to analysis,” in Proceedings of the 17th ACM SIGPLAN Symposium

on Principles and Practice of Parallel Programming, PPoPP ’12, (New York, NY,

USA), pp. 107–116, ACM, 2012.

[87] V. Nagaraj and R. Govindarajan, “Parallel flow-sensitive pointer analysis by graph-

rewriting,” in Proceedings of the 22Nd International Conference on Parallel Archi-

tectures and Compilation Techniques, PACT ’13, (Piscataway, NJ, USA), pp. 19–28,

IEEE Press, 2013.

[88] J. Zhao, M. G. Burke, and V. Sarkar, “Parallel sparse flow-sensitive points-to analy-

sis,” in Proceedings of the 27th International Conference on Compiler Construction,

77

http://iss.ices.utexas.edu/

CC 2018, (New York, NY, USA), pp. 59–70, ACM, 2018.

[89] M. Edvinsson, J. Lundberg, and W. Löwe, “Parallel points-to analysis for multi-core

machines,” in Proceedings of the 6th International Conference on High Performance

and Embedded Architectures and Compilers, HiPEAC ’11, (New York, NY, USA),

pp. 45–54, ACM, 2011.

[90] Y. Su, D. Ye, and J. Xue, “Parallel pointer analysis with cfl-reachability,” in Proceed-

ings of the 2014 Brazilian Conference on Intelligent Systems, BRACIS ’14, (Wash-

ington, DC, USA), pp. 451–460, IEEE Computer Society, 2014.

[91] J. Dietrich, N. Hollingum, and B. Scholz, “Giga-scale exhaustive points-to analysis

for java in under a minute,” in Proceedings of the 2015 ACM SIGPLAN International

Conference on Object-Oriented Programming, Systems, Languages, and Applica-

tions, OOPSLA 2015, (New York, NY, USA), pp. 535–551, ACM, 2015.

[92] T. J. Marlowe and B. G. Ryder, “An efficient hybrid algorithm for incremental data

flow analysis,” in Proceedings of the 17th ACM SIGPLAN-SIGACT Symposium on

Principles of Programming Languages, POPL ’90, (New York, NY, USA), pp. 184–

196, ACM, 1990.

[93] Z. Lai, S. C. Cheung, and W. K. Chan, “Detecting atomic-set serializability violations

in multithreaded programs through active randomized testing,” in Proceedings of

the 32Nd ACM/IEEE International Conference on Software Engineering - Volume 1,

ICSE ’10, (New York, NY, USA), pp. 235–244, ACM, 2010.

[94] J. Huang and C. Zhang, “An efficient static trace simplification technique for debug-

ging concurrent programs,” in Proceedings of the 18th International Conference on

Static Analysis, SAS’11, (Berlin, Heidelberg), pp. 163–179, Springer-Verlag, 2011.

78

[95] J. Huang and C. Zhang, “Lean: Simplifying concurrency bug reproduction via

replay-supported execution reduction,” in Proceedings of the ACM International

Conference on Object Oriented Programming Systems Languages and Applications,

OOPSLA ’12, (New York, NY, USA), pp. 451–466, ACM, 2012.

[96] “Akka Cluster Usage.” http://http://doc.akka.io/docs/akka/

current/java/cluster-usage.html.

[97] “Titan Graph Partitioning.” http://s3.thinkaurelius.com/docs/

titan/0.5.0/graph-partitioning.html.

[98] S. M. Blackburn, R. Garner, C. Hoffman, A. M. Khan, K. S. McKinley, R. Bentzur,

A. Diwan, D. Feinberg, D. Frampton, S. Z. Guyer, M. Hirzel, A. Hosking, M. Jump,

H. Lee, J. E. B. Moss, A. Phansalkar, D. Stefanović, T. VanDrunen, D. von Dinck-

lage, and B. Wiedermann, “The DaCapo benchmarks: Java benchmarking develop-

ment and analysis,” in OOPSLA ’06: Proceedings of the 21st annual ACM SIGPLAN

conference on Object-Oriented Programing, Systems, Languages, and Applications,

(New York, NY, USA), pp. 169–190, ACM Press, Oct. 2006.

79

http://http://doc.akka.io/docs/akka/current/java/cluster-usage.html
http://http://doc.akka.io/docs/akka/current/java/cluster-usage.html
http://s3.thinkaurelius.com/docs/titan/0.5.0/graph-partitioning.html
http://s3.thinkaurelius.com/docs/titan/0.5.0/graph-partitioning.html

	ABSTRACT
	ACKNOWLEDGMENTS
	CONTRIBUTORS AND FUNDING SOURCES
	NOMENCLATURE
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	INTRODUCTION
	Background
	Pointer Analysis
	Happens-before Analysis

	Thesis Contribution
	Outline Of Thesis

	PARALLEL INCREMENTAL POINTS-TO ANALYSIS Reprinted with permission from ``D4: Fast Concurrency Debugging with Parallel Differential Analysis" by Bozhen Liu, Jeff Huang, 2018. Proceedings of the 39th ACM SIGPLAN Conference on Programming Language Design and Implementation, 359-373, Copyright [2018] by Association for Computing Machinery, Inc. Reprinted by permission.
	Background
	Introduction To Points-to Analysis
	Performance Bottleneck In Handling Deletion
	Reset-recompute Algorithm
	Reachability-based Algorithm
	Graph Pattern Matching

	Observed Properties
	Basic Incremental Algorithm
	Incremental SCC Detection
	Incremental Edge Deletion
	Incremental Edge Addition

	Parallel Incremental Algorithm
	Synchronization-free Implementation

	End-to-end Incremental Points-to Analysis
	Adapting To Context-sensitive, Flow-sensitive And Other Problems
	Context-sensitive
	Flow-sensitive
	Other Problems

	Scheduling Of Changed Statements

	Related Works And Comparison
	Incremental Algorithms
	Parallel Algorithms
	SCC Optimizations

	PARALLEL INCREMENTAL HAPPENS-BEFORE ANALYSIS Reprinted with permission from ``D4: Fast Concurrency Debugging with Parallel Differential Analysis" by Bozhen Liu, Jeff Huang, 2018. Proceedings of the 39th ACM SIGPLAN Conference on Programming Language Design and Implementation, 359-373, Copyright [2018] by Association for Computing Machinery, Inc. Reprinted by permission.
	Background
	Related Works
	An Example
	Limitations In Existing Techniques
	A New SHB Graph Construction
	The New SHB Graph Update For Incremental Changes
	How To Compute The Happens-before Relation

	D4: A FAST CONCURRENCY DEBUGGING FRAMEWORK Reprinted with permission from ``D4: Fast Concurrency Debugging with Parallel Differential Analysis" by Bozhen Liu, Jeff Huang, 2018. Proceedings of the 39th ACM SIGPLAN Conference on Programming Language Design and Implementation, 359-373, Copyright [2018] by Association for Computing Machinery, Inc. Reprinted by permission.
	Background
	Related Works
	Change Extraction
	Data Race Detection
	Deadlock Detection
	Lock-dependency Graph
	Deadlock Detection
	LD Graph Update For Incremental Changes
	Incremental Deadlock Detection

	The Distributed System Design
	Parallel Analysis Framework
	Graph Storage
	Message Format

	EVALUATION Reprinted with permission from ``D4: Fast Concurrency Debugging with Parallel Differential Analysis" by Bozhen Liu, Jeff Huang, 2018. Proceedings of the 39th ACM SIGPLAN Conference on Programming Language Design and Implementation, 359-373, Copyright [2018] by Association for Computing Machinery, Inc. Reprinted by permission.
	Evaluation Methodology
	Benchmarks
	Evaluation Of PIPTA
	Evaluation Of D4
	Performance
	Precision

	CONCLUSION
	REFERENCES

