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Abstract. Most mathematical models include parameters that need to be determined from mea-
surements. The estimated values of these parameters and their uncertainties depend on
assumptions made about noise levels, models, or prior knowledge. But what can we say
about the validity of such estimates, and the influence of these assumptions? This paper is
concerned with methods to address these questions, and for didactic purposes it is written
in the context of a concrete nonlinear parameter estimation problem. We will use the
results of a physical experiment conducted by Allmaras et al. at Texas A&M University
[M. Allmaras et al., SIAM Rev., 55 (2013), pp. 149–167] to illustrate the importance of
validation procedures for statistical parameter estimation. We describe statistical methods
and data analysis tools to check the choices of likelihood and prior distributions, and pro-
vide examples of how to compare Bayesian results with those obtained by non-Bayesian
methods based on different types of assumptions. We explain how different statistical
methods can be used in complementary ways to improve the understanding of parameter
estimates and their uncertainties.

Key words. parameter estimation, Bayesian inference, frequentist inference, model validation, data
analysis, residual analysis, maximum likelihood, nonlinear regression, surrogate models
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1. Introduction. Mathematical models of physical phenomena usually depend
on parameters that need to be estimated from measurement data. Such estimation
can be done using a variety of methods, but since no single procedure works best for
every problem, we try to select a method such that (i) it takes advantage of all relevant
available information; (ii) it is computationally feasible; (iii) it makes no unreasonable
assumptions; and (iv) it is consistent with the data and physical models. However, we
are sometimes too eager to focus on (i) and (ii) and neglect (iii) and (iv), which are
important because the validity of the results depends on satisfying the assumptions
of the statistical model. In particular, reported uncertainties are meaningful to the
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extent that the assumptions are approximately satisfied. In this paper we describe
different ways to check assumptions and explore the validity of parameter estimates
and their uncertainties. This is done in the context of a concrete nonlinear parameter
estimation problem. We use the results of the experiment published by Allmaras et
al. in this journal in 2013 [1]. Thus, this article is a continuation of that tutorial,
which we will henceforth refer to as “A13.”

The experiment discussed in A13 consisted of recording the free fall of a box
dropped from a known height. The fall was recorded by a video camera at a rate of
thirty frames per second with the aim of determining the gravitational acceleration
and air friction coefficient of the box. The distance traveled by the object was obtained
by analyzing 31 frames of this video. t0 is the time in seconds when the object starts
to travel and was initially chosen to be the time corresponding to the first of the 31
frames, with ti the times corresponding to the other frames. As was shown in A13,
the time, t0, when the object actually started to travel was impossible to determine
accurately because any motion in the first frames is small compared with the resolution
of the camera, and the second part of A13 therefore treats it as uncertain as well.

From the frames of the video showing the body falling past a tape measure, the
authors determined the distance di the body has fallen at time ti. But, of course,
measuring di is subject to uncertainties. Even more than motion blur, the most
important source of error in these data was the fact that the box rotated during its
fall and the consequential uncertainty in how to define the location of the object. A13
defined the error, δi, to be half the distance between the lower and upper corners of
the bottom of the box,1 as depicted in Figure 1.1 (see also the photographs in Figure
3.2 of A13).

Fig. 1.1 Left: Depiction of the falling box and the errors δi. See Figure 3.2 of A13 for an actual
picture of the falling box in the experiments described there. Right: Plot of di ± δi.

These values were used in A13 to define the support of the probability density of
the errors associated with di. The right panel in Figure 1.1 shows the distance di (in
inches) as a function of ti (s) with error bars defined as ±δi.

1This might not be the best definition of the measurement error, given that the box can rotate
around all three axes, but it is one that could be extracted from the individual frames of the video.
As we will discuss below, their choice was overly conservative, and so the details of their definition
of measurement error might not have mattered very much.
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STATISTICS OF PARAMETER ESTIMATES 133

As explained in A13, Newton’s equations of motion lead to an explicit expression
of the distance z(t) traveled by the object at time t:

(1.1) z(t) = (1/C) log cosh
[√

gC(t− t0)
]
,

where g is the acceleration due to gravity and C is the specific coefficient of air
resistance for this particular box. Although both parameters are unknown, our main
interest is in identifying g, for which we have the reliable estimate

(1.2) g ≈ gref = 9.7935 (m/s2)

for the location where the experiment took place (College Station, TX; see A13). Here,
as in A13, we are therefore primarily concerned with estimating g and comparing it
against gref for validation. As in every experiment, we do not of course use this
knowledge of a reference value in the estimation procedures. Since A13 determined
that knowledge of the initial time t0 was subject to a small error, it considered the
case where t0 is unknown. Hence, the vector of unknown parameters we use will be
either m = (g, C) or m = (g, C, t0).

To summarize, the data, di, consist of a noisy recording of z(t) at 31 different
times ti: di = z(ti) + εi, where εi is modeled as random noise. We write the data
vector as

(1.3) d = z(m) + ε, zi(m) = (1/C) log cosh
[√

gC(ti − t0)
]
.

The objective of the inverse problem is to use the data d to estimate the unknown pa-
rameter vector m. Our objective in this paper is to interpret and assess the reliability
of the estimate and its associated uncertainty.

In the Bayesian approach for parameter estimation used by A13, m is modeled
as a random variable with a specified prior probability distribution that encodes what
the authors believed they knew about m independent of the measured data. The
result of their inference is the posterior probability distribution of m conditional on
d. The likelihood and priors were selected using heuristic arguments that are typical
in applications. In particular, they represented their best guesses at interpreting the
measured data and a statistical description of their prior knowledge. In this paper we
question whether these choices were appropriate, and we describe methods that can
be used to validate these choices. We also describe alternative non-Bayesian inversion
methods that make different types of assumptions on the statistical model. We will
then explain how to compare their results to those from the Bayesian procedures.

The rest of the paper is organized as follows. In section 2 we summarize the
work presented in A13. We start the validation analysis by checking the frequentist
performance of the Bayesian procedures from A13 in section 3. We focus on the
validation of the likelihood and priors in section 4. This analysis leads to a new
likelihood and to a revision of the results in A13. The new likelihood is then used
in what follows. Since the prior distributions for the experiment are not defined
based on the physics of the problem, but on intuitive and convenient choices, it is
worth comparing the Bayesian results to those obtained with non-Bayesian methods.
In section 5 we find parameter estimates and confidence intervals using maximum
likelihood and nonlinear least-squares. For these methods, m is no longer modeled as
random. In section 6, we use a method that does not require parameter estimates to
construct the confidence sets. We summarize and discuss all the results in section 7.
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134 O. AGUILAR, M. ALLMARAS, W. BANGERTH, AND L. TENORIO

Fig. 2.1 Left: PDF (2.1) of the noise εi plotted as a function of εi/δi. Right: Function (2.3) that
defines the prior density (2.3) for t0.

2. Summary of A13. We start by summarizing the Bayesian framework used in
A13. There, the noise variables, εi = di− zi(m), are assumed to be independent with
a shifted/scaled beta(2, 2) distribution: for each i, εi/δi = 2Ui − 1, where the Ui are
independent and identically distributed (i.i.d.) beta(2, 2) random variables. Thus, the
probability density function (PDF) of εi is (see the left panel in Figure 2.1)

(2.1) fi(εi) ∝
(
1− ε2i /δ

2
i

)
I
[−1,1]

(εi/δi),

where IA denotes the indicator function of the set A. For simplicity, normalization
constants are omitted here and in what follows. Thus, the PDF of εi is symmetric
about zero with support [−δi, δi]. Note that δi is not the standard deviation of εi
but a scaling factor of it: Std(εi) = 4δ2i Std(beta(2, 2)). This probability density was
chosen by the authors of A13 to indicate that they truly believed that the “real”
value should be in the interval [di − δi, di + δi], and within this interval with larger
probability in the vicinity of the center than near the boundaries. This PDF leads to
the following likelihood of m:

(2.2) L(m;d) ∝
31∏
i=1

[
1− (di − zi(m))2/δ2i

]
I
[−1,1]

( [ di − zi(m) ]/δi ).

To define the prior distribution for m, the parameters g, C, and t0 are assumed to
be independent with g and C uniformly distributed on the intervals [0, 20] (m/s2)
and [0, 0.5] (m−1), respectively. The authors of A13 chose these as reflecting their
best prior knowledge: both parameters certainly need to be positive, and an initial
experiment may have provided plausible upper bounds of 20 and 0.5. When t0 is also
modeled as random (the three-parameter case), the authors of A13 chose the prior
density for t0 as shown in the right panel of Figure 2.1 and defined as

(2.3) πto(t0) ∝
⎧⎨
⎩

1, 41Δt ≤ t0 ≤ 42Δt,
1− (t0 − 42Δt)/Δt, 42Δt ≤ t0 ≤ 43Δt,
0, t0 < 42Δt or t0 > 43Δt,

where Δt = 1/30 (s) and t is measured from the beginning of the recording, predating
the time when the box started to fall. Again, this reflected the best heuristic interpre-
tation of the data they obtained from their experiment: (i) they knew that the body
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STATISTICS OF PARAMETER ESTIMATES 135

did not move before frame 41; (ii) they could not say for certain whether the body
moved between frames 41 and 42; and (iii) it did move for certain in frame 43. In
other words, πto describes their beliefs about the time t0 when the body might have
started to move.

Given all this, the prior PDF of m is either

(2.4) π(m) ∝ I
[0,20]

(g) I
[0,0.5]

(C),

when t0 is fixed (the two-parameter case), or

(2.5) π(m) ∝ I
[0,20]

(g) I
[0,0.5]

(C)πto (t0)

in the three-parameter case. In what follows, we will consider these as either sep-
arate cases or as two different priors: in the first case, the (very informative) prior
distribution for the start time t0 simply assumes that it is known.

In A13, moments of the posterior density fm|d(m | d) ∝ L(m;d)π(m), in par-
ticular the mean and standard deviation, are evaluated by quadrature approximations
of the integrals. This was possible because of the low-dimensional nature of the pa-
rameter estimation problem.2 The posterior means of the parameters reported in A13
for priors (2.4) and (2.5) are, respectively,

(2.6) E( (g, C) | d) = (8.82, 0.12) and E( (g, C, t0) | d) = (8.64, 0.11, 1.40).

Using the fixed t0 changes the posterior mean of g by 2% and that of C by 9%, but the
difference in the results is more obvious in the posterior distributions. The posterior
densities for g using either of the two priors for m are shown in Figure 2.2. The figure
also shows the highest posterior density (HPD) 95% and 99% credible intervals for g
(in m/s2):

Prior 95% 99%

(2.4) : [8.11, 9.53] [7.97, 9.72](2.7a)

(2.5) : [7.43, 9.93] [7.33, 10.31].(2.7b)

Recall that credible intervals are not uniquely defined and, in particular, they can have
very different lengths even if they have the same level 1−α (as usual, we refer to the
level of credible or confidence sets as 1−α for some α ∈ (0, 1)). When possible, HPD
intervals are used as they provide intervals of minimum length for a fixed level 1− α
[3]. We note that without the prior on t0 (i.e., for the two-parameter case), neither the
99% nor the 95% credible interval contains gref and P(g ≥ gref | d) ≈ 0.006. Hence,
gref seems to be an unlikely value under this posterior distribution. In contrast, the
corresponding intervals both contain gref when using the prior on t0. This prior adds
variability to the posterior, which makes them right-skewed and yields intervals that
are wide enough to include gref .

Throughout the rest of the paper, Bayesian results will be compared primarily
through their posterior means, E( (g, C) | d) or E( (g, C, t0) | d), and credible intervals.
To compare these results to those obtained with non-Bayesianmethods, we will use the
frequentist coverage of credible intervals, which will be defined in section 3. Results
from the various methods we consider are summarized and discussed in section 7.

2In more complex problems, one must approximate integrals using, for example, Markov chain
Monte Carlo sampling, and in that case one would also need to check convergence of Markov chains
in the validation process.
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Fig. 2.2 Top: Posterior of g corresponding to likelihood (2.2) and prior (2.4). The shaded areas
define the 95% and 99% HPD credible intervals for g. Bottom: Corresponding results for
prior (2.5). The value gref (1.2) is shown for reference and marked by the vertical arrows.

Let us now conclude our summary of A13. There, the final result was the posterior
density for g under prior (2.5), and corresponding credible intervals. One of the points
of this paper is a validation analysis. Such checks are necessary to make sure the
statistical model used is appropriate and the estimates are meaningful.

3. A First Validation Check. Assume for the moment that the likelihood func-
tion (2.2) is appropriate. If we asked the Texas A&M team to repeat the experiment
100 times with exactly the same setup, and if for each experiment they constructed
95% credible intervals for g as above, would they find that approximately 95 of the
intervals contain the “true” gref? In statistics this is known as a check of the frequen-
tist coverage of the credible intervals constructed above. If the frequentist coverage
matches the target 95%, then we may conclude that despite the ad-hoc choice of pri-
ors, the Bayesian credible intervals can be interpreted as frequentist 95% confidence
intervals. This provides one possible interpretation of the posterior credible intervals,
and is reassuring to those who are concerned with subjectivity in the selection of the
priors. For further discussion and examples of frequentist performance of Bayesian
procedures, see [3, 10, 20].

We use simulations to obtain information about the frequentist coverage and mean
length of the credible intervals using the procedure described in Algorithm 1. The
basic idea is to generate synthetic data from a fixed m̂, which we assume to be the
“true” m, and to repeat the estimation process many times. This method is known
as parametric bootstrap [5, 8] because the noise is sampled from a parametric family
(a beta distribution in this case). If the likelihood is correct, the simulations can be
thought of as synthetic repetitions of the experiment with a fixed known m.

The results of the simulations for 95% credible intervals are shown in Table 3.1.
The table shows the usual 95% Agresti–Coull intervals [2] for the coverage and 95%
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STATISTICS OF PARAMETER ESTIMATES 137

Algorithm 1 Simulations to estimate the frequentist coverage and mean length of
1− α intervals Iα(g) for g.

fix: m = m̂, or m = (gref , Ĉ, t0), or m = (gref , Ĉ, t̂0) as the “true” parameters
for k = 1 : N do
generate: U1, . . . , U31 i.i.d. beta(2, 2)
define ε∗i = δi(2Ui − 1), d∗ = z(m) + ε∗

construct 1− α credible interval Iα(g) for g by evaluating fm|d(m|d∗)
end for
Frequentist coverage is estimated by the proportion of intervals that contain the
“true” g.

Table 3.1 Frequentist coverage and mean length of the 95% credible intervals based on likelihood
(2.2) and the two different priors on m, (2.4) and (2.5).

ĝ = E(g | d) ĝ = gref

π(m) Coverage Average length Coverage Average length

(2.4) 95.13± 0.01 0.83± 0.01 94.63± 0.01 0.84± 0.01

(2.5) 97.12± 0.01 2.03± 0.02 97.02± 0.01 2.20± 0.02

large-sample confidence intervals for the mean interval length [16]. We see that the
intervals based on the prior with t0 fixed have approximately 95% frequentist coverage
but those based on the prior (2.5) are much wider and more conservative. Judging
from this frequentist performance, we may question whether the prior for t0 adds
variability (thus making the intervals wide enough to cover gref) that may not be
justified. We will address this question in the next section by checking the likelihood
function.

4. Model Validation. The results of the previous section have revealed possible
problems with the credible intervals for three parameters as derived in A13. We will
show in this section that the problem stems from an overestimation of the measure-
ment uncertainties.

4.1. Checking the Noise Level. We start by validating the assumed distribution
of the noise whose PDF is given by (2.1). As mentioned before, this probability
density was chosen by physical intuition, but is the distribution of the measurement
noise assumed by the authors of A13 appropriate? The idea of this section is to “get
to the noise” ε by somehow subtracting z(m) from d. Since in this case estimating
m is not the goal, we may take advantage of a surrogate model for z(m) that leads
to residuals that are easier to analyze. We first note that a cubic fit to zi(m) (i.e.,
polynomial regression [6]) provides a good approximation. For example, the left panel
in Figure 4.1 shows values of log cosh

[√
gC t

]
/C (circles) at different times, and its

cubic fit (lines) for three different choices of g and C. In each case there is a reasonably
good agreement (the maximum difference is of order 10−3). Therefore, to study the
noise distribution, we model the data as dδ = Xβ + εδ, where dδ = Dd, εδ = Dε,
D = diag{1/δ1, . . . , 1/δ31}, and the 31 × 4 matrix X has columns (1/δi), (ti/δi),
(t2i /δi), and (t3i /δi). Note that εδ is unit-less. The elements of the vector β we want
to estimate are then the expansion coefficients of the cubic polynomial we want to fit
to the data. The entries of the vector of differences between data and cubic model,
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138 O. AGUILAR, M. ALLMARAS, W. BANGERTH, AND L. TENORIO

Fig. 4.1 Left: Function z(m) (1.3) as a function of time for three different choices of g and C. The
lines show the cubic approximations. Right: Cubic fit (line) to the data (circles).

εδ, are independent, zero-mean, with

(4.1) (εδ)i = 2Ui − 1, Ui i.i.d. beta(2, 2).

We use least-squares to estimate β: we find the vector β̂ that minimizes ‖dδ −Xβ‖2
over β ∈ R

4, in other words, a weighted least-squares fit to d, where each point
is weighted by 1/δi. The fit is shown in the right panel of Figure 4.1. The residual

vector of the fit, r = dδ−Xβ̂, has zero mean and covariance matrixΣr = σ2Q, where
σ2 = Var(2U) = 1/5 and Q is the projection matrix onto the orthogonal complement
of the column space of X (see, for example, [6]): Q = I −X(X�X)−1X�.

We transform the residuals to correct for their correlation and heterogeneous
variances. Since Q is a projection matrix with a four-dimensional nullspace, we can
write its SVD as

Q = U

(
I 0
0 0

)
U� =

(
U1 U2

)(I 0
0 0

)(
U�

1

U�
2

)
= U1U

�
1 ,

where U is an orthogonal matrix, I is the 27 × 27 identity matrix, and U1 and U2

have orthonormal columns. Furthermore, since r = Qεδ, it follows that

(4.2) r̃ ≡ U�
1 r = ε̃ ≡ U�

1 εδ.

In particular, r̃ and ε̃ have the same distribution, which helps us check the posited
distribution of ε. To compare distributions, we will use empirical cumulative distri-
bution functions (CDFs), which are often used for validation and do not require the
choice of bins as do histograms (see, for example, [16]). We simulate nsims=10,000
noise vectors εδ with distribution (4.1). For each realization of εδ, we compute the

empirical CDF, F̂ε̃(x), of ε̃ on a uniform grid of values, x, of the random variable.
The solid red line in the left panel in Figure 4.2 is the sample mean approximation
of E[ F̂ε̃(x) ] (i.e., mean(F̂ε̃(x))), and the dashed lines define 95% confidence intervals

for E[ F̂ε̃(x) ] given by mean(F̂ε̃(x)) ± 1.96 std(F̂ε̃(x))/
√
nsims, where mean and std

denote the usual sample mean and sample standard deviation (over the nsims simu-
lations). The empirical CDF of r̃ is shown in blue. The plot shows that the assumed
distribution of the noise is not consistent with that of the noise in the data: the true
measurement noise appears to be much more narrowly centered around zero than the
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Fig. 4.2 Left: Empirical CDF of r̃ (blue) and the mean and standard deviation of the empirical
CDF of ε̃ (red) when the noise is assumed to have PDF (2.1). Right: Empirical CDF of r̃
(blue) and empirical CDF of a standardized sequence of Gaussian random variables (red).

modeled uncertainty described by the noise PDF. In fact, even the standard deviations
are not consistent: our estimate of the standard deviation of di is 0.15δi as compared
to the assumed

√
1/5 δi ≈ 0.45δi. It turns out that we can use a Gaussian distribution

to model these data. To see this, note that if ε is multivariate Gaussian, then so are
εδ and U�

1 εδ, Moreover, the entries of U�
1 εδ are i.i.d. Gaussian because the columns

of U1 are orthonormal. This means that the entries of r̃ are also i.i.d. Gaussian
and therefore each of the corrected entries of r̃, Ti = ( r̃i − mean(r̃) )/std(r̃), has a
Student t26 distribution. Since these centered residuals are correlated, we conduct
simulations to estimate the pointwise mean and standard deviation of the empirical
CDF of 27 i.i.d. Gaussian variables that are corrected by subtracting their sample
mean and dividing by their sample standard deviation. The right panel in Figure 4.2
shows the results. The blue line corresponds to the empirical CDF of the variables Ti.
We see that this Gaussian distribution seems more reasonable than the scaled/shifted
beta(2, 2) distribution. Other distributions could be used but the Gaussian is conve-
nient, especially for the estimation methods we will use below.

The primary conclusion of this analysis is that while the authors of A13 might
have had good reasons to choose their noise model (2.1) with measured values for
δi, the noise in the data does not match this assumption; the true distribution has
a smaller standard deviation. In other words, their distributional choice was overly
cautious, a fact already acknowledged in A13. The consequence is that their credible
intervals are unnecessarily large and not backed up by the actual data.

The analysis above leads us to assume instead that the variables εi/δi are i.i.d.
N(0, σ2

cubic), where σ2
cubic is the standard least-squares estimate of σ2 (unit-less) ob-

tained from the cubic fit. Thus, the likelihood is now

(4.3) L(m;d) ∝
31∏
i=1

exp

[
− (di − zi(m))2

2 δ2i σ
2
cubic

]
,

and we can repeat the analysis to obtain

(4.4) E( (g, C) | d) = (8.77, 0.11) and E( (g, C, t0) | d) = (8.47, 0.09, 1.39).

The largest difference between these results and those of A13 (stated in (2.6)) is in the
posterior mean of g. This is more evident when we compare the posterior distributions.

D
ow

nl
oa

de
d 

10
/0

4/
18

 to
 1

28
.1

94
.8

6.
35

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

140 O. AGUILAR, M. ALLMARAS, W. BANGERTH, AND L. TENORIO

Fig. 4.3 Same as Figure 2.2 but using the Gaussian likelihood (4.3).

Table 4.1 Same as Table 3.1 but using the Gaussian likelihood (4.3).

ĝ = E(g | d) ĝ = gref

π(m) Coverage Average length Coverage Average length

(2.4) 95.03± 0.01 0.34± 0.01 95.13± 0.01 0.35± 0.01

(2.5) 94.13± 0.01 0.99± 0.01 94.23± 0.01 1.01± 0.01

Figure 4.3 shows that the new posteriors are indeed tighter and more symmetric
than before, and that gref is an even more unlikely value than under likelihood (2.2),
whether or not we use the prior on t0. The 95% and 99% HPD credible intervals for
g are now (compare these with (2.7))

Prior 95% 99%

(2.4) : [8.60, 8.94] [8.55, 8.99](4.5a)

(2.5) : [7.97, 8.97] [7.85, 9.11].(4.5b)

The frequentist coverage of these intervals is given in Table 4.1. The new coverage
for prior (2.4) is closer to 95% and it is achieved with intervals that are, on average,
less than half the size. The coverage for (2.5) is also closer to the target 95%, again
with intervals half the size. This shows that the new likelihood, in addition to being
more consistent with the noise in the data, leads to Bayesian results that have good
frequentist performance.

4.2. Reconsidering the Use of Individual Uncertainty Measures δi. It may be
intuitively appealing to control the uncertainty at every point with the uncertainty
factors δi, as is done in A13, but is it necessary? One can argue that these uncertainties
reflect the rotation of the falling box and errors caused by the resolution of the camera,
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Fig. 4.4 Same as in the right panel in Figure 4.2 but using the likelihood (4.6) without δi.

but we believe that the uncertainty in di may not change much in time and that it
may not be necessary to include different δi in the likelihood. In this case, we could
compute the cubic approximation β weighing all points equally. Figure 4.4 is the
equivalent of the right panel in Figure 4.2 but using this equally weighted cubic fit.
The results seem to indicate that the residuals are also consistent with the noise when
we use the likelihood with equal δi. In fact, this plot looks better than the one that
uses the δi. In the spirit of using the simplest model consistent with the data, we
shall assume henceforth that the errors εi are i.i.d. N(0, σ2

cubic), where σ2
cubic is now

obtained from the cubic fit without δi (this time σcubic has the same units as di).
Thus, the likelihood that will be used in the rest of the paper is:

(4.6) L(m;d) ∝
31∏
i=1

exp

[
− (di − zi(m))2

2 σ2
cubic

]
,

which leads to the posterior means

(4.7) E( (g, C) | d) = (8.77, 0.11) and E( (g, C, t0) | d) = (8.47, 0.09, 1.39).

These are almost the same as (4.4), which were obtained using δi. The corresponding
posterior distributions are shown in Figure 4.5. The new credible intervals for g are

Prior 95% 99%

(2.4) : [8.61, 8.94] [8.56, 8.99](4.8a)

(2.5) : [7.87, 9.07] [7.72, 9.24].(4.8b)

There are some small differences with (4.5), but to compare them, it is better to look
at their frequentist coverage and mean length. The estimated frequentist coverage of
the 95% credible intervals is shown in Table 4.2. The coverage and mean length of the
intervals under prior (2.4) are similar to those that used different δi. The coverage
under (2.5) is a little above the target (compared to slightly below with the δi) and
the intervals are slightly wider. However, overall, the use of δi seems to make little
difference.

4.3. Prior and Posterior Predictive Checks. If the likelihood function and prior
distribution provide an appropriate model for the data, we should be able to generate
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Fig. 4.5 Same as Figure 2.2 but using the likelihood (4.6) that does not use δi.

Table 4.2 Same as Table 3.1 but using the likelihood (4.6) that does not use δi.

ĝ = E(g | d) ĝ = gref

π(m) Coverage Average length Coverage Average length

(2.4) 95.23± 0.01 0.33± 0.01 95.03± 0.01 0.34± 0.01

(2.5) 95.72± 0.01 1.18± 0.01 95.53± 0.01 1.23± 0.01

data that are similar to the original d. For example, we can simulate data Dpri =
{d∗

1, . . . ,d
∗
m} by drawingm samples m∗

1, . . . ,m
∗
m from the prior distribution and then

generating d∗
i from the conditional distribution Fd|m(d | m∗

i ) using the forward model
(1.1). The distribution of the samples in Dpri is called a prior predictive distribution.
If instead we sample m∗

i from the posterior distribution of m conditional on d∗
i ,

then the distribution of the sample, Dpost, is called a posterior predictive distribution
[3, 13]. If the prior and likelihood are reasonable, we would expect the characteristics

of d to be similar to those of the samples in Dpri or Dpost. In particular, if β̂ are the

coefficients of the cubic fit to d and β̂
∗
i those of the cubic fit to d∗

i , then β should

be consistent with the distribution of the β̂
∗
i . To check this we can, for example,

compute the principal components (PCs) [14] of the data matrix [ β̂
∗
1 · · · β̂∗

m ] and

plot the first two coefficients of β̂ (white circle) and β̂
∗
i (blue) with respect to the

PCs (which account for more that 98% of the total variability). To sample from the
posterior predictive distributions, we have used the Metropolis–Hastings algorithm
[13]. Figure 4.6 shows the results. We would question the choice of priors if the white
circles were far from the bulk of the blue points. In this case, we see that the PC

coefficients of β̂ are consistent with realizations of the PC coefficients of β̂
∗
under

the assumed model with two or three parameters. The same happens for the prior
predictive distributions.
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Fig. 4.6 Left: Plot of β (white) and β∗
i (blue) in the first two PCs for prior (2.4). Right: The same

for prior (2.5).

To provide an example, we have used only one function of the data to check the
priors. Usually we try to use functions that reduce the dimensionality of d; it was
reduced to two using the first two PCs. Many other functions, T (d), can be used to
compare to characteristics of T (d∗

i ). Of course, we could find functions for which we
see some discrepancies, but the idea is to choose a function that is relevant to the
problem. More examples on the use of predictive distributions for validation can be
found in [3, 13], and also in [10, 21] in the context of inverse problems.

5. Maximum Likelihood and Nonlinear Least-Squares. It is important to know
how to use a variety of estimation methods that make different assumptions and incur
different computational costs. Since different methods used soundly should lead to
results that are consistent, comparing their results is one way to look for possible
problems. Up to now we have only considered the Bayesian inference of m. This
parameter vector was modeled as random with a prior probability distribution, and
the results of the inference were conditional on the data. But parameter estimates can
also be obtained without assuming that m is random. Inferential methods in which
the unknown parameter is fixed (not random) and whose performance is based on
their distribution induced by different realizations of the data are called frequentist.
An introduction to Bayesian and non-Bayesian methods for inverse problems can be
found in [10]. A more general reference is [17].

5.1. Maximum Likelihood Estimates. Let us first consider the method of maxi-
mum likelihood (ML) to obtain parameter estimates without using prior distributions.
It is based only on d and the corresponding likelihood function defined by (4.6). A
value, m̂

ML
, that maximizes the likelihood, L(m;d), is called an ML estimate of m.

To find m̂
ML

, we evaluate L(m;d) on a grid of parameter values.3 The ML estimates
for the two cases m = (g, C) and m = (g, C, t0) are, respectively,

(5.1) ( ĝ, Ĉ )ML = (8.77, 0.11) and ( ĝ, Ĉ, t̂0 )ML = (8.41, 0.09, 1.39).

We observe that these ML estimates are almost identical to the corresponding pos-
terior means under priors (2.4) and (2.5). This is not surprising given the flat priors
for g and C and the “almost” flat prior for t0.

3For consistency, we use the same grid of parameter values used to compute the integrals in the
Bayesian calculations conducted by A13.
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In addition to parameter estimates, ML can be used to obtain approximate con-
fidence intervals, which are derived using the asymptotic theory of ML estimators.
Under regularity conditions, ML estimators are asymptotically unbiased and Gaus-
sian with covariance matrix equal to the inverse Fisher information matrix [4, 9]. The
Fisher information matrix of a k × 1 parameter vector m is the k × k matrix with
entries

(5.2) I(m)ij = E

[
∂2(− lnL(m;d))

∂mi∂mj

]
.

An approximate 1− α confidence interval for mj is given by [4]

(5.3) (m̂
ML

)j ± zα/2

√
[I(m̂

ML
)−1]jj ,

where zα/2 is the usual 1 − α/2 quantile of the N(0, 1) distribution. When the ex-
pectation in (5.2) cannot be easily computed, it may be approximated using sample
averages. This leads to the observed Fisher information matrix J(m),

(5.4) J(m)ij =
K∑
�=1

∂2(− lnL(m; d�))

∂mi∂mj
,

and approximate 1−α confidence intervals (m̂ML)j ± zα/2
√

[J(m̂ML)
−1]jj [7]. Since

we are using a Gaussian likelihood, it is easy enough to use I(m̂
ML

) instead of J(m̂
ML

).
The approximate 95% and 99% confidence intervals (5.3) for g for the two- and three-
parameter cases are

m 95% 99%

(g, C) : [8.60, 8.94] [8.55, 8.99](5.5a)

(g, C, t0) : [7.78, 9.03] [7.59, 9.23].(5.5b)

The intervals for the two-parameter case are almost identical to the corresponding
credible intervals (4.8). The intervals for the three-parameter case seem to be slightly
wider than the corresponding credible intervals, but since the two types of intervals
have different interpretations, we compare them through their frequentist coverage
and mean lengths. Also, since the ML intervals are based on asymptotic approxima-
tions, we should assess their actual coverage with n = 31. To this end, we conduct
simulations using the following slight modification of Algorithm 1: In the construction
step, we compute ML intervals using (5.3) instead of credible intervals. The results
are shown in Table 5.1. We see that the coverage and mean length of the ML intervals
and credible intervals are very similar, although the latter seem to be slightly shorter.

Table 5.1 Interval length and coverage results for the approximate 95% ML confidence intervals
using the Gaussian likelihood (4.6) with two or three parameters.

ĝ = ĝML ĝ = gref

m Coverage Average length Coverage Average length

(g,C) 94.83 ± 0.01 0.34± 0.01 94.33 ± 0.01 0.35± 0.01

(g, C, t0) 94.93 ± 0.02 1.26± 0.01 95.15 ± 0.01 1.29± 0.01
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5.2. Nonlinear Least-Squares. One advantage of least-squares (LS), linear or
nonlinear, is that no distributional assumptions are required to obtain the estimates.
We need only find a vector of parameters, m̂

NR
, that minimizes ‖d−z(m)‖2. Knowl-

edge of the noise distribution is needed, however, to construct confidence intervals.
In the nonlinear Gaussian case, confidence sets are defined by applying the Gaussian
theory to a linearization around the estimate. In the case when ε ∼ N(0, σ2I), the
distribution of m̂

NR
is approximatelyN(m, σ2[F (m)�F (m) ]−1), where F (m) is the

Jacobian matrix of the forward model with entries F (m)ij = ∂zi(m)/∂mj; see [18].
An approximate 1− α confidence interval for mj is given by

(5.6) (m̂NR)j ± t31−p(α/2) σ̂
√

[(F (m̂NR)
�F (m̂NR) )

−1]jj ,

where the estimate of the variance, σ2, is σ̂2 = ‖d−z(m̂NR)‖2/(31− p) with p = 2 or
p = 3, depending on whether the fit is done to two or three parameters. We again use
Algorithm 1 to assess the actual coverage of these approximate confidence intervals
(using (5.6) in the construction step).

In the Gaussian likelihood case, ML and nonlinear LS estimates should be exactly
the same. In our case there are small differences because the ML estimates were
obtained using a grid (so as to be able to compare to the posterior results in A13),
while the nonlinear LS fit was done using Levenberg–Marquadt search method [18].
The square root in (5.6) should also be the same as that in (5.3), but for the nonlinear
LS estimates used here, σ2 is estimated each time using the residuals of the nonlinear
fit, not the residuals of the cubic fit to the surrogate model. Therefore, we expect
small differences in the coverage and length of the confidence intervals. The reason for
using these different procedures is to check consistency of the results under different
but reasonable estimation methods.

The nonlinear LS estimates for the two- and three-parameter cases are

(5.7) ( ĝ, Ĉ ) = (8.77, 0.11) and ( ĝ, Ĉ, t̂0 ) = (8.45, 0.09, 1.39).

The 95% and 99% confidence intervals for g are given by

m 95% 99%

(g, C) : [8.60, 8.94] [8.54, 9.01](5.8a)

(g, C, t0) : [7.80, 9.10] [7.57, 9.33].(5.8b)

Table 5.2 shows their estimate coverages and mean lengths. Again we get results con-
sistent with ML and with the credible intervals. However, the nonlinear LS intervals
tend to be wider than those from the other two methods. This is not surprising, as σ
is fixed in the latter while it is estimated in each nonlinear fit.

If we had no idea about the distribution of the noise, we could still use nonlinear
LS and we could find approximate confidence intervals using nonparametric bootstrap

Table 5.2 Interval length and coverage results for the 95% nonlinear LS confidence intervals of g
using likelihood (4.6) with two or three parameters.

ĝ = ĝNR ĝ = gref

m Coverage Average length Coverage Average length

(g,C) 94.33 ± 0.01 0.35± 0.01 94.33 ± 0.01 0.36± 0.01

(g, C, t0) 95.23 ± 0.01 1.31± 0.01 95.13 ± 0.01 1.34± 0.01
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methods. For example, in Algorithm 1, we can draw noise samples by sampling with
replacements from a corrected version of the residuals of the surrogate model [5, 8, 10].

We can summarize this section by observing that both ML and nonlinear LS esti-
mates and confidence intervals are very similar to those obtained in previous sections.
We take this as additional validation that our results are consistent.

6. Confidence Intervals without Inversion. The confidence intervals used in
section 5 are of the form

estimate ± kα× (approximate standard error of estimate),

where the constant kα is chosen to approximately achieve the desired confidence level
1 − α. This requires solving the inverse problem. In this section we describe a
method to construct approximate confidence intervals directly, without first finding
an estimate, m̂, and its standard error. The basic tool is a duality between hypothesis
tests and confidence sets, which allows us to find a confidence set by inverting a test
(e.g., [4, 15]). Some applications of this method to inverse problems can be found in
[19].

For the likelihood (4.6), and under the null hypothesis that m is the true vector
of parameters that generated d, we have a χ2 random variable with 31 degrees of
freedom: ‖d− z(m)‖2/σ2 ∼ χ2

31. Therefore, the set

Aα(m) = {d : ‖d− z(m)‖2 ≤ σ2 χ2
31(α)}

defines an acceptance region of significance level α. A 1−α confidence region, Cα(d),
for m is defined by inverting the test: Cα(d) = {m : d ∈ Aα(m) } . We use σcubic

from section 4.2 to approximate σ. Figure 6.1 shows the boundary of the confidence
region for the two-parameter case and α = 0.05. It is approximately an ellipsoid
that results from the intersection of the plane h(m) = σ2

cubicχ
2
31(α) with the surface

h(m) = ‖d − z(m)‖2. By projecting this region onto each of the axes, we obtain
conservative 1−α confidence intervals for each parameter. The right panel in Figure
6.1 shows the 95% projected intervals for g and C. The 95% and 99% projected

Fig. 6.1 95% confidence region that results from the intersection of the plane h1(m) =
σ2
cubicχ

2
31(0.05) with the surface h2(m) = ‖d− z(m)‖2 for the two-parameter case.
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Table 6.1 Interval length and coverage results for the projected 95% intervals of g for the two- and
three-parameter cases and likelihood (4.6).

ĝ = ĝML ĝ = gref

m Coverage Average length Coverage Average length

(g,C) 97.02 ± 0.01 0.66± 0.01 96.92 ± 0.01 0.68± 0.01

(g, C, t0) 97.72 ± 0.01 2.60± 0.04 97.52 ± 0.01 2.60± 0.04

confidence intervals for g are

m 95% 99%

(g, C) : [8.43, 9.14] [8.37, 9.21](6.1a)

(g, C, t0) : [7.24, 9.98] [7.04, 10.31].(6.1b)

Table 6.1 shows the corresponding coverage results again obtained using again a mod-
ification of Algorithm 1. As expected, these intervals are more conservative and wider
than all the others. However, an advantage of this method is that we only need to use
the forward model and find a rejection region defined by the noise distribution, and so
there is no need to solve the inverse problem. Note also that one could use simulations
to tune the value of α so that the confidence level of the projected intervals is closer
to 95%.

7. Discussion. The authors of A13 used real experimental data to obtain esti-
mates of the value of g at the location where their experiment took place, College
Station, TX. It was reassuring that the credible intervals under the three-parameter
prior in A13 actually included gref . However, our validation analysis revealed that
the spread of the posterior distribution, which allowed the inclusion of gref in the
intervals, was actually caused by an artificially wide likelihood produced by an over-
cautious estimate of the measurement noise level. This is a reminder of the importance
of checking the choice of likelihood function in addition to that of prior distributions.
Once a better likelihood was selected, the credible intervals no longer covered gref .
The prior distributions were chosen as is often done in practice; inequality constraints
were enforced using flat priors. Given such ad-hoc choices, it is important to make
sure the results are driven by the data and not by artificial information introduced by
the priors. Prior and posterior predictive checks with the new likelihood did not reveal
significant problems. In addition, the frequentist coverage of the credible intervals was
near the target level. Thus, the priors do not seem to dominate the inference.

To validate the results, we also constructed confidence intervals using ML, non-
linear LS, and test inversion. Figure 7.1 provides a summary of all the 95% intervals
for g found in the previous sections. Once the new likelihood function is used, the
Bayesian and non-Bayesian approaches give consistent results as judged by their fre-
quentist behavior and even by the similarity of the actual intervals; excluding the
intervals (6.1), which are very conservative, the other intervals are quite similar. Al-
though not shown here, we also obtained similar results using a uniform or a Gaussian
distribution with both different and equal δi, in all cases modeled as symmetric about
zero with a standard deviation that matches that of the actual noise in the data.
Such agreement is expected in simple problems with only a few parameters to be
estimated. It is in line with the Bernstein–von Mises theorem, which roughly states
that if the amount of data (here n = 31) is large compared to the number of unknown
parameters (here p = 3), then Bayesians and frequentists agree (see, for example,
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Fig. 7.1 95% intervals for g for the case of two- (left group) and three-parameter (right group)
vector m: (a) credible intervals in A13; (b) and (c) are credible intervals (4.5) and (4.8),
respectively; (d) ML intervals (5.5); (e) nonlinear LS intervals (5.8); (f) projected intervals
(6.1).

[9, 11]). This is not necessarily true for more complex large-scale inverse problems
[12, 10].

In addition to using frequentist methods to explore the validity of Bayesian pro-
cedures, we have seen how Bayesian methods can be used to derive procedures that
have good frequentist properties. That is, just as ML provides a recipe to find estima-
tors, we can often use Bayes theorem to do the same. Thus, Bayesian and frequentist
methods of inference can be used in complementary ways.

It may be disappointing that our analysis here showed that the credible intervals
are significantly smaller than those shown in A13 (primarily due to the fact that
the measurement uncertainties are much smaller than assumed there) and do not
include gref . However, this can be viewed in different ways. First, given that we
know gref , this could indicate the presence of a systematic bias in the experiment
that would not have been detectable using the original analysis without validation.
Second, in practice parameters are of course unknown and the validation process
shown here points out the importance of conducting a careful systematic error analysis
to determine potential bias (and possible corrections). If the experiment described in
A13 had been the first ever attempt to estimate g at College Station, the results would
have underestimated its value, but we would have been unaware of this until a new,
better experiment came along with a more accurate estimate. This is not unusual in
science. Uncertainty estimates provide some guidance, but replication of the results
with independent, better experiments is what scientists expect in order to accept a
new result.
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