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Using Monte Carlo simulations, we study in detail the overlap distribution for individual samples
for several spin-glass models including the infinite-range Sherrington-Kirkpatrick model, short-range
Edwards-Anderson models in three and four space dimensions, and one-dimensional long-range mod-
els with diluted power-law interactions. We study three long-range models with different powers
as follows: The first is approximately equivalent to a short-range model in three dimensions, the
second to a short-range model in four dimensions, and the third to a short-range model in the
mean-field regime. We study an observable proposed earlier by some of us which aims to distinguish
the “replica symmetry breaking” picture of the spin-glass phase from the “droplet picture,” find-
ing that larger system sizes would be needed to unambiguously determine which of these pictures
describes the low-temperature state of spin glasses best, except for the Sherrington-Kirkpatrick
model, which is unambiguously described by replica symmetry breaking. Finally, we also study the
median integrated overlap probability distribution and a typical overlap distribution, finding that
these observables are not particularly helpful in distinguishing the replica symmetry breaking and
the droplet pictures.

I. INTRODUCTION

Despite much debate, there is still no consensus as
to the nature of the spin-glass state. According to the
“replica symmetry breaking” (RSB) picture of Parisi,1–3

there are many “pure states,” a nontrivial order param-
eter distribution, and a line of transitions in a mag-
netic field, the de Almeida-Thouless (AT)4 line. By con-
trast, according to the droplet theory,5–9 there is only a
symmetry-related pair of pure states in zero field (one
state in a nonzero field), the order parameter distribu-
tion is trivial in the thermodynamic limit, and there is
no AT line. The nature of the spin-glass state has been
investigated in a series of papers by Newman and Stein
(see, for example, Ref. 10 and references therein), and
most recently in a paper by Read.11 A discussion from
an RSB point of view can be found in Ref. 12.

The averaged order parameter distribution P (q), de-
fined in Eqs. (11) and (12) below, is predicted to be
nonzero in the vicinity of q = 0 as the size of the sys-
tem N ≡ Ld tends to infinity according to RSB theory,3

whereas it is expected to vanish5 as L−θ in the droplet
picture where θ is a positive “stiffness” exponent. Re-
sults from simulations12–15 seem close to the predictions
of RSB, but it has been argued16,17 that the sizes which
can be simulated are too small to see the asymptotic be-
havior.

Consequently, there has recently been interest17–19 in
studying other quantities related to P (q) but where more
attention is paid to the overlap distribution of individual
samples, PJ (q), rather than just calculating the sample
average. Accurately determining PJ (q) for each sample

is more demanding numerically than just computing the
average, but computer power has advanced to the point
where this is now feasible.

In this paper we study in detail these new quantities for
a range of models. In addition to short-range Edwards-
Anderson (EA) Ising spin-glass models in three (3D)
and four (4D) space dimensions, and the infinite-range
Sherrington-Kirkpatrick20 (SK) model, we also study di-
luted long-range (LR) Ising spin-glass models in one
space dimension (1D) in which the interaction falls off
with a power of the distance between two spins. Varying
the power is argued to be analogous to changing the space
dimension d of a short-range model.15,21–25 An important
advantage of the LR models is that one can study them
in effective space dimensions d ≥ 6 that are not easily ac-
cessible for short-range models via computer simulations.
In this regime the number of spins for short-range (SR)
models N = Ld increases so fast with the linear system
size L that one cannot simulate the range of sizes that
is necessary for finite-size scaling (FSS). It is important
to study d ≥ 6 because it is conjectured that d = 6 is
the upper critical dimension above which mean-field be-
havior is seen. Finally, verifying the consistency of our
results for both SR and LR models gives us additional
confidence in our numerical results.

The plan of this paper is as follows. Section II de-
scribes the several models that we study, while Sec. III
discusses the Monte Carlo technique. In Sec. IV we ex-
plain the quantities we compute to try to understand
better the nature of the spin-glass state, and the results
are given in Sec. V. We summarize our results and give
our conclusions in Sec. VI.
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II. MODELS

We study several classes of Ising spin-glass models.
These are long-range one-dimensional models, three- and
four-dimensional short-range models known as Edwards-
Anderson models, and the infinite-range spin glass known
as the Sherrington-Kirkpatrick model. In all cases the
Hamiltonian can be written in the form

H = −
∑

i, j

JijSiSj , (1)

where the Si (i = 1, 2, . . . , N) represent Ising spins that
take values ±1, and the Jij are statistically independent,
quenched random variables. The summation is defined
over all pairs of interacting spins. All of the models stud-
ied here have finite-temperature spin-glass transitions.
The models differ according to which spins interact and
the strength of the couplings.

A. Edwards-Anderson models on hypercubic

lattices

The three- and four-dimensional EA models that we
study are defined on (hyper)cubic lattices with periodic
boundary conditions. The nearest-neighbor interactions
are chosen from a Gaussian distribution with zero mean
and unit variance,

[
Jij

]
av

= 0
[
J2
ij

]

av
= 1 , (2)

where [. . .]av indicates a quenched average over the cou-
plings. From numerical studies it is known that the
transition temperatures are Tc = 0.951(9)26 in 3D and
Tc = 1.80(1)27 in 4D.

B. Sherrington-Kirkpatrick model

For the SK20 model each spin interacts with every
other spin. A coupling is chosen from a Gaussian dis-
tribution with zero mean and variance,

[
J2
ij

]

av
= 1/N. (3)

The variance of the coupling is inversely proportional to
the number of spins N so that there is a well-defined
thermodynamic limit. The transition temperature for
this model is Tc = 1.20

C. One-dimensional diluted long-range model

For the diluted LR models the mean coupling is zero
but the variance depends on the distance between the
spins according to

[
J2
ij

]

av
∝ r−2σ

ij , (4)

where σ is the range parameter, and rij is the chord
distance between sites i and j when the sites are arranged
on a ring,15 i.e.,

rij =
N

π
sin

(
π|i− j|

N

)
. (5)

We choose a distribution P (Jij) that satisfies Eq. (4)
at a large distance while allowing for efficient computer
simulation. In this diluted model,24,28 most of the inter-
actions between two spins are absent (i.e., most of the
Jij are zero) and it is the probability of there being a
bond between two spins (rather than its strength) that
falls off with their separation (asymptotically as 1/r2σij ).
More precisely,

P (Jij) = (1− pij)δ(Jij) + pij
1√
2π

e−J2

ij/2, (6)

where pij ∝ 1/r2σij at a large distance. It is convenient to
fix the mean number of neighbors z. The pairs of sites
with nonzero bonds are then generated as follows. Pick
a site i at random. Then pick a site j with probability
p̃ij = A/r2σij , where A is determined by normalization.28

If there is already a bond between i and j, repeat until a
pair i, j is selected which does not already have a bond.29

At that point set Jij equal to a Gaussian random vari-
able with mean zero and variance unity. This process is
repeated Nz/2 times so the number of sites connected
to a given site has a Poisson distribution with mean z.
Because each site has, on average, z neighbors, and the
variance of each interaction is unity, we have

∑

j

[
J2
ij

]

av
= z. (7)

This prescription has the advantage that Monte Carlo up-
dates require only a time proportional to Nz rather than
N2 that would be required if all bonds were present.24,28

We consider three values of the range parameter: σ =
0.6, which is in the mean-field region,23 σ = 0.784, which
represents, at least approximately, a short-range system
in four dimensions,23,25,30,31 and σ = 0.896 which approx-
imately represents a three-dimensional system.23,25,30,31

The values of Tc are approximately equal to31 1.35 and
0.795 for σ = 0.784 and 0.896, respectively. For σ = 0.6
we find Tc ≈ 1.953.

III. METHODS

We have carried out parallel tempering/replica-
exchange Monte Carlo simulations32–34 of the models
described in Sec. II. In parallel tempering, NT replicas
of the system with the same couplings are each simu-
lated at a different temperature in the range Tmin – Tmax.
In addition to standard Metropolis sweeps at each tem-
perature, there are parallel tempering moves that allow
replicas to be exchanged between neighboring tempera-
tures. A single sweep consists of a Metropolis sweep at
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each temperature, followed by a set of parallel tempering
moves between each pair of neighboring temperatures.
The power of parallel tempering is that the temperature
swap moves permit replicas to diffuse from low temper-
atures, where equilibration is very difficult, to high tem-
peratures, where it is easy, and back to low tempera-
ture. These round trips greatly accelerate equilibration
at the lowest temperatures. The simulation parameters
are shown in Tables I–IV. The parameter b determines
the number of sweeps: 2b for equilibration followed by 2b

for data collection. The parameter Nsa is the number of
disorder samples simulated.
For each model we have chosen the lowest tempera-

ture to be less than or equal to 0.4Tc, the approximate
temperature for which we report most of our results.

TABLE I: Simulation parameters for the 1D models. For
each value of σ and size N , Nsa samples were equilibrated
for 2b sweeps and then measured for an addition 2b sweeps,
using replica-exchange Monte Carlo with NT temperatures
distributed between Tmin and Tmax.

σ N b Tmin Tmax NT Nsa

0.6 64 24 0.82 3 50 4992

0.6 128 24 0.82 3 50 4800

0.6 256 24 0.82 3 50 4800

0.6 512 24 0.82 3 50 4684

0.6 1024 25 0.82 3 50 4800

0.784 64 24 0.55 2 50 4377

0.784 128 24 0.55 2 50 5060

0.784 256 24 0.55 2 50 5470

0.784 512 24 0.55 2 50 5207

0.784 1024 25 0.55 2 50 5988

0.896 64 24 0.31 1.2 50 2600

0.896 128 24 0.31 1.2 50 4468

0.896 256 24 0.31 1.2 50 4749

0.896 512 24 0.31 1.2 50 4749

0.896 1024 25 0.31 1.1788 25 4749

To test our simulations for equilibration, we use an
equilibrium relationship between sample-averaged quan-
tities, valid for systems with Gaussian interactions, which
has been discussed before.14,15 Except for the SK model,
the relation is:15

U = − z

2T
(1− ql), (8)

where z is the (mean) coordination number, T is the
temperature,

U = − 1

N

∑

〈i, j〉

[
Jij〈SiSj〉

]
av

(9)

is the energy per spin and ql is the link overlap,

ql =
2

Nz

∑

〈i, j〉

[
ǫij〈SiSj〉2

]

av
, (10)

TABLE II: Simulation parameters for the 3D EA spin glass.
For each number of spins N = L3 we equilibrate and measure
for 2b Monte Carlo sweeps. Tmin [Tmax] is the lowest [highest]
temperature used and NT is the number of temperatures. Nsa

is the number of disorder samples. For T ≥ 0.42 all system
sizes are in thermal equilibrium.

N L b Tmin Tmax NT Nsa

64 4 18 0.2000 2.0000 16 4891

216 6 24 0.2000 2.0000 16 4961

512 8 27 0.2000 2.0000 16 5130

1000 10 27 0.2000 2.0000 16 5027

1728 12 25 0.4200 1.8000 26 3257

TABLE III: Simulation parameters for the 4D EA spin glass.
For details, see the caption of Table II. Here N = L4.

N L b Tmin Tmax NT Nsa

256 4 23 0.7200 2.3800 52 3252

625 5 23 0.9101 2.3800 42 4086

1296 6 23 0.7200 2.3800 52 3282

2401 7 23 0.9101 2.3800 42 4274

4096 8 23 0.7200 2.3800 52 3074

6561 9 24 0.7200 2.3800 52 3010

TABLE IV: Simulation parameters for the SK spin glass. For
details, see the caption of Table II.

N b Tmin Tmax NT Nsa

64 22 0.2000 1.5000 48 5068

128 22 0.2000 1.5000 48 5302

256 22 0.2000 1.5000 48 5085

512 18 0.2000 1.5000 48 4989

1024 18 0.2000 1.5000 48 3054

2048 16 0.4231 1.5000 34 3020

where ǫij = 1 if there is a bond between i and j and zero
otherwise. For the SK model one obtains formally the
corresponding relation by putting z = 1 in Eqs. (8) and
(10) and setting all the ǫij equal to 1. For the EA models
z = 2d and ǫij is defined by the associated hypercubic
lattices with periodic boundary conditions.
While Eq. (8) is a useful criterion for the equilibra-

tion of sample-averaged quantities such as the energy and
overlap, we must be more careful when studying quan-
tities that may be sensitive to the equilibration of indi-
vidual samples, such as those considered in Sec. IV. To
study such quantities we run our simulations for many
times the number of sweeps needed to satisfy Eq. (8). In
fact, we require that at least three logarithmically spaced
bins agree within error bars.
Figure 1 shows an example of the equilibration test for

the 1D LR model with σ = 0.896 for the largest size at the
lowest temperature, and also for the 3D EA model with
L = 8, again at the lowest temperature. The vertical
axis is the difference between the two sides of Eq. (8)
while the horizontal axis is the number of Monte Carlo
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FIG. 1: (Color online) Absolute difference between ql and the
quantity q′l(U) ≡ (2T/z)U +1, obtained from the equilibrium
relationship of Eq. (8), for the LR model with N = 1024, σ =
0.896 (top panel) and the 3D EA model with L = 8 (lower
panel) as a function of Monte Carlo sweeps (t) on a log-linear
scale. At large times the difference is zero, but the simulation
continues well beyond this point to ensure that good statistics
are obtained for all samples. Error bars are smaller than the
symbols. Both panels have the same horizontal scale.

sweeps on a logarithmic scale. This difference vanishes
within the error bars at around 105 sweeps in both cases
but the simulation continues for much longer than this to
ensure that good statistics are obtained for all samples.

As an additional check on equilibration for the 1D LR
models, Fig. 2 shows several quantities of interest, de-
fined in Sec. IV, as a function of the number of sweeps
on a log scale, for the lowest temperature studied and for
each value of σ. The data appear to have saturated.

The 3D EA data set has also been tested for equili-
bration using the integrated autocorrelation time, as dis-
cussed in Ref. 35.

IV. MEASURED QUANTITIES

For a single sample J ≡ {Jij}, the spin overlap distri-
bution PJ (q) is given by

PJ (q) =

〈
δ


 q − 1

N

N∑

i=1

S
(1)
i S

(2)
i



〉

, (11)

where “(1)” and “(2)” refer to two independent copies of
the system with the same interactions, and 〈· · · 〉 denotes
a thermal (i.e., Monte Carlo) average for the single sam-
ple. In most previous work, PJ (q) is simply averaged
over disorder samples to obtain P (q) defined by

P (q) =
[
PJ (q)

]
av

. (12)

In order to gain additional information that might dis-
tinguish the RSB and droplet pictures, several investiga-
tors have recently introduced other observables related to
the statistics of PJ (q). Yucesoy et al.18 proposed a mea-
sure that is sensitive to peaks in the overlap distributions
of individual samples. A sample is counted as “peaked” if
PJ (q) exceeds a threshold value κ in the domain |q| < q0.
The quantity ∆(q0, κ) is then defined as the fraction of
peaked samples. More precisely, for each sample let

∆J (q0, κ) =

{
1, if Pmax

J (q0) > κ,

0, otherwise,
(13)

where Pmax
J (q0) is the maximum value of the distribution

in the domain specified by q0,

Pmax
J (q0) = max{PJ (q) : |q| < q0}. (14)

We then define ∆(q0, κ) to be the sample average,

∆(q0, κ) =
[
∆J (q0, κ)

]
av

. (15)

The quantity ∆(q0, κ) is a nondecreasing function of q0
and a nonincreasing function of κ. This behavior follows
simply from the definition of ∆(q0, κ). A more impor-
tant property of ∆(q0, κ) is that it must go either to
zero or one as N → ∞.36 All the scenarios for the low-
temperature behavior of spin-glass models predict that
PJ (q) consists of δ functions as N → ∞. The differ-
ence between scenarios lies in the number and position
of these δ functions. The RSB picture predicts that there
is a countable infinity of δ functions that densely fill the
line between −qEA and +qEA. Thus, for any q0 and any
κ, ∆(q0, κ) → 1 for models described by RSB. On the
other hand, for models described by the droplet scenario
or other single pair of states scenarios, ∆(q0, κ) → 0 for
any q0 < qEA and any κ. Thus, the quantity ∆(q0, κ)
will sharply distinguish the RSB and droplet scenarios
if one can study large enough sizes. We shall study the
size dependence of ∆ numerically for all our models in
Sec. VA.
As mentioned above, most previous work evaluated

the average probability distribution P (q), but recently
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FIG. 2: (Color online) Plots of several observables obtained from the overlap distribution, defined in Sec. IV, vs the number of
Monte Carlo sweeps for the largest size studied, N = 1024, for the long-range model at the lowest temperature simulated for
each value of σ. (See Table I.)

Middleton,17 and Monthus and Garel,19 have proposed
measures yielding a typical value of the sample distri-
bution PJ (q) in the hopes that these measures would
provide a clearer differentiation between the RSB and
droplet pictures than the average P (q).
Middleton17 studied Imed(q), the median of the cumu-

lative overlap distribution of a single sample IJ (q), where
IJ (q) is defined by

IJ (q) =

∫ q

−q

PJ (q′) dq′. (16)

We also denote the average cumulative distribution over
samples by Iav(q), which is given by

Iav(q) =

∫ q

−q

P (q′) dq′ . (17)

The median is insensitive to the effect of samples with
unusually large values of IJ (q).
For the SK model P (q) tends to a constant as q → 0,

and so Iav(q) ∝ q for small q. We can obtain a rough idea
of how Imed(q) varies with q for small q in the SK model
from the results of Mézard et al.37 First of all, to obtain a
notation which is more compact and is extensively used in
other work, we write x(q) ≡ Iav(q). Mézard et al.37 argue
that, at small q where x(q) is also small, the probability
of a certain integrated value IJ is given by

p(IJ ) ∝ x Ix−1
J , (18)

where we recall that x is the average value of IJ . From
Eq. (18) we estimate the median in terms of the average
as

Imed(q) ∝ e− ln 2/x(q) = e− ln 2/[2qP (0)] (19)

for q → 0, where we used that P (0) is nonzero so x(q) ≡
Iav(q) ≃ 2P (0) q in this limit [see Eq. (17)]. Hence the

median tends to zero exponentially fast as q → 0 whereas
the average only goes to zero linearly.
In the droplet picture, P (0) is expected to vanish with

L as5 L−θ, so Iav(q) ∝ L−θ q for small q. The median
value Imed(q) will presumably also vanish for small q as
L → ∞, but we are not aware of any precise predictions
for this. We shall study the median cumulative distribu-
tion numerically in Sec. VB.
Another measure related to the overlap distribution of

individual samples has been proposed by Monthus and
Garel.19 They suggest calculating a “typical” overlap dis-
tribution defined by the exponential of the average of the
log as

P typ(q) = exp
[
lnPJ (q)

]
av

. (20)

We shall study this quantity numerically in Sec. VC.

V. RESULTS

A. Fraction of peaked samples, ∆(q0, κ)

Plots of ∆(q0, κ) for the 1D long-range models for var-
ious values of q0 and κ at T ≈ 0.4Tc are given in Fig. 3,
while the corresponding plots for the 3D and 4D models
are shown in Fig. 4. A comparison with the SK model is
made in both cases. The error bars for all plots in this
section are one standard deviation statistical errors due
to the finite number of samples. There are also errors in
the data for each sample due to the finite length of the
data collection. For the EA and SK models, we estimated
these errors by measuring ∆+(q0, κ) and ∆−(q0, κ), de-
fined as in Eqs. (13) – (15) but from the q > 0 and q < 0
components of PJ (q), respectively. These are expected to
be reasonably independent and their differences provide
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FIG. 3: (Color online) ∆(q0, κ) as a function of system size N for the long-range models and the SK model for all available
values of σ and various values of the window q0 and threshold κ. In all cases the temperature is 0.4Tc. All panels have the
same horizontal scale, and all panels in a row have the same vertical scale.

an estimate of the error due to finite run lengths. For all
sizes, the average absolute difference between these quan-
tities, [|∆+(q0, κ)−∆(q0, κ)|+ |∆−(q0, κ)−∆(q0, κ)|]/2,
is less than the statistical error. While a similar analysis
was not done for the 1D LR models, measurements of ∆
versus the number of sweeps shown in Fig. 2 suggest that
the data have saturated within statistical error.
One can draw several qualitative conclusions from

these plots. It is apparent that ∆(q0, κ) is an increasing
function of N for small N . As the system size increases,
we expect ∆(q0, κ) to increase because all the features of
PJ (q) sharpen. For the SK model, which is indisputably
described by the RSB picture, the number of features and
their height should both increase and ∆(q0, κ) should be
a strongly increasing function of N . Indeed, this be-
havior is seen except for κ = 0.5, which is a sufficiently
small value that ∆(q0, κ) is effectively measuring whether
or not there is a feature in the relevant range, and this
quantity increases relatively slowly for the SK model.
However, as σ increases for the 1D models, the curves

become increasingly flat and the difference between σ =
0.896 and the SK model is striking; the former is nearly

flat while the latter increases sharply (see Fig. 3). The
same qualitative distinction holds between the 3D EA
model and the SK model (see Fig. 4). The similarity
between the behavior of the 1D model for σ = 0.896
and the 3D EA model is expected since the two models
are believed to have the same qualitative behavior. The
distinction between the SK model and the 1D model with
σ = 0.784 and the 4D EA model is less striking but
qualitatively the same.
It is interesting to compare results for the SK model

with the 1D model with σ = 0.6, which is in the mean-
field regime. For κ = 0.5 the results for the two models
are very similar, and do not increase much with N , indi-
cating that κ = 0.5 is too small to give useful information
for this range of sizes, as discussed above. For κ = 1,
the SK data increase the most rapidly with N , and the
σ = 0.6 data increase less quickly, but still faster than
the other values of σ. For κ = 2, the SK data increase
quickly, while for the value of σ furthest from the SK
limit, 0.896, the data are moderately large but roughly
size independent over the range of sizes simulated. Cu-
riously, for intermediate values of σ (0.6 and 0.784) the
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FIG. 4: (Color online) ∆(q0, κ) as a function of system size N for the short-range models and the SK model for several values
of the window q0 and threshold value κ. The points connected by solid lines are for the EA models, while those connected by
dashed lines are for the SK model. The temperatures are 0.4Tc for the 3D data and 0.5Tc for the 4D data. All panels in a
column have the same horizontal scale and all panels in a row have the same vertical scale.

data are very small but show an increase for the larger
sizes. This increase is particularly sharp for σ = 0.6. It
seems that there is an initial value of ∆ for small N and
a growth as N increases. We do not have a good un-
derstanding of the initial value, e.g., why it is so small
for κ = 2 and σ = 0.6, and 0.784. The more important
aspect of the data is the increase observed, at least for
most parameter values, at large sizes. Given the rapid
increase in the data for σ = 0.6, κ = 2 for the largest
size, we anticipate that for still larger sizes, its value for
∆ for κ = 2 would be closer to that of the SK model than
that of the intermediate σ values.

There are two possible interpretations of the trends

discussed above. If one believes that the RSB picture
holds for all of the models studied here, then one can
point to the fact that all the ∆ curves are nondecreasing
and assert that they will all approach unity as N → ∞,
just extremely slowly for the 3D EA model and the 1D
σ = 0.896 model. An argument supporting this idea is
made in Ref. 38 and rebutted in Ref. 39. If on the other
hand, one believes the droplet scenario or the chaotic pair
scenario holds for finite-dimensional spin glasses, then the
flattening of the curves for these models is a prelude to
an eventual decrease to zero. Unfortunately, the sizes
currently accessible to Monte Carlo simulation do not
permit one to sharply distinguish between these compet-
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FIG. 5: (Color online) Mean and median over samples of the integrated distribution IJ (q) for the long-range models and the
SK model. In all cases the temperature is close to 0.4Tc. For both the SK model and the 1D models, the median shows a
relatively strong size dependence compared with the mean, this difference being the least pronounced for σ = 0.896. The
“theory” curve for the SK data [Eq. (19)] is expected to be valid for small q only. The theory expression can be multiplied by
an (unknown) constant which has been set to unity. All panels have the same horizontal and vertical scales.

ing hypotheses. Using an exact algorithm for the two-
dimensional (2D) Ising spin glass with bimodal disorder,
Middleton17 shows that the crossover to decreasing be-
havior for ∆(q0, κ) in 2D does occur at large length scales.
He also shows within a simplified droplet model, that the
large length scales are needed to see the predictions of the
droplet scenario manifest in the 3D EA model. Overall,
we see that we need larger sizes to unambiguously deter-
mine from ∆(q0, κ) whether the droplet or RSB picture
applies to 3D-like models.

B. Median Imed(q) and mean Iav(q) cumulative

overlap distribution

In this section, we compare the mean Iav(q) and the
median Imed(q) of the cumulative overlap distribution.
Figure 5 shows results for Iav(q) and Imed(q) for the SK
model and several long-range models for a temperature
close to 0.4Tc. Figure 6 shows the same quantities for

the 3D EA and 4D EA models.
As noted in earlier work, the results for the average

show very little size dependence for all models. This
is a prediction of the RSB picture which certainly ap-
plies to the SK model. By contrast, in the droplet pic-
ture Iav(q) is predicted to vanish as5 L−θ. The ob-
served independence of Iav(q) with respect to L is one
of the strongest arguments in favor of the RSB picture
for finite-dimensional Ising spin-glass models. However,
it has been argued, e.g., Refs. 16,17, that there are strong
finite-size corrections and that the asymptotic behavior
predicted by the droplet model for Iav(q) would only be
seen for sizes larger than those accessible in simulations.
This is why the median has been proposed17 as an alter-
native to the mean.
The data for the median of the SK model in Fig. 5

show a rapid decrease at small q, which is very strongly

size dependent. As discussed in Sec. IV above, the rapid
decrease is expected in the RSB picture since it predicts
that Imed(q) is exponentially small in 1/q [see Eq. (19)].
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FIG. 6: (Color online) Log-linear plot of Imed(q) and Iav(q)
vs q plot for the 3D EA model at T ≃ 0.42 (upper panel) and
for the 4D EA model at T ≃ 0.90 (lower panel). Both panels
have the same horizontal scale.

The theoretical result is shown as a solid line in the SK
panel. It is plausible that the data will approach the
theory in the large N limit, but there are strong finite-
size effects at small q for the sizes that can be simulated,
so the data for the largest sizes are still far from the
theoretical prediction. This already indicates that the
median is not a very useful measure to distinguish the
RSB picture from the droplet picture.

The median data for the long-range 1D model with
σ = 0.6, which is in the mean-field region, shows similar
trends to that for the SK model. On the other hand,
for the long-range model furthest from mean-field theory,
σ = 0.896, the data also decrease rapidly at small q but
are less dependent on size. The data for the 3D and 4D
EA models in Fig. 6 also show a rapid decrease at small
q, which is quite strongly size dependent.

We have seen that even for the SK model it would be
very difficult to extrapolate the numerical data to an in-
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FIG. 7: (Color online) Log-linear P typ(q) plot for the SK
model for N = 2048 showing the strong dependence on the
zero-replacement value ǫ/k. See the main text for details.

finite system size. For the long-range models, the most
likely candidate for droplet theory behavior, according
to which the median (such as the average) vanishes in
the thermodynamic limit, is σ = 0.896. However, for
this model, the data are not zero for small q and there is
rather little size dependence, implying that, if the droplet
picture does hold, it will only be seen for much larger
sizes than can be simulated. This is the same situation
as for the mean (if the droplet picture is correct). Con-
sequently, it does not seem to us that the median of the
cumulative order parameter distribution is a particularly
useful quantity to distinguish the droplet and RSB pic-
tures.

C. Typical overlap distribution, P typ(q)

Estimating P typ(q)—defined in Eq. (20) as the ex-
ponential of the average of the logarithm—from Monte
Carlo simulations is problematic because the finite num-
ber of observations means that the result can be precisely
zero if the average is comparable to, or smaller than, ǫ,
the inverse of the number of measurements. Such results
make the typical value undefined according to Eq. (20).
One can regularize this problem by replacing zero val-
ues of PJ (q) with the small value ǫ/k for a reasonable
range of k, in the hope that the result would not be too
sensitive to the choice of k. Unfortunately, there is a
strong dependence on k, as seen in Fig. 7, where P typ(q)
is plotted for several values of k for the SK model for
N = 2048. The dependence on k indicates that P typ(q)
cannot be reliably measured in Monte Carlo simulations
with feasible run lengths.
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VI. SUMMARY AND CONCLUSIONS

We have studied the overlap distribution for sev-
eral Ising spin-glass models using recently proposed
observables. We consider 1D long-range models, 3D
and 4D short-range (Edwards-Anderson) models, and
the infinite-range (Sherrington-Kirkpatrick) model. The
three observables are all obtained from the single-sample
overlap distribution PJ (q). They are the fraction of
peaked samples ∆(q0, κ), the integrated median Imed(q),
and the typical value P typ(q). These observables were
proposed to help distinguish between the replica symme-
try breaking picture and two-state pictures such as the
droplet model. While none of these statistics unambigu-
ously differentiates between these competing pictures, it
appears that ∆ does the best job. In particular, there is
a qualitative distinction between the behavior for the 3D
EA model and the long-range 1D model with σ = 0.896
that is expected to mimic it, on the one hand, and the
mean-field SK model and the 1D model with σ = 0.6 that
is expected to be in the mean-field regime, on the other
hand. For a reasonable range of q0 and κ, the two 3D-
like models do not show an increase in ∆ for the largest
sizes while the mean-field models are sharply increasing
for the largest sizes. The increase in ∆ for the mean-field
model is exactly what we expect from the RSB picture.
The results for the 3D-like models are ambiguous because
eventually ∆ must go either to zero or one. It is possible
that for much larger sizes ∆ will begin to increase, indi-
cating RSB behavior, but simulating such large system
sizes at very low temperatures is unfeasible at present.
The other proposed measures do not appear to be use-

ful in numerical simulations for distinguishing scenarios.
The typical value of the overlap P typ(q) cannot be mea-
sured in feasible Monte Carlo simulations while the me-

dian value of the cumulative overlap Imed(q) is very small
at small q even for the SK model and has a very strong
size dependence. For the droplet model Imed(q) is pre-
sumably zero at small q for N → ∞. However, the strong
size dependence of the results in this region of small q
makes it impossible to tell numerically, if the data are
going to zero or just to a very small value, even for the
SK model. Curiously, there is less size dependence for the
3D model and the equivalent 1D with σ = 0.896 than for
the SK model.
Recently, we became aware of a related paper by Bil-

loire et al.40. Reference 40 argues that the data for
Imed(q) for the SK model “converge nicely to some lim-
iting curve when N increases” and that “trading the av-
erage for the median does make the analysis more clear
cut.” In contrast, we find a strong finite-size dependence
for Imed(q) for the SK model in the important small-q
region (clearly visible in a logarithmic scale) and largely
because of this we do not find that the median is partic-
ularly helpful in distinguishing between the droplet and
RSB pictures.
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